JP4267499B2 - Non-oriented electrical steel sheet with excellent magnetic properties - Google Patents

Non-oriented electrical steel sheet with excellent magnetic properties Download PDF

Info

Publication number
JP4267499B2
JP4267499B2 JP2004110003A JP2004110003A JP4267499B2 JP 4267499 B2 JP4267499 B2 JP 4267499B2 JP 2004110003 A JP2004110003 A JP 2004110003A JP 2004110003 A JP2004110003 A JP 2004110003A JP 4267499 B2 JP4267499 B2 JP 4267499B2
Authority
JP
Japan
Prior art keywords
less
steel sheet
steel
mns
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004110003A
Other languages
Japanese (ja)
Other versions
JP2005290514A (en
Inventor
吉宏 有田
英邦 村上
良久 高田
修一 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004110003A priority Critical patent/JP4267499B2/en
Publication of JP2005290514A publication Critical patent/JP2005290514A/en
Application granted granted Critical
Publication of JP4267499B2 publication Critical patent/JP4267499B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Description

本発明は、電気機器の鉄心材料として使用される無方向性電磁鋼板およびその製造方法に関するものであり、特に磁気特性に優れた無方向性電磁鋼板に関するものである。   The present invention relates to a non-oriented electrical steel sheet used as an iron core material for electrical equipment and a method for producing the same, and particularly to a non-oriented electrical steel sheet having excellent magnetic properties.

近年、世界的な電気機器の省エネルギー化の高まりにより、回転機の鉄心材料として用いられる無方向性電磁鋼板に対しても、より高性能な特性が要求されてきている。特に回転機の損失につながる鉄損については低減ニーズが強く、SiやAl含有量を増加させて固有抵抗を高め、かつ結晶粒径を大きくすることで低鉄損化を実現してきた。更に鋼の純度を高めることは、結晶粒成長を促進するとともに、鋼中の不純物によって形成される析出物自身の影響も低減できるため、近年、鋼の純度はより高められるようになってきた。   In recent years, due to the increase in energy saving of electric appliances worldwide, non-oriented electrical steel sheets used as iron core materials for rotating machines have been required to have higher performance characteristics. In particular, there is a strong need to reduce the iron loss that leads to the loss of rotating machines, and the reduction of iron loss has been achieved by increasing the specific resistance by increasing the Si and Al contents and increasing the crystal grain size. Furthermore, increasing the purity of steel not only promotes crystal grain growth, but also reduces the influence of precipitates formed by impurities in the steel, so that the purity of steel has been increased in recent years.

例えば、特許文献1では、S,N:0.0020%以下、Ti,V,As:0.0020%以下、Nb:0.0030%以下とすることで、結晶粒成長を促進して低鉄損化を図る方法が開示されている。また特許文献2では、S:0.0010%以下として結晶粒成長を促進し、かつSb+1/2Sn:0.001〜0.05%含有させることで、S:0.0010%以下によってもたらされた鋼板の窒化を抑制して鉄損を低減する方法が開示されている。   For example, in Patent Document 1, S, N: 0.0020% or less, Ti, V, As: 0.0020% or less, Nb: 0.0030% or less, a method of promoting grain growth and reducing iron loss It is disclosed. In Patent Document 2, S: 0.0010% or less promotes crystal grain growth, and Sb + 1 / 2Sn: 0.001-0.05% is contained, thereby suppressing nitriding of the steel sheet caused by S: 0.0010% or less. Thus, a method for reducing iron loss is disclosed.

また歪取焼鈍での結晶粒成長の促進と低鉄損化を目的として、特許文献3ではREMを添加する方法、特許文献4ではCa合金を添加する方法、特許文献5ではMgあるいは、Mg,Ca,REMを複合添加する方法が開示されているが、これらは鋼中に不可避的に存在するSをREMやCa,Mgとの粗大で熱的に安定な硫化物とすることで結晶粒成長を促進させることを目的としたものである。   In addition, for the purpose of promoting grain growth and reducing iron loss in strain relief annealing, Patent Document 3 adds REM, Patent Document 4 adds Ca alloy, Patent Document 5 uses Mg or Mg, Although a method of adding Ca and REM in combination is disclosed, these grains grow by making S unavoidable in steel a coarse and thermally stable sulfide with REM, Ca and Mg. The purpose is to promote.

更に、特許文献6には製鋼におけるスクラップの積極活用を目的にNiやCuの混入量を規定する方法か、また、特許文献7には1.5%以上のMn添加に際し、そのコスト低減策として製鋼におけるスクラップ活用として、その際に混入するSu,Cu,Ni,Cr量の適正化によって鋼板表面の窒化層や酸化層の低減を図る方法が開示されている。   Furthermore, Patent Document 6 describes a method for prescribing the amount of Ni and Cu mixed for the purpose of positive use of scrap in steelmaking, and Patent Document 7 describes a technique for reducing the cost of steelmaking when 1.5% or more of Mn is added. As scrap utilization, a method for reducing a nitride layer or an oxide layer on the surface of a steel sheet by optimizing the amount of Su, Cu, Ni, and Cr mixed at that time is disclosed.

