JP2005329511A - Micromachining method and device - Google Patents

Micromachining method and device Download PDF

Info

Publication number
JP2005329511A
JP2005329511A JP2004150725A JP2004150725A JP2005329511A JP 2005329511 A JP2005329511 A JP 2005329511A JP 2004150725 A JP2004150725 A JP 2004150725A JP 2004150725 A JP2004150725 A JP 2004150725A JP 2005329511 A JP2005329511 A JP 2005329511A
Authority
JP
Japan
Prior art keywords
mold
workpiece
fine
transfer
blank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004150725A
Other languages
Japanese (ja)
Inventor
Yutaka Imaida
豊 今井田
Tadashi Hasebe
忠司 長谷部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Doshisha Co Ltd
Original Assignee
Doshisha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Doshisha Co Ltd filed Critical Doshisha Co Ltd
Priority to JP2004150725A priority Critical patent/JP2005329511A/en
Publication of JP2005329511A publication Critical patent/JP2005329511A/en
Pending legal-status Critical Current

Links

Landscapes

  • Micromachines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a micromachining method for a simple plastic material with high machining property. <P>SOLUTION: An aluminum blank 12 is brought into contact with a forming die 11 having a very small rugged part. Shock wave is generated by performing electric discharge within a closed container 18 provided on a back face of the blank 12 and filled with liquid 22. The blank 12 is formed into a fine shape along the forming die 11 by generation of the shock wave. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、マイクロメートルオーダーの微細形状を有する金型を用いて塑性材料を成形または転写加工する方法に関する。   The present invention relates to a method for molding or transferring a plastic material using a mold having a fine shape on the order of micrometers.

近年、あらゆる装置の小型化、複雑化にともない、精密機械工業や電子産業で加工の高精度化および高密度化が要望されており、マイクロメートルオーダーでの微細加工を行うマイクロ加工技術が次々に開発されている。これまで、このようなマイクロ加工技術の開発は半導体プロセス技術からのアプローチが主流であったが、近年、半導体プロセス技術では困難な加工を実現することができる微細機械加工が注目され、機械加工による切削、圧印、鍛造、穴開け加工、放電加工などの様々な微細加工技術の研究が進められている。   In recent years, with the miniaturization and complexity of all devices, there has been a demand for higher precision and higher density of processing in the precision machinery industry and electronics industry. Has been developed. Until now, the development of such micromachining technology has been mainly based on the approach from semiconductor process technology. However, in recent years, micromachining that can realize processing that is difficult with semiconductor process technology has attracted attention. Research into various micromachining technologies such as cutting, coining, forging, drilling, and electrical discharge machining is underway.

一方、従来より板金加工などの塑性材料の加工分野において、液圧を用いた加工方法が広く用いられている。これは、液圧によって塑性材料をダイスに押しつけることによって成形を行うものであり、液体に圧力を付与する方法としては、ピストンにより機械的に行う方法の他に、液中で火薬を爆発させたり(爆発成形法)、放電を行ったりする(液中放電成形法)ことで生じる衝撃波を用いる方法が以前より行われている。   On the other hand, processing methods using hydraulic pressure have been widely used in the field of processing plastic materials such as sheet metal processing. In this method, molding is performed by pressing a plastic material against a die by liquid pressure. As a method of applying pressure to the liquid, in addition to a method of mechanically using a piston, explosives may be exploded in the liquid. (Explosive forming method) and methods using shock waves generated by discharging (in-liquid discharge forming method) have been performed.

このうち爆発成形法と液中放電成形法は高エネルギ速度加工法に分類され、高ひずみ速度、高圧力下で成形が行われるため、スプリングバック量が大幅に低減されるなどの利点があり、ピストンなどによって生じる静水圧を用いた加工方法よりも、効率の点はもちろん、難加工材や複雑形状の成形に対する加工性の点でも好ましい。   Among these, the explosion molding method and the submerged discharge molding method are classified as high energy speed machining methods, and since molding is performed at a high strain rate and high pressure, there is an advantage that the amount of springback is greatly reduced. This method is preferable not only in terms of efficiency but also in terms of workability with respect to difficult-to-process materials and complex shape molding, as compared with a processing method using hydrostatic pressure generated by a piston or the like.

