JP2005330239A - Method for producing 1,4-cyclohexanedicarboxylic acid - Google Patents

Method for producing 1,4-cyclohexanedicarboxylic acid Download PDF

Info

Publication number
JP2005330239A
JP2005330239A JP2004151126A JP2004151126A JP2005330239A JP 2005330239 A JP2005330239 A JP 2005330239A JP 2004151126 A JP2004151126 A JP 2004151126A JP 2004151126 A JP2004151126 A JP 2004151126A JP 2005330239 A JP2005330239 A JP 2005330239A
Authority
JP
Japan
Prior art keywords
cyclohexanedicarboxylic acid
reaction
acid
dialkyl
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004151126A
Other languages
Japanese (ja)
Other versions
JP2005330239A5 (en
JP4329618B2 (en
Inventor
Shuji Kawai
河合修司
Hiroshi Masami
真見博司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Chemical Co Ltd
Original Assignee
New Japan Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Chemical Co Ltd filed Critical New Japan Chemical Co Ltd
Priority to JP2004151126A priority Critical patent/JP4329618B2/en
Publication of JP2005330239A publication Critical patent/JP2005330239A/en
Publication of JP2005330239A5 publication Critical patent/JP2005330239A5/ja
Application granted granted Critical
Publication of JP4329618B2 publication Critical patent/JP4329618B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for industrially producing high-purity 1,4-cyclohexanedicarboxylic acid suitably utilizable as a raw material for a polyester having excellent weather resistance, transparency, electric characteristics and moldability, and usable for an optical material or an electronic material, and a medicine. <P>SOLUTION: The method for producing the 1,4-cyclohexanedicarboxylic acid involves hydrolyzing a dialkyl 1,4-cyclohexanedicarboxylate in an aqueous solution in the presence of an acidic catalyst. The hydrolysis is carried out while continuously evaporating water and alcohol by-produced in the hydrolysis to the outside of the reaction system and continuously or intermittently adding water to the reaction system. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、1,4−シクロヘキサンジカルボン酸の製造方法に関し、より詳細には1,4−シクロヘキサンジカルボン酸ジアルキルを加水分解し、高純度の1,4−シクロヘキサンジカルボン酸を効率よく製造する方法に関する。   The present invention relates to a method for producing 1,4-cyclohexanedicarboxylic acid, and more particularly, to a method for efficiently producing high-purity 1,4-cyclohexanedicarboxylic acid by hydrolyzing dialkyl 1,4-cyclohexanedicarboxylate. .

1,4−シクロヘキサンジカルボン酸は、医薬品、合成樹脂、合成繊維、染料等の原料として有用である。特に、近年、耐熱性、電気特性、光学特性から光学材料、電子材料用途のポリエステル樹脂の酸成分として高純度の1,4−シクロヘキサンジカルボン酸の需要が高まっている。   1,4-cyclohexanedicarboxylic acid is useful as a raw material for pharmaceuticals, synthetic resins, synthetic fibers, dyes and the like. In particular, in recent years, demand for high-purity 1,4-cyclohexanedicarboxylic acid is increasing as an acid component of polyester resins for use in optical materials and electronic materials because of heat resistance, electrical properties, and optical properties.

1,4−CHDAの製造方法としては、テレフタル酸のジナトリウム塩を、水溶液中核水素化して1,4−CHDAのジナトリウム塩を得、これを塩酸若しくは硫酸を用いて酸析して得る方法が一般的である(特許文献1)。しかし、この方法で製造される1,4−シクロヘキサンジカルボン酸は、原料由来のナトリウム等の金属、酸析した際に用いるClやS等を含有した酸成分が残存するため、このような原料から得られるポリマーは、重合度が上がらない、残留する酸成分のため装置等が腐食する、電気特性に影響を与えるといった問題があった。   As a method for producing 1,4-CHDA, a disodium salt of terephthalic acid is hydrogenated in an aqueous solution to obtain a disodium salt of 1,4-CHDA, which is obtained by acid precipitation using hydrochloric acid or sulfuric acid. Is common (Patent Document 1). However, since 1,4-cyclohexanedicarboxylic acid produced by this method remains a metal such as sodium derived from the raw material, and an acid component containing Cl, S, etc. used when acidifying out, it is from such a raw material. The obtained polymer has a problem that the degree of polymerization does not increase, the remaining acid component corrodes the device and the like, and the electrical characteristics are affected.

また、その他の方法としてテレフタル酸を直接核水素化する方法(特許文献2、特許文献3)も知られている。これらの方法は、いずれもシクロヘキサンカルボン酸、4−メチルシクロヘキサンカルボン酸等のモノカルボン酸類の有機不純物の副生が避けられず、しかもこのモノカルボン酸類は、再結晶等の通常の方法では分離が困難であった。このためこれら有機不純物を含有する1,4−シクロヘキサンジカルボン酸をポリエステル樹脂の酸成分として用いた際に、ポリマーの重合度が上がらず耐熱性、耐候性、物理的強度等が十分得られないという問題があった。   In addition, as another method, a method of directly nuclear hydrogenating terephthalic acid (Patent Document 2 and Patent Document 3) is also known. In any of these methods, by-products of organic impurities such as cyclohexanecarboxylic acid and 4-methylcyclohexanecarboxylic acid cannot be avoided, and these monocarboxylic acids cannot be separated by ordinary methods such as recrystallization. It was difficult. For this reason, when 1,4-cyclohexanedicarboxylic acid containing these organic impurities is used as the acid component of the polyester resin, the degree of polymerization of the polymer does not increase and heat resistance, weather resistance, physical strength, etc. are not sufficiently obtained. There was a problem.

国際公開93/06076号パンフレットInternational Publication No. 93/06076 Pamphlet 特開昭58−198439号公報JP-A-58-198439 米国特許第6291706号明細書US Pat. No. 6,291,706

本発明の目的は、医薬、農薬及び光学材料、電子材料用ポリエステル原料に好適に利用できる高純度の1,4−シクロヘキサンジカルボン酸を工業的に簡便な方法で製造する方法を提供することにある。   An object of the present invention is to provide a method for producing a high-purity 1,4-cyclohexanedicarboxylic acid that can be suitably used for pharmaceuticals, agricultural chemicals, optical materials, and polyester raw materials for electronic materials by an industrially simple method. .

