JP2005330305A - Method for adsorptive desulfurization of hydrocarbon oil - Google Patents

Method for adsorptive desulfurization of hydrocarbon oil Download PDF

Info

Publication number
JP2005330305A
JP2005330305A JP2004147271A JP2004147271A JP2005330305A JP 2005330305 A JP2005330305 A JP 2005330305A JP 2004147271 A JP2004147271 A JP 2004147271A JP 2004147271 A JP2004147271 A JP 2004147271A JP 2005330305 A JP2005330305 A JP 2005330305A
Authority
JP
Japan
Prior art keywords
hydrocarbon oil
adsorbent
desulfurization
copper
sulfur
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004147271A
Other languages
Japanese (ja)
Inventor
Yasuhiro Toida
康宏 戸井田
Atsushi Sugiyama
淳 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEKIYU COMBINAT KODO TOGO UNEI
Research Association of Refinery Integration for Group Operation
Eneos Corp
Original Assignee
SEKIYU COMBINAT KODO TOGO UNEI
Japan Energy Corp
Research Association of Refinery Integration for Group Operation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEKIYU COMBINAT KODO TOGO UNEI, Japan Energy Corp, Research Association of Refinery Integration for Group Operation filed Critical SEKIYU COMBINAT KODO TOGO UNEI
Priority to JP2004147271A priority Critical patent/JP2005330305A/en
Publication of JP2005330305A publication Critical patent/JP2005330305A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for adsorptive desulfurization of a hydrocarbon oil containing disulfides as a sulfur compound, especially a method by which sufficient desulfurization can be carried out in a liquid-phase state as it is at about room temperature. <P>SOLUTION: The method for the adsorptive desulfurization of the hydrocarbon oil is characterized as bringing the hydrocarbon oil containing the disulfides as a principal component of the sulfur compound in a liquid-phase state into contact with an adsorbent containing a copper component. Conditions for bringing the hydrocarbon oil into contact with the adsorbent are preferably 10-150°C temperature, ≤3 m/h linear velocity and ≥5 min residence time. The adsorbent is preferably an adsorbent in which copper oxide is supported on an alumina carrier. The hydrocarbon oil before the desulfurization has ≤30 ppm sulfur content and 0.5-3 mass% diene concentration. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、特定の硫黄化合物を含有する炭化水素油を吸着剤により脱硫する方法に関する。   The present invention relates to a method for desulfurizing a hydrocarbon oil containing a specific sulfur compound with an adsorbent.

21世紀の自動車及びその燃料においては環境問題への対応が大きな課題であり、地球温暖化ガスであるCO排出削減とNOx等のいわゆる自動車排出ガス削減との両方の観点から、燃料油である炭化水素油の硫黄分低減がますます求められている。 Dealing with environmental problems is a major issue in the 21st century automobile and its fuel, and it is a fuel oil from the viewpoint of both CO 2 emission reduction, which is a global warming gas, and so-called automobile emission reduction such as NOx. There is an increasing demand for reducing the sulfur content of hydrocarbon oils.

従来、主に用いられてきた炭化水素油の脱硫技術である水素化脱硫方法をそのまま用い、燃料油に残存する硫黄化合物を除去することは、高温・高圧の反応であるため、エネルギー消費が大きく、また、膨大な触媒量と水素消費量などにより、多大なコストアップとなる。特に、LPG(液化石油ガス)のような低温の液体炭化水素の場合、高温に加熱して脱硫した後に再び冷却する必要があり、さらにエネルギー消費が大きい。   Conventionally, the hydrodesulfurization method, which is a hydrocarbon oil desulfurization technique that has been mainly used, is used as it is, and removing sulfur compounds remaining in the fuel oil is a high-temperature, high-pressure reaction, and thus energy consumption is large. In addition, the enormous cost increases due to the enormous amount of catalyst and the amount of hydrogen consumed. In particular, in the case of a low-temperature liquid hydrocarbon such as LPG (liquefied petroleum gas), it is necessary to cool it again after being heated to a high temperature and desulfurized, and the energy consumption is also large.

例えば、LPGは、製油所においては液相の状態で配管を通じて輸送されている。しかしながら、その脱硫方法としては、一旦気化してから気相で水素化脱硫してから再度液化する方法がとられ、気化および液化のために多大なエネルギーを必要としていた。特に常圧付近で冷却により液体で貯蔵されているLPGについては、その脱硫において多大なエネルギーロスが問題となっていた。   For example, LPG is transported through pipes in a liquid state in refineries. However, as the desulfurization method, a method of once vaporizing, hydrodesulfurizing in the gas phase, and then liquefying again has been taken, and a large amount of energy is required for vaporization and liquefaction. In particular, LPG stored as a liquid by cooling near normal pressure has been a problem of enormous energy loss in its desulfurization.