しかし、爆発成形法は、火薬の使用による法的規制を受けるなど、取り扱いが難しいという問題がある。これに対し、液中放電成形法は、コンデンサ等に蓄えられた大電荷をエネルギ源とし、これを液中で瞬時に放電させて、その際に発生する衝撃圧力波を利用して、高速度の変形加工を行うものであり、爆発成形法のように法的規制を受けることがないため、比較的容易に行うことができるという特長を有する。   However, the explosion molding method has a problem that it is difficult to handle because it is subject to legal restrictions due to the use of explosives. In contrast, the submerged discharge molding method uses a large charge stored in a capacitor or the like as an energy source, discharges it instantaneously in the liquid, and uses the impact pressure wave generated at that time to increase the speed. Since it is not subjected to legal regulations like the explosion molding method, it has a feature that it can be performed relatively easily.

液中放電による加工は衝撃的な加工となることから、従来、放電加工法は専ら強加工または仕上加工の前の粗加工等に用いられていた。   Since machining by submerged discharge becomes shocking machining, the electric discharge machining method has heretofore been used exclusively for rough machining before strong machining or finish machining.

本願発明者は、この液中放電を微細加工(マイクロ加工)に利用すべく、その加工力を微細領域に集中するために、水中放電による衝撃波を音波レンズで収束して対象物に孔を空けるマイクロ穿孔技術を既に開発している。
本発明は、更に、そのような音波レンズを用いることなく、液中放電成形法を高精度マイクロ成形および高精度マイクロ転写加工に適用できるようにしたものである。すなわち、本発明が解決しようとする課題は、マイクロメートルオーダーの成形および転写加工を高速度かつ高精度で行うことのできる加工方法を提供することにある。
In order to use this submerged discharge for micromachining (micromachining), the inventor of the present application converges a shock wave generated by underwater discharge with a sonic lens to open a hole in an object in order to concentrate the machining force on a fine region. Micro drilling technology has already been developed.
The present invention further allows the submerged discharge molding method to be applied to high precision micro molding and high precision micro transfer processing without using such a sonic lens. That is, the problem to be solved by the present invention is to provide a processing method capable of performing micrometer-order molding and transfer processing with high speed and high accuracy.

上記課題を解決するために成された本発明に係るマイクロ加工方法は、板状の被加工材と微細成形型とを接触させ、該被加工材および微細成形型を上部に配置して密閉室を構成し、該密閉室の内部に液を満たして該液中で放電を行うことによって衝撃波を発生させ、上記被加工材または上記微細成形型の下面から衝撃波水圧を加えることにより、該被加工材を上記成形型に沿った形状に成形することを特徴とするものである。   In order to solve the above problems, a micro machining method according to the present invention includes a plate-shaped workpiece and a fine mold that are brought into contact with each other, and the workpiece and the fine mold are disposed on the upper portion. And generating a shock wave by filling the liquid inside the sealed chamber and discharging in the liquid, and applying a shock wave water pressure from the lower surface of the workpiece or the fine mold, The material is formed into a shape along the mold.

また、本発明に係るマイクロ加工方法は、加工用の型として微細な凹凸パターンを表面に施した転写型を使用することにより、被加工材に対して加工の深さが100μm以下の面内加工(転写加工)を行うものであってもよい。
すなわち、本発明の別の態様であるマイクロ加工方法は、板状の被加工材と微細な表面パターンを備えた転写型とを接触させ、該被加工材および転写型を上部に配置して密閉室を構成し、該密閉室の内部に液を満たして該液中で放電を行うことによって衝撃波を発生させ、上記被加工材または上記転写型の下面から衝撃波水圧を加えることにより、該被加工材の表面に上記転写型による深さ100μm以下の微細パターンを転写することを特徴とするものである。
Further, the micromachining method according to the present invention uses an in-plane machining with a machining depth of 100 μm or less with respect to a workpiece by using a transfer die having a fine concavo-convex pattern on the surface as a machining die. (Transfer processing) may be performed.
That is, in the micromachining method according to another aspect of the present invention, a plate-shaped workpiece and a transfer mold having a fine surface pattern are brought into contact with each other, and the workpiece and the transfer mold are arranged on the top to be sealed. Forming a chamber, generating a shock wave by filling the inside of the sealed chamber and discharging in the liquid, and applying a shock wave water pressure from the lower surface of the workpiece or the transfer mold, A fine pattern having a depth of 100 μm or less by the transfer mold is transferred onto the surface of the material.

