JP2005330527A - Non-oriented electrical steel sheet with excellent magnetic property - Google Patents

Non-oriented electrical steel sheet with excellent magnetic property Download PDF

Info

Publication number
JP2005330527A
JP2005330527A JP2004148926A JP2004148926A JP2005330527A JP 2005330527 A JP2005330527 A JP 2005330527A JP 2004148926 A JP2004148926 A JP 2004148926A JP 2004148926 A JP2004148926 A JP 2004148926A JP 2005330527 A JP2005330527 A JP 2005330527A
Authority
JP
Japan
Prior art keywords
less
steel sheet
oriented electrical
electrical steel
mns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004148926A
Other languages
Japanese (ja)
Other versions
JP4280201B2 (en
Inventor
Yoshihiro Arita
吉宏 有田
Hidekuni Murakami
英邦 村上
Minoru Matsumoto
穣 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004148926A priority Critical patent/JP4280201B2/en
Publication of JP2005330527A publication Critical patent/JP2005330527A/en
Application granted granted Critical
Publication of JP4280201B2 publication Critical patent/JP4280201B2/en
Anticipated expiration legal-status Critical
Active legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-oriented electrical steel sheet having excellent magnetic properties by suppressing nitridation which occurs in a steel sheet containing >0.0010% S and satisfying Sas[MnS+Cu<SB>2</SB>S]≤0.0010%. <P>SOLUTION: The non-oriented electrical steel sheet has a composition consisting of, by mass, ≤3.5% Si, ≤1.5% Mn, 0.1 to 3.0% Al, ≤0.0050% C, ≤0.0030% (more desirably ≤0.0010%) Ti, ≤0.0050% N, 0.0011 to 0.0030% S, ≥0.0005% Ca+Mg, 0.01 to 0.2% Sn and the balance Fe with inevitable impurities and satisfying Sas[MnS+Cu<SB>2</SB>S]≤0.0010% by mass. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電気機器の鉄心材料として使用される無方向性電磁鋼板およびその製造方法に関するものであり、特に磁気特性に優れた無方向性電磁鋼板に関するものである。   The present invention relates to a non-oriented electrical steel sheet used as an iron core material for electrical equipment and a method for producing the same, and particularly to a non-oriented electrical steel sheet having excellent magnetic properties.

近年、世界的な電気機器の省エネルギー化の高まりにより、回転機の鉄心材料として用いられる無方向性電磁鋼板に対しても、より高性能な特性が要求されてきている。特に回転機の損失につながる鉄損については低減ニーズが強く、SiやAl含有量を増加させて固有抵抗を高め、かつ結晶粒径を大きくすることで低鉄損化を実現してきた。更に鋼の純度を高めることは、結晶粒成長を促進するとともに、鋼中の不純物によって形成される析出物自身の影響も低減できるため、近年、鋼の純度はより高められるようになってきた。例えば、特許文献1では、S,N:0.0020%以下、Ti,V,As:0.0020%以下、Nb:0.0030%以下とすることで、結晶粒成長を促進して低鉄損化を図る方法が開示されている。また特許文献2では、S:0.0010%以下として結晶粒成長を促進し、かつSb+1/2Sn:0.001〜0.05%含有させることで、S:0.0010%以下によってもたらされた鋼板の窒化を抑制して鉄損を低減する方法が開示されている。また歪取焼鈍での結晶粒成長の促進と低鉄損化を目的として、特許文献3ではCa合金を添加する方法、特許文献4ではMgを添加する方法が開示されているが、これらは鋼中に不可避的に存在するSをCaやMgとの粗大で熱的に安定な硫化物とすることを目的としたものである。   In recent years, due to the increase in energy saving of electric appliances worldwide, non-oriented electrical steel sheets used as iron core materials for rotating machines have been required to have higher performance characteristics. In particular, there is a strong need to reduce the iron loss that leads to the loss of the rotating machine, and the reduction of iron loss has been realized by increasing the specific resistance by increasing the Si and Al contents and increasing the crystal grain size. Furthermore, increasing the purity of steel not only promotes crystal grain growth, but also reduces the influence of precipitates formed by impurities in the steel, so that the purity of steel has been increased in recent years. For example, in Patent Document 1, S, N: 0.0020% or less, Ti, V, As: 0.0020% or less, Nb: 0.0030% or less promotes crystal grain growth and reduces low iron. A method for achieving loss is disclosed. Further, in Patent Document 2, S: 0.0010% or less promotes crystal grain growth, and Sb + 1 / 2Sn: 0.001 to 0.05% is contained, thereby providing S: 0.0010% or less. A method of reducing iron loss by suppressing nitriding of a steel plate is disclosed. For the purpose of promoting crystal grain growth and reducing iron loss in strain relief annealing, Patent Document 3 discloses a method of adding a Ca alloy, and Patent Document 4 discloses a method of adding Mg. The purpose is to make S inevitably present therein a coarse and thermally stable sulfide with Ca or Mg.

