JP2005333620A - 画像処理装置及び画像処理方法 - Google Patents

画像処理装置及び画像処理方法 Download PDF

Info

Publication number
JP2005333620A
JP2005333620A JP2005112579A JP2005112579A JP2005333620A JP 2005333620 A JP2005333620 A JP 2005333620A JP 2005112579 A JP2005112579 A JP 2005112579A JP 2005112579 A JP2005112579 A JP 2005112579A JP 2005333620 A JP2005333620 A JP 2005333620A
Authority
JP
Japan
Prior art keywords
correction
image
defective pixel
correction processing
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005112579A
Other languages
English (en)
Other versions
JP2005333620A5 (ja
Inventor
Kazunari Kitani
一成 木谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005112579A priority Critical patent/JP2005333620A/ja
Publication of JP2005333620A publication Critical patent/JP2005333620A/ja
Publication of JP2005333620A5 publication Critical patent/JP2005333620A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Studio Devices (AREA)
  • Image Processing (AREA)
  • Facsimile Image Signal Circuits (AREA)

Abstract

【課題】 欠陥画素に応じて補正処理を振り分けることにより、処理時間が長くなったり、補正品質が低下したり、ハードウェア構成が大きくなったりする不都合を避ける。
【解決手段】 画像処理回路20の欠陥補正回路222は、メモリ30上の単独欠陥画素アドレス情報を照合し、欠陥画素に該当するアドレスのデータがA/D変換機16より出力されたことを判別した場合には、この出力データに替えて直前の同色画素出力に置き換える処理を行う。また、撮影処理を終えたならば、ファームウェアで隣接欠陥画素補正を行う欠陥画素補正処理に進み、メモリ30上の隣接欠陥画素アドレス情報に基づいて補正処理を行う。
【選択図】 図2