なお、本発明のマイクロ加工方法においては、成形型または転写型の下方に被加工材を配置し、下からの衝撃水圧によって被加工材を型に押しつけることで成形・転写加工を行ってもよく、あるいは、被加工材の下方に成形型または転写型を配置し、下からの衝撃水圧によって型を被加工材に押しつけることで成形・転写加工を行ってもよい。   In the micromachining method of the present invention, the workpiece may be placed under the molding die or the transfer die, and the workpiece may be pressed against the die by impact hydraulic pressure from below to perform molding / transfer processing. Alternatively, the molding / transfer processing may be performed by placing a molding die or a transfer die below the workpiece and pressing the die against the workpiece by impact hydraulic pressure from below.

また、本発明に係るマイクロ加工装置は、a)板状の被加工材の上面または下面に接触するように配置された微細成形型または微細表面パターンを有する転写型と、b)上記被加工材および微細成形型または転写型の下方に設けられた、液体を満たすための密閉室と、c)上記密閉室内に設けられた放電電極と、d)上記放電電極に電圧を印加する手段とを備えることを特徴とする。   Further, the micromachining apparatus according to the present invention includes: a) a transfer mold having a fine mold or a fine surface pattern disposed so as to be in contact with an upper surface or a lower surface of a plate-like work material; and b) the work material. And a sealed chamber for filling the liquid provided below the fine mold or the transfer mold, c) a discharge electrode provided in the sealed chamber, and d) means for applying a voltage to the discharge electrode. It is characterized by that.

本発明のマイクロ加工方法においては、液中放電によって生じる衝撃波を利用して、極めて高速度で被加工物の変形を行うため、表面転写性や、成形品の寸法精度の高い加工を行うことができる。また、水圧を利用して成形を行うため、切削による微細加工のように精密な工具等を必要とせず、加工装置の耐久性の点でも優れている。更に、被加工材および成形型または転写型を液を満たした密閉室の上部に配置し、上向きの衝撃波によって成形を行う構成としたことにより、成形の際に型と被加工材の間に存在する空気が抜けやすくなり、該空気による成形のムラを防止することができる。   In the micromachining method of the present invention, the workpiece is deformed at a very high speed using shock waves generated by submerged discharge, so that surface transferability and machining with high dimensional accuracy of the molded product can be performed. it can. In addition, since molding is performed using water pressure, a precision tool or the like is not required as in fine processing by cutting, and the processing apparatus is excellent in terms of durability. In addition, the workpiece and the mold or transfer mold are placed in the upper part of the sealed chamber filled with liquid, and molding is performed by upward shock waves, so that there is a gap between the mold and the workpiece during molding. This makes it easier for air to escape and prevents molding unevenness due to the air.

以下、実施例を用いて本発明の最良の形態を説明する。 Hereinafter, the best mode of the present invention will be described using examples.