特開平8−283853号公報Japanese Patent Laid-Open No. 8-283835 特開平10−317111号公報JP-A-10-317111 特開平10−183309号JP 10-183309 A 特開2002−302746号公報JP 2002-302746 A

鋼板の窒化による鉄損の悪化については、特許文献2に記載されているSが0.0010%以下の場合のみならず、Sが0.0010%を超えた場合にも発生することが明らかとなった。本発明は、このような問題を鑑みなされたものであり、鉄損の低い無方向性電磁鋼板を提供しようとするものである。   It is clear that the deterioration of iron loss due to nitriding of steel sheets occurs not only when S described in Patent Document 2 is 0.0010% or less, but also when S exceeds 0.0010%. became. The present invention has been made in view of such problems, and intends to provide a non-oriented electrical steel sheet with low iron loss.

本発明は上記課題を解決するため、以下(1)〜(4)を要旨とするものである。
(1)質量%で、Si:3.5%以下、Mn:1.5%以下、Al:0.1%以上3.0%以下、C:0.0050%以下、Ti:0.0030%以下、N:0.0050%以下、S:0.0011%以上0.0030%以下、Sn:0.01%以上0.2%以下を含有し、残部Fe及び不可避不純物からなり、SasMnS(MnSを生成しているS)とSasCu2S(Cu2Sを生成しているS)の総和(以下、Sas[MnS+Cu2S]と記す)が、質量%で0.0010%以下であることを特徴とする無方向性電磁鋼板。
(2)更に質量%でCu、Niの少なくとも1種を合計で0.01%以上0.4%以下を含有することを特徴とする(1)の無方向性電磁鋼板。
(3)更に質量%で、Ca、Mgの少なくとも1種を合計で0.0005%以上を含有することを特徴とする(1)または(2)に記載の無方向性電磁鋼板。
(4)更に質量%で、Tiを0.0010%以下とすることを特徴とする(1)〜(3)のいずれかに記載の無方向性電磁鋼板。
In order to solve the above problems, the present invention has the following (1) to (4).
(1) By mass%, Si: 3.5% or less, Mn: 1.5% or less, Al: 0.1% or more and 3.0% or less, C: 0.0050% or less, Ti: 0.0030% In the following, N: 0.0050% or less, S: 0.0011% or more and 0.0030% or less, Sn: 0.01% or more and 0.2% or less, the balance consisting of Fe and unavoidable impurities, SasMnS (MnS Of S) and SasCu 2 S (S forming Cu 2 S) (hereinafter referred to as Sas [MnS + Cu 2 S]) is 0.0010% or less by mass%. A non-oriented electrical steel sheet.
(2) The non-oriented electrical steel sheet according to (1), further containing 0.01% or more and 0.4% or less in total by mass% of at least one of Cu and Ni.
(3) The non-oriented electrical steel sheet according to (1) or (2), further containing 0.0005% or more in total by mass% of at least one of Ca and Mg.
(4) The non-oriented electrical steel sheet according to any one of (1) to (3), characterized in that Ti is 0.0010% or less in terms of mass%.

本発明によれば、硫化物を無害化して粒成長を向上させた鋼板において顕在化する窒化問題を解消し、より鉄損の低い電磁鋼板を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the nitriding problem actualized in the steel plate which made the sulfide harmless and improved the grain growth can be solved, and an electromagnetic steel plate with a lower iron loss can be provided.