Description

本発明は、静止画像や動画像を撮像、記録、再生する画像処理装置及び画像処理方法に関する。
固体メモリ素子を有するメモリカードを記録媒体として、CCD、CMOS等の固体撮像素子で撮像した静止画像や動画像を記録及び再生する電子カメラ等の画像処理装置が既に市販されている。
また、CCD、CMOS等の固体撮像素子を用いて撮像する場合、固体撮像素子を露光しない状態で本撮影と同様に電荷蓄積を行った後に読み出したダーク画像データと、固体撮像素子を露光した状態で電荷蓄積を行った後に読み出した本撮影画像データとを用いて演算処理することにより、ダークノイズ補正処理を行うことが可能である。これにより、固体撮像素子の発生する暗電流ノイズや固体撮像素子固有の微少な傷による画素欠損等の画質劣化に関して、撮影した画像データを補正して高品位な画像を得ることができる。
また、傷画素に隣接する画素の画像データを用いて補間演算処理を行うことにより、点傷を補正して、画質劣化をさらに低減することが可能である。
従来、これらの傷画素の補正方法としては、センサの工場出荷時に、所定の条件下での標準蓄積時間での出力を評価し、傷画素と判定して、この傷画素の種別(黒傷、白傷等)及びアドレス(傷画素の位置データ(x、y))、さらには傷レベルのデータを得て、このデータを用いて傷画素を補正するように構成されている(例えば、特許文献1)。
ところで、傷画素、特に白傷については、撮影時の蓄積時間によって大きくその程度が異なることが知られている。そのため、通常の短秒時での一般撮影時には問題にならないような傷画素でも、長秒での撮影時には急激にその傷画素としてのレベルが大きくなり、画質に悪影響を与えてしまうことになる。特に前述したダークノイズ補正処理を行わない場合には、微小な傷が補正されないために、長秒での撮影時に画素欠損による画質の低下が顕著に表れる。
特開2000−23051号公報
しかしながら、長秒時での傷画素のレベルに応じて傷画素の判定を行い、すべての画素に対して補正処理を行うとすると、傷画素の補正個数は非常に大きなものとなってしまう。
従来、一般的な欠陥画素の補間方法としては、周辺の同色画素の出力を用い、これらの値から算出した値に置き換える手法が多く採られている。
撮像されメモリ上に記憶された画像データに対し、傷画素に隣接する画素の画像データを用いた補間演算処理をファームウェアにて実施しようとすると、周辺の同色画素出力の読み出し、演算、欠陥画素への補正値書き込みという手順を要することから、欠陥画素の個数が増えるとメモリアクセスに膨大な時間を要し、その処理時間がレリーズタイムラグ、或いは、撮影コマ間隔といったシーケンス上の障害となってしまう。
一方、このような処理時間を考慮した方法として、ハードウェアにて処理する方法も提案されている。例えば特許文献1には、傷画素のアドレスを記憶しておき、読み出しアドレスが、その記憶されたアドレスと一致した場合には、近傍の画素出力へ置き換えるものである。ハードウェアでの処理に対しては、単独に存在する傷画素については十分な補正が可能である。しかしながら、傷画素が隣接する複数の画素にまたがるような隣接複数傷に対して処理を行うことを考えると、傷を補正したことが見えないようになるべく高品質な補正を行おうとすると、周辺画素から適用補完していくことが望ましい。例えばハードウェアにて欠陥画素を直前の同色画素出力にて置き換える構成であると、水平方向に連続して同色画素に欠陥がある場合には、欠陥の直前の画素出力に連続して置き換えることとなり、特に空間周波数が高い画像である場合には、補正痕が見えてしまうという問題があった。
既述したようにファームウェアにて処理する方法であれば、周辺画素出力を読み出した時点で適切な判断ができるため、連続する欠陥画素であっても、最適な補正方法、例えば周辺の正常画素出力を用いて周辺画素から複数の欠陥画素の内部に向かって補正していくといった方法で対応可能である。しかしながら、読み出し動作中に周辺画素からの補正をリアルタイムで行うようなハードウェアは、周辺画素を一度に保存できるような膨大な処理用メモリを確保する必要があり、そのハードウェア構成が非常に大きく、複雑なものとなり、現実的ではなかった。
本発明は前記のような点に鑑みてなされたものであり、欠陥画素に応じて補正処理を振り分けることにより、処理時間が長くなったり、補正品質が低下したり、ハードウェア構成が大きくなったりする不都合を避けることを目的とする。
本発明の画像処理装置は、複数の画素から構成される撮像素子と、前記撮像素子から出力される撮影画像を記憶する記憶部と、前記撮像素子から出力される前記欠陥画素の出力信号の入力、及び、前記撮像素子の欠陥画素のアドレスに関する情報を有する第1の補正用データに応じて、欠陥画素の補正処理を行う第1の補正処理部と、前記第1の補正処理部における補正処理後に前記記憶部に記憶されている前記撮影画像の欠陥画素の補正処理を、前記撮像素子の欠陥画素のアドレスに関する情報を有する第2の補正用データに基づき行う第2の補正処理部とを備えることを特徴とする。
本発明の別の画像処理装置は、複数の画素から構成される撮像素子と、前記撮像素子から出力される撮影画像を記憶する記憶部と、前記撮像素子から出力される前記欠陥画素の出力信号の入力、及び、前記撮像素子の欠陥画素のアドレスに関する情報を有する補正用データに応じて、欠陥画素の補正処理を行う第1の補正処理部と、前記第1の補正処理部における補正処理後に前記記憶部に記憶されている前記撮影画像の欠陥画素の補正処理を、前記補正用データに基づき行う第2の補正処理部と、前記補正用データが有する欠陥画素のアドレスに関する情報に応じて、前記第1の補正処理部と前記第2の補正処理部とを切り替えて補正を実施する制御部とを備えることを特徴とする。
本発明の画像処理方法は、複数の画素から構成される撮像素子から出力される撮影画像を記憶する記憶工程と、前記撮像素子から出力される前記欠陥画素の出力信号の入力、及び、前記撮像素子の欠陥画素のアドレスに関する情報を有する第1の補正用データに応じて、欠陥画素の補正処理を行う第1の補正処理工程と、前記第1の補正処理工程における補正処理後に前記記憶工程に記憶されている前記撮影画像の欠陥画素の補正処理を、前記撮像素子の欠陥画素のアドレスに関する情報を有する第2の補正用データに基づき行う第2の補正処理工程とを有することを特徴とする。
本発明の別の画像処理方法は、複数の画素から構成される撮像素子から出力される撮影画像を記憶する記憶工程と、前記撮像素子から出力される前記欠陥画素の出力信号の入力、及び、前記撮像素子の欠陥画素のアドレスに関する情報を有する補正用データに応じて、欠陥画素の補正処理を行う第1の補正処理工程と、前記第1の補正処理工程における補正処理後に前記記憶工程に記憶されている前記撮影画像の欠陥画素の補正処理を、前記補正用データに基づき行う第2の補正処理工程と、前記補正用データが有する欠陥画素のアドレスに関する情報に応じて、前記第1の補正処理工程と前記第2の補正処理工程とを切り替えて補正を実施する制御工程とを有することを特徴とする。
本発明によれば、例えば単独の欠陥画素であるか、周辺に欠陥画素が存在する欠陥画素であるかによって補正処理を振り分けることができ、欠陥画素の補正不足や過補正に伴う画質の低下を避けるとともに、メモリ等のシステムリソースの増大や、ソフトウェアの複雑化を招くことなく、また、ハードウェアの複雑化、高価格化を招くことなく、高速で高精度な欠陥画素に対する補正処理が可能となる。具体的には、欠陥画素の多くを占める単独欠陥画素に対してはまとめて高速な補正処理を選択し、小数である周辺に欠陥画素が存在する欠陥画素に対しては高精度な補正処理を選択するようなことが可能となる。
さらに、撮影条件や環境条件によって異なる補正用データを用いることにより、最適な補正を行うことが可能となる。
以下、添付図面を参照して、本発明の好適な実施形態について説明する。図1は、本発明に係る実施形態の画像処理装置100の構成を示す図である。12は撮像素子14への露光量を制御するためのシャッター、14は光学像を電気信号に変換する撮像素子である。レンズ310に入射した光線は、一眼レフ方式によって、絞り312、レンズマウント306及び106、ミラー130、シャッター12を介して導かれ、光学像として撮像素子14上に結像する。
16は撮像素子14のアナログ信号出力をディジタル信号に変換するA/D変換器である。18は撮像素子14、A/D変換器16、D/A変換器26にクロック信号や制御信号を供給するタイミング発生回路であり、メモリ制御回路22及びシステム制御回路50により制御される。
20は画像処理回路であり、A/D変換器16からのデータ或いはメモリ制御回路22からのデータに対して所定の画素補間処理や色変換処理を行う。また、画像処理回路20においては、必要に応じて、撮像した画像データを用いて所定の演算処理を行い、得られた演算結果に基づいてシステム制御回路50がシャッター制御手段40、測距制御手段342に対して制御を行う、TTL(スルー・ザ・レンズ)方式のAF(オートフォーカス)処理、AE(自動露出)処理、EF(フラッシュ調光)処理を行うことができる。さらに、画像処理回路20においては、撮像した画像データを用いて所定の演算処理を行い、得られた演算結果に基づいてTTL方式のAWB(オートホワイトバランス)処理も行っている。
なお、本実施形態においては、測距手段42及び測光手段46を専用に備える構成としたため、測距手段42及び測光手段46を用いてAF(オートフォーカス)処理、AE(自動露出)処理、EF(フラッシュ調光)処理の各処理を行い、前記画像処理回路20を用いたAF(オートフォーカス)処理、AE(自動露出)処理、EF(フラッシュ調光)処理の各処理を行わない構成としても良い。或いは、測距手段42及び測光手段46を用いてAF(オートフォーカス)処理、AE(自動露出)処理、EF(フラッシュ調光)処理の各処理を行い、さらに、前記画像処理回路20を用いたAF(オートフォーカス)処理、AE(自動露出)処理、EF(フラッシュ調光)処理の各処理を行う構成としても良い。
22はメモリ制御回路であり、A/D変換器16、タイミング発生回路18、画像処理回路20、画像表示メモリ24、D/A変換器26、メモリ30、圧縮・伸長回路32を制御する。A/D変換器16のデータが画像処理回路20、メモリ制御回路22を介して画像表示メモリ24或いはメモリ30に書き込まれる。
画像処理回路20には、A/D変換器16から入力されるデータの中で欠陥画素に該当する画素の出力を直前の同色画素の出力にて置き換える欠陥補正回路が内蔵されている。ここで、図8を参照して、欠陥補正回路の機能について説明する。撮像素子14では、その出荷時に、所定の環境温度、所定の蓄積時間に得られた画像データより、各種の傷画素が抽出される。これらの傷画素の種別、アドレス、そのレベルが記載された出荷時データを基に、本画像処理装置100内のメモリ30に格納するデータを生成する。この処理は画像処理装置100の外部で行われる。