(実施例1)
本発明に係るマイクロ加工装置の一例を図1に示す。該マイクロ加工装置10は、キャップ13と、成形型または転写型11を保持する型ホルダ14、被加工材である金属素板(ブランク)12を押さえて変形によるしわの発生を防止するためのリング状のしわ押さえ板15、ブランク12およびしわ押さえ板15を保持するためのブランクホルダ16、バネ17、液体22を収容するための密閉容器18、補助ピストン19、電極20、および電極間に設けられた金属細線(導細線)21を備えている。上記密閉容器18の素材にはS45C鋼材を使用し、該密閉容器18はO-リング27によってシールした。圧力媒体として用いる液体22としては、放電により発生する衝撃波、および高温・高圧ガスの圧力エネルギを効率よくブランク12に伝達し、かつ成形後の除去が容易な水を用いることが望ましい。また、上記電極20は、エネルギ効率や放電の安定性などの点から、本実施例のように電極間20に設けた導細線21に通電させる方式を用いることが望ましいが、導細線21を設けず間隙放電を行う方式を用いることもできる。導細線には直径0.25mmのアルミニウム線を使用し、電極間距離を10mm、ブランク12から導細線21までの距離を38mm、ブランク12から底面までの距離を85mmとした。
なお、本実施例では、バネ17の力のみでしわ押さえ板15をブランク12に押しつけることによりブランク12を把持しているが、放電の際の衝撃圧がしわ押さえ板15にも作用するようにしわ押さえ板を配置すれば、放電時の衝撃圧を利用してブランク12を均一に押さえことができるためより望ましい。
(Example 1)
An example of the micromachining apparatus according to the present invention is shown in FIG. The micro-processing apparatus 10 includes a cap 13, a mold holder 14 that holds a forming die or transfer die 11, and a metal base plate (blank) 12 that is a workpiece to prevent wrinkles from being generated due to deformation. Wrinkle holding plate 15, blank 12 and blank holder 16 for holding wrinkle holding plate 15, spring 17, sealed container 18 for storing liquid 22, auxiliary piston 19, electrode 20, and electrode are provided. A thin metal wire (conductive wire) 21 is provided. S45C steel was used as the material for the closed container 18, and the closed container 18 was sealed with an O-ring 27. As the liquid 22 used as the pressure medium, it is desirable to use water that can efficiently transmit the shock wave generated by the discharge and the pressure energy of the high temperature / high pressure gas to the blank 12 and can be easily removed after molding. In addition, the electrode 20 preferably uses a method of energizing the conductive wires 21 provided between the electrodes 20 as in the present embodiment from the viewpoint of energy efficiency and discharge stability, but the conductive wires 21 are provided. It is also possible to use a system that performs gap discharge. An aluminum wire having a diameter of 0.25 mm was used as the conducting wire, the distance between the electrodes was 10 mm, the distance from the blank 12 to the conducting wire 21 was 38 mm, and the distance from the blank 12 to the bottom surface was 85 mm.
In this embodiment, the blank 12 is held by pressing the wrinkle holding plate 15 against the blank 12 only by the force of the spring 17, but the impact pressure during discharge also acts on the wrinkle holding plate 15. It is more desirable to arrange a wrinkle pressing plate because the blank 12 can be uniformly pressed using the impact pressure during discharge.

上記電極20はコンデンサ23に接続されており、充電スイッチ25をオンにして電源24からの印加電圧によりコンデンサ23に電気エネルギを蓄積した後、安全スイッチ27をオンにすることで、コンデンサ23に蓄積された電気エネルギが導細線21に短時間に放電供給される。これにより導細線21が急激に溶融蒸発して衝撃波が発生すると共に、電極間20の水の爆発的な気化による圧力が発生し、ブランク12が成形型11の形状に沿った形状に成形される。このような衝撃波の強さは、制御器26によってコンデンサ23に印加する電圧を調節することによって制御することができる。   The electrode 20 is connected to a capacitor 23. After the charge switch 25 is turned on and electric energy is accumulated in the capacitor 23 by a voltage applied from the power source 24, the safety switch 27 is turned on, and the capacitor 23 is accumulated. The generated electrical energy is discharged and supplied to the conductive wire 21 in a short time. As a result, the conductive wire 21 is rapidly melted and evaporated to generate a shock wave, and pressure due to the explosive vaporization of the water between the electrodes 20 is generated, and the blank 12 is formed into a shape that conforms to the shape of the mold 11. . The intensity of such shock waves can be controlled by adjusting the voltage applied to the capacitor 23 by the controller 26.