以下に本発明を詳細に説明する。本発明者らは、磁気特性を悪化させる鋼板表面の窒化について調査した結果、鋼中のSが0.0010%以下という極めて低い範囲でなくとも、仕上焼鈍あるいは歪取焼鈍中に窒化して磁気特性を悪化させる場合があることを知見した。その原因を調査したところ、窒化して磁気特性が悪化する鋼板においては、MnSあるいはCu2Sを生成しているS量が極めて少ないことを知見し、その対策としてSnを添加することで焼鈍中の窒化を抑制し、かつ磁気特性が改善できることを見出した。さらに、NiとCuを複合添加することによって集合組織が改善し、低い鉄損と高い磁束密度が両立できることを知見し、本発明を完成させた。以下、本発明に至った実験結果について述べる。 The present invention is described in detail below. As a result of investigating the nitriding of the steel sheet surface, which deteriorates the magnetic properties, the present inventors have found that the S is not nitrided during the finish annealing or the strain relief annealing even if the S content is not as low as 0.0010% or less. It has been found that the characteristics may be deteriorated. As a result of investigating the cause, it was found that the amount of S producing MnS or Cu 2 S is extremely small in the steel sheet whose magnetic properties deteriorate due to nitriding, and during annealing by adding Sn as a countermeasure. It was found that the nitriding of the steel can be suppressed and the magnetic properties can be improved. Furthermore, it was found that the texture was improved by adding Ni and Cu in combination, and that both low iron loss and high magnetic flux density were compatible, and the present invention was completed. Hereinafter, the experimental results that led to the present invention will be described.

(実験1)
質量%で、Si:2.1%、Mn:0.7%、Al:1.5%の鋼を溶製した。不純物成分としてはTi:0.0005〜0.0008%、N:0.0020〜0.0024%、S:0.0015〜0.0018%の範囲にあった。これらのスラブを120分間加熱し、1120℃で抽出して熱延して板厚2.0mmとし、970℃で60秒の熱延板焼鈍を施し、一回の冷延にて板厚0.35mmとした。こうして得られた冷延板について、雰囲気N270%−H230%(体積率)で900〜1100℃、30秒の仕上焼鈍を行ない、鉄損を測定した。その結果を図1に示すが、サンプル1については仕上焼鈍温度を高くすればする程、低鉄損が得られるのに対し、溶製チャンスの異なるサンプル2については仕上焼鈍温度1000℃で鉄損が頭打ちとなり、1050℃以上では逆に鉄損が悪化することが判明した。このように、ほぼ同一成分かつ仕上焼鈍条件ながらサンプル2のみ鉄損悪化を招く理由について、電子顕微鏡で析出物をしたところ、サンプル2ではサンプル1で確認されたMnS、Cu2Sおよびその複合硫化物は殆んど観察されず、一方でMgO、CaOおよびその複合酸化物からSが検出されること、また表層直下に窒化物とみられる多数のAlNが観察されることが判った。この結果の検証として、SasMnSとSasCu2Sの総和(Sas[MnS+Cu2S])とNを分析したところ、表1に示す通り、サンプル2のSas[MnS+Cu2S]は極めて少なく、MgとCaが微量に含まれていること、さらに仕上焼鈍1050℃以上でN量が極めて高くなっており、窒化していることが判った。
(Experiment 1)
Steels of Si: 2.1%, Mn: 0.7%, Al: 1.5% were melted by mass%. The impurity components were in the ranges of Ti: 0.0005 to 0.0008%, N: 0.0020 to 0.0024%, and S: 0.0015 to 0.0018%. These slabs were heated for 120 minutes, extracted at 1120 ° C. and hot-rolled to a thickness of 2.0 mm, subjected to hot-rolled sheet annealing at 970 ° C. for 60 seconds, and a thickness of 0. It was 35 mm. The cold-rolled sheet thus obtained was subjected to finish annealing at 900 to 1100 ° C. for 30 seconds in an atmosphere N 2 70% -H 2 30% (volume ratio), and the iron loss was measured. The results are shown in FIG. 1. As Sample 1 has a higher finish annealing temperature, a lower iron loss can be obtained, whereas for Sample 2 with a different melting chance, the iron loss at a finish annealing temperature of 1000 ° C. It became clear that the iron loss worsened at 1050 ° C. or higher. As described above, the reason why only sample 2 caused the iron loss deterioration under almost the same components and finish annealing conditions was deposited with an electron microscope. In sample 2, MnS, Cu 2 S and complex sulfides confirmed in sample 1 were confirmed. It was found that almost no matter was observed, while S was detected from MgO, CaO and their composite oxides, and a large number of AlNs that seemed to be nitrides were observed directly under the surface layer. As a verification of this result, the sum of SasMnS and SasCu 2 S (Sas [MnS + Cu 2 S]) and N were analyzed. It was found that the N content was extremely high at 1050 ° C. or higher of the finish annealing and nitriding.