具体的には、撮影状況に応じて補正処理が必要な白傷の判別を行う。白傷の多くは露光時間(蓄積時間)に応じてレベルが大きくなる傾向があり、同じレベルの白傷であっても、設定されたISO感度(撮像素子14のゲイン及び画像処理部20のゲイン)によっても、画像となった場合の傷のレベルが変わってしまう。そのため、例えば、設定されたISO感度とシャッター秒時(蓄積時間)とによるテーブルを設け、それぞれの領域で補正が必要な画素を出荷時データにおける傷レベルによって判別する。このときに検出された欠陥画素のアドレスに関して調査することで、単独欠陥画素か、或いは、周辺の同色画素の中にも欠陥画素が存在する隣接欠陥画素であるかの判定が可能である。
欠陥画素のアドレスに関しては、異なる2つの領域に2つのセットとして用意されている。一方のデータは欠陥画素の中で、周辺の同色画素に欠陥画素が存在しない、いわゆる単独欠陥画素に分類されるものの少なくともアドレスに関する情報を有するデータであり、以降これを「単独欠陥画素アドレス情報」と呼ぶ。もう一方のデータは、欠陥画素の中で、周辺の同色画素にも欠陥画素が存在する、いわゆる隣接欠陥画素に分類されるものの少なくともアドレスに関する情報を有するデータであり、以降これを「隣接欠陥画素アドレス情報」と呼ぶ。
同図において、20は画像処理回路、22はメモリ制御回路、30はメモリであり、これらは図1に示すものと同一の構成要素である。画像処理回路20において、220はアドレス比較回路であり、不揮発性メモリ56から読み出し、メモリ30上に記憶されている単独欠陥画素アドレス情報をメモリ制御回路22を通して読み出し、現在読み出し中の撮像素子のアドレスと比較する。222は欠陥補正回路であり、アドレス比較回路220でのアドレス比較が一致したとき、すなわちメモリ30上の単独欠陥画素アドレス情報に記載されている欠陥画素に対して、直前の同色画素の出力にて置き換える。
このように撮像素子14を読み出しながら、現在読み出している撮像素子のアドレスと、事前にメモリ30に記憶している単独欠陥画素アドレス情報とを比較し、該当するときには欠陥画素の出力を使用せず、直前の同色画素の出力で置き換える処理を行う。したがって、撮像素子14の読み出しが終了し、撮像素子14から読み出したデータが各種処理回路221に入力したときには、既に単独欠陥画素アドレス情報に記載の欠陥画素についての補正処理はすべて完了していることになる。
図1に説明を戻すと、24は画像表示メモリ、26はD/A変換器、28はTFT LCD等から成る画像表示部であり、画像表示メモリ24に書き込まれた表示用の画像データはD/A変換器26を介して画像表示部28により表示される。画像表示部28を用いて撮像した画像データを逐次表示すれば、電子ファインダ機能を実現することが可能である。また、画像表示部28は、システム制御回路50の指示により任意に表示をON/OFFすることが可能であり、表示をOFFにした場合には画像処理装置100の電力消費を大幅に低減することができる。
30は撮影した静止画像や動画像を格納するためのメモリであり、所定枚数の静止画像や所定時間の動画像を格納するのに十分な記憶量を備えている。これにより、複数枚の静止画像を連続して撮影する連写撮影やパノラマ撮影の場合にも、高速かつ大量の画像書き込みをメモリ30に対して行うことが可能となる。また、メモリ30はシステム制御回路50の作業領域としても使用することが可能である。
32は適応離散コサイン変換(ADCT)等により画像データを圧縮伸長する圧縮・伸長回路であり、メモリ30に格納された画像を読み込んで圧縮処理或いは伸長処理を行い、処理を終えたデータをメモリ30に書き込む。
40は測光手段46からの測光情報に基づいて、絞り312を制御する絞り制御手段340と連携しながら、シャッター12を制御するシャッター制御手段である。42はAF(オートフォーカス)処理を行うための測距手段であり、レンズ310に入射した光線を、一眼レフ方式によって、絞り312、レンズマウント306及び106、ミラー130そして不図示の測距用サブミラーを介して、測距手段42に入射させることにより、光学像として結像された画像の合焦状態を測定することができる。44は温度計であり、撮影環境の温度を検出することができる。温度計がセンサ内にある場合はセンサの暗電流をより正確に予想することが可能である。
46はAE(自動露出)処理を行うための測光手段であり、レンズ310に入射した光線を、一眼レフ方式によって、絞り312、レンズマウント306及び106、ミラー130及び132そして不図示の測光用レンズを介して、測光手段46に入射させることにより、光学像として結像された画像の露出状態を測定することができる。また、測光手段46は、フラッシュ48と連携することによりEF(フラッシュ調光)処理機能も有するものである。48はフラッシュであり、AF補助光の投光機能、フラッシュ調光機能も有する。
なお、撮像素子14によって撮像した画像データを画像処理回路20によって演算した演算結果に基づき、システム制御回路50がシャッター制御手段40、絞り制御手段340、測距制御手段342に対して制御を行う、ビデオTTL方式を用いて露出制御及びAF(オートフォーカス)制御をすることも可能である。さらに、測距手段42による測定結果と、撮像素子14によって撮像した画像データを画像処理回路20によって演算した演算結果とを共に用いてAF(オートフォーカス)制御を行っても構わない。そして、測光手段46による測定結果と、撮像素子14によって撮像した画像データを画像処理回路20によって演算した演算結果とを共に用いて露出制御を行っても構わない。
50は画像処理装置100全体を制御するシステム制御回路、52はシステム制御回路50の動作用の定数、変数、プログラム等を記憶するメモリである。
54はシステム制御回路50でのプログラムの実行に応じて、文字、画像、音声等を用いて動作状態やメッセージ等を表示する液晶表示装置、スピーカー等の表示部であり、画像処理装置100の操作部近辺の視認し易い位置に単数或いは複数個所設置され、例えばLCDやLED、発音素子等の組み合わせにより構成されている。また、表示部54は、その一部の機能が光学ファインダ104内に設置されている。表示部54の表示内容のうち、LCD等に表示するものとしては、例えば、シングルショット/連写撮影表示、セルフタイマー表示、圧縮率表示、ISO感度表示、記録画素数表示、記録枚数表示、残撮影可能枚数表示、シャッタースピード表示、絞り値表示、露出補正表示、フラッシュ表示、赤目緩和表示、マクロ撮影表示、ブザー設定表示、時計用電池残量表示、電池残量表示、エラー表示、複数桁の数字による情報表示、記録媒体200及び210の着脱状態表示、レンズユニット300の着脱状態表示、通信I/F動作表示、日付・時刻表示、外部コンピュータとの接続状態を示す表示等がある。また、表示部54の表示内容のうち、光学ファインダ104内に表示するものとしては、例えば、合焦表示、撮影準備完了表示、手振れ警告表示、フラッシュ充電表示、フラッシュ充電完了表示、シャッタースピード表示、絞り値表示、露出補正表示、記録媒体書き込み動作表示等がある。さらに、表示部54の表示内容のうち、LED等に表示するものとしては、例えば、合焦表示、撮影準備完了表示、手振れ警告表示、手振れ警告表示、フラッシュ充電表示、フラッシュ充電完了表示、記録媒体書き込み動作表示、マクロ撮影設定通知表示、二次電池充電状態表示等がある。そして、表示部54の表示内容のうち、ランプ等に表示するものとしては、例えば、セルフタイマー通知ランプ等がある。このセルフタイマー通知ランプは、AF補助光と共用して用いても良い。
56は電気的に消去・記録可能な不揮発性メモリであり、例えばEEPROM等が用いられる。この不揮発性メモリ56には、各種パラメータやISO感度等の設定値、設定モード、欠陥画素のアドレスに関する情報等のデータが格納される。これらの欠陥画素アドレス情報は処理時間が要求されるため、必要に応じて、不揮発性メモリ56からメモリ30にコピーして使用される。
60、62、64、66、68、69、及び70は、システム制御回路50の各種の動作指示を入力するための操作手段であり、スイッチやダイアル、タッチパネル、視線検知によるポインティング、音声認識装置等の単数或いは複数の組み合わせで構成される。
ここで、これらの操作手段の具体的な説明を行う。60はモードダイアルスイッチで、自動撮影モード、プログラム撮影モード、シャッター速度優先撮影モード、絞り優先撮影モード、マニュアル撮影モード、焦点深度優先(デプス)撮影モード、ポートレート撮影モード、風景撮影モード、接写撮影モード、スポーツ撮影モード、夜景撮影モード、パノラマ撮影モード等の各機能撮影モードを切り替え設定することができる。
62はシャッタースイッチSW1で、不図示のシャッターボタンの操作途中でONとなり、AF(オートフォーカス)処理、AE(自動露出)処理、AWB(オートホワイトバランス)処理、EF(フラッシュ調光)処理等の動作開始を指示する。64はシャッタースイッチSW2で、不図示のシャッターボタンの操作完了でONとなり、撮像素子12から読み出した信号をA/D変換器16、メモリ制御回路22を介してメモリ30に画像データを書き込む露光処理、画像処理回路20やメモリ制御回路22での演算を用いた現像処理、メモリ30から画像データを読み出し、圧縮・伸長回路32で圧縮を行い、記録媒体200或いは210に画像データを書き込む記録処理という一連の処理の動作開始を指示する。
66は再生スイッチで、撮影モード状態において、撮影した画像をメモリ30或いは記録媒体200或いは210から読み出して画像表示部28によって表示する再生動作の開始を指示する。
68は単写/連写スイッチで、シャッタースイッチSW2を押した場合に1駒の撮影を行って待機状態とする単写モードと、シャッタースイッチSW2を押している間は連続して撮影を行い続ける連写モードとを設定することができる。
69はISO感度設定スイッチで、撮像素子14或いは画像処理回路20におけるゲインの設定を変更することにより、ISO感度を設定することができる。