特開平8−283853号公報Japanese Patent Laid-Open No. 8-283835 特開平10−317111号公報JP-A-10-317111 特開平8−325678号公報JP-A-8-325678 特開平10−183309号公報JP-A-10-183309 特開2002−302746号公報JP 2002-302746 A 特開平7−305114号公報JP 7-305114 A 特開2003−96548号公報JP 2003-96548 A

本発明者らは、鋼板の窒化による鉄損の悪化について、特許文献2に記載されているSが0.0010%以下の場合のみならず、Sが0.0010%を超えた場合にも発生することを知見した。本発明はこのような問題を鑑みなされたものであり、鉄損の低い電磁鋼板を提供するものである。   The present inventors have found that the deterioration of iron loss due to nitriding of steel sheet occurs not only when S described in Patent Document 2 is 0.0010% or less, but also when S exceeds 0.0010%. did. This invention is made | formed in view of such a problem, and provides an electromagnetic steel plate with a low iron loss.

(1)質量%で、Si:3.5%以下、Mn:1.5%以下、Al:0.1%以上3.0%以下、C:0.0050%以下、Ti:0.0030%以下、N:0.0050%以下、S:0.0011%以上0.0030%以下、Ni:0.05%以上1.0%以下、Cu:0.05%以上1.0%以下、Ca+Mg+(REM/4)として0.0005〜0.0024%を含有し、残部Fe及び不可避不純物からなり、SasMnS(MnSを生成しているS)とSasCu2S(Cu2Sを生成しているS)の総和(以下、Sas[MnS+Cu2S]と記す)が質量%で0.0010%以下であることを特徴とする無方向性電磁鋼板。
(2)質量%で、Cuを0.3%以上、NiをCuの含有量の1/2以上を含有することを特徴とする(1)に記載の無方向性電磁鋼板。
)Tiを0.0010質量%以下とすることを特徴とする(1)〜(2)のいずれかに記載の無方向性電磁鋼板。
(1) By mass%, Si: 3.5% or less, Mn: 1.5% or less, Al: 0.1% or more and 3.0% or less, C: 0.0050% or less, Ti: 0.0030% Hereinafter, N: 0.0050% or less, S: 0.0011% or more and 0.0030% or less, Ni: 0.05% or more and 1.0% or less, Cu: 0.05% or more and 1.0% or less , Ca + Mg + (REM / 4) contains 0.0005-0.0024 % , consists of the balance Fe and inevitable impurities, and is the sum total of SasMnS (S generating MnS) and SasCu2S (S generating Cu2S) ( A non-oriented electrical steel sheet characterized in that Sas [MnS + Cu2S] is 0.0010% or less by mass%.
(2) The non-oriented electrical steel sheet according to (1), wherein the non-oriented electrical steel sheet according to (1) contains at least 0.3% of Cu and Ni at least 1/2 of the Cu content.
( 3 ) The non-oriented electrical steel sheet according to any one of (1) to ( 2) , wherein Ti is 0.0010% by mass or less.

本発明によれば、鋼板の窒化が抑制され、鉄損の低い電磁鋼板を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the nitriding of a steel plate is suppressed and the electromagnetic steel plate with a low iron loss can be provided.

以下に本発明を詳細に説明する。本発明者らは磁気特性を悪化させる鋼板表面の窒化について調査した結果、鋼中のSが0.0011%以上という比較的高い範囲でも、仕上焼鈍あるいは歪取焼鈍中に窒化して磁気特性を悪化させる場合のあることを知見した。その原因を調査したところ、窒化して磁気特性が悪化する鋼板においては、MnSあるいはCu2Sを生成しているS量が極めて少ないことを知見し、その対策としてNiとCuを添加することで焼鈍中の窒化を抑制し、かつ磁気特性が改善できることを見出した。さらに過度のCu添加によって鋼板表面に疵が発生することに対し、Cu量に応じてNi添加量を規定することで疵発生を防止できることを知見し、本発明を完成させた。以下、本発明に至った実験結果について述べる。
(実験1)
実験室の真空溶解炉にて、質量%で、C:0.0014%、Si:3.1%、Mn:0.2%、Al:1.0%、Ti:0.0008%、N:0.0020%、S:0.0013%を含有し、かつ表1に示すようにCaあるいはMg、REMを含有する鋼片も作製した。これらの鋼片に対し、1100℃で60分の加熱を施した後、直ちに熱延して板厚2.0mmとし、1000℃で60秒の熱延板焼鈍を施し、一回の冷延にて板厚0.35mmとした。
The present invention is described in detail below. As a result of investigating the nitriding of the steel sheet surface which deteriorates the magnetic properties, the present inventors have deteriorated the magnetic properties by nitriding during finish annealing or strain relief annealing even in a relatively high range where S in the steel is 0.0011% or more. I found out that there was a case. As a result of investigating the cause, it was found that the amount of S producing MnS or Cu 2 S was extremely small in steel sheets that deteriorated in magnetic properties due to nitriding, and Ni and Cu were added as a countermeasure. It was found that nitriding during annealing can be suppressed and the magnetic properties can be improved. Furthermore, the inventors have found that wrinkles can be prevented by preventing the generation of wrinkles on the steel sheet surface due to excessive Cu addition, and by defining the amount of Ni added according to the amount of Cu. Hereinafter, the experimental results that led to the present invention will be described.
(Experiment 1)
In a laboratory vacuum melting furnace, by mass%, C: 0.0014%, Si: 3.1%, Mn: 0.2%, Al: 1.0%, Ti: 0.0008%, N: 0.0020%, S: 0.0013% And as shown in Table 1, steel pieces containing Ca, Mg, and REM were also produced. These steel slabs were heated at 1100 ° C for 60 minutes, then immediately hot rolled to a sheet thickness of 2.0 mm, and subjected to hot rolled sheet annealing at 1000 ° C for 60 seconds, with a single cold rolling. The plate thickness was 0.35 mm.