エネルギー消費の少ない脱硫方法として、吸着による脱硫方法が知られている。この方法は、水素を用いない緩やかな条件下で脱硫を行うため、簡便な設備・低い運転コストで,低エネルギー消費というメリットがある。吸着剤によるLPGの脱硫方法も知れられているが、一般に100℃以上の温度に加熱することが必要であり、蒸気圧の高いLPGを処理するためには、極めて高圧に耐え得る設備を必要としていた。また、室温付近でのLPGの吸着剤による気相脱硫方法も知られているが、一旦気化して脱硫後に再度液化することになり多大なエネルギーを必要としていた。   As a desulfurization method with low energy consumption, a desulfurization method by adsorption is known. Since this method performs desulfurization under mild conditions that do not use hydrogen, it has the advantages of simple equipment, low operating costs, and low energy consumption. Although an LPG desulfurization method using an adsorbent is also known, it is generally necessary to heat to a temperature of 100 ° C. or higher, and in order to process LPG with a high vapor pressure, equipment that can withstand extremely high pressure is required. It was. In addition, a vapor phase desulfurization method using an LPG adsorbent near room temperature is known, but once vaporized and deliquefied again after desulfurization, a large amount of energy was required.

一方、炭化水素油には、その原料や製造工程によっては、硫黄化合物の主成分がジスルフィド類であるという特殊な炭化水素油が得られる。
本発明者らは、炭化水素油の硫黄分を液相状態で吸着処理する方法を開発したが(特許文献1〜3)、これらの方法は、硫黄化合物の主成分がジスルフィド類であるという特殊な炭化水素油の脱硫を行うためのものではない。
On the other hand, a special hydrocarbon oil in which the main component of the sulfur compound is a disulfide is obtained from the hydrocarbon oil depending on the raw material and the production process.
The present inventors have developed a method for adsorbing the sulfur content of hydrocarbon oil in a liquid phase (Patent Documents 1 to 3), but these methods are special in that the main component of the sulfur compound is a disulfide. It is not intended for desulfurization of any hydrocarbon oil.

特許第3324746号Japanese Patent No. 3324746 特開2001−123188号JP 2001-123188 A 特開2001−205004号Japanese Patent Laid-Open No. 2001-205004

一般に、吸着による脱硫方法では、エネルギー消費を少なくすることができるが、含まれる硫黄化合物の種類により吸着除去されない場合もある。従来、硫黄化合物としてジスルフィド類を含む炭化水素油の吸着脱硫方法、特に、室温付近で液相状態のまま、十分な脱硫が可能な方法は提案されていなかった。本発明はこのような課題を解決するものである。   In general, in the desulfurization method by adsorption, energy consumption can be reduced, but the adsorption and removal may not be performed depending on the type of sulfur compound contained. Conventionally, there has not been proposed a method for adsorptive desulfurization of hydrocarbon oils containing disulfides as a sulfur compound, particularly a method capable of sufficient desulfurization while remaining in a liquid phase near room temperature. The present invention solves such problems.

本発明者らは、上記課題を解決するために鋭意研究を進めた結果、銅成分を含む吸着剤は比較的低温での活性が高く、硫黄化合物の主成分としてジスルフィド類を含む炭化水素油と銅成分を含む吸着剤とを接触させることにより、液相の状態のままでも効率的に脱硫できることに想到した。   As a result of diligent research to solve the above problems, the present inventors have found that an adsorbent containing a copper component has high activity at a relatively low temperature, and a hydrocarbon oil containing disulfides as a main component of a sulfur compound. The inventors have conceived that desulfurization can be efficiently carried out even in a liquid phase state by contacting with an adsorbent containing a copper component.

すなわち、本発明による炭化水素油の吸着脱硫方法は、硫黄化合物の主成分としてジスルフィド類を含む炭化水素油を液相の状態で銅成分を含む吸着剤と接触させることを特徴とする。炭化水素油と吸着剤とを接触させる条件は、温度10℃〜150℃、線速度3m/時間以下、滞留時間5分以上であることが好ましい。吸着剤は、アルミナ担体に酸化銅が担持された吸着剤であることが好ましい。また、脱硫前の炭化水素油の硫黄分が30ppm以下、ジエン濃度が0.5〜3質量%であることが好ましい。   That is, the hydrocarbon oil adsorptive desulfurization method according to the present invention is characterized in that a hydrocarbon oil containing disulfides as a main component of a sulfur compound is brought into contact with an adsorbent containing a copper component in a liquid phase. The conditions for bringing the hydrocarbon oil into contact with the adsorbent are preferably a temperature of 10 ° C. to 150 ° C., a linear velocity of 3 m / hour or less, and a residence time of 5 minutes or more. The adsorbent is preferably an adsorbent in which copper oxide is supported on an alumina carrier. Further, the sulfur content of the hydrocarbon oil before desulfurization is preferably 30 ppm or less and the diene concentration is 0.5 to 3% by mass.