70は各種ボタンやタッチパネル等からなる操作部で、メニューボタン、セットボタン、マクロボタン、マルチ画面再生改ページボタン、フラッシュ設定ボタン、単写/連写/セルフタイマー切り替えボタン、メニュー移動+(プラス)ボタン、メニュー移動−(マイナス)ボタン、再生画像移動+(プラス)ボタン、再生画像−(マイナス)ボタン、撮影画質選択ボタン、露出補正ボタン、日付/時間設定ボタン、パノラマモード等の撮影及び再生を実行する際に各種機能の選択及び切り替えを設定する選択/切り替えボタン、パノラマモード等の撮影及び再生を実行する際に各種機能の決定及び実行を設定する決定/実行ボタン、画像表示部28のON/OFFを設定する画像表示ON/OFFスイッチ、撮影直後に撮影した画像データを自動再生するクイックレビュー機能を設定するクイックレビューON/OFFスイッチ、JPEG圧縮の圧縮率を選択するため或いは撮像素子の信号をそのままディジタル化して記録媒体に記録するCCDRAWモードを選択するためのスイッチである圧縮モードスイッチ、再生モード、マルチ画面再生・消去モード、PC接続モード等の各機能モードを設定することができる再生スイッチ、シャッタースイッチSW1を押したならばオートフォーカス動作を開始し一旦合焦したならばその合焦状態を保ち続けるワンショットAFモードとシャッタースイッチSW1を押している間は連続してオートフォーカス動作を続けるサーボAFモードとを設定することができるAFモード設定スイッチ等がある。また、前記プラスボタン及びマイナスボタンの各機能は、回転ダイアルスイッチを備えることによって、より軽快に数値や機能を選択することが可能となる。
72は電源スイッチで、画像処理装置100の電源オン、電源オフの各モードを切り替え設定することができる。また、画像処理装置100に接続されたレンズユニット300、外部ストロボ、記録媒体200、210等の各種付属装置の電源オン、電源オフの設定も合わせて切り替え設定することができる。
80は電源制御手段で、電池検出回路、DC-DCコンバータ、通電するブロックを切り替えるスイッチ回路等により構成されており、電池の装着の有無、電池の種類、電池残量の検出を行い、検出結果及びシステム制御回路50の指示に基づいてDC-DCコンバータを制御し、必要な電圧を必要な期間、記録媒体を含む各部へ供給する。
82はコネクタ、84はコネクタ、86はアルカリ電池やリチウム電池等の一次電池やNiCd電池やNiMH電池、Li電池等の二次電池、ACアダプター等からなる電源手段である。90及び94はメモリカードやハードディスク等の記録媒体とのインタフェース、92及び96はメモリカードやハードディスク等の記録媒体と接続を行うコネクタ、98はコネクタ92及び或いは96に記録媒体200或いは210が装着されているか否かを検知する記録媒体着脱検知手段である。
なお、本実施形態では記録媒体を取り付けるインタフェース及びコネクタを2系統持つものとして説明している。もちろん、記録媒体を取り付けるインタフェース及びコネクタは、単数或いは複数、いずれの系統数を備える構成としても構わない。また、異なる規格のインタフェース及びコネクタを組み合わせて備える構成としても構わない。インタフェース及びコネクタとしては、PCMCIAカードやCF(コンパクトフラッシュ(登録商標))カード等の規格に準拠したものを用いて構成して構わない。さらに、インタフェース90及び94、そしてコネクタ92及び96をPCMCIAカードやCF(コンパクトフラッシュ(登録商標))カード等の規格に準拠したものを用いて構成した場合、LANカードやモデムカード、USBカード、IEEE1394カード、P1284カード、SCSIカード、PHS等の通信カード、等の各種通信カードを接続することにより、他のコンピュータやプリンタ等の周辺機器との間で画像データや画像データに付属した管理情報を転送し合うことができる。
104は光学ファインダであり、レンズ310に入射した光線を、一眼レフ方式によって、絞り312、レンズマウント306及び106、ミラー130及び132を介して導き、光学像として結像表示することができる。これにより、画像表示部28による電子ファインダ機能を使用すること無しに、光学ファインダ104のみを用いて撮影を行うことが可能である。また、光学ファインダ104内には、表示部54の一部の機能、例えば、合焦表示、手振れ警告表示、フラッシュ充電表示、シャッタースピード表示、絞り値表示、露出補正表示等が設置されている。
110は通信手段で、RS232CやUSB、IEEE1394、P1284、SCSI、モデム、LAN、無線通信、等の各種通信機能を有する。112は通信手段110により画像処理装置100を他の機器と接続するコネクタ或いは無線通信の場合はアンテナである。
120は、レンズマウント106内において、画像処理装置100をレンズユニット300と接続するためのインタフェース、122は画像処理装置100をレンズユニット300と電気的に接続するコネクタ、124はレンズマウント106及び或いはコネクタ122にレンズユニット300が装着されているか否かを検知するレンズ着脱検知手段である。コネクタ122は、画像処理装置100とレンズユニット300との間で制御信号、状態信号、データ信号等を伝え合うと共に、各種電圧の電流を供給する機能も備えている。また、コネクタ122は電気通信のみならず、光通信、音声通信等を伝達する構成としても良い。
130、132はミラーで、レンズ310に入射した光線を、一眼レフ方式によって光学ファインダ104に導くことができる。なお、ミラー132は、クイックリターンミラーの構成としても、ハーフミラーの構成としても、どちらでも構わない。
200はメモリカードやハードディスク等の記録媒体である。記録媒体200は、半導体メモリや磁気ディスク等から構成される記録部202、画像処理装置100とのインタフェース204、画像処理装置100と接続を行うコネクタ206を備えている。
210はメモリカードやハードディスク等の記録媒体である。記録媒体210は、半導体メモリや磁気ディスク等から構成される記録部212、画像処理装置100とのインタフェース214、画像処理装置100と接続を行うコネクタ216を備えている。
300は交換レンズタイプのレンズユニットである。306はレンズユニット300を画像処理装置100と機械的に結合するレンズマウントである。レンズマウント306内には、レンズユニット300を画像処理装置100と電気的に接続する各種機能が含まれている。
310は撮影レンズ、312は絞りである。320はレンズマウント306内において、レンズユニット300を画像処理装置100と接続するためのインタフェース、322はレンズユニット300を画像処理装置100と電気的に接続するコネクタである。コネクタ322は、画像処理装置100とレンズユニット300との間で制御信号、状態信号、データ信号等を伝え合うと共に、各種電圧の電流を供給される或いは供給する機能も備えている。また、コネクタ322は電気通信のみならず、光通信、音声通信等を伝達する構成としても良い。
340は測光手段46からの測光情報に基づいて、シャッター12を制御するシャッター制御手段40と連携しながら、絞り312を制御する絞り制御手段である。342は撮影レンズ310のフォーカシングを制御する測距制御手段、344は撮影レンズ310のズーミングを制御するズーム制御手段である。
350はレンズユニット300全体を制御するレンズシステム制御回路である。レンズシステム制御回路350は、動作用の定数、変数、プログラム等を記憶するメモリやレンズユニット300固有の番号等の識別情報、管理情報、開放絞り値や最小絞り値、焦点距離等の機能情報、現在や過去の各設定値等を保持する不揮発メモリの機能も備えている。
次に、図2〜7を参照して、本実施形態の画像処理装置100での処理動作について説明する。図2及び図3は画像処理装置100での処理動作の主ルーチンのフローチャートを示す。電池交換等の電源投入により、システム制御回路50はフラグや制御変数等を初期化し、画像処理装置100の各部において必要な所定の初期設定を行う(ステップS101)。
システム制御回路50は、電源スイッチ66の設定位置を判断し、電源スイッチ66が電源OFFに設定されていたならば(ステップS102)、各表示部の表示を終了状態に変更し、フラグや制御変数等を含む必要なパラメータや設定値、設定モードを不揮発性メモリ56に記録し、電源制御手段80により画像表示部28を含む画像処理装置100各部の不要な電源を遮断する等の所定の終了処理を行った後(ステップS103)、ステップS102に戻る。
電源スイッチ66が電源ONに設定されていたならば(ステップS102)、システム制御回路50は電源制御手段80により電池等により構成される電源86の残容量や動作情況が画像処理装置100の動作に問題があるか否かを判断し(ステップS104)、問題があるならば表示部54を用いて画像や音声により所定の警告表示を行った後に(ステップS105)、ステップS102に戻る。
電源86に問題が無いならば(ステップS104)、システム制御回路50はモードダイアル60の設定位置を判断し、モードダイアル60が撮影モードに設定されていたならば(ステップS106)、ステップS108に進む。モードダイアル60がその他のモードに設定されていたならば(ステップS106)、システム制御回路50は選択されたモードに応じた処理を実行し(ステップS107)、処理を終えたならば、ステップS102に戻る。
システム制御回路50は、記録媒体200或いは210が装着されているかどうかの判断、記録媒体200或いは210に記録された画像データの管理情報の取得、そして、記録媒体200或いは210の動作状態が画像処理装置100の動作、特に記録媒体に対する画像データの記録再生動作に問題があるか否かの判断を行い(ステップS108)、問題があるならば表示部54を用いて画像や音声により所定の警告表示を行った後に(ステップS105)、ステップS102に戻る。
記録媒体200或いは210が装着されているかどうかの判断、記録媒体200或いは210に記録された画像データの管理情報の取得、そして、記録媒体200或いは210の動作状態が画像処理装置100の動作、特に記録媒体に対する画像データの記録再生動作に問題があるか否かの判断を行った結果(ステップS108)、問題が無いならば、ステップS109に進む。
システム制御回路50は、表示部54を用いて画像や音声により画像処理装置100の各種設定状態の表示を行う(ステップS109)。なお、画像表示部28の画像表示がONであったならば、画像表示部28も用いて画像や音声により画像処理装置100の各種設定状態の表示を行う。
シャッタースイッチSW1が押されていないならば(ステップS121)、ステップS102に戻る。シャッタースイッチSW1が押されたならば(ステップS121)、システム制御回路50は測距処理を行って撮影レンズの焦点を被写体に合わせ、測光処理を行って絞り値及びシャッター時間を決定する、測距・測光処理を行い(ステップS122)、ステップS123に進む。測光処理において、必要であればフラッシュの設定も行う。この測距・測光処理(ステップS122)の詳細は図4を用いて後述する。
シャッタースイッチSW2が押されていないならば(ステップS132)、システム制御回路50はシャッタースイッチSW1の状態を確認し(ステップS133)、シャッタースイッチSW1がオンであるならば、ステップS132に戻る。一方、シャッタースイッチSW1がオフであるならば、ステップS102に戻る。