(実施例2)
上記実施例1のマイクロ加工装置10を用いてマイクロ張り出し成形実験を行った。加工に用いる成形型11は、集束イオンビーム装置(日立ハイテクノロジー社製 FB-2000A)を用いて作製した。図2に該成形型の模式図、およびSEM(Scanning Electron Microscope:走査電子顕微鏡)写真を示す。該成形型11は、直径100μm、深さ50μmの円筒形とした。型11の肩部には4μmの面取りを施し、更に、成形の際にブランク12と型11の間に存在する空気を抜くために、型11の底部に直径10μmの穴を設けた。このとき、空気が効率よく抜けるように、穴の周囲をテーパー状に形成した。該成形型11は型ホルダ14に埋め込んで使用した。なお、上記の型から抜けた空気を外部に逃がすために、型ホルダ14の上部にも空気抜きのための穴を設けた。
(Example 2)
A micro-extrusion molding experiment was conducted using the micro-processing apparatus 10 of Example 1 above. The mold 11 used for processing was produced using a focused ion beam device (FB-2000A manufactured by Hitachi High-Technology Corporation). FIG. 2 shows a schematic diagram of the mold and an SEM (Scanning Electron Microscope) photograph. The mold 11 was a cylinder having a diameter of 100 μm and a depth of 50 μm. The shoulder portion of the mold 11 was chamfered by 4 μm, and a hole having a diameter of 10 μm was provided at the bottom of the mold 11 in order to remove air existing between the blank 12 and the mold 11 during molding. At this time, the periphery of the hole was formed in a taper shape so that the air could escape efficiently. The mold 11 was used by being embedded in a mold holder 14. In addition, a hole for venting air was also provided in the upper part of the mold holder 14 in order to let the air escaped from the mold escape to the outside.

被加工材としては、厚さ0.025mmの純アルミニウム製ブランクを使用した。該ブランク12はブランクホルダ16上に置かれたしわ押さえ板15と上記成形型11の間に挟み込む形でセットした。コンデンサ容量を280μFの一定値とし、充電電圧を0V〜3000Vまで変化させることにより、充電エネルギを0〜1260Jまで変化させて成形実験を行った。また、装置の電源24にはAC100Vを使用した。   A blank made of pure aluminum having a thickness of 0.025 mm was used as a workpiece. The blank 12 was set so as to be sandwiched between the wrinkle pressing plate 15 placed on the blank holder 16 and the molding die 11. The molding experiment was performed by changing the charging energy from 0 to 1260 J by changing the charging voltage from 0 V to 3000 V by setting the capacitor capacity to a constant value of 280 μF. Moreover, AC100V was used for the power supply 24 of the apparatus.

図3に充電電圧2400Vで成形実験を行った際の成形品のSEM写真と、該成形品の形状測定の結果を示す。成形品はフランジ部と側壁部の角度がほぼ垂直となり、また、穴の入口のテーパー形状も再現されており、成形型11に沿った良好な成形品が得られたことが分かる。また、成形品上部の凹凸は成形不良ではなく、型底部の加工荒さによる凹凸が転写されたものである。
以上の結果より本発明の液中放電によるマイクロ加工法は、100μmのマイクロ張り出し成形において非常に優れた成形性を有していることが確認された。
FIG. 3 shows an SEM photograph of a molded product when a molding experiment was performed at a charging voltage of 2400 V, and the result of shape measurement of the molded product. In the molded product, the angle between the flange portion and the side wall portion is almost vertical, and the taper shape of the entrance of the hole is reproduced, and it can be seen that a good molded product along the mold 11 was obtained. Moreover, the unevenness | corrugation of the upper part of a molded product is not a molding defect, and the unevenness | corrugation by the process roughness of a mold bottom part is transcribe | transferred.
From the above results, it was confirmed that the micromachining method by submerged discharge of the present invention has very excellent moldability in 100 μm micro-extrusion molding.