本発明においては、室温付近にて液相の状態の炭化水素油に含まれるジスルフィド類の硫黄化合物を、特定の吸着剤と接触させることにより効率よく吸着脱硫することができる。このため、炭化水素油を加熱、加圧することなく、水素を消費することもないため、エネルギー消費が少なく、環境への負荷を低減した方法で、炭化水素油を脱硫することができる。   In the present invention, it is possible to efficiently perform adsorption desulfurization by bringing a sulfur compound of disulfides contained in a hydrocarbon oil in a liquid phase near room temperature into contact with a specific adsorbent. For this reason, since hydrocarbon oil is not heated and pressurized and hydrogen is not consumed, hydrocarbon oil can be desulfurized by a method that consumes less energy and reduces the burden on the environment.

本発明が好適に適用できる炭化水素油としては、灯油、ナフサ、ガソリン、LPGの留分であり、炭素数が3〜16の炭化水素を主成分とするものである。通常は、石油由来の炭化水素油が対象となる。灯油留分は、炭素数12〜16程度の炭化水素を主体とし、密度(15℃)0.79〜0.85g/cm、沸点範囲150〜320℃程度で、パラフィン系炭化水素が多い。ガソリン留分は、炭素数4〜11程度の炭化水素を主体とし、密度(15℃)0.783g/cm以下、沸点範囲30〜220℃程度である。自動車及びその他類似のガソリンエンジンに使用するため、接触分解、接触改質、アルキレーションなどで、オクタン価が高い留分としたものでもよい。LPGは、プロパン、プロピレン、ブタン、ブチレン、ブタジエンなどを主成分とする燃料ガスおよび工業用原料ガスである。通常は、加圧下に球状タンクで液相で状態で貯蔵されるか、大気圧に近い状態で液相で低温貯蔵される。 The hydrocarbon oil to which the present invention can be suitably applied is a fraction of kerosene, naphtha, gasoline, and LPG, and mainly contains a hydrocarbon having 3 to 16 carbon atoms. Usually, petroleum-derived hydrocarbon oil is the target. The kerosene fraction is mainly composed of hydrocarbons having about 12 to 16 carbon atoms, has a density (15 ° C.) of 0.79 to 0.85 g / cm 3 , a boiling point range of about 150 to 320 ° C., and is rich in paraffinic hydrocarbons. The gasoline fraction is mainly composed of hydrocarbons having about 4 to 11 carbon atoms, has a density (15 ° C.) of 0.783 g / cm 3 or less, and a boiling range of about 30 to 220 ° C. For use in automobiles and other similar gasoline engines, a fraction having a high octane number may be obtained by catalytic cracking, catalytic reforming, alkylation or the like. LPG is a fuel gas and industrial raw material gas mainly composed of propane, propylene, butane, butylene, butadiene and the like. Usually, it is stored in a liquid phase in a spherical tank under pressure, or is stored at a low temperature in a liquid phase in a state close to atmospheric pressure.

本発明の吸着脱硫方法の対象となる炭化水素油は、硫黄化合物の主成分としてジスルフィド類を含むものであり、炭化水素油に含まれる硫黄濃度の50%以上、特には80%以上がジスルフィド類であることが好ましい。ジスルフィド類は、ジスルフィド結合を有する含硫黄有機化合物であり、ジメチルジスルフィド、メチルエチルジスルフィド、メチルプロピルジスルフィド、ジエチルジスルフィド、メチルブチルジスルフィド、エチルプロピルジスルフィド、メチルペンチルジスルフィド、エチルブチルジスルフィド、ジプロピルジスルフィド、メチルヘキシルジスルフィド、エチルペンチルジスルフィド、プロピルブチルジスルフィド、メチルヘプチルジスルフィド、エチルヘキシルジスルフィド、プロピルペンチルジスルフィド、ジブチルジスルフィドなどの鎖状ジスルフィドやこれらの誘導体などが例示できる。   The hydrocarbon oil that is the subject of the adsorptive desulfurization method of the present invention contains disulfides as the main component of the sulfur compound, and 50% or more, particularly 80% or more of the sulfur concentration contained in the hydrocarbon oil is disulfides. It is preferable that Disulfides are sulfur-containing organic compounds having disulfide bonds, such as dimethyl disulfide, methyl ethyl disulfide, methyl propyl disulfide, diethyl disulfide, methyl butyl disulfide, ethyl propyl disulfide, methyl pentyl disulfide, ethyl butyl disulfide, dipropyl disulfide, methyl. Examples thereof include chain disulfides such as hexyl disulfide, ethylpentyl disulfide, propylbutyl disulfide, methylheptyl disulfide, ethylhexyl disulfide, propylpentyl disulfide, dibutyl disulfide, and derivatives thereof.

また、本発明の吸着脱硫方法の対象となる炭化水素油の硫黄濃度は、特に限定されるものではないが、炭化水素油の硫黄濃度が、低濃度であるほど、吸着剤の寿命を長くすることができ、当該脱硫方法の経済性は良好となる。例えば、硫黄濃度が0.05〜500ppm、好ましくは0.05〜30ppmである炭化水素油を挙げることができる。   In addition, the sulfur concentration of the hydrocarbon oil that is the target of the adsorptive desulfurization method of the present invention is not particularly limited, but the lower the sulfur concentration of the hydrocarbon oil, the longer the life of the adsorbent. The economics of the desulfurization method can be improved. For example, the hydrocarbon oil whose sulfur concentration is 0.05-500 ppm, Preferably it is 0.05-30 ppm can be mentioned.