こうして得られた冷延板について、雰囲気N270%-H230%(体積率)で1050℃、30秒の仕上焼鈍を行なった後、鉄損を測定するとともに、Ca,Mg,REM,NとSas[MnS+Cu2S]を分析した。その結果、表1に示す通り、Sas[MnS+Cu2S]が0.0010%以下のサンプル2,3,5〜8では窒化量ΔN(焼鈍後N量−鋼片N量)が0.0010%を超え、窒化していないサンプル1,4に対して鉄損が悪化することを知見した。また全サンプルともS:0.0012〜0.0014%の範囲にあるにもかかわらず、サンプル2,3,5〜8のSas[MnS+Cu2S]が0.0010%以下であったのは、MnSやCu2SよりもSと親和力の強いCa,Mg,REMをCa+Mg+(REM/4)で0.0005%以上含有していたためであることが判った。 The cold-rolled sheet thus obtained was subjected to a finish annealing at 1050 ° C. for 30 seconds in an atmosphere N 2 70% -H 2 30% (volume ratio), and then the iron loss was measured, and Ca, Mg, REM, N and Sas [MnS + Cu 2 S] were analyzed. As a result, as shown in Table 1, in samples 2 , 3, 5 to 8 where Sas [MnS + Cu 2 S] is 0.0010% or less, the nitriding amount ΔN (N amount after annealing−steel N amount) exceeds 0.0010%. It was found that the iron loss was worsened for samples 1 and 4 that were not nitrided. Although all samples were in the range of S: 0.0012 to 0.0014%, Sas [MnS + Cu 2 S] of samples 2, 3, 5 to 8 was 0.0010% or less because of MnS and Cu 2 It was found that Ca, Mg, and REM, which had a stronger affinity for S than S, were contained in Ca + Mg + (REM / 4) in an amount of 0.0005% or more.

Figure 0004267499
Figure 0004267499

(実験2)
実験室の真空溶解炉にて、質量%で、C:0.0019%、Si:1.6%、Mn:0.5%、Al:0.8%、Ti:0.0006%、N:0.0017%、S:0.0017%、Cu:0.25%、Ni:0.1%を含有し、かつ表2に示すようにCaあるいはMg、REMを含有する鋼片も作製した。これらの鋼片に対し、1150℃で60分の加熱を施した後、直ちに熱延して板厚2.0mmとし、1100℃で60秒の熱延板焼鈍を施し、一回の冷延にて板厚0.50mmとした。
(Experiment 2)
In a laboratory vacuum melting furnace, in mass%, C: 0.0019%, Si: 1.6%, Mn: 0.5%, Al: 0.8%, Ti: 0.0006%, N: 0.0017%, S: 0.0017%, Cu: Steel pieces containing 0.25%, Ni: 0.1%, and containing Ca, Mg, and REM as shown in Table 2 were also produced. These steel slabs were heated at 1150 ° C for 60 minutes, then immediately hot rolled to a sheet thickness of 2.0mm, and subjected to hot rolled sheet annealing at 1100 ° C for 60 seconds, with a single cold rolling. The plate thickness was 0.50 mm.

こうして得られた冷延板について、雰囲気N270%-H230%(体積率)で975℃、15秒の仕上焼鈍を行なった後、鉄損を測定するとともに、Ca,Mg,REM,NとSas[MnS+Cu2S]を分析した。その結果、表2に示す通り、Sas[MnS+Cu2S]が0.0010%以下のサンプル2,3,5〜8においても窒化せず、良好な鉄損の得られることを知見した。 The cold-rolled sheet thus obtained was subjected to a finish annealing at 975 ° C. for 15 seconds in an atmosphere N 2 70% -H 2 30% (volume ratio), and then the iron loss was measured, and Ca, Mg, REM, N and Sas [MnS + Cu 2 S] were analyzed. As a result, as shown in Table 2, it was found that samples 2 , 3, 5 to 8 having Sas [MnS + Cu 2 S] of 0.0010% or less were not nitrided and that good iron loss was obtained.

Figure 0004267499
Figure 0004267499

(実験3)
実験室の真空溶解炉にて、質量%で、C:0.0024%、Si:2.5%、Mn:0.2%、Al:0.8%、Ti:0.0010%、N:0.0025%、S:0.0015%、Ca:0.0004%、Mg:0.0006%、Cu:0.55%を含有し、Niを0.1〜0.79%まで変化させた鋼片を作製した。これらの鋼片に対し、1100℃で60分の加熱を施した後、直ちに熱延して板厚2.3mmとし、1050℃で60秒の熱延板焼鈍を施し、一回の冷延にて板厚0.50mmとした。
(Experiment 3)
In a laboratory vacuum melting furnace, by mass, C: 0.0024%, Si: 2.5%, Mn: 0.2%, Al: 0.8%, Ti: 0.0010%, N: 0.0025%, S: 0.0015%, Ca: A steel slab containing 0.0004%, Mg: 0.0006%, and Cu: 0.55% and changing Ni from 0.1 to 0.79% was produced. These steel slabs were heated at 1100 ° C for 60 minutes, and then immediately hot-rolled to a sheet thickness of 2.3 mm, subjected to hot-rolled sheet annealing at 1050 ° C for 60 seconds, and then cold-rolled once. The plate thickness was 0.50 mm.