Figure 2005330527
Figure 2005330527

(実験2)
次に仕上焼鈍における窒化対策として、実験1と同一基本成分にてSnを添加した鋼片を実験室の真空溶解炉で作製した。この際、同じS量でSas[MnS+Cu2S]の低い鋼を得るためにMg、Caを微量含有した鋼片も作製した。これらの鋼片を熱延して板厚2.0mmとし、熱延板焼鈍を施し、一回の冷延にて板厚0.35mmとした。こうして得られた冷延板について、雰囲気N270%−H230%(体積率)で1050℃、30秒の仕上焼鈍を行なった後、成分を分析した。その結果を表2に示すが、Sas[MnS+Cu2S]が0.0010%以下でかつSnが0.01%未満であるサンプル2〜4においては窒化が著しい(N分析値が高い)のに対し、Sas[MnS+Cu2S]が0.0010%以下でもSnを0.03%添加したサンプル6〜8では窒化しない(N分析値が低い)ことを知見した。
(Experiment 2)
Next, as a countermeasure against nitriding in finish annealing, a steel piece to which Sn was added with the same basic components as in Experiment 1 was produced in a laboratory vacuum melting furnace. At this time, a steel slab containing a small amount of Mg and Ca was also produced in order to obtain a steel with a low amount of Sas [MnS + Cu 2 S] with the same amount of S. These steel pieces were hot-rolled to a plate thickness of 2.0 mm, subjected to hot-rolled plate annealing, and the plate thickness was set to 0.35 mm by one cold rolling. The cold-rolled sheet thus obtained was subjected to finish annealing at 1050 ° C. for 30 seconds in an atmosphere N 2 70% -H 2 30% (volume ratio), and then the components were analyzed. The results are shown in Table 2. In samples 2 to 4 where Sas [MnS + Cu 2 S] is 0.0010% or less and Sn is less than 0.01%, nitriding is remarkable (N analysis value is high). On the other hand, it was found that even when Sas [MnS + Cu 2 S] was 0.0010% or less, Samples 6 to 8 to which 0.03% Sn was added did not nitride (the N analysis value was low).

Figure 2005330527
Figure 2005330527

このように鋼板中の硫化物であるMnSとCu2Sを形成しているS量(Sas[MnS+Cu2S])によって焼鈍中に窒化することは本発明によって初めて知見したもので、CaやMgを添加して単に硫化物を改質するという特許文献3や4から類推し得るものではない。またSnの窒化抑制効果については特許文献2ではS:0.0010%以下という極めて低いS量において示されているが、Sが0.0010%を超えた場合においても窒化することを見出した本発明について類推し得るものではない。 Thus, nitriding during annealing by the amount of S (Sas [MnS + Cu 2 S]) forming MnS and Cu 2 S, which are sulfides in the steel sheet, was first discovered by the present invention, and Ca and Mg It cannot be inferred from Patent Documents 3 and 4 that the sulfite is simply modified by adding N. Further, although the nitriding suppression effect of Sn is shown in Patent Document 2 at an extremely low S amount of S: 0.0010% or less, this is a book that has been found to be nitrided even when S exceeds 0.0010%. There is no analogy about the invention.

続いて、本発明の製品における成分の数値限定理由について述べる。
Siは電気抵抗を増加させるために有効な元素であるが、過度に添加すると冷延性を著しく悪くするため3.5%を上限とした。
Next, the reasons for limiting the numerical values of the components in the product of the present invention will be described.
Si is an effective element for increasing the electric resistance, but if added excessively, the cold rolling property is remarkably deteriorated, so 3.5% was made the upper limit.

MnはSi同様に電気抵抗を増加させるために有効な元素であるが、1.5%を超えて添加すると飽和磁束密度の低下が著しくなって磁気特性が悪化するのに加え、他の成分次第で変態を有するようになると、焼鈍温度の上限が制約され所望の磁性が得られなくなってしまうことから1.5%を上限とした。   Mn is an element effective for increasing the electrical resistance like Si, but if added over 1.5%, the saturation magnetic flux density is significantly reduced and the magnetic properties are deteriorated, and depending on other components. Therefore, the upper limit of the annealing temperature is restricted and the desired magnetism cannot be obtained, so the upper limit was set to 1.5%.