本発明に用いる吸着剤は、銅成分を含むものであり、銅成分が吸着剤重量に対し銅元素重量として0.1〜15質量%、特には1〜10質量%含有されることが好ましい。吸着剤に含まれる遷移金属の元素重量として、70質量%以上、特には95質量%以上が銅成分であることとが好ましく、多孔質の担体に銅のみが担持されていることがより好ましい。銅の吸着剤粒子外表面への偏析を防ぐため、単位比表面積当たりの銅成分重量を0.7mg/m以下、特には0.5mg/m以下とすることが好ましい。ジスルフィド類の吸着容量を増やすためには、銅成分が多い方が好ましく、単位比表面積当たりの銅成分重量を0.3〜0.7mg/mとすることが特に好ましい。また、必要に応じて銅以外の成分をさらに担持することも可能である。銅以外の成分として、亜鉛や鉄を担持することもできるが、銅以外の担持は少ない方が、例えば、他の金属成分がその金属元素重量として0.1mg/m以下、特には0.02mg/m以下であることが好ましい。 The adsorbent used in the present invention contains a copper component, and the copper component is preferably contained in an amount of 0.1 to 15% by mass, particularly 1 to 10% by mass as the copper element weight with respect to the adsorbent weight. The element weight of the transition metal contained in the adsorbent is preferably 70% by mass or more, particularly preferably 95% by mass or more, and more preferably copper is supported on the porous carrier. In order to prevent segregation of copper on the outer surface of the adsorbent particles, the weight of the copper component per unit specific surface area is preferably 0.7 mg / m 2 or less, particularly 0.5 mg / m 2 or less. In order to increase the adsorption capacity of disulfides, it is preferable that the copper component is large, and it is particularly preferable that the weight of the copper component per unit specific surface area is 0.3 to 0.7 mg / m 2 . Moreover, it is also possible to carry | support further components other than copper as needed. Zinc and iron can be supported as a component other than copper, but the amount less supported other than copper is, for example, 0.1 mg / m 2 or less, particularly 0. It is preferably 02 mg / m 2 or less.

吸着剤の比表面積は150m/g以上、特には200m/g以上が好ましい。より低温での接触条件では、硫黄化合物は吸着剤表面に物理吸着し、その後次第に化学吸着状態へ変化するものと考えられ、比表面積が200m/g未満では初期における物理吸着量が少なくなることにより、吸着帯と呼ばれる硫黄濃度の減少する吸着剤の領域が大きくなる。つまり、より長い滞留時間が必要となる。そのため、吸着剤の比表面積を200m/g以上、特には、250m/g以上とすることが好ましい。機械的強度を得るため、細孔直径0.1μm以上の細孔の容積であるマクロ孔容積を0.2ml/g以下、特には、0.15ml/g以下とすることが好ましい。なお、通常、比表面積、全細孔容積は、窒素吸着法により、マクロ孔容積は水銀圧入法により測定される。窒素吸着法は簡便で、一般に用いられており、様々な文献に解説されている。例えば、鷲尾一裕:島津評論,48 (1),35-49 (1991)、ASTM (American Society for Testing and Materials) Standard Test Method D 4365-95 などである。 The specific surface area of the adsorbent is preferably 150 m 2 / g or more, particularly 200 m 2 / g or more. In more contacting conditions at low temperatures, sulfur compounds physically adsorbed on the adsorbent surface, then gradually it believed to change the chemical adsorption state, a specific surface area of a physical adsorption in the initial decreases less than 200 meters 2 / g As a result, an adsorbent region in which the sulfur concentration decreases, called an adsorption zone, is enlarged. That is, a longer residence time is required. Therefore, the specific surface area of the adsorbent is preferably 200 m 2 / g or more, and particularly preferably 250 m 2 / g or more. In order to obtain mechanical strength, the macropore volume, which is the volume of pores having a pore diameter of 0.1 μm or more, is preferably 0.2 ml / g or less, particularly preferably 0.15 ml / g or less. In general, the specific surface area and the total pore volume are measured by a nitrogen adsorption method, and the macropore volume is measured by a mercury intrusion method. The nitrogen adsorption method is simple and commonly used, and is described in various documents. For example, Kazuhiro Hagio: Shimazu review, 48 (1), 35-49 (1991), ASTM (American Society for Testing and Materials) Standard Test Method D 4365-95.