こうして得られた冷延板について、雰囲気N270%-H230%(体積率)で1000℃、30秒の仕上焼鈍を行なった後、Sas[MnS+Cu2S],Nの分析と、鋼板表面の線状疵の有無を調査した。その結果、表3に示す通り、全てのサンプルにおいてSas[MnS+Cu2S]が0.0010%以下であるにもかかわらず、窒化抑制効果が得られたが、Ni含有量の少ないサンプル1〜3では鋼板表面の線状疵が確認された。 The cold-rolled sheet thus obtained was subjected to finish annealing at 1000 ° C. for 30 seconds in an atmosphere N 2 70% -H 2 30% (volume ratio), and then analysis of Sas [MnS + Cu 2 S], N The presence or absence of linear wrinkles on the steel sheet surface was investigated. As a result, as shown in Table 3, the nitriding suppression effect was obtained in spite of Sas [MnS + Cu 2 S] being 0.0010% or less in all samples, but samples 1 to 3 having a low Ni content were obtained. Then, linear wrinkles on the steel sheet surface were confirmed.

このような線状疵はCu添加量の少ない実験2では見られなかったことから、Cu添加量が多い場合のみに発生し、かつ本実験におけるサンプル4〜6のようにNi添加量を増やすことで発生しなくなることが判った。さらに調査を進めたところ、Cuを0.3%以上含む場合、熱延加熱時にスラブ表面に濃化したCuが溶融して線状疵となること、NiをCuの1/2以上添加しておくと、Cuと同時にスラブ表面に濃化したNiがCuと合金化して溶融温度を上昇させるために線状疵が抑制できることを知見した。   Such a linear wrinkle was not seen in Experiment 2 with a small amount of Cu added, so it only occurs when the amount of Cu added is large, and increase the amount of Ni added as in Samples 4 to 6 in this experiment. It was found that it no longer occurs. As a result of further investigations, when Cu is contained in an amount of 0.3% or more, Cu concentrated on the surface of the slab at the time of hot rolling is melted to form linear wrinkles, and when Ni is added more than 1/2 of Cu. It was found that Ni, which was concentrated on the slab surface at the same time as Cu, was alloyed with Cu to raise the melting temperature, so that linear flaws could be suppressed.

Figure 0004267499
Figure 0004267499

このように鋼板中の硫化物であるMnSとCu2Sを形成しているS量(Sas[MnS+Cu2S])によって焼鈍中に窒化することは本発明によって初めて知見したもので、REM,Ca,Mgを添加して単に硫化物を改質するという特許文献3〜5から類推し得るものではない。 Thus, nitriding during annealing by the amount of S forming the sulfides MnS and Cu 2 S (Sas [MnS + Cu 2 S]) in the steel sheet was first discovered by the present invention, and REM Therefore, it cannot be inferred from Patent Documents 3 to 5, in which Ca and Mg are simply added to modify sulfides.

また、NiとCuを共に含有する発明としては、特許文献6に製鋼におけるスクラップの積極活用を目的にNiやCuの混入量が規定されているが、これは同じくスクラップとして混入するSnを含めた相乗作用で発生する表面欠陥を抑制することを開示するものであり、本発明における硫化物の種類と量によって生じる鋼板の窒化抑制について何ら示唆するところもない。   Also, as an invention containing both Ni and Cu, Patent Document 6 defines the amount of Ni and Cu mixed for the purpose of positive use of scrap in steelmaking, but this also includes Sn mixed in as scrap The present invention discloses that the surface defects generated by the synergistic action are suppressed, and there is no suggestion about the suppression of nitriding of the steel sheet caused by the type and amount of sulfide in the present invention.

また特許文献7では1.5%以上のMn添加に際し、そのコスト低減策として製鋼におけるスクラップ利用が示され、その際に混入するSn,Cu,Ni,Cr量の適量化によって鋼板表面の窒化層や酸化層の低減効果を享受できると記されているが、硫化物の影響はおろか、窒化抑制効果の事例すら示されていないことから、本発明の効果について何ら示唆するところもない。   In addition, Patent Document 7 shows the use of scrap in steelmaking as a cost reduction measure when adding 1.5% or more of Mn, and by appropriate amount of Sn, Cu, Ni, Cr mixed at that time, nitride layer and oxidation on the steel sheet surface Although it is described that the effect of reducing the layer can be enjoyed, there is no suggestion about the effect of the present invention because not only the influence of the sulfide but also the example of the nitriding suppression effect is not shown.

続いて、本発明の製品における成分の数値限定理由について述べる。   Next, the reasons for limiting the numerical values of the components in the product of the present invention will be described.

Siは電気抵抗を増加させるために有効な元素であるが、過度に添加すると冷延性を著しく悪くするため3.5%を上限とした。   Si is an effective element for increasing the electric resistance, but if added excessively, the cold rolling property is remarkably deteriorated, so the upper limit was made 3.5%.

MnはSi同様に電気抵抗を増加させるために有効な元素であるが、1.5%を超えて添加すると飽和磁束密度の低下が著しくなって磁気特性が悪化するのに加え、他の成分次第で変態を有するようになると、焼鈍温度の上限が制約され所望の磁性が得られなくなってしまうことから1.5%を上限とした。   Mn is an element effective for increasing the electrical resistance like Si, but if added over 1.5%, the saturation magnetic flux density is drastically reduced and the magnetic properties are deteriorated. In addition, the transformation depends on other components. Therefore, the upper limit of the annealing temperature is restricted and the desired magnetism cannot be obtained, so 1.5% was made the upper limit.