本発明者らは、上記課題を解決すべく鋭意検討した。テレフタル酸ジアルキルを核水素化(例えば、特開2000−1447号公報)し、次いで得られた1,4−シクロヘキサンカルボン酸ジアルキルをアルカリ加水分解し、この得られた1,4−シクロヘキサンジカルボン酸中には、金属及びシクロヘキサンカルボン酸、4−メチルシクロヘキサンカルボン酸等のモノカルボン酸類が有機不純物が含有しており、その含有量は、現在の高度な要求に充分に応えられるレベルまで低減できておらず、必ずしも十分とは言えないことが判明した。   The present inventors diligently studied to solve the above problems. Nuclear hydrogenation of dialkyl terephthalate (for example, JP-A-2000-1447), followed by alkaline hydrolysis of the obtained 1,4-cyclohexanecarboxylic acid dialkyl, in the resulting 1,4-cyclohexanedicarboxylic acid Contains organic impurities such as metals and monocarboxylic acids such as cyclohexanecarboxylic acid and 4-methylcyclohexanecarboxylic acid, and the content can be reduced to a level that can sufficiently meet the current high demands. It turned out that it was not necessarily sufficient.

しかしながら、更に検討を重ねた結果、水溶液中で1,4−シクロヘキサンジカルボン酸ジアルキルを酸性触媒存在下に加水分解反応させて1,4−シクロヘキサンジカルボン酸を得るに際し、水及び加水分解反応中に副生するアルコールを反応系外に連続的に蒸発させながら、水を反応系に連続的又は間欠的に添加することにより、効率よく加水分解できることを見い出し、更に、驚くべきことに加水分解原料中のモノカルボン酸アルキル等の有機不純物が、目的物との分離が困難なモノカルボン酸類を生成することなく反応系外に除去できることを見い出し、かかる知見に基づいて本発明を完成するに至った。   However, as a result of further investigation, when 1,4-cyclohexanedicarboxylic acid is hydrolyzed in the presence of an acidic catalyst in the presence of an acidic catalyst, 1,4-cyclohexanedicarboxylic acid is obtained in the aqueous solution. It was found that water can be efficiently hydrolyzed by continuously or intermittently adding water to the reaction system while continuously evaporating the generated alcohol to the outside of the reaction system. It has been found that organic impurities such as alkyl monocarboxylates can be removed from the reaction system without producing monocarboxylic acids that are difficult to separate from the target product, and the present invention has been completed based on such findings.

即ち、本発明は、以下の1,4−シクロヘキサンジカルボン酸の製造方法を提供するものである。   That is, the present invention provides the following method for producing 1,4-cyclohexanedicarboxylic acid.

項1 水溶液中で1,4−シクロヘキサンジカルボン酸ジアルキルを酸性触媒存在下に加水分解反応させて1,4−シクロヘキサンジカルボン酸を得る方法であって、水及び加水分解反応中に副生するアルコールを反応系外に連続的に蒸発させながら、水を反応系に連続的又は間欠的に添加して加水分解反応させることを特徴とする1,4−シクロヘキサンジカルボン酸の製造方法。   Item 1 A method for obtaining 1,4-cyclohexanedicarboxylic acid by hydrolyzing a dialkyl 1,4-cyclohexanedicarboxylate in an aqueous solution in the presence of an acidic catalyst, wherein water and alcohol by-produced during the hydrolysis reaction are obtained. A process for producing 1,4-cyclohexanedicarboxylic acid, wherein water is continuously or intermittently added to the reaction system to cause a hydrolysis reaction while continuously evaporating out of the reaction system.

項2 液空間速度が、反応液容量を基準として0.2〜0.05/hになるように水を添加して反応させる上記項1に記載の1,4−シクロヘキサンジカルボン酸の製造方法。   Item 2 The method for producing 1,4-cyclohexanedicarboxylic acid according to Item 1, wherein the reaction is performed by adding water such that the liquid space velocity is 0.2 to 0.05 / h based on the reaction solution volume.

項3 1,4−シクロヘキサンジカルボン酸ジアルキルが、テレフタル酸ジアルキルの核水素化反応により製造されたものである上記項1又は2に記載の1,4−シクロヘキサンジカルボン酸の製造方法。   Item 3 The method for producing 1,4-cyclohexanedicarboxylic acid according to Item 1 or 2, wherein the dialkyl 1,4-cyclohexanedicarboxylate is produced by a nuclear hydrogenation reaction of dialkyl terephthalate.

項4 1,4−シクロヘキサンジカルボン酸ジアルキルが、1,4−シクロヘキサンジカルボン酸ジメチルである上記項1〜3のいずれかに記載の1,4−シクロヘキサンジカルボン酸の製造方法。   Item 4 The method for producing 1,4-cyclohexanedicarboxylic acid according to any one of Items 1 to 3, wherein the dialkyl 1,4-cyclohexanedicarboxylate is dimethyl 1,4-cyclohexanedicarboxylate.

項5 加水分解反応後の1,4−シクロヘキサンジカルボン中の有機不純物の含有量がが0.1重量%以下であることを特徴とする上記項1〜4のいずれかに記載の1,4−シクロヘキサンジカルボン酸の製造方法。   Item 5 The 1,4-cyclohexanedicarboxylic acid content in the 1,4-cyclohexanedicarboxylic acid after hydrolysis is 0.1% by weight or less, A method for producing cyclohexanedicarboxylic acid.

本発明の方法により、1,4−シクロヘキサンジカルボン酸ジアルキルから高純度、高収率で1,4−シクロヘキサンジカルボン酸が混和な条件で効率良く製造でき、しかも金属及び有機不純物の含有量を、医薬、農薬の製造中間体の他に、光学材料又は電子材料用ポリエステルの合成原料として使用できる程度にまで著しく低減された製造方法を確立できたことは、工業的に重要な意義があると言える。   According to the method of the present invention, 1,4-cyclohexanedicarboxylic acid can be efficiently produced from dialkyl 1,4-cyclohexanedicarboxylate with high purity and high yield under the condition that 1,4-cyclohexanedicarboxylic acid is miscible, and the content of metal and organic impurities can be reduced to pharmaceuticals. In addition to the intermediate for producing agricultural chemicals, it can be said that it has industrially significant significance that a production method significantly reduced to such an extent that it can be used as a raw material for synthesizing polyester for optical materials or electronic materials can be established.