シャッタースイッチSW2が押されたならば(ステップS132)、システム制御回路50は撮影した画像データを記憶可能な画像記憶バッファ領域がメモリ30にあるかどうかを判断し(ステップS134)、メモリ30の画像記憶バッファ領域内に新たな画像データを記憶可能な領域が無いならば、表示部54を用いて画像や音声により所定の警告表示を行った後に(ステップS135)、ステップS102に戻る。例えば、メモリ30の画像記憶バッファ領域内に記憶可能な最大枚数の連写撮影を行った直後で、メモリ30から読み出して記憶媒体200或いは210に書き込むべき最初の画像がまだ記録媒体200或いは210に未記録な状態であり、まだ1枚の空き領域もメモリ30の画像記憶バッファ領域上に確保できない状態である場合等が、この状態の一例である。なお、撮影した画像データを圧縮処理してからメモリ30の画像記憶バッファ領域に記憶する場合は、圧縮した後の画像データ量が圧縮モードの設定に応じて異なることを考慮して、記憶可能な領域がメモリ30の画像記憶バッファ領域上にあるかどうかをステップS134において判断することになる。
メモリ30に撮影した画像データを記憶可能な画像記憶バッファ領域があるならば(ステップS134)、システム制御回路50は撮像して所定時間蓄積した撮像信号を撮像素子14から読み出して、A/D変換器16、画像処理回路20、メモリ制御回路22を介して、メモリ30の所定領域に撮影した画像データを書き込む撮影処理を実行する(ステップS136)。この撮影処理(ステップS136)の詳細は図5を用いて後述する。
撮影処理(ステップS136)を終えたならば、ファームウェアで隣接欠陥画素補正を行う欠陥画素補正処理(ステップS139)に進む。この傷補正処理(ステップS139)の詳細は図7を用いて後述する。
システム制御回路50は、メモリ30の所定領域へ書き込まれた傷補正処理後の画像データの一部をメモリ制御回路22を介して読み出して、現像処理を行うために必要なWB(ホワイトバランス)積分演算処理、OB(オプティカルブラック)積分演算処理を行い、演算結果をシステム制御回路50の内部メモリ或いはメモリ52に記憶する。
そして、システム制御回路50は、メモリ制御回路22そして必要に応じて画像処理回路20を用いて、メモリ30の所定領域に書き込まれた傷補正後の撮影画像データを読み出して、システム制御回路50の内部メモリ或いはメモリ52に記憶した演算結果を用いて、AWB(オートホワイトバランス)処理、ガンマ変換処理、色変換処理を含む各種現像処理を行う(ステップS140)。
さらに、システム制御回路50は、メモリ30の所定領域に書き込まれた画像データを読み出して、設定したモードに応じた画像圧縮処理を圧縮・伸長回路32により行い(ステップS141)、メモリ30の画像記憶バッファ領域の空き画像部分に、撮影して一連の処理を終えた画像データの書き込みを行う。
一連の撮影の実行に伴い、システム制御回路50は、メモリ30の画像記憶バッファ領域に記憶した画像データを読み出して、インタフェース90或いは94、コネクタ92或いは96を介して、メモリカードやコンパクトフラッシュ(登録商標)カード等の記録媒体200或いは210へ書き込みを行う記録処理を開始する(ステップS142)。この記録開始処理は、メモリ30の画像記憶バッファ領域の空き画像部分に、撮影して一連の処理を終えた画像データの書き込みが新たに行われる度に、その画像データに対して実行される。なお、記録媒体200或いは210へ画像データの書き込みを行っている間、書き込み動作中であることを明示するために、表示部54において例えばLEDを点滅させる等の記録媒体書き込み動作表示を行う。
その後、システム制御回路50は、シャッタースイッチSW1が押されているかどうかを判断し(ステップS143)、シャッタースイッチSW1が押されている間は、これが離されるのを待ち、押されていない場合には、ステップS102へ戻る。
図4は、図3のステップS122における測距・測光処理の詳細なフローチャートを示す。なお、測距・測光処理においては、システム制御回路50と絞り制御手段340或いは測距制御手段342との間の各種信号のやり取りは、インタフェース120、コネクタ122、コネクタ322、インタフェース320、レンズ制御手段350を介して行われる。
システム制御回路50は、撮像素子14、測距手段42、測距制御手段342を用いて、AF(オートフォーカス)処理を開始する(ステップS201)。
システム制御回路50は、レンズ310に入射した光線を、絞り312、レンズマウント306及び106、ミラー130、不図示の測距用サブミラーを介して、測距手段42に入射させることにより、光学像として結像された画像の合焦状態を判断し、測距(AF)が合焦と判断されるまで(ステップS203)、測距制御手段342を用いてレンズ310を駆動しながら、測距手段42を用いて合焦状態を検出するAF制御を実行する(ステップS202)。
測距(AF)が合焦と判断したならば(ステップS203)、システム制御回路50は撮影画面内の複数の測距点の中から合焦した測距点を決定し、決定した測距点データと共に測距データや設定パラメータをシステム制御回路50の内部メモリ或いはメモリ52に記憶し、ステップS205に進む。
続いて、システム制御回路50は、測光手段46を用いて、AE(自動露出)処理を開始する(ステップS205)。
システム制御回路50は、レンズ310に入射した光線を、絞り312、レンズマウント306及び106、ミラー130及び132、そして不図示の測光用レンズを介して、測光手段46に入射させることにより、光学像として結像された画像の露出状態を測定し、ISO感度スイッチ69にて事前に設定されたISO感度において、露出(AE)が適正と判断されるまで(ステップS207)、露光制御手段40を用いて測光処理を行う(ステップS206)。
露出(AE)が適正と判断したならば(ステップS207)、システム制御回路50は測光データや設定パラメータをシステム制御回路50の内部メモリ或いはメモリ52に記憶し、ステップS208に進む。
なお、測光処理(ステップS206)で検出した露出(AE)結果と、モードダイアル60によって設定された撮影モードとに応じて、システム制御回路50は絞り値(Av値)、シャッター速度(Tv値)を決定する。そして、ここで決定したシャッター速度(Tv値)に応じて、システム制御回路50は撮像素子14の電荷蓄積時間を決定し、等しい電荷蓄積時間で撮影処理を行う。
測光処理(ステップS206)で得られた測定データにより、システム制御回路50はフラッシュが必要か否かを判断し(ステップS208)、フラッシュが必要ならばフラッシュ・フラグをセットし、フラッシュ48の充電が完了するまで(ステップS210)、フラッシュ48を充電する(ステップS209)。フラッシュ48の充電が完了したならば(ステップS210)、測距・測光処理ルーチンを終了する。
図5は、図3のステップS136における撮影処理の詳細なフローチャートを示す。なお、撮影処理においては、システム制御回路50と絞り制御手段340或いは測距制御手段342との間の各種信号のやり取りは、インタフェース120、コネクタ122、コネクタ322、インタフェース320、レンズ制御手段350を介して行われる。
システム制御回路50は、ミラー130を不図示のミラー駆動手段によってミラーアップ位置に移動すると共に(ステップS301)、システム制御回路50の内部メモリ或いはメモリ52に記憶される測光データに従い、絞り制御手段340によって絞り312を所定の絞り値まで駆動する(ステップS302)。
システム制御回路50は、撮像素子14の電荷クリア動作を行った後に(ステップS303)、撮像素子14の電荷蓄積を開始し(ステップS304)、シャッター制御手段40によってシャッター12を開いて(ステップS305)、撮像素子14の露光を開始する(ステップS306)。ここで、フラッシュ・フラグによりフラッシュ48が必要か否かを判断し(ステップS307)、必要な場合はフラッシュを発光させる(ステップS308)。
システム制御回路50は、測光データに従って撮像素子14の露光終了を待ち(ステップS309)、シャッター制御手段40によってシャッター12を閉じ(ステップS310)、撮像素子14の露光を終了する。
システム制御回路50は、絞り制御手段340によって絞り312を開放の絞り値まで駆動すると共に(ステップS311)、ミラー130を不図示のミラー駆動手段によってミラーダウン位置に移動する(ステップS312)。
設定した電荷蓄積時間が経過したならば(ステップS313)、システム制御回路50は、撮像素子14の電荷蓄積を終了した後(ステップS314)、撮像素子14から電荷信号を読み出し、A/D変換器16、画像処理回路20、メモリ制御回路22を介して、メモリ30の所定領域への撮影画像データを書き込む(ステップS315)。
このときに先に説明したように、画像処理回路20内の欠陥補正回路222は、不揮発性メモリ56からメモリ30にコピーした単独欠陥画素アドレス情報を照合し、該データに記述された欠陥画素に該当するアドレスのデータがA/D変換機16より出力されたことを判別した場合には、この出力データに替えて直前の同色画素出力に置き換える処理を行う。こうして単独欠陥画素については、撮像素子14から読み出し、メモリ30に書き込むまでの間に補正されて欠陥画素と認識できない出力に補正される。一連の処理を終えたならば、撮影処理ルーチンを終了する。
図7は、図3のステップS139におけるファームウェアによる傷補正処理の詳細なフローチャートを示す。ステップS401にて補正用データの選択を行う。これはISO感度、撮影秒時等の撮影条件、温度等の環境条件によって補正する対象が切り替わるため、各種条件に応じて補正する対象を切り替えるものである。
図6に補正用データの切替テーブルを示す。撮影秒時がT1よりも短い場合には、撮影ISO感度によらず、隣接欠陥画素アドレス情報としてdata1を使用する。data1に記載されている欠陥画素は、撮影秒時に関係なく、その出力が正常に出力されない画素が隣接して発生しているアドレス情報である。これはファームウェアによる補正はメモリアクセス等に時間がかかるため、シャッター秒時が短い場合、特に高速に連写する場合等には、処理時間が足りないことが予想されるためなるべく補正する個数を削減するためである。一方で撮影秒時が短いときには、欠陥画素の中で白傷と呼ばれる欠陥画素出力については、その出力も大きくなりにくく、目立ちにくいため、特に補正する必要がないためである。
撮影秒時がT1を超え、T2以下の場合には撮影ISO感度に応じてdata2、data3、data4を切り替えて使用する。data2に記載されている欠陥画素は、撮影秒時に関係なく、その出力が正常に出力されない画素、及び白傷の中で、その測定時の出力が100mV以上である白傷が隣接して発生しているアドレス情報である。同様にdata3には撮影秒時に関係なく、その出力が正常に出力されない画素、及び白傷の中で、その測定時の出力が50mV以上である白傷が隣接して発生しているアドレス情報、data4には撮影秒時に関係なく、その出力が正常に出力されない画素、及び白傷の中で、その測定時の出力が25mV以上である白傷が隣接して発生しているアドレス情報が記載されている。