AlはSi同様に電気抵抗を増加させるために有効な元素である。同一添加量でSiとほぼ同等の固有抵抗増が図れる一方、Siより硬度上昇が少ないため、高級グレードでは0.1%以上の添加が必須である。ただし多量に添加すると鋳造性を悪化させるため、3.0%を上限とした。   Al, like Si, is an effective element for increasing the electrical resistance. While the specific resistance can be increased almost as much as Si with the same addition amount, the increase in hardness is less than that of Si, so that addition of 0.1% or more is essential for high-grade grades. However, if added in a large amount, the castability deteriorates, so 3.0% was made the upper limit.

Cは磁気時効を起こすことがよく知られているため、0.0050%以下と規定した。ただしTiと析出物を形成し、特に歪取焼鈍時の結晶粒成長を悪化させるので、望ましくは0.0020%以下である。   Since C is well known to cause magnetic aging, it is defined as 0.0050% or less. However, Ti and precipitates are formed, and the grain growth particularly at the time of strain relief annealing is deteriorated, so 0.0020% or less is desirable.

Tiは窒化物や炭化物、炭窒化物を生成して粒成長を著しく悪化させるため、0.0030%以下と規定した。特に歪取焼鈍時の結晶粒成長を促進させる場合、0.0010%以下が好ましい。   Since Ti produces nitrides, carbides, and carbonitrides and remarkably deteriorates the grain growth, it is specified to be 0.0030% or less. In particular, when promoting crystal grain growth during strain relief annealing, 0.0010% or less is preferable.

NはAlやTiと窒化物を生成して粒成長を著しく悪化させるため、0.0050%以下と規定した。   N is defined as 0.0050% or less in order to produce Al, Ti and nitride to remarkably deteriorate the grain growth.

Sは本発明において重要な元素である。結晶粒成長を促進する点からは極力低減することことが望ましいが、製造コストが上昇するので0.0011%を下限とし、結晶粒成長の悪化が顕著になる0.0030%を上限とした。   S is an important element in the present invention. Although it is desirable to reduce it as much as possible from the viewpoint of promoting crystal grain growth, 0.0011% is set as the lower limit and the upper limit is set to 0.0030% at which deterioration of crystal grain growth becomes remarkable because the manufacturing cost increases.

Snは焼鈍中の窒化抑制として本発明の必須元素である。含有量が0.01%に満たないと効果が得られないため0.01%を下限とした。また0.2%を超えても効果が飽和するとともにコスト高となるので0.2%を上限とした。Snの含有方法については特に規定するものではないが、Snを含む合金を添加してもよいし、低コストを指向する場合はブリキ缶等のSnを含有するスクラップを添加してもよい。   Sn is an essential element of the present invention for suppressing nitriding during annealing. If the content is less than 0.01%, the effect cannot be obtained, so 0.01% was made the lower limit. Moreover, even if it exceeds 0.2%, the effect is saturated and the cost becomes high, so 0.2% was made the upper limit. The Sn containing method is not particularly defined, but an alloy containing Sn may be added, or a scrap containing Sn such as a tin can may be added if low cost is desired.

CuとNiはSnに複合させることで窒化抑制効果がより強力になるが、そのためには最低でも0.01%以上添加する必要がある。さらにSnとの複合で磁気特性に好ましい集合組織を得ることができるが、そのためには0.2%以上とすることが望ましい。ただし0.4%を超えると効果が飽和するので、上限を0.4%とした。   When Cu and Ni are combined with Sn, the effect of suppressing nitriding becomes stronger, but for that purpose, it is necessary to add at least 0.01% or more. Furthermore, it is possible to obtain a texture that is favorable for magnetic properties by combining with Sn. However, the effect is saturated when it exceeds 0.4%, so the upper limit was made 0.4%.

SasMnSとSasCu2Sは、総和として0.0010%を超えると仕上焼鈍あるいは歪取焼鈍時の結晶粒成長と鉄損が悪化するため、その総和の上限を0.0010%とした。 If the sum of SasMnS and SasCu 2 S exceeds 0.0010%, the crystal grain growth and iron loss during finish annealing or strain relief annealing deteriorate, so the upper limit of the sum is set to 0.0010%.