本発明で加水分解原料として用いられる1,4−シクロヘキサンジカルボン酸ジアルキルとしては、具体的には1,4−シクロヘキサンジカルボン酸ジメチル、1,4−シクロヘキサンジカルボン酸ジエチル、1,4−シクロヘキサンジカルボン酸ジn−プロピル、1,4−シクロヘキサンジカルボン酸ジイソプロピル、1,4−シクロヘキサンジカルボン酸ジn−ブチル、1,4−シクロヘキサンジカルボン酸ジイソブチル等の1,4−シクロヘキサンジカルボン酸のジアルキル(C〜C)エステルが挙げられ、なかでも特に1,4−シクロヘキサンジカルボン酸ジメチルが好ましい。該ジアルキルエステルを使用することにより、メチルアルコール、エチルアルコール等の低級アルコールが副生され、これらのアルコールはその沸点が水より低く蒸留による反応系外への留去がきわめて容易となる。これらのエステルは、シス体及び/又はトランス体に限定されることなく、単独で又は2種以上の混合物として用いることもできる。 Specific examples of the dialkyl 1,4-cyclohexanedicarboxylate used as a hydrolysis raw material in the present invention include dimethyl 1,4-cyclohexanedicarboxylate, diethyl 1,4-cyclohexanedicarboxylate, and 1,4-cyclohexanedicarboxylic acid dialkyl. Dialkyl (C 1 -C 4) of 1,4-cyclohexanedicarboxylic acid such as n-propyl, diisopropyl 1,4-cyclohexanedicarboxylate, di-n-butyl 1,4-cyclohexanedicarboxylate, diisobutyl 1,4-cyclohexanedicarboxylate ) Esters, among which dimethyl 1,4-cyclohexanedicarboxylate is particularly preferred. By using the dialkyl ester, lower alcohols such as methyl alcohol and ethyl alcohol are by-produced, and these alcohols have a boiling point lower than that of water and can be very easily distilled out of the reaction system by distillation. These esters are not limited to cis and / or trans isomers, and can be used alone or as a mixture of two or more.

これらのジアルキルエステルとしては、テレフタル酸ジアルキルの核水素化反応により製造された1,4−シクロヘキサンジカルボン酸ジアルキルが好ましく、特に1,4−シクロヘキサンジカルボン酸ジメチルが好ましい。   As these dialkyl esters, dialkyl 1,4-cyclohexanedicarboxylate produced by a nuclear hydrogenation reaction of dialkyl terephthalate is preferable, and dimethyl 1,4-cyclohexanedicarboxylate is particularly preferable.

これらの1,4−シクロヘキサンジカルボン酸ジアルキルは、通常、ニッケル、ルテニウム、パラジウム、白金又はロジウム触媒(特にルテニウム触媒)存在下にテレフタル酸ジアルキルを核水素化することにより容易に製造することができる。このような製造方法としては、例えば、特開昭54−163554号、特開平6−192146号、特開平7−149694号、WO9800383号等に記載の方法が挙げられる。   These dialkyl 1,4-cyclohexanedicarboxylates can usually be easily produced by nuclear hydrogenation of dialkyl terephthalate in the presence of nickel, ruthenium, palladium, platinum or rhodium catalyst (particularly ruthenium catalyst). Examples of such production methods include the methods described in JP-A Nos. 54-163554, 6-192146, 7-149694, and WO9800383.

なかでも、特開2000−1447号公報に記載の1,4−シクロヘキサンジカルボン酸ジアルキルの製造方法が、純度が98%以上の目的物が得られること、及びモノカルボン酸アルキル等の有機不純物が本発明方法により容易に除去できる程度の含有量であることから特に好ましい。尚、本発明における有機不純物とは、上記核水素化反応により副生するシクロヘキサンカルボン酸アルキル、4−メチルシクロヘキサンカルボン酸アルキル等のモノカルボン酸アルキル類(特に4−メチルシクロヘキサンカルボン酸アルキル)を指す。   Among them, the production method of dialkyl 1,4-cyclohexanedicarboxylate described in JP-A No. 2000-1447 is capable of obtaining a target product having a purity of 98% or more, and organic impurities such as alkyl monocarboxylate are present. The content is particularly preferable because the content can be easily removed by the inventive method. The organic impurities in the present invention refer to monocarboxylic acid alkyls such as alkyl cyclohexanecarboxylate and alkyl 4-methylcyclohexanecarboxylate (particularly alkyl 4-methylcyclohexanecarboxylate) that are by-produced by the nuclear hydrogenation reaction. .

本発明に用いられる酸触媒としては、いずれのものでも制限なく使用できるが、具体的には、塩酸,硫酸などの鉱酸;メタンスルホン酸,p−トルエンスルホン酸などの有機酸;リンタングステン酸等のヘテロポリ酸;スルホン酸型陽イオン交換樹脂等の固体酸などが例示できる。   As the acid catalyst used in the present invention, any catalyst can be used without limitation. Specifically, mineral acids such as hydrochloric acid and sulfuric acid; organic acids such as methanesulfonic acid and p-toluenesulfonic acid; phosphotungstic acid Heteropolyacids such as solid acids such as sulfonic acid type cation exchange resins.

前記スルホン酸型イオン交換樹脂としては、例えば商品名で例示すると、ダウエックス HCR−W2、ダウエックス 650 C−H、ダウエックス88、ダウエックスMWC−1−H、アンバーライト−200C、アンバーライトXH−105、デニオライト C−433、デニオライト C−464、レバチット SPC−108、レバチット SPC−118、ダイヤイオン RCP−105H、ダイヤイオン RCP−145H、スミカイオン KC−470などを挙げることができる。また、Nafian−Hなどのフッ素化スルホン酸樹脂なども使用できる。   Examples of the sulfonic acid type ion exchange resin include, for example, trade names: Dowex HCR-W2, Dowex 650 C-H, Dowex 88, Dowex MWC-1-H, Amberlite-200C, Amberlite XH. -105, Deniolite C-433, Deniolite C-464, Levacit SPC-108, Levacit SPC-118, Diaion RCP-105H, Diaion RCP-145H, Sumikaion KC-470, and the like. Moreover, fluorinated sulfonic acid resins such as Nafian-H can also be used.