AlはSi同様に電気抵抗を増加させるために有効な元素であり、また脱酸剤としても有用である。これらの目的のためには0.1%以上のAlを含有させるように添加する必要があるため0.1%以上と規定した。特に微細なAlN生成による粒成長悪化を防止するため、0.2%以上添加するのが好ましい。また、同一添加量でSiとほぼ同等の固有抵抗増が図れる一方、Siより硬度上昇が少ないため、高級グレードでは必須元素であり、特に0.8%以上の添加が望ましい。ただし多量に添加すると鋳造性を悪化させるため、3.0%を上限とした。   Al, like Si, is an effective element for increasing electrical resistance, and is also useful as a deoxidizer. For these purposes, since it is necessary to add 0.1% or more of Al, it was specified to be 0.1% or more. In particular, 0.2% or more is preferably added in order to prevent deterioration of grain growth due to fine AlN generation. In addition, the specific resistance can be increased to almost the same as Si with the same addition amount, but since the increase in hardness is smaller than that of Si, it is an essential element in high-grade grades, and addition of 0.8% or more is particularly desirable. However, if added in a large amount, castability deteriorates, so 3.0% was made the upper limit.

Cは磁気時効を起こすことがよく知られているため、0.0050%以下と規定した。ただしTiと析出物を形成し、特に歪取焼鈍時の結晶粒成長を悪化させるので、望ましくは0.0020%以下である。   Since C is well known to cause magnetic aging, it is defined as 0.0050% or less. However, Ti and precipitates are formed, and the grain growth particularly during strain relief annealing is deteriorated, so 0.0020% or less is desirable.

Tiは窒化物や炭化物、炭窒化物を生成して粒成長を著しく悪化させるため、0.0030%以下と規定した。ただし特に歪取焼鈍時の結晶粒成長を促進させる場合、0.0010%以下が望ましい。   Since Ti forms nitrides, carbides, and carbonitrides and significantly deteriorates grain growth, it is specified to be 0.0030% or less. However, 0.0010% or less is desirable especially when promoting crystal grain growth during strain relief annealing.

NはAlやTiと窒化物を生成して粒成長を著しく悪化させるため、0.0050%以下と規定した。   N is defined as 0.0050% or less in order to generate Al, Ti and nitride, and to significantly deteriorate the grain growth.

Sは本発明において重要な元素である。結晶粒成長を促進する点からは極力低減することことが望ましいが、製造コストが上昇するので0.0011%を下限とし、結晶粒成長の悪化が顕著になる0.0030%を上限とした。   S is an important element in the present invention. Although it is desirable to reduce as much as possible from the viewpoint of promoting crystal grain growth, 0.0011% is set as the lower limit and the upper limit is set to 0.0030% at which deterioration of crystal grain growth becomes remarkable because the manufacturing cost increases.

SasMnSとSasCu2Sは、総和として0.0010%を超えると仕上焼鈍あるいは歪取焼鈍時の結晶粒成長と鉄損が悪化するため、その総和の上限を0.0010%とした。 If the total of SasMnS and SasCu 2 S exceeds 0.0010%, the crystal grain growth and iron loss during finish annealing or strain relief annealing deteriorate, so the upper limit of the total was set to 0.0010%.

Ca,Mg,REMは、MnSやCu2Sよりも高温でより安定な硫化物を生成することができるため、0.0011〜0.0030%のSを含む鋼において、SasMnSとSasCu2Sの総和を0.0010%以下にする目的で含有させる。ただしCa+Mg+(REM/4)が0.0005%に満たないと、硫化物をほどんど生成しないため、Ca+Mg+(REM/4)の下限を0.0005%とした。 Since Ca, Mg, and REM can produce more stable sulfides at higher temperatures than MnS and Cu 2 S, in a steel containing 0.0011 to 0.0030% S, the sum of SasMnS and SasCu 2 S is 0.0010%. It is contained for the purpose of the following. However, when Ca + Mg + (REM / 4) is less than 0.0005%, sulfide is hardly generated, so the lower limit of Ca + Mg + (REM / 4) is set to 0.0005%.

Cuは本発明における必須元素で、Niとの複合添加によって窒化抑制効果を発現するが、Cu:0.05%未満では効果がなくなるため、0.05%を下限とした。さらに窒化抑制効果に加えて、磁気特性に好ましい集合組織を得られるが、その効果を享受するためには添加量を0.2%以上とすることが望ましい。ただし1.0%を超えると、析出物を生成して磁気特性を悪化させるので、上限を1.0%とした。   Cu is an essential element in the present invention, and exhibits a nitriding suppression effect when combined with Ni. However, since Cu is less than 0.05%, the effect is lost, so 0.05% was made the lower limit. Furthermore, in addition to the effect of suppressing nitriding, a texture preferable for magnetic properties can be obtained. In order to enjoy the effect, it is desirable that the amount of addition be 0.2% or more. However, if it exceeds 1.0%, precipitates are generated and the magnetic properties are deteriorated, so the upper limit was made 1.0%.