CaとMgは、MnSやCu2Sよりも高温で安定な硫化物を生成することができるため、0.0011〜0.0030%のSを含む鋼において、SasMnSとSasCu2Sの総和を0.0010%以下にする目的で含有させる。ただしCa+Mgが0.0005%に満たないと、硫化物をほとんど生成しないため、その下限を0.0005%とした。なおCaとMgの含有方法については特に規定するものではないが、脱酸した溶鋼に合金として添加してもよいし、スラグや耐火物の還元によって含有させてもよい。 Ca and Mg, since it is possible to generate a stable sulfide at high temperatures than MnS and Cu 2 S, in the steel containing from 0.0011 to 0.0030% of S, the sum of SasMnS and SasCu 2 S 0 It is contained for the purpose of making it 0010% or less. However, if Ca + Mg is less than 0.0005%, sulfide is hardly generated, so the lower limit was made 0.0005%. In addition, although it does not prescribe | regulate especially about the containing method of Ca and Mg, you may add as an alloy to the deoxidized molten steel, and you may make it contain by reduction | restoration of slag or a refractory.

実験室の真空溶解炉にて、質量%で、C:0.0024%、Si:3.1%、Mn:0.2%、Al:1.1%、Ti:0.0008%、S:0.0020%、N:0.0017%、Ca:0.0003%、Mg:0.0007%、Sn:0.003〜0.187%、Cu:0.015%、Ni:0.021%を含有する鋼片を作製した。これらの鋼片に対し、1075℃で90分の加熱を施した後、直ちに熱延して板厚2.3mmとし、1050℃で60秒の熱延板焼鈍を施し、一回の冷延にて板厚0.50mmとし、雰囲気N270%−H230%で1050℃、20秒の仕上焼鈍を施した。こうして得られた各サンプルのSas[MnS+Cu2S]、N、鉄損W15/50、磁束密度B50を測定・観察した結果を表3に示す。いずれのサンプルもSas[MnS+Cu2S]は0.0010%以下であるが、Sn:0.01%未満のサンプル1,2にはΔN(焼鈍後N量−鋼片N量)が高く、窒化しており鉄損も悪かった。一方、Sn:0.01%以上のサンプル3〜6については窒化せず、良好な鉄損が得られた。 In a laboratory vacuum melting furnace, by mass%, C: 0.0024%, Si: 3.1%, Mn: 0.2%, Al: 1.1%, Ti: 0.0008%, S: 0.0020%, N: 0.0017%, Ca: 0.0003%, Mg: 0.0007%, Sn: 0.003-0.187%, Cu: 0.015%, Ni: 0.021% The steel piece containing was produced. These steel pieces were heated at 1075 ° C. for 90 minutes, and then immediately hot-rolled to a sheet thickness of 2.3 mm, subjected to hot-rolled sheet annealing at 1050 ° C. for 60 seconds, The plate was 0.50 mm thick, and was annealed at 1050 ° C. for 20 seconds in an atmosphere N 2 70% -H 2 30%. Table 3 shows the results of measurement and observation of Sas [MnS + Cu 2 S], N, iron loss W15 / 50, and magnetic flux density B50 of each sample thus obtained. In any sample, Sas [MnS + Cu 2 S] is 0.0010% or less, but in samples 1 and 2 with Sn: less than 0.01%, ΔN (N amount after annealing−steel N amount) is high, and nitriding The iron loss was also bad. On the other hand, samples 3 to 6 with Sn: 0.01% or more were not nitrided, and good iron loss was obtained.