これらのうち特に、硫酸、p−トルエンスルホン酸が好適に用いられる。   Of these, sulfuric acid and p-toluenesulfonic acid are particularly preferably used.

前記酸触媒の使用量としては、原料1,4−シクロヘキサンジカルボン酸ジアルキルに対して0.5%〜10重量%程度、好ましくは、1〜7重量%程度が好ましい。0.5重量%以下であると実用的な反応速度が得られず、一方、10重量%を越えて使用しても添加量に見合う効果は得られず、経済的ではない。   The acid catalyst is used in an amount of about 0.5 to 10% by weight, preferably about 1 to 7% by weight, based on the starting dialkyl 1,4-cyclohexanedicarboxylate. When the amount is 0.5% by weight or less, a practical reaction rate cannot be obtained. On the other hand, even if the amount exceeds 10% by weight, an effect corresponding to the amount added cannot be obtained, which is not economical.

反応溶媒に用いられる水としては、水道水、イオン交換水、蒸留水等が挙げられるが、イオン交換水、蒸留水などの精製水が微量の金属混入の虞がない点で好ましい。   Examples of water used as the reaction solvent include tap water, ion-exchanged water, distilled water, and the like, but purified water such as ion-exchanged water and distilled water is preferable because there is no fear of a trace amount of metal contamination.

加水分解反応における仕込水の量としては、1,4−シクロヘキサンジカルボン酸ジアルキル:水の比率(重量)が、通常 2:98〜50:50、好ましくは、10:90〜30:70程度の範囲である。水の比率があまり小さくなると1,4−シクロヘキサンジカルボン酸を晶析精製するときのスラリー濃度が高くなるため取り扱いが困難になったり、逆に、水の比率があまり大きくなると、生産効率が低下する傾向が見られ好ましくない。   As the amount of the feed water in the hydrolysis reaction, the ratio (weight) of dialkyl 1,4-cyclohexanedicarboxylate: water is usually in the range of about 2:98 to 50:50, preferably about 10:90 to 30:70. It is. If the water ratio is too small, the slurry concentration when crystallization purification of 1,4-cyclohexanedicarboxylic acid becomes high, making it difficult to handle, or conversely, if the water ratio is too large, the production efficiency decreases. A tendency is seen, which is not preferable.

本発明における反応条件は、原料の1,4−シクロヘキサンジカルボン酸ジアルキルや触媒の種類によって適宜選択されるが、反応温度としては、通常90〜100℃、好ましくは98〜100℃の範囲であり、また、反応時間としては、特に限定されないが、通常5〜15時間の範囲である。   The reaction conditions in the present invention are appropriately selected depending on the raw material 1,4-cyclohexanedicarboxylate dialkyl and the kind of the catalyst, but the reaction temperature is usually 90 to 100 ° C., preferably 98 to 100 ° C., The reaction time is not particularly limited, but is usually in the range of 5 to 15 hours.

反応圧力としては、特に制限はないが、通常は常圧で実施される。   Although there is no restriction | limiting in particular as reaction pressure, Usually, it implements at a normal pressure.

本発明においては、加水分解反応は平衡反応であるため、水及び反応中に副生するアルコールを反応系外に連続的に蒸発させながら、水を、好ましくは水及びアルコールの留出物と同重量の水を反応系に連続的又は間欠的に添加して行うことが好ましい。この水及びアルコールの混合物である留出物には、テレフタル酸ジアルキルの核水素化反応により副生するモノカルボン酸アルキル、更にジカルボン酸ジアルキル等が若干含まれており、従って、この加水分解操作によりモノカルボン酸アルキルが水蒸気蒸留により容易に分離され、1,4−シクロヘキサンジカルボン酸中の有機不純物の含有量を、現在の高度な要求に充分に応えられる程度の量まで低減できる。   In the present invention, since the hydrolysis reaction is an equilibrium reaction, water is preferably the same as the distillate of water and alcohol while water and alcohol by-produced during the reaction are continuously evaporated out of the reaction system. It is preferable to carry out by adding a weight of water continuously or intermittently to the reaction system. This distillate, which is a mixture of water and alcohol, contains a small amount of alkyl monocarboxylate by-produced by the nuclear hydrogenation reaction of dialkyl terephthalate, and further dialkyl dicarboxylate. Alkyl monocarboxylate is easily separated by steam distillation, and the content of organic impurities in 1,4-cyclohexanedicarboxylic acid can be reduced to a level that can sufficiently meet the current high demands.

上記留出物の組成は、反応時間と共に変化するが、例えば、1,4−ジカルボン酸ジメチルの場合、その平均組成は、重量比で、水:メタノール:(モノカルボン酸アルキル及びジカルボン酸ジアルキル)=87:11:2程度の範囲である。   The composition of the distillate varies with the reaction time. For example, in the case of dimethyl 1,4-dicarboxylate, the average composition is, by weight, water: methanol: (alkyl monocarboxylate and dialkyl dicarboxylate). = 87: A range of about 1:12.

この留出量の調整は、加熱温度を調整して行ってもよいが、留出物をコンデンサで凝縮し、所定量を反応系外に抜出し、その残りを反応系に戻して行ってもよい。   The distillate amount may be adjusted by adjusting the heating temperature, but the distillate may be condensed with a condenser, a predetermined amount may be extracted out of the reaction system, and the remainder may be returned to the reaction system. .

また、留出した水及びメタノール混合物は、そのメタノール含有量が平衡を加水分解側に移行させることができる程度の少ない量あれば再使用することもできる。   The distilled water and methanol mixture can be reused as long as the methanol content is small enough to shift the equilibrium to the hydrolysis side.

添加する水は、そのまま水を添加しても構わないが、反応温度の低下を防ぐため所定の温度に加熱して添加することが好ましい。更に、所定量の水蒸気を反応液中に直接吹き込むこともできる。   The water to be added may be added as it is, but it is preferably added by heating to a predetermined temperature in order to prevent the reaction temperature from decreasing. Furthermore, a predetermined amount of water vapor can be directly blown into the reaction solution.