撮影秒時がT2を超える場合には、撮影ISO感度によらずdata5を使用する。data5には撮影秒時に関係なく、その出力が正常に出力されない画素、及び白傷の中で、その測定時の出力が12.5mV以上である白傷が隣接して発生しているアドレス情報が記載されている。
このようなデータ構成にすると、例えば出荷時データにて100mV以上の傷レベルである傷画素のアドレスはdata2、data3、data4のすべてに重複して記載されてしまうことになるが、高速に処理する場合には非常に有効な方法である。data2〜5に行くに従い、そこに記載される補正用データの個数は増えていくが、この領域のように低速(長い)露光時間の領域においては、少なくとも撮影コマ間隔に関しては問題にならないので、撮影後の補正処理に時間がかかったとしても問題にはなり難い。
以上説明してきたように、現在設定されているISO感度と、測光処理(ステップS206)に決定されたシャッター速度(Tv値)に応じて、決定された電荷蓄積時間に応じて、使用する補正用データが選択される。ここでの傷補正は、すでにメモリ30上に書き込まれた画像データに対してファームウェアにてアクセスし、読み出し、演算、書き込みを繰り返し実施される。
隣接欠陥画素アドレス情報には周辺にも欠陥画素が存在する欠陥画素が記述されており、その補正方法は、画像処理回路20に内蔵される欠陥補正回路と同じ方式では、欠陥補正痕が見えてしまうため、異なる方法が必要である。例えば、(上下左右)同色画素(4画素)の平均値を求め、この値で欠陥画素出力を置き換える補正方法が考えられる。
このような方法を適用して、例えば、下記(1)〜(4)のようなアルゴリズムが考えられる。
(1)注目する欠陥画素の上下左右いずれかの同色画素の中に1個の欠陥画素が存在する場合には、注目画素は、残り3個の同色画素の平均値にて置き換える。
(2)注目する欠陥画素の上下左右いずれかの同色画素の中に、2個の欠陥画素が存在する場合には、注目画素は、残り2個の同色画素の平均値にて置き換える。
(3)注目する欠陥画素の上下左右いずれかの同色画素の中に3個の欠陥画素が存在する場合する場合には、注目画素は、周辺同色画素のうち、残り1画素の値にて置き換える。
(4)注目する欠陥画素の上下左右すべての同色画素が欠陥画素である場合には、注目画素は、周辺同色画素を前述の方法で補正したのち、周辺同色画素のうち少なくとも1個の画素が補正されたら、前記補正方法を再度適用し補正する。
このような欠陥画素補正アルゴリズムを適用することにより、隣接する欠陥画素であっても周辺から補正していくことが可能である。
ステップS402では、ステップS401で選択した補正用データを指定し、システム制御回路50は、撮像素子の白点傷を補償するために、ステップS402で指定された補正用データに記載された白傷画素のアドレスを示す情報を参照しながら、メモリ30の所定領域に書き込まれた撮影画像の対応する画素に対し、隣接する同色画素の撮影画像データを用いて点傷補正処理を行う。
ステップS503にて、まず選択された傷データの先頭から1画素分の傷アドレス情報を読み込む。これを参照し、メモリ30に書き込まれた撮影画像における該当画素のアドレスを特定することが可能である。
次に、ステップS504にて、ステップS503で特定した該当画素に隣接する同色画素の撮影画像データを読み込む。このアドレス情報には隣接する欠陥画素に関する情報も記載さているので、隣接する同色画素の中に欠陥画素があれば、その出力は使用しないことが可能となる。
次に、ステップS505にて、ステップS504で得られた隣接画素の値から、先のアルゴリズムに基づいて、該当画素の補正量を算出する。
続いて、ステップS506にて、ステップS505で求められた補正量を、メモリ30における該当画素のアドレスに書き込む。これにより、該当画素の補正処理は完了する。
ステップS507にて、指定されたデータに記載された傷画素の補正処理がすべて完了したか否かを判定し、いまだ完了していない場合には、ステップS503に戻り、補正用データに記載された次の傷アドレス情報を読出し、同様に繰り返す。
ステップS507にて、ステップS401にて選択された補正用データに記載されたすべての傷画素に対する補正処理がすべて終了すると傷補正処理シーケンスをすべて完了する。
これらのデータの判別レベルの設定は、出荷時データの検出可能レベル、その検出精度に依存し、それらと実際に得られた画像の画質を考慮して決定される。また、これらの判定処理は、本画像処理装置100の外部にて行われ、本画像処理装置にはそのようにして決定された判別レベルによって抽出された画素のアドレスのみが与えられるので、本画像処理装置の処理能力に大きな負荷を与えるものでは無い。
なお、本実施形態の説明において、ファームウェアによる補正用データを選択するテーブルをISO感度と電荷蓄積時間を用いて設定し、ハードウェア(欠陥画素を補正するための専用の欠陥補正回路)による傷補正のデータは特に異なるデータを選択するような説明を行っていないが、ハードウェアによる傷補正のデータにおいても同様にISO感度と電荷蓄積時間を用いて複数用意し、これを条件に応じて選択するようにしても良い。また、条件としては、これに限るものでは無く、例えば温度等の条件を付加して、テーブルを構成するようにしても良い。さらに、シャッター秒時が短い場合で、特に高速に連写する場合等には、処理時間が足りないことが予想されるため、ファームウェアによる欠陥補正を行わない条件を付加して、テーブルを構成するようにしても良い。
また、補正用データは不揮発性メモリに記憶されており、必要に応じてメモリ30に転送して使用するものとしているが、もちろん不揮発性メモリ上に記憶したまま処理できるシステムであればそのようにしても構わない。また、必要に応じてメモリ30に転送しているが、別途専用のメモリ或いはメモリ領域を確保できるシステムであれば、そのようにしても構わない。
また、撮像素子14の出力をA/D変換し、その結果をメモリに書き出す途中で、欠陥画素補正回路222に通すことで補正処理を行っているが、この方法に限定されるものではない。
また、補正用データは出荷時データを基に画像処理装置100の外部で生成する構成として説明したが、画像処理装置100自身で生成する構成であっても良い。その場合、アドレス情報を不揮発性メモリに保存する必要も無く、生成した情報を直接メモリ30に書き込んでも良い。
また、画像処理装置で撮影したダーク画像データから傷画素を検出し、本実施形態で説明したように補正用データを生成する構成であっても良い。
また、補正用データは電源投入時に不揮発性メモリからシステム制御回路50の内蔵メモリに展開されていても良い。
また、最大異なる2つの補正用データを用いて傷補正処理を行うような構成にしているが、より多くの補正処理の回数を実行しても構わない。また、単独欠陥画素アドレス情報と隣接欠陥画素アドレス情報とを完全に分離しているが、処理する側で単独欠陥画素か、隣接欠陥画素かの判別ができる場合には、アドレス情報は共通化しても構わない。
また、本実施形態では、ハードウェア(欠陥画素を補正するための専用の欠陥補正回路)では置き換えによる補正を、ファームウェアでは周囲の信号を基に補間による補正をそれぞれ行っているが、補正方法はこれに限定されるものではなく、ハードウェアで補間による補正を行う方式であってもよいし、ファームウェアで置き換えによる補正を行う方式であってもよい。
本実施形態のように画像処理装置を構成することにより、単独で存在する欠陥画素の補正はハードウェアで正確に高速で行い、隣接画素に欠陥画素が存在する欠陥画素の補正はファームウェアで、複雑なアルゴリズムを使って、ハードウェアよりは高速ではないが、精度良く補正することができる。
なお、本実施形態では、補正している傷は白傷画素のみであるが、他の種別の傷画素はすべての条件下で補正することが望ましい。その場合、これら他の種別の傷画素のアドレスに関する情報も、それぞれの補正用データに記載する必要があり、この処理は、画像処理装置の外部で補正用データを生成する際に対応可能である。
本発明の目的は、上述した実施形態の機能を実現するソフトウェアのプログラムコードを記録した記憶媒体を、システム或いは装置に供給し、そのシステム或いは装置のコンピュータ(またはCPUやMPU)が記憶媒体に格納されたプログラムコードを読み出し実行することによっても、達成されることは言うまでもない。
この場合、記憶媒体から読み出されたプログラムコード自体が上述した実施形態の機能を実現することになり、プログラムコード自体及びそのプログラムコードを記憶した記憶媒体は本発明を構成することになる。
プログラムコードを供給するための記憶媒体としては、例えば、フレキシブルディスク、ハードディスク、光ディスク、光磁気ディスク、CD−ROM、CD−R、磁気テープ、不揮発性のメモリカード、ROM等を用いることができる。
また、コンピュータが読み出したプログラムコードを実行することにより、上述した実施形態の機能が実現されるだけでなく、そのプログラムコードの指示に基づき、コンピュータ上で稼動しているOS(基本システム或いはオペレーティングシステム)等が実際の処理の一部又は全部を行い、その処理によって上述した実施形態の機能が実現される場合も含まれることは言うまでもない。
さらに、記憶媒体から読み出されたプログラムコードが、コンピュータに挿入された機能拡張ボードやコンピュータに接続された機能拡張ユニットに備わるメモリに書き込まれた後、そのプログラムコードの指示に基づき、その機能拡張ボードや機能拡張ユニットに備わるCPU等が実際の処理の一部又は全部を行い、その処理によって上述した実施形態の機能が実現される場合も含まれることは言うまでもない。
実施形態の画像処理装置の構成を示すブロック図である。 画像処理装置での処理動作の主ルーチンを示すフローチャートである。 画像処理装置での処理動作の主ルーチンを示すフローチャートである。 測距・測光処理ルーチンを示すフローチャートである。 撮影処理ルーチンを示すフローチャートである。 傷補正処理で用いる補正用データについて説明するための図である。 傷補正処理ルーチンを示すフローチャートである。 欠陥補正回路を含む画像処理回路の構成を示すブロック図である。
符号の説明
14:撮像素子
16:A/D変換器
18:タイミング発生回路
20:画像処理回路
22:メモリ制御回路
24:画像表示メモリ
26:D/A変換器
28:画像表示部
30:メモリ
32:画像圧縮・伸長回路
40:シャッター制御手段
42:測距手段
44:温度計
46:測光手段
48:フラッシュ
50:システム制御回路
52:メモリ
54:表示部
56:不揮発性メモリ
220:アドレス比較回路
221:各種処理回路
222:欠陥補正回路