Figure 2005330527
Figure 2005330527

実験室の真空溶解炉にて、質量%で、C:0.0011%、Si:1.5%、Mn:0.5%、Al:0.6%、Ti:0.0013%、S:0.0017%、Sn:0.055%、Ca:0.0007を%含有し、CuとNi量を変化させた鋼片を作製した。これらの鋼片に対し、1100℃で60分の加熱を施した後、直ちに熱延して板厚2.7mmとし、1000℃で60秒の熱延板焼鈍を施し、一回の冷延にて板厚0.50mmとし、雰囲気N285%−H215%で850℃、15秒の仕上焼鈍を施し、さらに雰囲気N2100%で750℃、2時間の歪取焼鈍を施した。こうして得られた各サンプルのSas[MnS+Cu2S]、N、鉄損W15/50、磁束密度B50を測定・観察した結果を表4に示す。すべてのサンプルにおいて、Sas[MnS+Cu2S]が0.0010%以下であるにもかかわらず、歪取焼鈍後の窒化が低く抑えられて良好な鉄損が得られたが、Cu+Niが0.2%以上のサンプル3,5,6についてはさらに鉄損が良好であり、かつ磁束密度も高かった。 In a laboratory vacuum melting furnace, in mass%, C: 0.0011%, Si: 1.5%, Mn: 0.5%, Al: 0.6%, Ti: 0.0013%, S: Steel slabs containing 0.0017%, Sn: 0.055%, Ca: 0.0007% and varying the amounts of Cu and Ni were produced. These steel pieces were heated at 1100 ° C. for 60 minutes, and then immediately hot-rolled to a sheet thickness of 2.7 mm, subjected to hot-rolled sheet annealing at 1000 ° C. for 60 seconds, and cold-rolled once. The plate thickness was 0.50 mm, finish annealing was performed at 850 ° C. for 15 seconds in an atmosphere N 2 85% -H 2 15%, and further, strain relief annealing was performed at 750 ° C. for 2 hours in an atmosphere N 2 100%. Table 4 shows the results of measurement and observation of Sas [MnS + Cu 2 S], N, iron loss W15 / 50, and magnetic flux density B50 of each sample thus obtained. In all the samples, despite the Sas [MnS + Cu 2 S] being 0.0010% or less, nitriding after strain relief annealing was suppressed to a low level and good iron loss was obtained, but Cu + Ni was 0.2 %, Samples 3, 5 and 6 had better iron loss and higher magnetic flux density.

Figure 2005330527
Figure 2005330527

仕上焼鈍温度と鉄損の関係を示す図。The figure which shows the relationship between finish annealing temperature and iron loss.

Claims (4)

質量%で、Si:3.5%以下、Mn:1.5%以下、Al:0.1%以上3.0%以下、C:0.0050%以下、Ti:0.0030%以下、N:0.0050%以下、S:0.0011%以上0.0030%以下、Sn:0.01%以上0.2%以下を含有し、残部Fe及び不可避不純物からなり、SasMnS(MnSを生成しているS)とSasCu2S(Cu2Sを生成しているS)の総和(以下、Sas[MnS+Cu2S]と記す)が、質量%で0.0010%以下であることを特徴とする無方向性電磁鋼板。 In mass%, Si: 3.5% or less, Mn: 1.5% or less, Al: 0.1% or more and 3.0% or less, C: 0.0050% or less, Ti: 0.0030% or less, N : 0.0050% or less, S: 0.0011% or more and 0.0030% or less, Sn: 0.01% or more and 0.2% or less, and the balance consisting of Fe and inevitable impurities, forming SasMnS (MnS S) and SasCu 2 S (S forming Cu 2 S) (hereinafter referred to as Sas [MnS + Cu 2 S]) is 0.0010% or less by mass%. Non-oriented electrical steel sheet. 更に、質量%で、Cu、Niの少なくとも1種を合計で0.01%以上0.4%以下を含有することを特徴とする請求項1の無方向性電磁鋼板。   The non-oriented electrical steel sheet according to claim 1, further comprising 0.01% or more and 0.4% or less in total by mass% of at least one of Cu and Ni. 更に、質量%で、Ca、Mgの少なくとも1種を合計で0.0005%以上を含有することを特徴とする請求項1または2に記載の無方向性電磁鋼板。   The non-oriented electrical steel sheet according to claim 1 or 2, further comprising 0.0005% or more in total by mass% of at least one of Ca and Mg. 更に、質量%で、Tiを0.0010%以下とすることを特徴とする請求項1〜3のいずれかの項に記載の無方向性電磁鋼板。   The non-oriented electrical steel sheet according to any one of claims 1 to 3, wherein Ti is 0.0010% or less in terms of mass%.
JP2004148926A 2004-05-19 2004-05-19 Non-oriented electrical steel sheet with excellent magnetic properties Active JP4280201B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004148926A JP4280201B2 (en) 2004-05-19 2004-05-19 Non-oriented electrical steel sheet with excellent magnetic properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004148926A JP4280201B2 (en) 2004-05-19 2004-05-19 Non-oriented electrical steel sheet with excellent magnetic properties

Publications (2)