Niは本発明における必須元素で、Cuとの複合添加によって窒化抑制効果を発現するがNi:0.05%未満では効果がなくなるため、0.05%を下限とした。さらにCuを0.3%以上添加する場合、Cuの濃化によって発生する鋼板表面の線状疵を抑制するためには、Cu含有量の1/2以上添加する必要がある。また効果とコストを考慮して上限は1.0%とした。   Ni is an essential element in the present invention, and a nitriding suppression effect is manifested by combined addition with Cu, but since Ni is less than 0.05%, the effect is lost, so 0.05% was made the lower limit. Furthermore, when adding Cu 0.3% or more, in order to suppress the linear flaw on the surface of the steel sheet generated by the concentration of Cu, it is necessary to add 1/2 or more of the Cu content. The upper limit is set to 1.0% in consideration of the effect and cost.

実験室の真空溶解炉にて、質量%で、C:0.0015%、Si:2.6%、Mn:0.2%、Al:1.4%、Ti:0.0018%、S:0.0021%、N:0.0018%、Ca:0.0005%、Mg:0.0004%、Cu:0.01〜0.72%、Ni:0.03〜0.77%を含有する鋼片を作製した。これらの鋼片に対し、1050℃で60分の加熱を施した後、直ちに熱延して板厚2.3mmとし、1000℃で60秒の熱延板焼鈍を施し、一回の冷延にて板厚0.50mmとし、雰囲気N270%-H230%で1000℃、30秒の仕上焼鈍を施した。 In a laboratory vacuum melting furnace, in mass%, C: 0.0015%, Si: 2.6%, Mn: 0.2%, Al: 1.4%, Ti: 0.0018%, S: 0.0021%, N: 0.0018%, Ca: Steel slabs containing 0.0005%, Mg: 0.0004%, Cu: 0.01 to 0.72%, and Ni: 0.03 to 0.77% were produced. These steel slabs were heated at 1050 ° C for 60 minutes, then immediately hot rolled to a sheet thickness of 2.3 mm, hot rolled at 1000 ° C for 60 seconds, and cold-rolled once. The plate thickness was 0.50 mm, and a finish annealing was performed at 1000 ° C. for 30 seconds in an atmosphere of N 2 70% -H 2 30%.

こうして得られた各サンプルのSas[MnS+Cu2S]、N、鉄損W15/50、磁束密度B50、線状疵有無を測定・観察した結果を表4に示す。いずれのサンプルもSas[MnS+Cu2S]は0.0010%以下であり、Cu:0.05%未満かつNi:0.05%未満のサンプル1〜6、11、16、21にはΔN(焼鈍後N量-鋼片N量)が高く、窒化することが確認された。 Table 4 shows the results obtained by measuring and observing Sas [MnS + Cu 2 S], N, iron loss W15 / 50, magnetic flux density B50, and presence or absence of linear wrinkles of each sample thus obtained. In any sample, Sas [MnS + Cu 2 S] is 0.0010% or less, and samples 1 to 6, 11, 16, and 21 with Cu: less than 0.05% and Ni: less than 0.05% have ΔN (N amount after annealing− The amount of steel slab N) was high, and it was confirmed that nitriding occurred.

さらに、Cu:0.3%以上でNiがCuの1/2に満たないサンプル16〜17、21〜23では線状疵が発生した。以上のことから、Sas[MnS+Cu2S]が0.0010%以下の鋼板においては、Cu:0.05%以上でかつNi:0.05%以上を含有し、さらにCu:0.3%以上の場合でCuの1/2以上のNiを含有するサンプル7〜10、12〜15、18〜20、24、25で窒化および線状疵のない良好な特性の得られることが判った。またCu添加量の増加に伴なって磁束密度(B50)が向上する効果のあることも判った。 Further, in samples 16 to 17 and 21 to 23 where Cu was 0.3% or more and Ni was less than 1/2 of Cu, linear wrinkles occurred. From the above, in a steel plate with Sas [MnS + Cu 2 S] of 0.0010% or less, Cu: 0.05% or more and Ni: 0.05% or more, and further Cu: 0.3% or more, 1% of Cu It was found that samples 7 to 10, 12 to 15, 18 to 20, 24, and 25 containing Ni of 2 or more can obtain good characteristics without nitriding and linear defects. It was also found that the magnetic flux density (B50) was improved as the Cu addition amount increased.

Figure 0004267499
Figure 0004267499

実験室の真空溶解炉にて、質量%で、C:0.0023%、Si:1.0%、Mn:0.5%、Al:1.2%、Ti:0.0013%、S:0.0012%、REM:0.0032%、Cu:0.03〜0.65%、Ni:0.02〜0.32%を含有する鋼片を作製した。これらの鋼片に対し、1130℃で60分の加熱を施した後、直ちに熱延して板厚2.3mmとし、1100℃で60秒の熱延板焼鈍を施し、一回の冷延にて板厚0.50mmとし、雰囲気N285%-H215%で850℃、15秒の仕上焼鈍を施し、さらに雰囲気N2100%で750℃、2時間の歪取焼鈍を施した。 In a laboratory vacuum melting furnace, in mass%, C: 0.0023%, Si: 1.0%, Mn: 0.5%, Al: 1.2%, Ti: 0.0013%, S: 0.0012%, REM: 0.0032%, Cu: Steel pieces containing 0.03-0.65% and Ni: 0.02-0.32% were produced. These steel slabs were heated at 1130 ° C for 60 minutes, and then immediately hot-rolled to a sheet thickness of 2.3 mm, subjected to hot-rolled sheet annealing at 1100 ° C for 60 seconds, with a single cold rolling. The plate thickness was 0.50 mm, finish annealing was performed at 850 ° C. for 15 seconds in an atmosphere N 2 85% -H 2 15%, and further, strain relief annealing was performed at 750 ° C. for 2 hours in an atmosphere N 2 100%.