(実施例3)
上記実施例2では、ブランクを成形型に沿った形状に変形させる、いわゆる面外加工を行ったが、加工用の型としてブランクの厚みに対して十分に浅い凹凸パターンを表面に施した転写型を使用することにより、ブランクに対して面内加工を行うこともできる。以下、このような転写型を用いた転写加工実験について説明する。
(Example 3)
In Example 2 described above, so-called out-of-plane processing was performed in which the blank was deformed into a shape along the molding die. However, a transfer die in which an uneven pattern sufficiently shallow with respect to the thickness of the blank was applied to the surface as a processing die. By using, in-plane processing can be performed on the blank. Hereinafter, a transfer processing experiment using such a transfer mold will be described.

上記実施例1のマイクロ加工装置10を用いてホログラムの転写加工実験を行った。ホログラムとは物体表面で反射した光の波面を干渉縞の形で記録したものであり、可視光の波長に対応した約1μm間隔の干渉縞を有している。この微細縞形状を複製すれば、該複製ホログラムから元の立体像を再生することができる。   A hologram transfer processing experiment was conducted using the micro-processing apparatus 10 of Example 1 above. A hologram is a recording of the wavefront of light reflected from the surface of an object in the form of interference fringes, and has interference fringes at intervals of about 1 μm corresponding to the wavelength of visible light. If this fine stripe shape is duplicated, the original stereoscopic image can be reproduced from the duplicate hologram.

本実験に用いる転写型としては、表面に微細な凹凸を持つ市販のレリーフ型回折格子を用いた。また、被加工材としては厚さ0.1mmの純アルミニウム製ブランクを使用した。
図4に転写型と転写品の写真を、図5には転写品表面のSEM写真とその模式図を示す。転写加工されたブランク表面には放射状の虹色発色が確認でき、また、SEM写真により表面に1μm間隔の線状の溝が形成されていることが確認された。
以上より、本発明の液中放電成形によるマイクロ加工法によってレリーフ型回折格子の微細凹凸形状をアルミニウムブランクに転写加工できることが確かめられた。このようなマイクロ転写法は例えば、ホログラムの光学的効果を利用したアルミ缶や複雑形状の包装容器の装飾などに応用できる。また、転写型として織物等を使用し、その組織模様をブランクに転写させることもできる。
As the transfer mold used in this experiment, a commercially available relief type diffraction grating having fine irregularities on the surface was used. A blank made of pure aluminum having a thickness of 0.1 mm was used as a workpiece.
FIG. 4 shows a transfer mold and a photograph of the transfer product, and FIG. 5 shows an SEM photograph of the surface of the transfer product and a schematic diagram thereof. Radial rainbow color development was confirmed on the transferred blank surface, and SEM photographs confirmed that linear grooves with a 1 μm interval were formed on the surface.
From the above, it was confirmed that the fine concavo-convex shape of the relief type diffraction grating can be transferred to an aluminum blank by the micromachining method by submerged discharge molding according to the present invention. Such a micro-transfer method can be applied to, for example, decoration of aluminum cans or complicated packaging containers utilizing the optical effect of holograms. In addition, a woven fabric or the like can be used as a transfer mold, and the texture pattern can be transferred to a blank.

本発明の実施例1に係るマイクロ加工装置を示す図であり、(a)は分解断面図であり、(b)は回路図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the micro processing apparatus which concerns on Example 1 of this invention, (a) is an exploded sectional view, (b) is a circuit diagram. 本発明の実施例2に係るマイクロ成形実験において使用した成形型の(a)上面図と断面図、および(b)SEM写真。The (a) top view and sectional drawing of the shaping | molding die used in the micro shaping | molding experiment which concerns on Example 2 of this invention, (b) SEM photograph. 同実施例の成形実験において成形された成形品の(a)SEM写真、および(b)形状測定結果。The (a) SEM photograph of the molded product shape | molded in the shaping | molding experiment of the Example, and (b) Shape measurement result. 本発明の実施例3に係る転写加工実験における(a)転写型の写真、および(b)転写品の写真。(A) Photo of transfer type and (b) Photo of transfer product in transfer processing experiment according to Example 3 of the present invention. 同実施例に係る転写加工実験において転写加工された転写品の(a)SEM写真、および(b)その模式図。(A) SEM photograph and (b) schematic view of a transfer product transferred in the transfer processing experiment according to the same example.