Claims (19)

  1. 複数の画素から構成される撮像素子と、
    前記撮像素子から出力される撮影画像を記憶する記憶部と、
    前記撮像素子から出力される前記欠陥画素の出力信号の入力、及び、前記撮像素子の欠陥画素のアドレスに関する情報を有する第1の補正用データに応じて、欠陥画素の補正処理を行う第1の補正処理部と、
    前記第1の補正処理部における補正処理後に前記記憶部に記憶されている前記撮影画像の欠陥画素の補正処理を、前記撮像素子の欠陥画素のアドレスに関する情報を有する第2の補正用データに基づき行う第2の補正処理部とを備えることを特徴とする画像処理装置。
  2. 前記第1の補正用データは、周辺画素に欠陥画素が存在しない単独欠陥画素のアドレスに関する情報を記載したデータであり、前記第2の補正用データは、周辺に欠陥画素が存在する欠陥画素のアドレスに関する情報を記載したデータであることを特徴とする請求項1に記載の画像処理装置。
  3. 前記第1の補正処理部及び前記第2の補正処理部のうち少なくともいずれかは、撮影条件及び環境条件のうち少なくともいずれかによって補正用データを選択して用いることを特徴とする請求項1に記載の画像処理装置。
  4. 前記第1の補正処理部は、撮影条件及び環境条件によらず常に動作することを特徴とする請求項1に記載の画像処理装置。
  5. 前記第2の補正処理部は、撮影条件及び環境条件のうち少なくともいずれかによってはその動作を停止することを特徴とする請求項1に記載の画像処理装置。
  6. 前記撮影条件は連写モード、シャッター秒時及びISO感度のうち少なくともいずれかを含むことを特徴とする請求項3〜5のいずれか1項に記載の画像処理装置。
  7. 前記環境条件は温度を含むことを特徴とする請求項3〜5のいずれか1項に記載の画像処理装置。
  8. 複数の画素から構成される撮像素子と、
    前記撮像素子から出力される撮影画像を記憶する記憶部と、
    前記撮像素子から出力される前記欠陥画素の出力信号の入力、及び、前記撮像素子の欠陥画素のアドレスに関する情報を有する補正用データに応じて、欠陥画素の補正処理を行う第1の補正処理部と、
    前記第1の補正処理部における補正処理後に前記記憶部に記憶されている前記撮影画像の欠陥画素の補正処理を、前記補正用データに基づき行う第2の補正処理部と、
    前記補正用データが有する欠陥画素のアドレスに関する情報に応じて、前記第1の補正処理部と前記第2の補正処理部とを切り替えて補正を実施する制御部とを備えることを特徴とする画像処理装置。
  9. 前記制御部は、欠陥画素が、周辺画素に欠陥画素が存在しない単独欠陥画素であるか、周辺に欠陥画素が存在する欠陥画素であるかによって、前記第1の補正処理部と前記第2の補正処理部とを切り替えることを特徴とする請求項8に記載の画像処理装置。
  10. 前記第1の補正処理部及び前記第2の補正処理部のうち少なくともいずれかは、撮影条件及び環境条件のうち少なくともいずれかによって補正用データを選択して用いることを特徴とする請求項8に記載の画像処理装置。
  11. 前記第1の補正処理部は、撮影条件及び環境条件によらず常に動作することを特徴とする請求項8に記載の画像処理装置。
  12. 前記第2の補正処理部は、撮影条件及び環境条件のうち少なくともいずれかによってはその動作を停止することを特徴とする請求項8に記載の画像処理装置。
  13. 前記撮影条件は連写モード、シャッター秒時及びISO感度のうち少なくともいずれかを含むことを特徴とする請求項10〜12のいずれか1項に記載の画像処理装置。
  14. 前記環境条件は温度を含むことを特徴とする請求項10〜12のいずれか1項に記載の画像処理装置。
  15. 前記撮像素子に像を結像するレンズと、
    前記撮像素子からの信号をA/D変換するA/D変換器と、
    前記A/D変換器から出力された信号を記憶部に記憶するように制御する記憶制御部とを備えることを特徴とする請求項1又は8に記載の画像処理装置。
  16. 複数の画素から構成される撮像素子から出力される撮影画像を記憶する記憶工程と、
    前記撮像素子から出力される前記欠陥画素の出力信号の入力、及び、前記撮像素子の欠陥画素のアドレスに関する情報を有する第1の補正用データに応じて、欠陥画素の補正処理を行う第1の補正処理工程と、
    前記第1の補正処理工程における補正処理後に前記記憶工程に記憶されている前記撮影画像の欠陥画素の補正処理を、前記撮像素子の欠陥画素のアドレスに関する情報を有する第2の補正用データに基づき行う第2の補正処理工程とを有することを特徴とする画像処理方法。
  17. 前記第1の補正用データは、周辺画素に欠陥画素が存在しない単独欠陥画素のアドレスに関する情報を記載したデータであり、前記第2の補正用データは、周辺に欠陥画素が存在する欠陥画素のアドレスに関する情報を記載したデータであることを特徴とする請求項16に記載の画像処理方法。
  18. 複数の画素から構成される撮像素子から出力される撮影画像を記憶する記憶工程と、
    前記撮像素子から出力される前記欠陥画素の出力信号の入力、及び、前記撮像素子の欠陥画素のアドレスに関する情報を有する補正用データに応じて、欠陥画素の補正処理を行う第1の補正処理工程と、
    前記第1の補正処理工程における補正処理後に前記記憶工程に記憶されている前記撮影画像の欠陥画素の補正処理を、前記補正用データに基づき行う第2の補正処理工程と、
    前記補正用データが有する欠陥画素のアドレスに関する情報に応じて、前記第1の補正処理工程と前記第2の補正処理工程とを切り替えて補正を実施する制御工程とを有することを特徴とする画像処理方法。
  19. 前記制御工程は、欠陥画素が、周辺画素に欠陥画素が存在しない単独欠陥画素であるか、周辺に欠陥画素が存在する欠陥画素であるかによって、前記第1の補正処理工程と前記第2の補正処理工程とを切り替えることを特徴とする請求項18に記載の画像処理方法。
JP2005112579A 2004-04-20 2005-04-08 画像処理装置及び画像処理方法 Pending JP2005333620A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005112579A JP2005333620A (ja) 2004-04-20 2005-04-08 画像処理装置及び画像処理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004124409 2004-04-20
JP2005112579A JP2005333620A (ja) 2004-04-20 2005-04-08 画像処理装置及び画像処理方法