こうして得られた各サンプルのSas[MnS+Cu2S]、N、鉄損W15/50、磁束密度B50、線状疵有無を測定・観察した結果を表5に示す。いずれのサンプルもSas[MnS+Cu2S]は0.0010%以下であり、Cu:0.05%未満かつNi:0.05%未満のサンプル1〜6、11、16、21にはΔN(焼鈍後N量-鋼片N量)が高く、窒化することが確認された。さらにCu:0.3%以上でNiがCuの1/2に満たないサンプル16〜18、21〜24では線状疵が発生した。 Table 5 shows the results obtained by measuring and observing Sas [MnS + Cu 2 S], N, iron loss W15 / 50, magnetic flux density B50, and presence or absence of linear wrinkles of each sample thus obtained. In any sample, Sas [MnS + Cu 2 S] is 0.0010% or less, and samples 1 to 6, 11, 16, and 21 with Cu: less than 0.05% and Ni: less than 0.05% have ΔN (N amount after annealing− The amount of steel slab N) was high, and it was confirmed that nitriding occurred. Further, in samples 16-18 and 21-24 where Cu was 0.3% or more and Ni was less than 1/2 of Cu, linear wrinkles occurred.

以上のことから、Sas[MnS+Cu2S]が0.0010%以下の鋼板においては、Cu:0.05%以上でかつNi:0.05%以上を含有し、さらにCu:0.3%以上の場合にはCuの1/2以上のNiを含有するサンプル7〜10、12〜15、19、20、25で窒化および線状疵のない良好な特性の得られることが判った。またCu添加量の増加に伴なって磁束密度(B50)が向上する効果のあることも判った。 From the above, in a steel sheet with Sas [MnS + Cu 2 S] of 0.0010% or less, Cu: 0.05% or more and Ni: 0.05% or more, and further Cu: 0.3% or more Cu It was found that samples 7 to 10, 12 to 15, 19, 20, and 25 containing Ni of 1/2 or more can obtain good characteristics without nitriding and linear flaws. It was also found that the magnetic flux density (B 50 ) was improved as the Cu addition amount increased.

Figure 0004267499
Figure 0004267499

実験室の真空溶解炉にて、質量%で、C:0.0021%、Si:2.1%、Mn:0.2%、Al:0.3%、Ti:0.0007%、S:0.0025%、Mg:0.0024%、Cu:0.04〜0.80%、Ni:0.01〜0.45%を含有する鋼片を作製した。これらの鋼片に対し、1080℃で60分の加熱を施した後、直ちに熱延して板厚2.3mmとし、950℃で60秒の熱延板焼鈍を施し、一回の冷延にて板厚0.35mmとし、雰囲気N280%-H220%で975℃、30秒間の仕上焼鈍を施した。 In a laboratory vacuum melting furnace, in mass%, C: 0.0021%, Si: 2.1%, Mn: 0.2%, Al: 0.3%, Ti: 0.0007%, S: 0.0025%, Mg: 0.0024%, Cu: Steel pieces containing 0.04 to 0.80% and Ni: 0.01 to 0.45% were produced. These steel slabs were heated at 1080 ° C for 60 minutes, and then immediately hot-rolled to a thickness of 2.3 mm, then subjected to hot-rolled sheet annealing at 950 ° C for 60 seconds, with a single cold rolling. Finish annealing was performed at 975 ° C. for 30 seconds in a plate thickness of 0.35 mm and atmosphere N 2 80% -H 2 20%.

こうして得られた各サンプルのSas[MnS+Cu2S]、N、鉄損W15/50、磁束密度B50、線状疵有無を測定・観察した結果を表6に示す。いずれのサンプルもSas[MnS+Cu2S]は0.0005%以下であり、Cu:0.05%未満かつNi:0.05%未満のサンプル1〜6、11、16、21にはΔN(焼鈍後N量-鋼片N量)が高く、窒化することが確認された。さらにCu:0.3%以上でNiがCuの1/2に満たないサンプル16〜18、21〜24では線状疵が発生した。 Table 6 shows the results obtained by measuring and observing Sas [MnS + Cu 2 S], N, iron loss W15 / 50, magnetic flux density B50, and presence or absence of linear defects of each sample thus obtained. In any sample, Sas [MnS + Cu 2 S] is 0.0005% or less, and Cu is less than 0.05% and Ni is less than 0.05%. Samples 1 to 6, 11, 16, and 21 have ΔN (N amount after annealing− The amount of steel slab N) was high, and it was confirmed that nitriding occurred. Further, in samples 16-18 and 21-24 where Cu was 0.3% or more and Ni was less than 1/2 of Cu, linear wrinkles occurred.

以上のことから、Sas[MnS+Cu2S]は0.0010%以下の鋼板においては、Cu:0.05%以上でかつNi:0.05%以上を含有し、さらにCu:0.3%以上の場合にはCuの1/2以上のNiを含有するサンプル7〜10、12〜15、19、20、25で窒化および線状疵のない良好な特性の得られることが判った。またCu添加量の増加に伴なって磁束密度(B50)が向上する効果のあることも判った。 From the above, Sas [MnS + Cu 2 S] is 0.0010% or less of the steel sheet, Cu: 0.05% or more and Ni: 0.05% or more, and further Cu: 0.3% or more Cu It was found that samples 7 to 10, 12 to 15, 19, 20, and 25 containing Ni of 1/2 or more can obtain good characteristics without nitriding and linear flaws. It was also found that the magnetic flux density (B 50 ) was improved as the Cu addition amount increased.