連続的又は間欠的に添加する水の量は、反応液容量を基準とした液空間速度で0.2〜0.05/hが適当であり、より好ましくは0.15〜0.1/hである。水の添加速度は反応速度を決める重要な因子であり、液空間速度で0.2を超える蒸発速度では、単位時間当たりに必要な供給熱量が大きくなり工業的に困難となり、一方、液空間速度が0.05未満の蒸発速度では、反応速度が小さくなり実用的でない。   The amount of water added continuously or intermittently is suitably 0.2 to 0.05 / h, more preferably 0.15 to 0.1 / h, based on the liquid space velocity based on the reaction solution volume. It is. The rate of water addition is an important factor that determines the reaction rate. When the evaporation rate exceeds 0.2 at the liquid space velocity, the amount of heat supplied per unit time becomes large and industrially difficult. When the evaporation rate is less than 0.05, the reaction rate becomes small and is not practical.

反応雰囲気は、特に限定されないが不活性ガス雰囲気下が好ましい。また、本発明は、連続式又はバッチ式いずれの方式でも実施することができる。   The reaction atmosphere is not particularly limited, but is preferably an inert gas atmosphere. Further, the present invention can be carried out by either a continuous type or a batch type.

加水分解反応終了後、反応液を、通常30℃以下、好ましくは20℃以下、更に好ましくは0〜15℃に冷却して1,4−シクロヘキサンジカルボン酸を晶析させて、遠心分離又は濾過を行い、次いで水洗浄、減圧又は常圧乾燥するだけで、製品として使用できる高純度品を得ることができる。   After completion of the hydrolysis reaction, the reaction solution is usually cooled to 30 ° C. or lower, preferably 20 ° C. or lower, more preferably 0 to 15 ° C. to crystallize 1,4-cyclohexanedicarboxylic acid, followed by centrifugation or filtration. A high-purity product that can be used as a product can be obtained simply by performing water washing, then reducing pressure, or drying under normal pressure.

かくして得られる加水分解反応後の1,4−シクロヘキサンジカルボン酸中の有機不純物の含有量が、0.1重量%以下であり、且つ金属含有量が非常に少ない高純度の1,4−シクロヘキサンジカルボン酸を得ることができる。   High purity 1,4-cyclohexanedicarboxylic acid having a content of organic impurities in the 1,4-cyclohexanedicarboxylic acid after the hydrolysis reaction thus obtained is 0.1% by weight or less and having a very low metal content. An acid can be obtained.

以下に、実施例、比較例及び参考例を掲げて本発明を詳しく説明する。尚、各例における成分%は、下記測定条件におけるガスクロマトグラフ分析又は高速液体クロマトグラフ分析の各成分の重量%で示した。
1)ガスクロマトグラフ分析
装置:GC−14A(島津製作所(株)製)
検出器:FID 280℃(内部標準法)
カラム:アドバンスーDS(30cm×0.25mmφ)
インジェクション温度:280℃
カラム温度:200℃
Hereinafter, the present invention will be described in detail with reference to Examples, Comparative Examples, and Reference Examples. In addition, the component% in each example was shown by weight% of each component of the gas chromatograph analysis or the high performance liquid chromatograph analysis on the following measurement conditions.
1) Gas chromatograph analyzer: GC-14A (manufactured by Shimadzu Corporation)
Detector: FID 280 ° C (internal standard method)
Column: Advance DS (30cm x 0.25mmφ)
Injection temperature: 280 ° C
Column temperature: 200 ° C

2)液体クロマトグラフ分析
装置:LC−6A(島津製作所(株)製)
検出器:UV 210nm(内部標準法)
カラム:SCR−101H(0.3m×7.9mmφ)
溶離液:60%過塩素酸3.9gを3lまでイオン交換水で希釈した溶液
流速:0.8ml/min
オーブン温度:40℃
2) Liquid chromatograph analyzer: LC-6A (manufactured by Shimadzu Corporation)
Detector: UV 210nm (internal standard method)
Column: SCR-101H (0.3 m × 7.9 mmφ)
Eluent: 3.9 g of 60% perchloric acid diluted to 3 liters with ion-exchanged water Flow rate: 0.8 ml / min
Oven temperature: 40 ° C

3)S含量分析
装置:TS−30(旧 三菱化成(株)製)
分析用試料は、シクロヘキサンジカルボン酸の1wt%水溶液(溶解しにくいときは水酸化ナトリウムを加えた)としたものを調整し、JIS規格 K2541の微量電量滴定式酸化法にて実施した。
3) S content analyzer: TS-30 (formerly manufactured by Mitsubishi Kasei Co., Ltd.)
A sample for analysis was prepared as a 1 wt% aqueous solution of cyclohexanedicarboxylic acid (when it was difficult to dissolve, sodium hydroxide was added), and the sample was subjected to the microcoulometric titration method of JIS standard K2541.

実施例1
攪拌装置、温度計、デカンタ及び冷却管を備えた1lガラス製四つ口フラスコに純度98.5%の1,4−シクロヘキサンジカルボン酸ジメチル140g(モノカルボン酸メチル0.8%)、イオン交換水360g、硫酸4.2gを仕込み、反応温度100℃、液空間速度0.13となるように留出量を調整ながら10時間反応を行い、その反応液を、高速液体クロマトグラフで分析行ったところジエステルは痕跡程度、ジカルボン酸は98.5%、モノエステルカルボン酸は1.5%の割合で含まれていた。 得られた反応液を4時間掛けて徐々に10℃まで冷却後、析出した結晶を濾別し、この結晶を10℃のイオン交換水で洗浄し、続いて0.65kPa、100℃で3時間乾燥を行い目的とする1,4−シクロヘキサンジカルボン酸110g(収率93%)を得た。この得られた1,4−シクロヘキサンジカルボン酸をジメチルエステルとしてガスクロマトグラフ分析したところ純度は99.9%であり、モノカルボン酸メチルは検出されなかった。ICP発光分析(商品名「オプティマ2000DV」、パーキンエルマー社製)で金属分析を行ったところNaが2ppm、Feが0.03ppm検出された。また、S含量は0.7ppmであった。
Example 1
140 g of dimethyl 1,4-cyclohexanedicarboxylate with a purity of 98.5% (methyl monocarboxylate 0.8%), ion-exchanged water in a 1 l glass four-necked flask equipped with a stirrer, thermometer, decanter and condenser 360 g of sulfuric acid and 4.2 g of sulfuric acid were charged, the reaction was conducted for 10 hours while adjusting the distillate so that the reaction temperature was 100 ° C. and the liquid space velocity was 0.13, and the reaction solution was analyzed by high performance liquid chromatography. The diester contained trace amounts, the dicarboxylic acid contained 98.5%, and the monoester carboxylic acid contained 1.5%. The obtained reaction solution was gradually cooled to 10 ° C. over 4 hours, and the precipitated crystals were separated by filtration. The crystals were washed with ion-exchanged water at 10 ° C., followed by 0.65 kPa at 100 ° C. for 3 hours. Drying was performed to obtain 110 g (yield 93%) of the desired 1,4-cyclohexanedicarboxylic acid. When the obtained 1,4-cyclohexanedicarboxylic acid was analyzed by gas chromatography using dimethyl ester, the purity was 99.9% and methyl monocarboxylate was not detected. When metal analysis was performed by ICP emission analysis (trade name “Optima 2000DV”, manufactured by PerkinElmer), Na was detected at 2 ppm and Fe was detected at 0.03 ppm. The S content was 0.7 ppm.