符号の説明Explanation of symbols

10…マイクロ加工装置
11…成形型、転写型
12…ブランク
13…キャップ
14…型ホルダ
15…しわ押さえ板
16…ブランクホルダ
17…バネ
18…密閉容器
19…補助ピストン
20…電極
21…導細線
22…液体
23…コンデンサ
24…電源
25…充電スイッチ
26…制御器
27…安全スイッチ
28…電圧計
29…整流器
DESCRIPTION OF SYMBOLS 10 ... Micro processing apparatus 11 ... Mold, transfer mold 12 ... Blank 13 ... Cap 14 ... Mold holder 15 ... Wrinkle holding plate 16 ... Blank holder 17 ... Spring 18 ... Sealed container 19 ... Auxiliary piston 20 ... Electrode 21 ... Conducting wire 22 ... Liquid 23 ... Capacitor 24 ... Power supply 25 ... Charge switch 26 ... Controller 27 ... Safety switch 28 ... Voltmeter 29 ... Rectifier

Claims (3)

板状の被加工材と微細成形型とを接触させ、該被加工材および微細成形型を上部に配置して密閉室を構成し、該密閉室の内部に液を満たして該液中で放電を行うことによって衝撃波を発生させ、上記被加工材または上記微細成形型の下面から衝撃波水圧を加えることにより、該被加工材を上記成形型に沿った形状に成形することを特徴とする塑性材料のマイクロ加工方法。   A plate-shaped workpiece and a fine mold are brought into contact with each other, and the workpiece and the fine mold are arranged at the top to form a sealed chamber. The sealed chamber is filled with a liquid and discharged in the liquid. A plastic material characterized in that a shock wave is generated by performing and a shock wave hydraulic pressure is applied from the lower surface of the workpiece or the fine mold to form the workpiece into a shape along the mold. Micro-machining method. 板状の被加工材と微細な表面パターンを備えた転写型とを接触させ、該被加工材および転写型を上部に配置して密閉室を構成し、該密閉室の内部に液を満たして該液中で放電を行うことによって衝撃波を発生させ、上記被加工材または上記転写型の下面から衝撃波水圧を加えることにより、該被加工材の表面に上記転写型による深さ100μm以下の微細パターンを転写することを特徴とする塑性材料のマイクロ加工方法。   A plate-shaped workpiece is brought into contact with a transfer mold having a fine surface pattern, the workpiece and the transfer mold are arranged at the top to form a sealed chamber, and the sealed chamber is filled with liquid. A shock wave is generated by discharging in the liquid, and a shock wave water pressure is applied from the lower surface of the workpiece or the transfer mold, whereby a fine pattern having a depth of 100 μm or less by the transfer mold is formed on the surface of the workpiece. A micro-machining method for a plastic material, characterized by transferring the material. a)板状の被加工材の上面または下面に接触するように配置された微細成形型または微細表面パターンを有する転写型と、
b)上記被加工材および微細成形型または転写型の下方に設けられた、液体を満たすための密閉室と、
c)上記密閉室内に設けられた放電電極と、
d)上記放電電極に電圧を印加する手段と、
を備えることを特徴とするマイクロ加工装置。
a) a fine mold or a transfer mold having a fine surface pattern arranged so as to be in contact with the upper or lower surface of the plate-like workpiece;
b) a sealed chamber for filling a liquid provided below the workpiece and the fine mold or transfer mold;
c) a discharge electrode provided in the sealed chamber;
d) means for applying a voltage to the discharge electrode;
A micromachining apparatus comprising:
JP2004150725A 2004-05-20 2004-05-20 Micromachining method and device Pending JP2005329511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004150725A JP2005329511A (en) 2004-05-20 2004-05-20 Micromachining method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004150725A JP2005329511A (en) 2004-05-20 2004-05-20 Micromachining method and device