本発明に用いる吸着剤は、アルミナ、活性炭などの無機多孔質担体に銅が担持されたものであることが好ましく、特に、アルミナ担体に銅が担持されたものが好ましい。多孔質担体を構成するアルミナの結晶性及び種類は問わないが、一般に触媒担体として用いられるγ-アルミナの場合、比表面積及び細孔容積が大きく、尚且つ破壊強度が高い担体の作製は難しい。活性アルミナのような非晶質のアルミナ担体が、摩耗率が少なく、粉末の生成が少ないので好ましく用いられる。   The adsorbent used in the present invention is preferably one in which copper is supported on an inorganic porous carrier such as alumina or activated carbon, and particularly preferably one in which copper is supported on an alumina carrier. The crystallinity and type of alumina constituting the porous carrier are not limited. However, in the case of γ-alumina generally used as a catalyst carrier, it is difficult to produce a carrier having a large specific surface area and pore volume and high fracture strength. An amorphous alumina carrier such as activated alumina is preferably used because of its low wear rate and low powder production.

アルミナ担体は、アルミナを主成分とする多孔質の粒子であり、通常、直径0.5〜5mm特には、1〜3mmの球状であることが好ましい。球状は、シリンダー型(円柱状)などと比べて、外表面から吸着剤中心までの平均距離が短く、平均濃度勾配を大きくできるので、吸着する硫黄化合物の細孔内拡散に関して有利である。破壊強度が3.0kg/ペレット以上、特には3.5kg/ペレット以上であることが吸着剤の割れを生じないので好ましい。通常、破壊強度は、木屋式錠剤破壊強度測定器(富山産業株式会社)等の圧縮強度測定器により測定される。   The alumina carrier is a porous particle mainly composed of alumina, and is usually preferably a spherical particle having a diameter of 0.5 to 5 mm, particularly 1 to 3 mm. The spherical shape is advantageous in terms of diffusion in the pores of the adsorbed sulfur compound because the average distance from the outer surface to the adsorbent center is short and the average concentration gradient can be increased as compared with a cylinder type (columnar shape) or the like. It is preferable that the breaking strength is 3.0 kg / pellet or more, particularly 3.5 kg / pellet or more because cracking of the adsorbent does not occur. Usually, the breaking strength is measured by a compressive strength measuring device such as a Kiya-type tablet breaking strength measuring device (Toyama Sangyo Co., Ltd.).

アルミナ担体細孔内に銅が担持された吸着剤は、銅とアルミナとの相互作用により緑色を帯びる。比表面積に対して銅の濃度が高過ぎると、アルミナとの相互作用が無い状態で黒色の酸化銅となる。この黒色の酸化銅は、容易に離脱するので、使用中に離脱して炭化水素油に混入することとなり、黒色の酸化銅が生成しない様にする必要がある。したがって、担持された銅が緑色を呈することが好ましく、黒色を呈する吸着剤の利用は好ましくない。具体的には、吸着剤に含まれる黒色の粒子の割合が、10%以下、特には5%以下であることが好ましい。当該吸着剤の製造方法は、例えば、特許第3324746号に示される方法で製造される。   The adsorbent in which copper is supported in the pores of the alumina support has a green color due to the interaction between copper and alumina. When the concentration of copper is too high with respect to the specific surface area, black copper oxide is obtained without any interaction with alumina. Since this black copper oxide is easily detached, it must be detached during use and mixed into the hydrocarbon oil, so that it is necessary to prevent black copper oxide from being formed. Therefore, it is preferable that the supported copper exhibits a green color, and the use of an adsorbent exhibiting a black color is not preferable. Specifically, the proportion of black particles contained in the adsorbent is preferably 10% or less, particularly 5% or less. The adsorbent is produced, for example, by the method shown in Japanese Patent No. 3324746.

炭化水素油と銅成分を含む吸着剤とを接触させる条件は、温度10〜150℃、好ましくは20℃〜90℃、より好ましくは60〜90℃である。温度が10℃未満であると十分な吸着性能が得られない、一方、温度が150℃より高いと、設備の耐圧性や省エネルギーの観点から好ましくない。また、高温での反応を伴わないのでジエンを含んでいても脱硫することが可能である。活性の高い銅成分を含む吸着剤においても、低温での吸着であるため、ジエンによる硫黄の吸着への影響を抑制できる。ジエン濃度は、3wt%以下、好ましくは1.5wt%以下、0.5wt%以上含む炭化水素油にも適用できる。好ましくは、線速が3m/時間以下、特には0.3m/時間〜3m/時間、あるいは滞留時間5分以上、特には5分〜600分、さらには15分〜600分であると十分な吸着性能が得られる。   The conditions for bringing the hydrocarbon oil into contact with the adsorbent containing a copper component are a temperature of 10 to 150 ° C., preferably 20 to 90 ° C., more preferably 60 to 90 ° C. If the temperature is lower than 10 ° C, sufficient adsorption performance cannot be obtained. On the other hand, if the temperature is higher than 150 ° C, it is not preferable from the viewpoint of pressure resistance of the equipment and energy saving. Further, since it does not involve a reaction at a high temperature, it can be desulfurized even if it contains a diene. Even in an adsorbent containing a highly active copper component, since it is adsorbed at a low temperature, the influence of diene on sulfur adsorption can be suppressed. The diene concentration can also be applied to hydrocarbon oils containing 3 wt% or less, preferably 1.5 wt% or less, and 0.5 wt% or more. Preferably, the linear velocity is 3 m / hour or less, particularly 0.3 m / hour to 3 m / hour, or the residence time is 5 minutes or more, particularly 5 minutes to 600 minutes, more preferably 15 minutes to 600 minutes. Adsorption performance is obtained.

以下、本発明を実施例によりさらに具体的に説明するが,本発明はそれに限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto.

実施例1
酸化銅担持吸着剤として、アドバンスト・リファイニング・テクノロジーズ株式会社製NK−311を用いた。これは、直径2mmの球状のアルミナ担体に酸化銅を担持したものであり、担持量が銅元素重量として7.6質量%であり、比表面積が264mg/mである。この酸化銅担持吸着剤を150℃にて3時間乾燥処理を行った後、長さ300mm、内容積24mLのカラムに充填し、大気圧下、温度60℃にて、線速度2.9m/時(滞留時間:6分)で液相状態のモデル油を流通した。モデル油としては、ノルマルデカンにジメチルジスルフィドを硫黄濃度が20ppmとなるように配合したものを用いた。
Example 1
NK-311 manufactured by Advanced Refining Technologies Co., Ltd. was used as the copper oxide-carrying adsorbent. This is one in which copper oxide is supported on a spherical alumina carrier having a diameter of 2 mm, the supported amount is 7.6% by mass as the weight of copper element, and the specific surface area is 264 mg / m 2 . The copper oxide-supported adsorbent was dried at 150 ° C. for 3 hours, and then packed into a 300 mm long column with a volume of 24 mL. The model oil in the liquid phase was circulated at (residence time: 6 minutes). As the model oil, normal decane blended with dimethyl disulfide so as to have a sulfur concentration of 20 ppm was used.

流通開始後におけるカラム出口の硫黄濃度の変化を図1に示す。この図から出口の硫黄濃度は、流通開始初期に急激に立ち上がり、その後、緩やかに上昇していくカーブを描く。   The change in the sulfur concentration at the column outlet after the start of flow is shown in FIG. From this figure, the sulfur concentration at the outlet draws a curve that rises rapidly at the beginning of distribution and then gradually increases.

比較例1Comparative Example 1

酸化銅担持吸着剤の替わりにアルミナをとした以外は、実施例1と同様の条件で流通した。用いたアルミナは、直径2mmの球状の活性アルミナであり、純度は99%であり、比表面積は350mg/mである。 The sample was distributed under the same conditions as in Example 1 except that alumina was used instead of the copper oxide-supporting adsorbent. The alumina used was a spherical activated alumina having a diameter of 2 mm, a purity of 99%, and a specific surface area of 350 mg / m 2 .

この場合のカラム出口の硫黄濃度は、図1と同様に流通開始初期に急激に立ち上がり、その後、緩やかに上昇していくカーブを描いた。しかし、流出液量の吸着剤の容積に対する割合=100のときの除去量(表1)の比較結果より、実施例1の硫黄化合物の吸着性能が優れていることがわかる。   In this case, the sulfur concentration at the column outlet is a curve that rises rapidly at the beginning of the flow, and then gradually increases, as in FIG. However, from the comparison result of the removal amount (Table 1) when the ratio of the effluent amount to the adsorbent volume = 100, it can be seen that the sulfur compound adsorption performance of Example 1 is excellent.

実施例2〜4
実施例2〜4として、モデル油をカラムに流通させる際の温度及びモデル油の硫黄濃度を変えて、それ以外は実施例1と同様にカラムにモデル油を流通した。流通開始後にカラム出口の濃度がほぼ一定となる値と、モデル油の硫黄濃度との差を除去量とした。除去量の結果を、流出液量の吸着剤の容積に対する割合=100のときの除去量(表2)を比較した。カラムに流通させる際の温度およびモデル油の硫黄濃度と併せて表2に示す。なお、この温度範囲ではモデル油は液相状態で流通した。
Examples 2-4
As Examples 2 to 4, the model oil was circulated through the column in the same manner as in Example 1 except that the temperature when the model oil was circulated through the column and the sulfur concentration of the model oil were changed. The amount of removal was defined as the difference between the value at which the concentration at the column outlet becomes almost constant after the start of circulation and the sulfur concentration in the model oil. The removal amount was compared with the removal amount (Table 2) when the ratio of the effluent amount to the adsorbent volume = 100. Table 2 shows the temperature when flowing through the column and the sulfur concentration of the model oil. In this temperature range, the model oil circulated in the liquid phase.

実施例1〜3から、吸着温度は高いほど除去量が大きくなる。また、実施例1、4から、モデル油の硫黄濃度が高いほど除去量は大きくなる。   From Examples 1 to 3, the removal amount increases as the adsorption temperature increases. From Examples 1 and 4, the removal amount increases as the sulfur concentration of the model oil increases.