Figure 0004267499
Figure 0004267499

Claims (3)

質量%で、Si:3.5%以下、Mn:1.5%以下、Al:0.1%以上3.0%以下、C:0.0050%以下、Ti:0.0030%以下、N:0.0050%以下、S:0.0011%以上0.0030%以下、Ni:0.05%以上1.0%以下、Cu:0.05%以上1.0%以下、Ca+Mg+(REM/4)として0.0005〜0.0024%を含有し、残部Fe及び不可避不純物からなり、SasMnS(MnSを生成しているS)とSasCu2S(Cu2Sを生成しているS)の総和(以下、Sas[MnS+Cu2S]と記す)が質量%で0.0010%以下であることを特徴とする無方向性電磁鋼板。 In mass%, Si: 3.5% or less, Mn: 1.5% or less, Al: 0.1% to 3.0%, C: 0.0050% or less, Ti: 0.0030% or less, N : 0.0050% or less, S: 0.0011% or more and 0.0030% or less, Ni: 0.05% or more and 1.0% or less, Cu: 0.05% or more and 1.0% or less , Ca + Mg + (REM / 4) containing 0.0005-0.0024 % as the balance, consisting of the balance Fe and inevitable impurities, and the sum of SasMnS (S producing MnS) and SasCu2S (S producing Cu2S) (hereinafter Sas) A non-oriented electrical steel sheet characterized in that [MnS + Cu2S] is 0.0010% or less by mass%. 質量%で、Cuを0.3%以上、NiをCuの含有量の1/2以上を含有することを特徴とする請求項1に記載の無方向性電磁鋼板。   2. The non-oriented electrical steel sheet according to claim 1, wherein the non-oriented electrical steel sheet comprises, by mass%, 0.3% or more of Cu and 1/2 or more of the content of Ni. Tiを0.0010質量%以下とすることを特徴とする請求項1〜のいずれかに記載の無方向性電磁鋼板。 Ti is 0.0010 mass% or less, The non-oriented electrical steel sheet according to any one of claims 1 and 2 .
JP2004110003A 2004-04-02 2004-04-02 Non-oriented electrical steel sheet with excellent magnetic properties Expired - Lifetime JP4267499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004110003A JP4267499B2 (en) 2004-04-02 2004-04-02 Non-oriented electrical steel sheet with excellent magnetic properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004110003A JP4267499B2 (en) 2004-04-02 2004-04-02 Non-oriented electrical steel sheet with excellent magnetic properties

Publications (2)

Publication Number Publication Date
JP2005290514A JP2005290514A (en) 2005-10-20
JP4267499B2 true JP4267499B2 (en) 2009-05-27

Family

ID=35323777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004110003A Expired - Lifetime JP4267499B2 (en) 2004-04-02 2004-04-02 Non-oriented electrical steel sheet with excellent magnetic properties

Country Status (1)

Country Link
JP (1) JP4267499B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102134311B1 (en) * 2018-09-27 2020-07-15 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing the same

Also Published As

Publication number Publication date
JP2005290514A (en) 2005-10-20

Similar Documents

Publication Publication Date Title
TWI706044B (en) Non-directional electromagnetic steel sheet and manufacturing method thereof
JP2004068084A (en) Non-grain-oriented electromagnetic steel sheet with high magnetic-flux density for rotating machine, and member for rotating machine
TW201319273A (en) Non-grain-oriented magnetic steel sheet
JP5360336B1 (en) Non-oriented electrical steel sheet
EP2799573A1 (en) Non-oriented magnetic steel sheet and method for manufacturing same
KR102325008B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR102493776B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
CA2507970C (en) Fe-cr-si based non-oriented electrical steel sheet and method for producing the same
RU2731570C1 (en) Non-textured electrical steel sheet demonstrating excellent recycling ability for secondary use
JP2020190026A (en) Non-oriented electromagnetic steel sheet and method for manufacturing the same
JP2005200713A (en) Nonoriented silicon steel sheet having excellent uniformity of magnetic property in coil and high production yield, and its production method
JP2018165383A (en) Nonoriented electromagnetic steel sheet
JP4280201B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties
JP4259177B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP4267499B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties
JP4267437B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties after strain relief annealing and its manufacturing method
JPH0581651B2 (en)
JP2001032054A (en) Fe-Cr-Sx ALLOY EXCELLENT IN HIGH FREQUENCY CORE LOSS CHARACTERISTIC AND ITS PRODUCTION
KR100963025B1 (en) Method for manufacturing a ferritic stainless steel
EP3859036A1 (en) Non-oriented electrical steel sheet and manufacturing method therefor
JP4306445B2 (en) Fe-Cr-Si non-oriented electrical steel sheet excellent in high frequency magnetic characteristics and method for producing the same
JP4258163B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties after strain relief annealing
WO2022219742A1 (en) Hot-rolled steel sheet for non-oriented electrical steel sheet and method for manufacturing same
TWI757156B (en) Hot-rolled steel sheet for non-oriented electrical steel sheet and method for producing the same
JP2005113252A (en) Non-oriented silicon steel sheet excellent in yield strength, and it production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090218

R151 Written notification of patent or utility model registration

Ref document number: 4267499

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350