Publications (1)

Publication Number Publication Date
JP2005329511A true JP2005329511A (en) 2005-12-02

Family

ID=35484489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004150725A Pending JP2005329511A (en) 2004-05-20 2004-05-20 Micromachining method and device

Country Status (1)

Country Link
JP (1) JP2005329511A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4516557Y1 (en) * 1966-06-04 1970-07-08
JPS49115067A (en) * 1973-03-09 1974-11-02
JPS5389687U (en) * 1976-12-23 1978-07-22
JPS5456294A (en) * 1977-10-11 1979-05-07 Sankin Ind Co Method of and device for producing metallic corna dentis
JP2001526962A (en) * 1997-12-29 2001-12-25 パルサー・ウェルディング・リミテッド Method and apparatus for performing pulse discharge molding from a flat plate to a dish
JP2003013160A (en) * 2001-07-04 2003-01-15 Nkk Corp Mold for micro-parts and manufacturing method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4516557Y1 (en) * 1966-06-04 1970-07-08
JPS49115067A (en) * 1973-03-09 1974-11-02
JPS5389687U (en) * 1976-12-23 1978-07-22
JPS5456294A (en) * 1977-10-11 1979-05-07 Sankin Ind Co Method of and device for producing metallic corna dentis
JP2001526962A (en) * 1997-12-29 2001-12-25 パルサー・ウェルディング・リミテッド Method and apparatus for performing pulse discharge molding from a flat plate to a dish
JP2003013160A (en) * 2001-07-04 2003-01-15 Nkk Corp Mold for micro-parts and manufacturing method therefor

Similar Documents

Publication Publication Date Title
US8621996B2 (en) Engraving of printing plates
Gao et al. Laser-induced high-strain-rate superplastic 3-D microforming of metallic thin films
Bekesi et al. Fast fabrication of super-hydrophobic surfaces on polypropylene by replication of short-pulse laser structured molds
CN1986387A (en) Laser loaded 3D micron and nano size forming process and equipment
CN101254574A (en) Method for impacting micro-plasticity forming with strong laser and device thereof
CN105057892A (en) Pulse laser three-dimensional engraving method
CA2404648C (en) Method for manufacturing of a plate involving an intermediate preforming and a final shaping
CN108655569B (en) Underwater laser impact die-free incremental forming device and method
GB2430640A (en) Method for microstructuring surfaces of a workpiece and use thereof
Li et al. Large-area laser nano-texturing with user-defined patterns
Saxena et al. High-speed fabrication of microchannels using line-based laser induced plasma micromachining
WO2004047209A2 (en) Method for forming a separator plate for a fuel cell, and separator plate
JP2005329511A (en) Micromachining method and device
Pallav et al. Comparative assessment of the laser induced plasma micromachining and the micro-EDM processes
Aizawa Micro-texturing onto amorphous carbon materials as a mold-die for micro-forming
JP2003305778A (en) Method for manufacturing three-dimensionally shaped article
CN112059406B (en) Laser interference induced electrolytic machining method and device for micro-nano structure on friction surface
Langstädtler et al. Electromagnetic embossing of optical microstructures
WO2003107042A2 (en) Multilens star box and method for making same
JP2017539092A (en) Method for producing electrode film for capacitor, electrode film and capacitor using this electrode film
Pegel et al. Electrohydraulic sheet metal forming with flexible tools
JP2009154163A (en) Method of forming metal plate by utilizing impulse wave by irradiation of ultra-short pulse laser
Vasil’Ev et al. Laser apparatus for microstructuring a metal surface, using a fiber laser
Bruening et al. Ultra-fast multi-spot-parallel processing of functional micro-and nano scale structures on embossing dies with ultrafast lasers
WO2009113907A2 (en) Method for applying a logo to a rotary embossing cylinder and a cylinder made according to said method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A977 Report on retrieval

Effective date: 20091217

Free format text: JAPANESE INTERMEDIATE CODE: A971007

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100302

A131 Notification of reasons for refusal

Effective date: 20100803

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101130