Publications (2)

Publication Number Publication Date
JP2005333620A true JP2005333620A (ja) 2005-12-02
JP2005333620A5 JP2005333620A5 (ja) 2008-05-22

Family

ID=35487921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005112579A Pending JP2005333620A (ja) 2004-04-20 2005-04-08 画像処理装置及び画像処理方法

Country Status (1)

Country Link
JP (1) JP2005333620A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008148059A (ja) * 2006-12-11 2008-06-26 Denso Corp 車両周辺監視装置
JP2009100324A (ja) * 2007-10-18 2009-05-07 Nikon Corp 撮像装置
JP2011135532A (ja) * 2009-12-25 2011-07-07 Toshiba Corp ヘッド分離型カメラ装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0575861A (ja) * 1991-09-13 1993-03-26 Mitsubishi Electric Corp 画素補間装置及びその応用装置
JP2003333435A (ja) * 2002-03-08 2003-11-21 Canon Inc 補正処理装置、撮像装置、補正処理方法、補正処理コンピュータプログラム
JP2004015191A (ja) * 2002-06-04 2004-01-15 Fuji Photo Film Co Ltd 固体撮像素子の欠陥補正装置及び方法
JP2004064512A (ja) * 2002-07-30 2004-02-26 Sony Corp 欠陥画素の検出方法および装置、並びに撮像装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0575861A (ja) * 1991-09-13 1993-03-26 Mitsubishi Electric Corp 画素補間装置及びその応用装置
JP2003333435A (ja) * 2002-03-08 2003-11-21 Canon Inc 補正処理装置、撮像装置、補正処理方法、補正処理コンピュータプログラム
JP2004015191A (ja) * 2002-06-04 2004-01-15 Fuji Photo Film Co Ltd 固体撮像素子の欠陥補正装置及び方法
JP2004064512A (ja) * 2002-07-30 2004-02-26 Sony Corp 欠陥画素の検出方法および装置、並びに撮像装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008148059A (ja) * 2006-12-11 2008-06-26 Denso Corp 車両周辺監視装置
JP2009100324A (ja) * 2007-10-18 2009-05-07 Nikon Corp 撮像装置
JP2011135532A (ja) * 2009-12-25 2011-07-07 Toshiba Corp ヘッド分離型カメラ装置

Similar Documents

Publication Publication Date Title
US7796169B2 (en) Image processing apparatus for correcting captured image
US7804533B2 (en) Image sensing apparatus and correction method
JP4794978B2 (ja) 画像処理装置、制御方法、及びプログラム
JP2007174124A (ja) 撮像装置及び補正方法
US20050018253A1 (en) Image pickup apparatus for correcting image deterioration due to fixed pattern noise, and image pickup method
JP2003333435A (ja) 補正処理装置、撮像装置、補正処理方法、補正処理コンピュータプログラム
JP4958680B2 (ja) 撮像装置、そのホワイトバランス制御方法、プログラムおよび記憶媒体
US9467635B2 (en) Image processing apparatus and image processing method
JP4323883B2 (ja) 画像処理装置およびその制御方法
JP4819479B2 (ja) 撮像装置及び画像データの補正方法
JP3605084B2 (ja) 画像データ補正装置、画像処理装置、画像データ補正方法、プログラム、及び記憶媒体
JP2005333620A (ja) 画像処理装置及び画像処理方法
JP2003333434A (ja) 撮像装置、撮像方法、プログラムおよび記憶媒体
JP4411053B2 (ja) 撮像装置及びその制御方法、並びに制御プログラム及び記憶媒体
JP4393177B2 (ja) 撮像装置および撮像方法
JP3703436B2 (ja) 画像処理装置、画像処理方法、及びプログラム
JP2006148794A (ja) 撮像装置、補正処理方法、補正処理プログラムおよび記憶媒体
JP2006109162A (ja) 撮像装置、撮像方法、プログラム及び記憶媒体
JP5967897B2 (ja) 撮像装置及びその制御方法、並びにプログラム
JP2005057691A (ja) 撮像装置及び方法
JP4393299B2 (ja) 画像処理装置及びその制御方法
JP2006108878A (ja) 撮像装置
JP2005051697A (ja) 撮像装置
JP2006203665A (ja) 撮像装置及び方法、並びに記録媒体及びプログラム
JP2006101408A (ja) 撮像装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080403

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091022

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100119