実施例2
液空間速度を0.05、反応時間18時間とした以外は、実施例1と同様に反応を行い、その反応液を高速液体クロマトグラフで分析行ったところジエステルは痕跡程度、ジカルボン酸は98.0%、モノエステルカルボン酸は1.9%の割合で含まれていた。反応終了後、実施例1と同様に後処理を行い目的の1,4−シクロヘキサンジカルボン酸108g(収率91%)得た。この得られた1,4−シクロヘキサンジカルボン酸をジメチルエステルとしてガスクロマト分析したところ純度は99.8%であり、モノカルボン酸メチルは検出されなかった。ICP発光分析で金属分析したところNaが3ppm、Feが0.03ppm検出された。また、また、S含量は0.5ppmであった。
Example 2
Except that the liquid space velocity was 0.05 and the reaction time was 18 hours, the reaction was carried out in the same manner as in Example 1, and the reaction liquid was analyzed by high performance liquid chromatograph. 0% and monoester carboxylic acid were contained in a proportion of 1.9%. After completion of the reaction, post-treatment was carried out in the same manner as in Example 1 to obtain 108 g (yield 91%) of the desired 1,4-cyclohexanedicarboxylic acid. When the obtained 1,4-cyclohexanedicarboxylic acid was analyzed by gas chromatography using dimethyl ester, the purity was 99.8% and methyl monocarboxylate was not detected. When metal analysis was conducted by ICP emission analysis, 3 ppm of Na and 0.03 ppm of Fe were detected. Moreover, S content was 0.5 ppm.

比較例1
水及び加水分解反応中に副生するアルコールを反応系外に連続的に蒸発させ、該留出物を連続的に反応系に戻した他は実施例1と同様に行ったところ、4時間後、加水分解反応は平衡に達し、それ以上反応は進行しなかった。この反応液を、液体クロマトグラフ分析したところ、ジエステル:モノエステルカルボン酸:1,4−シクロヘキサンジカルボン酸が7:50:43の割合で含まれていた。
Comparative Example 1
The reaction was conducted in the same manner as in Example 1 except that water and alcohol by-produced during the hydrolysis reaction were continuously evaporated out of the reaction system, and the distillate was continuously returned to the reaction system. The hydrolysis reaction reached equilibrium and the reaction did not proceed any further. When this reaction solution was analyzed by liquid chromatography, it was found that diester: monoestercarboxylic acid: 1,4-cyclohexanedicarboxylic acid was contained in a ratio of 7:50:43.

参考例1
攪拌装置、温度計、冷却管を備えた1Lガラス製四つ口フラスコに純度98.5%の1,4−シクロヘキサンジカルボン酸ジメチル140g(モノカルボン酸メチル0.8%)、イオン交換水360g、水酸化ナトリウム30gを仕込み、反応温度100℃で還流させながら2時間反応を行い、その反応液を高速液体クロマトグラフで分析したところジエステル、モノエステルカルボン酸ナトリウム塩は痕跡程度であり、ジカルボン酸ジナトリウム塩がほぼ定量的に得られた。得られた反応液に、10℃で濃塩酸約67mLを滴下しながら酸戻しを行い、1,4−シクロヘキサンジカルボン酸を析出させた。析出した結晶を濾別し、この結晶を10℃のイオン交換水で十分に洗浄し、続いて0.65kPa、100℃で3時間乾燥を行い目的とする1,4−シクロヘキサンジカルボン酸81g(収率68%)を得た。この得られた1,4−シクロヘキサンジカルボン酸をジメチルエステルとしてガスクロマト分析したところ純度は99.3%であり、0.4%のモノカルボン酸メチルを含有していた。ICP発光分析で金属分析したところNaが400ppm、Feが0.03ppm検出された。また、S分は検出されなかった。
Reference example 1
In a 1 L glass four-necked flask equipped with a stirrer, a thermometer, and a condenser tube, 140 g of dimethyl 1,4-cyclohexanedicarboxylate having a purity of 98.5% (methyl monocarboxylate 0.8%), 360 g of ion-exchanged water, 30 g of sodium hydroxide was added, the reaction was carried out for 2 hours while refluxing at a reaction temperature of 100 ° C., and the reaction solution was analyzed by high performance liquid chromatography. As a result, diester and monoester carboxylic acid sodium salt were traces. The sodium salt was obtained almost quantitatively. The resulting reaction solution was acid-returned while adding about 67 mL of concentrated hydrochloric acid dropwise at 10 ° C. to precipitate 1,4-cyclohexanedicarboxylic acid. The precipitated crystals were separated by filtration, washed thoroughly with ion exchange water at 10 ° C., and then dried at 0.65 kPa and 100 ° C. for 3 hours to obtain 81 g of desired 1,4-cyclohexanedicarboxylic acid (yield). 68%). When the obtained 1,4-cyclohexanedicarboxylic acid was analyzed by gas chromatography using dimethyl ester, the purity was 99.3% and contained 0.4% methyl monocarboxylate. As a result of metal analysis by ICP emission analysis, 400 ppm of Na and 0.03 ppm of Fe were detected. Further, S component was not detected.