実施例5
実施例5として、カラムの長さを2100mmと長くして内容量189mL、滞留時間を43分とし、また、モデル油の硫黄濃度を300ppmとし、それ以外は実施例1と同様な条件で試験をおこなった。その結果、図2に示すように、流出液量/吸着剤量が約6までの間、出口硫黄濃度は1ppm未満まで脱硫が可能であった。この実施例より、原料硫黄濃度に対し、十分な滞留時間を確保すれば硫黄濃度は1ppm未満への脱硫が可能であることがわかる。
Example 5
In Example 5, the column length was increased to 2100 mm, the internal volume was 189 mL, the residence time was 43 minutes, and the sulfur concentration of the model oil was 300 ppm. Otherwise, the test was performed under the same conditions as in Example 1. I did it. As a result, as shown in FIG. 2, desulfurization was possible until the outlet sulfur concentration was less than 1 ppm while the effluent amount / adsorbent amount was about 6. From this example, it can be seen that the sulfur concentration can be desulfurized to less than 1 ppm if a sufficient residence time is secured with respect to the raw material sulfur concentration.

実施例6
モデル油としては、ノルマルデカンに、3質量%の1,3-ノルマルペンタジエンと、ジメチルジスルフィドを硫黄濃度が2000ppmとなるように配合したものを用いる以外は、実施例1と同様にモデル油を流通した。その結果、流通開始後、流通液量/吸着剤量=60における、両者の出口濃度(カラム出口の硫黄濃度)/入口濃度(モデル油の硫黄濃度)に大きな差はなかった。この実施例から、炭化水素油にジエン系化合物が含有されていても、本発明の吸着脱硫処理に影響がないことが分かった。
Example 6
As the model oil, the model oil was circulated in the same manner as in Example 1 except that normal decane and 3% by mass of 1,3-normal pentadiene and dimethyl disulfide were blended so that the sulfur concentration was 2000 ppm. did. As a result, there was no significant difference between the outlet concentration (sulfur concentration at the column outlet) / inlet concentration (sulfur concentration of the model oil) of both when the flow rate / the adsorbent amount = 60 after the flow started. From this example, it was found that even if a diene compound is contained in the hydrocarbon oil, the adsorptive desulfurization treatment of the present invention is not affected.

灯油、ナフサ、ガソリン、LPGなどの炭化水素油に含まれるジスルフィド類の硫黄化合物を、エネルギー消費が少なく、環境への負荷を低減した方法で、炭化水素油を脱硫することができる。   Hydrocarbon oil can be desulfurized by a method that consumes less energy and reduces the environmental burden of sulfur compounds of disulfides contained in hydrocarbon oils such as kerosene, naphtha, gasoline, and LPG.

実施例1によるカラムへの流通液量に対するカラム出口の硫黄濃度の変化を示す図である。横軸は、流出液量の吸着剤の容積に対する割合で示され、また、縦軸は、カラム出口の硫黄濃度をカラム入口の硫黄濃度に対する割合(パーセント(%))で示されている。It is a figure which shows the change of the sulfur density | concentration of the column exit with respect to the flow volume to the column by Example 1. FIG. The horizontal axis indicates the ratio of the effluent volume to the adsorbent volume, and the vertical axis indicates the ratio of the column outlet sulfur concentration to the column inlet sulfur concentration (percent (%)). 実施例5によるカラムへの流通液量に対するカラム出口の硫黄濃度の変化を示す図である。横軸は、流出液量の吸着剤の容積に対する割合で示され、また、縦軸は、カラム出口の硫黄濃度をカラム入口の硫黄濃度に対する割合(パーセント(%))で示されている。FIG. 10 is a graph showing a change in the sulfur concentration at the column outlet with respect to the amount of liquid flowing through the column according to Example 5. The horizontal axis indicates the ratio of the effluent volume to the adsorbent volume, and the vertical axis indicates the ratio of the column outlet sulfur concentration to the column inlet sulfur concentration (percent (%)).

Claims (4)

硫黄化合物の主成分としてジスルフィド類を含む炭化水素油を液相の状態で銅成分を含む吸着剤と接触させることを特徴とする炭化水素油の吸着脱硫方法。   A hydrocarbon oil adsorptive desulfurization method comprising contacting a hydrocarbon oil containing a disulfide as a main component of a sulfur compound with an adsorbent containing a copper component in a liquid phase. 炭化水素油と吸着剤とを接触させる条件が、温度10℃〜150℃、線速度3m/時間以下、滞留時間5分以上であることを特徴とする請求項1の炭化水素油の吸着脱硫方法。   2. The method for adsorptive desulfurization of hydrocarbon oil according to claim 1, wherein the conditions for bringing the hydrocarbon oil into contact with the adsorbent are a temperature of 10 ° C. to 150 ° C., a linear velocity of 3 m / hour or less, and a residence time of 5 minutes or more. . 吸着剤が、アルミナ担体に酸化銅が担持された吸着剤であることを特徴とする請求項1又は2に記載の炭化水素油の吸着脱硫方法。   The method for adsorptive desulfurization of hydrocarbon oil according to claim 1 or 2, wherein the adsorbent is an adsorbent in which copper oxide is supported on an alumina carrier. 脱硫前の炭化水素油の硫黄分が30ppm以下、ジエン濃度が0.5〜3質量%であることを特徴とする請求項1〜3のいずれかに記載の炭化水素油の吸着脱硫方法。   The adsorptive desulfurization method for hydrocarbon oil according to any one of claims 1 to 3, wherein the sulfur content of the hydrocarbon oil before desulfurization is 30 ppm or less and the diene concentration is 0.5 to 3 mass%.
JP2004147271A 2004-05-18 2004-05-18 Method for adsorptive desulfurization of hydrocarbon oil Pending JP2005330305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004147271A JP2005330305A (en) 2004-05-18 2004-05-18 Method for adsorptive desulfurization of hydrocarbon oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004147271A JP2005330305A (en) 2004-05-18 2004-05-18 Method for adsorptive desulfurization of hydrocarbon oil

Publications (1)

Publication Number Publication Date
JP2005330305A true JP2005330305A (en) 2005-12-02

Family

ID=35485193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004147271A Pending JP2005330305A (en) 2004-05-18 2004-05-18 Method for adsorptive desulfurization of hydrocarbon oil

Country Status (1)

Country Link
JP (1) JP2005330305A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103007873A (en) * 2013-01-15 2013-04-03 南通大学 Adsorbent for gasoline desulfurization and preparation method as well as application thereof
US9006508B2 (en) 2012-02-06 2015-04-14 Uop Llc Protected adsorbents for mercury removal and method of making and using same
CN112691644A (en) * 2019-10-23 2021-04-23 中国石油化工股份有限公司 Preparation method and application of bimetal MOFs loaded alumina pellets

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9006508B2 (en) 2012-02-06 2015-04-14 Uop Llc Protected adsorbents for mercury removal and method of making and using same
CN103007873A (en) * 2013-01-15 2013-04-03 南通大学 Adsorbent for gasoline desulfurization and preparation method as well as application thereof
CN112691644A (en) * 2019-10-23 2021-04-23 中国石油化工股份有限公司 Preparation method and application of bimetal MOFs loaded alumina pellets
CN112691644B (en) * 2019-10-23 2023-10-31 中国石油化工股份有限公司 Preparation method and application of bimetal MOFs loaded alumina pellets

Similar Documents

Publication Publication Date Title
CN102762701B (en) Apparatus &amp; process for treating natural gas
JP5301574B2 (en) Method for refining FT synthetic oil and mixed crude oil
JP5328655B2 (en) Solid acid, method for producing the same, and method for desulfurizing hydrocarbon oil using solid acid as desulfurizing agent
Neubauer et al. Adsorptive on-board desulfurization over multiple cycles for fuel-cell-based auxiliary power units operated by different types of fuels
JPH0513882B2 (en)
JPWO2009031614A1 (en) Hydrocarbon oil desulfurization method and fuel cell system using the same
Thompson et al. Liquefied petroleum gas
JP2005330305A (en) Method for adsorptive desulfurization of hydrocarbon oil
CA2457139A1 (en) Method for desulfurization and reforming of hydrocarbon
JP2008291146A (en) Porous desulfurizing agent and method for desulfurizing hydrocarbon oil using the same
US9550167B2 (en) Method for preparing hollow carbon structure using cracking reaction of heavy hydrocarbon fraction
JP5196391B2 (en) Method for producing low sulfur hydrocarbon oil
JP5284361B2 (en) Desulfurizing agent, method for producing the same, and method for desulfurizing hydrocarbon oil
WO2006068069A1 (en) Liquid fuel for fuel cell and method of desulfurization
JP4490533B2 (en) Fuel oil for fuel cells
AU2002321554B2 (en) Production of hydrogen
JP5372338B2 (en) Porous desulfurization agent and hydrocarbon oil desulfurization method using the same
JP2001279271A (en) Method for producing fuel oil for fuel cell and hydrogen for fuel cell
JP4610291B2 (en) Method for removing anticorrosives from hydrocarbons
JP4996983B2 (en) Porous desulfurizing agent and hydrocarbon desulfurization method using the same
JP5394272B2 (en) Desulfurizing agent, method for producing the same, and method for desulfurizing hydrocarbon oil using the same
Li et al. Deep desulfurization of alkylated oil by alumina adsorbents: characteristics and mechanism study
Ma et al. Deep desulfurization of diesel fuels by a novel integrated approach
JP2011157470A (en) Desulfurizing agent, manufacturing method therefor, and desulfurization method for hydrocarbon oil using this
JP5411762B2 (en) Hydrocarbon oil desulfurization method

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20061101

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090428

A131 Notification of reasons for refusal

Effective date: 20090519

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20090715

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20090811

Free format text: JAPANESE INTERMEDIATE CODE: A02