Publication Number Publication Date
JP2005330527A true JP2005330527A (en) 2005-12-02
JP4280201B2 JP4280201B2 (en) 2009-06-17

Family

ID=35485395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004148926A Active JP4280201B2 (en) 2004-05-19 2004-05-19 Non-oriented electrical steel sheet with excellent magnetic properties

Country Status (1)

Country Link
JP (1) JP4280201B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019035115A (en) * 2017-08-16 2019-03-07 新日鐵住金株式会社 Nonoriented electromagnetic steel sheet
CN111601907A (en) * 2018-02-16 2020-08-28 日本制铁株式会社 Non-oriented magnetic steel sheet and method for producing non-oriented magnetic steel sheet
WO2021037061A1 (en) * 2019-08-26 2021-03-04 宝山钢铁股份有限公司 600mpa grade non-oriented electrical steel sheet and manufacturing method thereof
WO2022210890A1 (en) 2021-03-31 2022-10-06 日本製鉄株式会社 Non-oriented electromagnetic steel sheet and manufacturing method therefor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019035115A (en) * 2017-08-16 2019-03-07 新日鐵住金株式会社 Nonoriented electromagnetic steel sheet
CN111601907A (en) * 2018-02-16 2020-08-28 日本制铁株式会社 Non-oriented magnetic steel sheet and method for producing non-oriented magnetic steel sheet
CN111601907B (en) * 2018-02-16 2022-01-14 日本制铁株式会社 Non-oriented magnetic steel sheet and method for producing non-oriented magnetic steel sheet
WO2021037061A1 (en) * 2019-08-26 2021-03-04 宝山钢铁股份有限公司 600mpa grade non-oriented electrical steel sheet and manufacturing method thereof
WO2022210890A1 (en) 2021-03-31 2022-10-06 日本製鉄株式会社 Non-oriented electromagnetic steel sheet and manufacturing method therefor
KR20230143192A (en) 2021-03-31 2023-10-11 닛폰세이테츠 가부시키가이샤 Non-oriented electrical steel sheet and manufacturing method thereof

Also Published As

Publication number Publication date
JP4280201B2 (en) 2009-06-17

Similar Documents

Publication Publication Date Title
KR102530719B1 (en) Non-oriented electrical steel sheet and its manufacturing method
JP5360336B1 (en) Non-oriented electrical steel sheet
JP5200376B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP5181439B2 (en) Non-oriented electrical steel sheet
RU2731570C1 (en) Non-textured electrical steel sheet demonstrating excellent recycling ability for secondary use
JP4280201B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties
JP4259177B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
EP0915179A2 (en) Steel sheet having excellent high-frequency magnetic properties and method of producing the same
JP3224781B2 (en) Fe-Cr-Si based alloy excellent in high frequency magnetic properties and method for producing the same
JP4267437B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties after strain relief annealing and its manufacturing method
JP2001323347A (en) Nonoriented silicon steel sheet excellent in workability, recyclability and magnetic property after strain relieving annealing
JP2001032054A (en) Fe-Cr-Sx ALLOY EXCELLENT IN HIGH FREQUENCY CORE LOSS CHARACTERISTIC AND ITS PRODUCTION
TW202204647A (en) Precipitation-hardening type martensitic stainless steel sheet having excellent fatigue resistance
JP4267499B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties
JP2000328207A (en) Silicon steel sheet excellent in nitriding and internal oxidation resistances
JP2004277760A (en) Non-oriented electromagnetic steel sheet
JP2005113252A (en) Non-oriented silicon steel sheet excellent in yield strength, and it production
JP2002080948A (en) Nonoriented silicon steel sheet having excellent blanking workability
JP4258163B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties after strain relief annealing
WO2022219742A1 (en) Hot-rolled steel sheet for non-oriented electrical steel sheet and method for manufacturing same
JP3758425B2 (en) Method for producing Fe-Cr-Si electrical steel sheet
JP7222445B1 (en) Non-oriented electrical steel sheet and method for producing non-oriented electrical steel sheet
JP4259011B2 (en) Non-oriented electrical steel sheet
JP2002003991A (en) Free cutting steel
JP2001262289A (en) NONORIENTED SILICON STEEL SHEET EXCELLENT IN MAGNETIC PROPERTY IN &gt;=1 kHz FREQUENCY REGION

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090313

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4280201

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350