参考例2
電動磁気攪拌装置を備えた500mlオートクレーブにテレフタル酸15g、水酸化ナトリウム7.2g、イオン交換水100g、5%ルテニウム/アルミナ触媒0.15gを仕込み、系内を水素置換後、反応温度180℃、圧力3Mpaで1.5時間反応した。冷却後、触媒を濾別し、得られた濾液に、10℃で濃塩酸約16mlを滴下しながら酸戻しを行い、1,4−シクロヘキサンジカルボン酸を析出させた。析出した結晶を濾別し、この結晶を10℃のイオン交換水で十分に洗浄し、続いて0.65kPa、100℃で3時間乾燥を行い目的とする1,4−シクロヘキサンジカルボン酸11g(収率71%)を得た。この得られた1,4−シクロヘキサンジカルボン酸をジメチルエステルとしてガスクロマトグラフ分析したところ純度は99.8%であり、モノカルボン酸メチルは検出されなかった。更に、ICP発光分析で金属分析したところNaが430ppm、Feが0.15ppm検出された。また、S分は検出されなかった。
Reference example 2
A 500 ml autoclave equipped with an electric magnetic stirrer was charged with 15 g of terephthalic acid, 7.2 g of sodium hydroxide, 100 g of ion-exchanged water and 0.15 g of 5% ruthenium / alumina catalyst. After replacing the system with hydrogen, the reaction temperature was 180 ° C., The reaction was carried out at a pressure of 3 Mpa for 1.5 hours. After cooling, the catalyst was removed by filtration, and the resulting filtrate was acid-reduced while adding about 16 ml of concentrated hydrochloric acid dropwise at 10 ° C. to precipitate 1,4-cyclohexanedicarboxylic acid. The precipitated crystals were separated by filtration, washed thoroughly with ion exchanged water at 10 ° C., and then dried at 0.65 kPa and 100 ° C. for 3 hours to obtain 11 g of desired 1,4-cyclohexanedicarboxylic acid (yield). 71%) was obtained. When the obtained 1,4-cyclohexanedicarboxylic acid was analyzed by gas chromatography using dimethyl ester, the purity was 99.8% and methyl monocarboxylate was not detected. Further, metal analysis by ICP emission analysis detected Na of 430 ppm and Fe of 0.15 ppm. Further, S component was not detected.

参考例3
電動磁気攪拌装置を備えた500mlオートクレーブにテレフタル酸11g、イオン交換水99g、5%パラジウム/カーボン触媒1.1gを仕込み、系内を水素置換後、反応温度145℃、圧力4.5Mpaで1.5時間反応した。その反応液を120℃で加圧濾過により触媒を除去後、得られた濾液を5℃まで冷却し結晶を析出させた。その析出した結晶を濾別し、その結晶を10℃のイオン交換水で十分に洗浄し、続いて0.65kPa、100℃で3時間乾燥を行い目的とする1,4−シクロヘキサンジカルボン酸9.3g(収率82%)を得た。この得られた1,4−シクロヘキサンジカルボン酸をジメチルエステルとしてガスクロマトグラフ分析したところ純度は98.7%であり、0.3%のモノカルボン酸メチルを含有していた。更に、ICP発光分析で金属分析したところNaが0.05ppm、Feが210ppm検出された。
Reference example 3
A 500 ml autoclave equipped with an electric magnetic stirrer was charged with 11 g of terephthalic acid, 99 g of ion-exchanged water and 1.1 g of 5% palladium / carbon catalyst, and after replacing the hydrogen with the system, the reaction temperature was 145 ° C. and the pressure was 4.5 MPa. Reacted for 5 hours. After removing the catalyst from the reaction solution by pressure filtration at 120 ° C., the obtained filtrate was cooled to 5 ° C. to precipitate crystals. The precipitated crystals were separated by filtration, and the crystals were thoroughly washed with ion exchange water at 10 ° C., followed by drying at 0.65 kPa and 100 ° C. for 3 hours to obtain the desired 1,4-cyclohexanedicarboxylic acid 9. 3 g (yield 82%) was obtained. When the obtained 1,4-cyclohexanedicarboxylic acid was analyzed by gas chromatography using dimethyl ester, the purity was 98.7% and it contained 0.3% methyl monocarboxylate. Furthermore, when metal analysis was performed by ICP emission analysis, 0.05 ppm of Na and 210 ppm of Fe were detected.

本発明を実施することにより、1,4−シクロヘキサンジカルボン酸ジアルキルエステルから加水分解反応を行うことにより、金属及び有機不純物の含有量が著しく低減された高純度1,4−シクロヘキサンジカルボン酸を工業的に簡便な方法で得る方法が可能になり、更に、現在の高度な要求に充分に応えられる高純度の1,4−シクロヘキサンジカルボン酸を製造することが可能になる

By carrying out the present invention, by carrying out a hydrolysis reaction from 1,4-cyclohexanedicarboxylic acid dialkyl ester, high-purity 1,4-cyclohexanedicarboxylic acid with significantly reduced contents of metals and organic impurities is industrially produced. It is possible to produce a highly pure 1,4-cyclohexanedicarboxylic acid that can sufficiently meet the current high demands.

Claims (5)

水溶液中で1,4−シクロヘキサンジカルボン酸ジアルキルを酸性触媒存在下に加水分解反応させて1,4−シクロヘキサンジカルボン酸を得る方法であって、水及び加水分解反応中に副生するアルコールを反応系外に連続的に蒸発させながら、水を反応系に連続的又は間欠的に添加して加水分解反応させることを特徴とする1,4−シクロヘキサンジカルボン酸の製造方法。   A method for obtaining 1,4-cyclohexanedicarboxylic acid by hydrolyzing a dialkyl 1,4-cyclohexanedicarboxylate in an aqueous solution in the presence of an acidic catalyst, comprising water and an alcohol by-produced during the hydrolysis reaction. A process for producing 1,4-cyclohexanedicarboxylic acid, wherein water is continuously or intermittently added to the reaction system to cause a hydrolysis reaction while continuously evaporating to the outside. 液空間速度が、反応液容量を基準として0.2〜0.05/hになるように水を添加して反応させる請求項1に記載の1,4−シクロヘキサンジカルボン酸の製造方法。   The method for producing 1,4-cyclohexanedicarboxylic acid according to claim 1, wherein water is added and reacted so that the liquid space velocity is 0.2 to 0.05 / h based on the reaction liquid volume. 1,4−シクロヘキサンジカルボン酸ジアルキルが、テレフタル酸ジアルキルの核水素化反応により製造されたものである請求項1又は2に記載の1,4−シクロヘキサンジカルボン酸の製造方法。   The method for producing 1,4-cyclohexanedicarboxylic acid according to claim 1 or 2, wherein the dialkyl 1,4-cyclohexanedicarboxylate is produced by a nuclear hydrogenation reaction of dialkyl terephthalate. 1,4−シクロヘキサンジカルボン酸ジアルキルが、1,4−シクロヘキサンジカルボン酸ジメチルである請求項1〜3のいずれかに記載の1,4−シクロヘキサンジカルボン酸の製造方法。   The method for producing 1,4-cyclohexanedicarboxylic acid according to any one of claims 1 to 3, wherein the dialkyl 1,4-cyclohexanedicarboxylate is dimethyl 1,4-cyclohexanedicarboxylate. 加水分解反応後の1,4−シクロヘキサンジカルボン中の有機不純物の含有量が0.1重量%以下であることを特徴とする請求項1〜4のいずれか1項に記載の1,4−シクロヘキサンジカルボン酸の製造方法。

The 1,4-cyclohexane according to any one of claims 1 to 4, wherein the content of organic impurities in 1,4-cyclohexanedicarboxylic acid after the hydrolysis reaction is 0.1 wt% or less. A method for producing dicarboxylic acid.

JP2004151126A 2004-05-21 2004-05-21 Method for producing 1,4-cyclohexanedicarboxylic acid Expired - Fee Related JP4329618B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004151126A JP4329618B2 (en) 2004-05-21 2004-05-21 Method for producing 1,4-cyclohexanedicarboxylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004151126A JP4329618B2 (en) 2004-05-21 2004-05-21 Method for producing 1,4-cyclohexanedicarboxylic acid

Publications (3)

Publication Number Publication Date
JP2005330239A true JP2005330239A (en) 2005-12-02
JP2005330239A5 JP2005330239A5 (en) 2007-05-17
JP4329618B2 JP4329618B2 (en) 2009-09-09

Family

ID=35485142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004151126A Expired - Fee Related JP4329618B2 (en) 2004-05-21 2004-05-21 Method for producing 1,4-cyclohexanedicarboxylic acid

Country Status (1)

Country Link
JP (1) JP4329618B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010024214A (en) * 2008-07-24 2010-02-04 Daihachi Chemical Industry Co Ltd Method for producing phosphonic acid
WO2017154947A1 (en) * 2016-03-10 2017-09-14 新日本理化株式会社 Powdery 1,4-cyclohexanedicarboxylic acid

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010024214A (en) * 2008-07-24 2010-02-04 Daihachi Chemical Industry Co Ltd Method for producing phosphonic acid
WO2017154947A1 (en) * 2016-03-10 2017-09-14 新日本理化株式会社 Powdery 1,4-cyclohexanedicarboxylic acid
CN108713010A (en) * 2016-03-10 2018-10-26 新日本理化株式会社 Powder shaped 1,4 cyclohexanedicarboxylic acid
US20190016661A1 (en) * 2016-03-10 2019-01-17 New Japan Chemical Co., Ltd. Powdery 1,4-cyclohexanedicarboxylic acid
US10723686B2 (en) 2016-03-10 2020-07-28 New Japan Chemical Co., Ltd. Powdery 1,4-cyclohexanedicarboxylic acid
TWI727010B (en) * 2016-03-10 2021-05-11 日商新日本理化股份有限公司 Powdered 1, 4-cyclohexanedicarboxylic acid

Also Published As

Publication number Publication date
JP4329618B2 (en) 2009-09-09

Similar Documents

Publication Publication Date Title
AU2007255335C1 (en) Process for converting nitrile compounds to carboxylic acids and corresponding esters
JP5697220B2 (en) Process for the production of ditrimethylolpropane and trimethylolpropane-enriched product stream from the side stream of trimethylolpropane production
US8846973B2 (en) Process for producing hydrogenated aromatic polycarboxylic acid
RU2210564C2 (en) Method for preparing aminonitrile and diamine
WO2014061570A1 (en) Novel alicyclic-type diol compound, and method for producing same
JP4329618B2 (en) Method for producing 1,4-cyclohexanedicarboxylic acid
CN103755678B (en) Preparation of cyclicpolybutylece terephthalate dimer
JPH0840983A (en) Production of lactic acid ester
JP2002088018A (en) Method for producing (meth)acrylic acid ester
TW201242935A (en) Process to recover alcohol with secondary reactors for hydrolysis of acetal
JP2003089694A (en) Method for purifying tetrahydrofuran
JP4633400B2 (en) Method for producing alicyclic polycarboxylic acid and acid anhydride thereof
JP4075336B2 (en) Method for reforming crude alcohol
JP4709356B2 (en) Method for producing high epimer alkyl jasmonates
JP4267417B2 (en) Process for producing purified tricyclo [5.2.1.02,6] decane-2-carboxylic acid ethyl ester
JP2001011016A (en) Production of tartaric acid lower alkyl diester
JP5589809B2 (en) Method for producing high epimer alkyl jasmonates
JP4187979B2 (en) Method for treating ethylene glycol recovered distillation residue
JP5626838B2 (en) Method for producing high-quality N (N, N) -mono (di) alkylacrylamide
JP2619215B2 (en) Tertiary carboxylic acid composition for carboxylic acid ester synthesis
JP2003192621A (en) Method of purification for alicyclic alcohol
JPH04198151A (en) Production of methacrylic acid
JP2514001B2 (en) Method for producing acetin
JP2005281175A (en) Method of manufacturing polycarboxylic acid
WO2000069799A1 (en) Precursors of 3-alkoxyalkanols and processes for the preparation of 3-alkoxyalkanols

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070323

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090608

R150 Certificate of patent or registration of utility model

Ref document number: 4329618

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees