JP2005329033A - X-ray diagnosys apparatus - Google Patents

X-ray diagnosys apparatus Download PDF

Info

Publication number
JP2005329033A
JP2005329033A JP2004150317A JP2004150317A JP2005329033A JP 2005329033 A JP2005329033 A JP 2005329033A JP 2004150317 A JP2004150317 A JP 2004150317A JP 2004150317 A JP2004150317 A JP 2004150317A JP 2005329033 A JP2005329033 A JP 2005329033A
Authority
JP
Japan
Prior art keywords
ray
imaging system
top plate
center line
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004150317A
Other languages
Japanese (ja)
Inventor
Koji Akutsu
好ニ 阿久津
Isao Nakada
勲 中田
Yoshiaki Miura
嘉章 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2004150317A priority Critical patent/JP2005329033A/en
Publication of JP2005329033A publication Critical patent/JP2005329033A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem, that is, a deviation of the orientation of a photographing system from the center line of a top plate supporting a subject, that occurs when a photographing system holding member for holding an X-ray tube and a two-dimensional X-ray detector opposingly is arranged in a direction that crosses the center line of the top plate diagonally. <P>SOLUTION: When a C-arm 4 is arranged so that the C-arm crosses the center line 1A of the top plate 1 aslant at a crossing angle of θ, a photographing system rotating mechanism 16 rotates a radiation cone and the two-dimensional X-ray detector 3 at the same angle in the same direction centering an X-ray irradiation axis XA on the basis of the crossing angle θ between the C-arm 4 and the center line of the top plate 1. The deviation of the orientation of the photographing system from the center line 1A of the top plate 1 is thus prevented. In addition, when solving the deviation of the orientation of the photographing system, the whole X-ray tube 2 is not rotated, but only a part of the X-ray tube 2, that is, the radiation cone, is rotated. By doing so, difficulties for rotating the whole of the large and heavy X-ray tube 2 is avoided. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、X線照射用のX線管とX線検出用の2次元X線検出器を対向配置状態で保持している撮像系保持部材を、平面視した場合に被検体を載置する天板の中心線に対して交差角度θで斜めに交差する向きにできるX線診断装置に係り、特に撮像系保持部材を天板の中心線に対して斜めに交差する向きにした時に起こる天板の中心線に対する撮像系の向きのズレを適切なかたちで解消するための技術に関する。   The present invention mounts a subject when an imaging system holding member holding an X-ray tube for X-ray irradiation and a two-dimensional X-ray detector for X-ray detection in an opposed arrangement is viewed in plan view. The present invention relates to an X-ray diagnostic apparatus that can be oriented obliquely at a crossing angle θ with respect to the center line of the top board, and in particular, the ceiling that occurs when the imaging system holding member is oriented obliquely to the center line of the top board. The present invention relates to a technique for eliminating the deviation of the orientation of the imaging system with respect to the center line of the plate in an appropriate manner.

近年、病院等の医療機関において、図9や図10に示すX線透視撮影装置が、心臓や血管などの診断・治療に用いられている。   In recent years, X-ray fluoroscopic apparatuses shown in FIGS. 9 and 10 are used for diagnosis and treatment of the heart, blood vessels, and the like in medical institutions such as hospitals.

図9のX線透視撮影装置は、被検体(図示省略)を載置する天板61と、天板61の上の被検体にX線ビームを照射するX線管62と、天板61の上の被検体を透過したX線を検出する2次元X線検出器63と、X線管62と2次元X線検出器63が対向状態で保持されているC型アーム(撮像系保持部材)64と、平面視した場合にC型アーム64が天板61の中心線61Aに一致する向きでC型アーム64を支持している天井吊設型の基台部材65を備えている。X線管62が照射するX線ビームは横断面形状が正方形であるとすると、2次元X線検出器63はX線ビームの横断面形状に対応した正方形のX線検出エリアで透過X線を検出することになる。   The X-ray fluoroscopic apparatus of FIG. 9 includes a top plate 61 on which a subject (not shown) is placed, an X-ray tube 62 that irradiates a subject on the top plate 61 with an X-ray beam, A two-dimensional X-ray detector 63 that detects X-rays transmitted through the subject above, and a C-type arm (imaging system holding member) in which the X-ray tube 62 and the two-dimensional X-ray detector 63 are held facing each other. 64 and a ceiling-suspended base member 65 that supports the C-type arm 64 in a direction in which the C-type arm 64 coincides with the center line 61A of the top plate 61 when viewed in plan. Assuming that the X-ray beam irradiated by the X-ray tube 62 has a square cross-sectional shape, the two-dimensional X-ray detector 63 outputs transmitted X-rays in a square X-ray detection area corresponding to the cross-sectional shape of the X-ray beam. Will be detected.

そして、図9のX線透視撮影装置の場合、基台部材65に設けられたC型アーム移動機構(図示省略)により、C型アーム64のアーム長手方向へアームの曲がりに沿ってC型アーム64が移動するスライド移動、ないし、C型アーム64を水平に横切る水平線を回転中心としてC型アーム64が回転する水平周回回転を実行しながら、X線管62から被検体にX線を照射すると共に、X線照射に伴って2次元X線検出器63から出力されるX線検出信号にしたがって2次元X線検出器63の後段でX線透視画像が取得される(特許文献1を参照)。   In the case of the X-ray fluoroscopic apparatus of FIG. 9, the C-arm is moved along the bending of the arm in the longitudinal direction of the C-arm 64 by a C-arm moving mechanism (not shown) provided on the base member 65. The X-ray tube 62 irradiates the subject with X-rays while performing a slide movement in which the C-type arm 64 moves, or a horizontal orbital rotation in which the C-type arm 64 rotates around a horizontal line horizontally traversing the C-type arm 64. At the same time, an X-ray fluoroscopic image is acquired at the subsequent stage of the two-dimensional X-ray detector 63 in accordance with the X-ray detection signal output from the two-dimensional X-ray detector 63 along with the X-ray irradiation (see Patent Document 1). .

しかしながら、図9のX線透視撮影装置の場合、天板61の上の被検体をX線透視しながら術者が治療したり、あるいは、介護者が介護したりする際に、天板61の上の被検体に覆い被さる状態で支持されているC型アーム64が、治療や介護の妨げとなるという問題がある。   However, in the case of the X-ray fluoroscopic apparatus of FIG. 9, when the operator treats the subject on the top plate 61 while performing fluoroscopy or the caregiver cares for the subject, There is a problem in that the C-shaped arm 64 supported in a state of covering the upper subject obstructs treatment and care.

そこで、図10のX線透視撮影装置の場合、平面視した場合にC型アーム64が天板61の中心線61Aに斜めに交差する向きでC型アーム64を、3本の鉛直線66a〜66cを回転中心として水平方向に旋回させられる3軸回転型構造の床設置型の基台部材66で支持して、天板61の上の被検体をX線透視しながら治療したり、介護したりする際にC型アーム64が妨げとならないようにしている(特許文献2を参照。)。
特開2001−95790号公報(3頁〜6頁、図1) 特開2003−250784号公報(5頁〜9頁、図1,図6)
Therefore, in the case of the X-ray fluoroscopic apparatus of FIG. 10, when viewed in plan, the C-type arm 64 is arranged so that the C-type arm 64 obliquely intersects the center line 61 </ b> A of the top plate 61. 66c is supported by a floor-mounted base member 66 having a three-axis rotating structure that can be rotated in the horizontal direction around the center of rotation, and the subject on the top plate 61 is treated while being seen through X-rays, or is being cared for. The C-shaped arm 64 is not hindered during the process (see Patent Document 2).
JP 2001-95790 A (pages 3 to 6, FIG. 1) JP 2003-250784 A (pages 5 to 9, FIGS. 1 and 6)

しかしながら、図10のX線透視撮影装置は、C型アーム64を天板61の中心線61Aに対して斜めに交差する向きにした時に天板61の中心線61Aに対する撮像系の向きがズレてしまうという問題がある。   However, in the X-ray fluoroscopic imaging apparatus of FIG. 10, the orientation of the imaging system with respect to the center line 61 </ b> A of the top plate 61 is shifted when the C-shaped arm 64 is obliquely intersected with the center line 61 </ b> A of the top plate 61. There is a problem of end.

即ち、C型アーム64を天板61の中心線61Aに対して斜めに交差する向きにした時は、図11に実線で示すように、2次元X線検出器63のX線検出エリア63aも天板61の中心線61Aに対して平行な向きから斜めの向きに変るので、X線検出エリア63aに対応する被検体の撮影位置が変化する。その結果、取得されるX線透視画像が元の画像に対し斜め向きになってしまう。   That is, when the C-shaped arm 64 is inclined obliquely with respect to the center line 61A of the top plate 61, the X-ray detection area 63a of the two-dimensional X-ray detector 63 is also shown in FIG. Since the orientation changes from the direction parallel to the center line 61A of the top board 61 to the oblique direction, the imaging position of the subject corresponding to the X-ray detection area 63a changes. As a result, the acquired X-ray fluoroscopic image is inclined with respect to the original image.

ただ、もし天板61の中心線61Aに対するC型アーム64の交差角度θに見合分だけ2次元X線検出器63をX線照射軸を回転中心として逆向きに回転させれば、図11に二点鎖線で示すように、2次元X線検出器63のX線検出エリア63aは天板61の中心線61Aに対して斜めの向きから元の平行な向きに戻り、取得されるX線透視画像の向きも元の通りになる。   However, if the two-dimensional X-ray detector 63 is rotated in the opposite direction about the X-ray irradiation axis as the intersection angle θ of the C-shaped arm 64 with respect to the center line 61A of the top plate 61, as shown in FIG. As indicated by a two-dot chain line, the X-ray detection area 63a of the two-dimensional X-ray detector 63 returns from the oblique direction to the original parallel direction with respect to the center line 61A of the top plate 61, and is acquired. The orientation of the image is also restored.

けれども、C型アーム64を天板61の中心線61Aに対して斜めに交差する向きにした時には、図12に実線で示すように示すように、X線管62のX線ビーム62aも天板61の中心線61Aに対して平行な向きから斜めの向きに変る。したがって、上記のように、2次元X線検出器63をX線照射軸を回転中心として逆向きに回転させて、2次元X線検出器63のX線検出エリア63aを天板61の中心線61Aに対して元の平行な向きに戻した場合、図13に示すように、X線管62のX線ビーム62aと2次元X線検出器63のX線検出エリア63aの間には、交差角度θのズレが生じ、2次元X線検出器63のX線検出エリア63aの角の処は透過X線が検出されず、角の欠けたX線透視画像となってしまう。   However, when the C-shaped arm 64 is inclined obliquely with respect to the center line 61A of the top plate 61, the X-ray beam 62a of the X-ray tube 62 is also shown in FIG. The direction changes from the direction parallel to the center line 61A of 61 to an oblique direction. Therefore, as described above, the two-dimensional X-ray detector 63 is rotated in the reverse direction with the X-ray irradiation axis as the rotation center, so that the X-ray detection area 63a of the two-dimensional X-ray detector 63 becomes the center line of the top plate 61. When returning to the original parallel direction with respect to 61A, as shown in FIG. 13, there is an intersection between the X-ray beam 62a of the X-ray tube 62 and the X-ray detection area 63a of the two-dimensional X-ray detector 63. Deviation of the angle θ occurs, and transmitted X-rays are not detected at the corners of the X-ray detection area 63a of the two-dimensional X-ray detector 63, resulting in an X-ray fluoroscopic image lacking corners.

ただ、もし天板61の中心線61Aに対するC型アーム64の交差角度θに見合分だけX線管62全体をX線照射軸を回転中心として逆向きに回転させて、図12に二点鎖線で示すように、X線ビーム62aの方も天板61の中心線61Aに対して斜めの向きから元の平行な向きに戻せば、X線管62のX線ビーム62aと2次元X線検出器63のX線検出エリア63aの間のズレが無くなり、X線検出エリア63aの角の処でも透過X線が検出されるので、角の欠けていないX線透視画像が取得できる。   However, if the entire X-ray tube 62 is rotated in an opposite direction around the X-ray irradiation axis as much as the intersection angle θ of the C-arm 64 with respect to the center line 61A of the top plate 61, a two-dot chain line is shown in FIG. If the X-ray beam 62a is also returned from the oblique direction to the original parallel direction with respect to the center line 61A of the top plate 61, the X-ray beam 62a of the X-ray tube 62 and the two-dimensional X-ray detection are detected. The gap between the X-ray detection areas 63a of the detector 63 is eliminated, and transmitted X-rays are detected even at the corners of the X-ray detection area 63a, so that an X-ray fluoroscopic image having no corners can be acquired.

しかし、相当な重量と大きさがあるX線管62の全体をC型アーム64の狭い一端で回転させる構成を採用することは極めて困難である。したがって、X線管62全体をX線照射軸を回転中心として逆向きに回転させて、X線ビーム62aの方も天板61の中心線61Aに対して斜めの向きから元の平行な向きに戻す方策は、現実的な解決策とはなり得ない。   However, it is extremely difficult to employ a configuration in which the entire X-ray tube 62 having a considerable weight and size is rotated at a narrow end of the C-arm 64. Therefore, the entire X-ray tube 62 is rotated in the reverse direction with the X-ray irradiation axis as the rotation center, so that the X-ray beam 62a also changes from the oblique direction to the original parallel direction with respect to the center line 61A of the top plate 61. The policy to return cannot be a realistic solution.

この発明は、このような事情に鑑みてなされたものであって、X線照射用のX線管とX線検出用の2次元X線検出器を対向配置状態で保持している撮像系保持部材を、被検体を載置する天板の中心線に対して斜めに交差する向きにした時に起こる天板の中心線に対する撮像系の向きのズレを適切なかたちで解消することができるX線診断装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and holds an imaging system that holds an X-ray tube for X-ray irradiation and a two-dimensional X-ray detector for X-ray detection in an opposed arrangement. X-rays that can eliminate the deviation of the orientation of the imaging system with respect to the center line of the top plate that occurs when the member is oriented obliquely to the center line of the top plate on which the subject is placed. An object is to provide a diagnostic apparatus.

この発明は、このような目的を達成するために、次のような構成をとる。   In order to achieve such an object, the present invention has the following configuration.

すなわち、請求項1に記載の発明に係るX線診断装置は、被検体を載置する天板と、放射X線を制限して非真円形の横断面形状のX線ビームに整える放射コーンが放射口に取り付けられているX線照射用のX線管と、X線ビームの横断面形状に対応した形のX線検出エリアで天板の上の被検体を透過したX線を検出するX線検出用の2次元X線検出器と、X線管と2次元X線検出器をX線管の焦点を通るX線照射軸が2次元X線検出器のX線検出面の中心を通ると共にX線管と2次元X線検出器が対向している状態で保持している撮像系保持部材と、X線管と2次元X線検出器の間に天板が位置する状態で撮像系保持部材を支持すると共に平面視した場合に撮像系保持部材を天板の中心線に対して交差角度θで斜めに交差する向きにすることができる支持基台と、放射コーンおよび2次元X線検出器をX線照射軸を回転中心として回転させる撮像系回転駆動手段と、撮像系保持部材の天板の中心線に対する交差角度θに基づいて、放射X線を制限して非真円形の横断面形状のX線ビームに整える放射コーンと2次元X線検出器をX線照射軸を回転中心として同じ向きに同じ角度だけ回転させて撮像系保持部材を天板の中心線に対して交差角度θで斜めに交差する向きにした時に起こる天板の中心線に対する撮像系の向きのズレを解消する制御を撮像系回転駆動手段に対して行なう撮像系回転制御手段とを備えていることを特徴とするものである。   That is, the X-ray diagnostic apparatus according to the first aspect of the present invention includes a top plate on which the subject is placed, and a radiation cone that limits the radiation X-rays to form a non-circular cross-sectional X-ray beam. An X-ray tube for X-ray irradiation attached to the radiation port and an X-ray for detecting X-rays transmitted through the subject on the top plate in an X-ray detection area corresponding to the cross-sectional shape of the X-ray beam An X-ray irradiation axis passing through the focal point of the X-ray tube through the X-ray tube and the two-dimensional X-ray detector passes through the center of the X-ray detection surface of the two-dimensional X-ray detector. And an imaging system holding member that holds the X-ray tube and the two-dimensional X-ray detector facing each other, and an imaging system in which the top plate is positioned between the X-ray tube and the two-dimensional X-ray detector. When holding the holding member and in plan view, the imaging system holding member should be oriented obliquely at an intersecting angle θ with respect to the center line of the top plate An imaging system rotation drive means for rotating the radiation support cone and the two-dimensional X-ray detector around the X-ray irradiation axis, and an intersection angle θ with respect to the center line of the top plate of the imaging system holding member An imaging system in which a radiation cone and a two-dimensional X-ray detector for restricting radiation X-rays to form a non-circular cross-sectional X-ray beam are rotated in the same direction and at the same angle with the X-ray irradiation axis as the rotation center Control is performed to the imaging system rotation drive means to eliminate the deviation of the orientation of the imaging system with respect to the center line of the top plate that occurs when the holding member is obliquely intersected with the center line of the top plate at an intersection angle θ. An imaging system rotation control means is provided.

[作用・効果]請求項1の発明のX線診断装置によるX線撮影の場合、撮像系保持部材により対向状態で保持されているX線管と2次元X線検出器の間に天板に載置された被検体が位置する状態にセットされ、X線管から天板の上の被検体にX線ビームが照射されるのに伴って、2次元X線検出器からX線画像取得用のX線検出信号が出力され、X線撮影が進行する。   [Operation / Effect] In the case of X-ray imaging by the X-ray diagnostic apparatus according to the first aspect of the present invention, the top plate is placed between the X-ray tube held in an opposed state by the imaging system holding member and the two-dimensional X-ray detector. The X-ray image is acquired from the two-dimensional X-ray detector when the X-ray beam is irradiated from the X-ray tube to the object on the top plate. X-ray detection signal is output, and X-ray imaging proceeds.

一方、請求項1の発明のX線診断装置の場合、X線撮影の際にX線管と2次元X線検出器を対向状態で保持している撮像系保持部材が支持基台により、平面視した場合に撮像系保持部材が天板の中心線に対して適当な交差角度θで斜めに交差する向きにされた時は、天板の上の被検体に撮像系保持部材が覆い被さる程度が緩和されるので、X線撮影と平行して術者や介護者は撮像系保持部材に妨げられることなく施術や介護が行なえる。   On the other hand, in the case of the X-ray diagnostic apparatus according to the first aspect of the present invention, the imaging system holding member that holds the X-ray tube and the two-dimensional X-ray detector in an opposed state at the time of X-ray imaging is flat by the support base. When the imaging system holding member is obliquely crossed at an appropriate crossing angle θ with respect to the center line of the top board when viewed, the imaging system holding member covers the subject on the top board. Therefore, in parallel with X-ray imaging, the surgeon and caregiver can perform treatment and care without being interrupted by the imaging system holding member.

他方、請求項1の発明のX線診断装置の場合、撮像系保持部材を天板の中心線に対して交差角度θで斜めに交差する向きにした時に起こる天板の中心線に対する撮像系の向きのズレを解消する制御を撮像系回転制御手段が撮像系回転駆動手段に対し行なうのにしたがって、撮像系回転駆動手段が撮像系保持部材の天板の中心線に対する交差角度θに基づいて、放射X線を制限して非真円形の横断面形状のX線ビームに整える放射コーンと2次元X線検出器をX線照射軸を回転中心として同じ向きに同じ角度だけ回転させるので、天板の中心線に対する撮像系の向きのズレが避けられる。   On the other hand, in the case of the X-ray diagnostic apparatus according to the first aspect of the present invention, the imaging system with respect to the center line of the top plate that occurs when the imaging system holding member is obliquely crossed at the crossing angle θ with respect to the center line of the top plate. As the imaging system rotation control means performs control for eliminating the orientation deviation with respect to the imaging system rotation driving means, the imaging system rotation driving means is based on the intersection angle θ with respect to the center line of the imaging system holding member. Since the radiation cone and the two-dimensional X-ray detector that restricts the radiation X-rays to prepare a non-circular cross-sectional X-ray beam are rotated in the same direction and at the same angle with the X-ray irradiation axis as the rotation center, the top plate Deviations in the orientation of the imaging system with respect to the center line of can be avoided.

その結果、2次元X線検出器のX線検出エリアの向きは元のままとなり、最終的に取得されるX線画像が斜め向きになってしまう事態が回避されるのに加え、非真円形の横断面形状のX線ビームの向きも元のままとなり、最終的に取得されるX線画像が一部欠ける事態も回避される。   As a result, the orientation of the X-ray detection area of the two-dimensional X-ray detector remains the same, and a situation in which the finally acquired X-ray image is inclined is avoided. The direction of the X-ray beam having the cross-sectional shape remains unchanged, and a situation in which a part of the finally acquired X-ray image is missing is also avoided.

さらに、請求項1の発明のX線診断装置の場合、撮像系保持部材を天板の中心線に対して交差角度θで斜めに交差する向きにした時に起こる天板の中心線に対する撮像系の向きのズレを解消する際にX線管の全体を回転させるのではなく、X線ビームの非真円形の横断面形状を整える放射コーンというX線管の一部だけを回転させるので、相当な重量と大きさがあるX線管の全体を回転させる場合のような困難は伴わない。   Furthermore, in the X-ray diagnostic apparatus according to the first aspect of the present invention, the imaging system with respect to the center line of the top plate that occurs when the imaging system holding member is obliquely intersected with the center line of the top plate at an intersection angle θ. Rather than rotating the entire X-ray tube when eliminating the misalignment, only a part of the X-ray tube called the radiation cone that adjusts the non-circular cross-sectional shape of the X-ray beam is rotated. There is no difficulty associated with rotating the entire X-ray tube with weight and size.

また、請求項2に記載の発明は、請求項1に記載のX線診断装置において、X線管では放射コーンが放射X線を制限して方形の横断面形状のX線ビームに整えると共に、2次元X線検出器では方形のX線検出エリアが透過X線を検出するものである。   According to a second aspect of the present invention, in the X-ray diagnostic apparatus according to the first aspect, in the X-ray tube, the radiation cone limits the radiated X-ray to arrange the X-ray beam having a rectangular cross section, In the two-dimensional X-ray detector, a rectangular X-ray detection area detects transmitted X-rays.

[作用・効果]請求項2の発明の装置の場合、X線管が方形の横断面形状のX線ビームを被検体に照射すると共に、2次元X線検出器が方形のX線検出エリアで透過X線を検出するので、最終的に取得されるX線画像を標準的な画像形状の一つである正方形ないし長方形という方形の形状に仕上げられる。   [Operation / Effect] In the case of the apparatus of the invention of claim 2, the X-ray tube irradiates the subject with an X-ray beam having a rectangular cross section, and the two-dimensional X-ray detector is in the rectangular X-ray detection area. Since transmitted X-rays are detected, the finally acquired X-ray image is finished into a square shape such as a square or a rectangle which is one of standard image shapes.

また、請求項3に記載の発明は、請求項1または2に記載のX線診断装置において、X線管が放射コーンの前方にコリメータを有していて、放射コーンとコリメータとによって放射X線が非真円形の横断面形状のX線ビームに整えられると共に、撮像系回転駆動手段がコリメータもX線照射軸を回転中心として回転させるのに加え、撮像系回転制御手段による撮像系回転駆動手段の制御によって、コリメータもX線照射軸を回転中心として放射コーンと同じ向きに同じ角度だけ回転させられるものである。   According to a third aspect of the present invention, in the X-ray diagnostic apparatus according to the first or second aspect, the X-ray tube has a collimator in front of the radiation cone, and the radiation cone and the collimator emit radiation X-rays. Is arranged into a non-circular cross-sectional X-ray beam, and the imaging system rotation drive means rotates the collimator around the X-ray irradiation axis as well as the imaging system rotation control means. With this control, the collimator can also be rotated by the same angle in the same direction as the radiation cone with the X-ray irradiation axis as the rotation center.

[作用・効果]請求項3の発明の装置の場合、放射コーンとコリメータの両方で放射X線が非真円形の横断面形状のX線ビームに整えられるので、放射X線を放射コーンだけで非真円形の横断面形状のX線ビームに整える場合に比べて、X線ビームの横断面形状を整える際の自由度が増す。また、撮像系回転制御手段による撮像系回転駆動手段の制御の際、コリメータも放射コーンと2次元X線検出器をX線照射軸を回転中心として同じ向きに同じ角度だけ回転させられるので、コリメータの向きも元のままとなり、撮像系保持部材を天板の中心線に対して交差角度θで斜めに交差する向きにした時に起こる天板の中心線に対する撮像系の向きのズレを解消する制御がコリメータによって妨げられることはない。   [Operation / Effect] In the case of the device of the invention of claim 3, since the radiation X-rays are arranged into a non-circular cross-sectional X-ray beam by both the radiation cone and the collimator, the radiation X-rays can be converted only by the radiation cone. The degree of freedom in adjusting the cross-sectional shape of the X-ray beam is increased compared to the case of adjusting the X-ray beam to a non-circular cross-sectional shape. Further, when controlling the imaging system rotation driving means by the imaging system rotation control means, the collimator can also rotate the radiation cone and the two-dimensional X-ray detector in the same direction with the X-ray irradiation axis as the rotation center by the same angle. Control that eliminates the deviation of the orientation of the imaging system with respect to the center line of the top plate that occurs when the imaging system holding member is obliquely crossed at the intersection angle θ with respect to the center line of the top plate. Is not disturbed by the collimator.

請求項1の発明のX線診断装置の場合、X線撮影の際にX線管と2次元X線検出器を対向状態で保持している撮像系保持部材が支持基台により、平面視した場合に撮像系保持部材が天板の中心線に対して適当な交差角度θで斜めに交差する向きにされた時は、天板の上の被検体に撮像系保持部材が覆い被さる程度が緩和されるので、X線撮影と平行して術者や介護者は撮像系保持部材に妨げられることなく施術や介護が行なえる。   In the case of the X-ray diagnostic apparatus according to the first aspect of the present invention, the imaging system holding member holding the X-ray tube and the two-dimensional X-ray detector facing each other at the time of X-ray imaging is viewed in plan by the support base. In this case, when the imaging system holding member is obliquely crossed at an appropriate crossing angle θ with respect to the center line of the top plate, the degree to which the imaging system holding member covers the subject on the top plate is reduced. Therefore, in parallel with the X-ray imaging, the operator and the caregiver can perform the treatment and care without being obstructed by the imaging system holding member.

また、撮像系保持部材を天板の中心線に対して交差角度θで斜めに交差する向きにした時に起こる天板の中心線に対する撮像系の向きのズレを解消する制御を撮像系回転制御手段が撮像系回転駆動手段に対し行なうのにしたがって、撮像系回転駆動手段が撮像系保持部材の天板の中心線に対する交差角度θに基づいて、放射X線を制限して非真円形の横断面形状のX線ビームに整える放射コーンと2次元X線検出器をX線照射軸を回転中心として同じ向きに同じ角度だけ回転させるので、天板の中心線に対する撮像系の向きのズレは避けられる。   In addition, the imaging system rotation control means performs control for eliminating the deviation of the orientation of the imaging system with respect to the center line of the top plate, which occurs when the imaging system holding member is obliquely intersected with the center line of the top plate at an intersection angle θ. The imaging system rotation driving means limits the radiation X-ray based on the crossing angle θ with respect to the center line of the top plate of the imaging system holding member as the imaging system rotation driving means performs the non-circular cross section. Since the radiation cone and the two-dimensional X-ray detector for adjusting the X-ray beam in the shape are rotated in the same direction by the same angle with the X-ray irradiation axis as the rotation center, a deviation in the orientation of the imaging system with respect to the center line of the top plate can be avoided. .

さらに、撮像系保持部材を天板の中心線に対して交差角度θで斜めに交差する向きにした時に起こる天板の中心線に対する撮像系の向きのズレを解消する際にX線管の全体を回転させるのではなく、X線ビームの非真円形の横断面形状を整える放射コーンというX線管の一部だけを回転させるので、相当な重量と大きさがあるX線管の全体を回転させる場合のような困難は伴わない。   Furthermore, the entire X-ray tube is used to eliminate the misalignment of the orientation of the imaging system with respect to the center line of the top plate, which occurs when the imaging system holding member is inclined obliquely with respect to the center line of the top plate at an intersection angle θ. Instead of rotating the X-ray tube, only a part of the X-ray tube called the radiation cone that adjusts the non-circular cross-sectional shape of the X-ray beam is rotated, so the entire X-ray tube with considerable weight and size is rotated. There is no difficulty like that.

よって、この発明のX線診断装置によれば、X線照射用のX線管とX線検出用の2次元X線検出器を対向配置状態で保持している撮像系保持部材を、被検体を載置する天板の中心線に対して斜めに交差する向きにした時に起こる天板の中心線に対する撮像系の向きのズレを適切なかたちで解消できる。   Therefore, according to the X-ray diagnostic apparatus of the present invention, the imaging system holding member that holds the X-ray tube for X-ray irradiation and the two-dimensional X-ray detector for X-ray detection in an opposed arrangement state is provided on the subject. The deviation of the orientation of the imaging system with respect to the center line of the top plate that occurs when the orientation of the top plate is obliquely intersected with the center line of the top plate can be eliminated.

この発明のX線診断装置の実施例1について図面を参照しながら詳しく説明する。図1は実施例1に係る医用のX線透視撮影装置の全体構成を示すブロック図、図2は実施例1のX線透視撮影装置の撮像台を示す正面図である。   Embodiment 1 of the X-ray diagnostic apparatus according to the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram illustrating an overall configuration of a medical X-ray fluoroscopic apparatus according to the first embodiment, and FIG. 2 is a front view illustrating an imaging stand of the X-ray fluoroscopic apparatus according to the first embodiment.

実施例1のX線透視撮影装置は、図1ないし図2に示すように、被検体Mを載置する天板1と、天板1の上の被検体MにX線を照射するX線照射用のX線管2と、天板1の上の被検体Mを透過したX線を検出するX線検出用の2次元X線検出器3と、X線管2と2次元X線検出器3をX線管2の焦点を通るX線照射軸XAが2次元X線検出器3のX線検出エリアの中心を通ると共にX線管2と2次元X線検出器3が対向している状態で保持しているC型アーム(撮像系保持部材)4と、X線管2と2次元X線検出器3の間に天板1が位置する状態でC型アーム4を支持すると共に平面視した場合にC型アーム4を天板1の中心線1Aに対して交差角度θで斜めに交差する向きにすることができる床設置型の支持基台5とを備えている。   As shown in FIGS. 1 and 2, the X-ray fluoroscopic apparatus according to the first embodiment has an X-ray that irradiates X-rays on the top plate 1 on which the subject M is placed and the subject M on the top plate 1. An X-ray tube 2 for irradiation, a two-dimensional X-ray detector 3 for X-ray detection that detects X-rays transmitted through the subject M on the top 1, and an X-ray tube 2 and two-dimensional X-ray detection The X-ray irradiation axis XA passing through the focal point of the X-ray tube 2 passes through the center of the X-ray detection area of the two-dimensional X-ray detector 3 and the X-ray tube 2 and the two-dimensional X-ray detector 3 face each other. While supporting the C-type arm 4 with the C-type arm (imaging system holding member) 4 being held and the top plate 1 positioned between the X-ray tube 2 and the two-dimensional X-ray detector 3 A floor-mounted support base 5 is provided that can make the C-shaped arm 4 obliquely intersect with the center line 1A of the top plate 1 at an intersecting angle θ when viewed in plan.

また、実施例1の装置の場合、天板1を中心線1Aと平行な方向および中心線1Aと直角の方向に移動させる天板移動機構6が備えられているのに加え、天板移動機構6を制御する天板移動制御部7が前段に備えられていて、天板移動制御部7の制御にしたがって天板移動機構6が天板1を中心線1Aに沿って移動させ、被検体MをX線撮影や治療に適当な位置にセットすることができる。   In the case of the apparatus of the first embodiment, in addition to the top plate moving mechanism 6 that moves the top plate 1 in a direction parallel to the center line 1A and in a direction perpendicular to the center line 1A, the top plate moving mechanism is provided. A top-plate movement control unit 7 that controls 6 is provided in the preceding stage, and the top-plate movement mechanism 6 moves the top plate 1 along the center line 1A according to the control of the top-plate movement control unit 7, and the subject M Can be set at a position suitable for X-ray imaging and treatment.

X線照射用のX線管2は、図2ないし図3に示すように、放射X線を制限して正方形(非真円形)の横断面形状のX線ビーム2aに整える放射コーン8が放射口に取り付けられており、前段に備えられたX線照射制御部9の制御にしたがって撮影条件に応じた管電圧・管電流でX線ビーム2aを被検体Mに照射する。放射コーン8は、図4に示すように、正方形の開口を有していて、不必要なX線被曝を防止する等のために放射X線を制限して、図4に一点斜線で示すように、正方形(非真円形)の横断面形状のX線ビーム2aに整える機能を発揮する。   As shown in FIGS. 2 to 3, the X-ray tube 2 for X-ray irradiation is radiated by a radiation cone 8 that limits the radiation X-ray to form a square (non-circular) cross-sectional X-ray beam 2a. The subject M is irradiated with the X-ray beam 2a with a tube voltage and a tube current according to the imaging conditions according to the control of the X-ray irradiation control unit 9 provided in the previous stage. As shown in FIG. 4, the radiation cone 8 has a square opening, restricts the radiation X-rays to prevent unnecessary X-ray exposure, etc. In addition, it exhibits a function of adjusting the X-ray beam 2a having a square (non-circular) cross-sectional shape.

2次元X線検出器3は、図5に示すように、X線管2のX線ビーム2aの正方形の横断面形状に対応した同じ正方形のX線検出エリア3aで天板1の上の被検体Mを透過したX線を検出してディジタルX線透視画像取得用のX線検出信号を出力する。具体的な2次元X線検出器3としては、例えば、フラットパネル型X線検出器(FPD)やイメージインテンシファイア等が挙げられる。   As shown in FIG. 5, the two-dimensional X-ray detector 3 includes a X-ray detection area 3a having the same square shape corresponding to the square cross-sectional shape of the X-ray beam 2a of the X-ray tube 2. X-rays transmitted through the specimen M are detected, and an X-ray detection signal for obtaining a digital X-ray fluoroscopic image is output. Specific examples of the two-dimensional X-ray detector 3 include a flat panel X-ray detector (FPD) and an image intensifier.

2次元X線検出器3の後段には、2次元X線検出器3から出力されるX線検出信号にしたがって正方形のX線検出エリア3aに対応した正方形のX線透視画像を取得する検出信号処理部10や、検出信号処理部10で取得されるX線透視画像や装置操作用メニューなどを画面に映し出す表示モニタ11の他に、X線撮影の実行等に必要な指令やデータなどを入力する操作部12などが備えられている。   A detection signal for obtaining a square X-ray fluoroscopic image corresponding to the square X-ray detection area 3a in accordance with the X-ray detection signal output from the two-dimensional X-ray detector 3 is provided at the subsequent stage of the two-dimensional X-ray detector 3. In addition to the display monitor 11 for displaying the X-ray fluoroscopic image acquired by the processing unit 10 and the detection signal processing unit 10 and the menu for operating the apparatus on the screen, commands and data necessary for execution of X-ray imaging are input. An operation unit 12 is provided.

例えば、被検体Mの血管に造影剤を注入して血管だけが映っているX線透視画像を取得するディジタルサブトラクションアンギオグラフィの場合であれば、検出信号処理部10は、造影剤注入前のX線透視画像(ベース画像)と造影剤注入後のX線透視画像(ライブ画像)を差し引きするサブトラクション処理を行なって、血管だけが映っているX線透視画像を取得する。   For example, in the case of digital subtraction angiography in which a contrast medium is injected into the blood vessel of the subject M and an X-ray fluoroscopic image in which only the blood vessel is captured is obtained, the detection signal processing unit 10 performs X before the contrast medium injection. A subtraction process for subtracting the fluoroscopic image (base image) and the X-ray fluoroscopic image (live image) after injection of the contrast agent is performed to obtain an X-ray fluoroscopic image showing only the blood vessels.

また、実施例1の装置の場合、支持基台5に配設されたC型アーム移動機構13により、C型アーム4がアーム長手方向へアームの曲がりに沿ってC型アーム4が移動するスライド移動、ないし、C型アーム4を水平に横切る水平線を回転中心としてC型アームが回転する水平周回回転をさせられる構成とされている。その結果、C型アーム移動機構13によるC型アーム4のスライド移動や水平周回回転に伴ってX線管2と2次元X線検出器3が被検体Mの周りを移動しながら、X線管2から被検体MにX線を照射すると共に、X線照射に伴って2次元X線検出器3から出力されるX線検出信号にしたがってX線透視画像を取得することもできる。   In the case of the apparatus of the first embodiment, the C-type arm 4 is moved by the C-type arm moving mechanism 13 disposed on the support base 5 along the bending of the arm in the longitudinal direction of the C-type arm 4. It is configured such that it can move or rotate horizontally around the C-arm 4 with the horizontal line horizontally traversing the C-arm 4 as the center of rotation. As a result, the X-ray tube 2 and the two-dimensional X-ray detector 3 move around the subject M as the C-type arm 4 is slid by the C-type arm moving mechanism 13 and rotated horizontally. The X-ray fluoroscopic image can be acquired in accordance with the X-ray detection signal output from the two-dimensional X-ray detector 3 along with the X-ray irradiation.

さらに、取得したX線透視画像を表示モニタ11に表示して観察しながら、X線撮影と同時平行で被検体に治療や手術を施す場合もある。実施例1の装置では、この時、支持基台5により、図1に示すように、平面視した場合にC型アーム4を天板1の中心線1Aに対して交差角度θで斜めに交差する向きにできる構成とされている。   Furthermore, while the acquired X-ray fluoroscopic image is displayed on the display monitor 11 and observed, the subject may be treated or operated in parallel with the X-ray imaging. In the apparatus of the first embodiment, at this time, as shown in FIG. 1, the C-arm 4 is obliquely intersected with the center line 1A of the top plate 1 at an intersecting angle θ by the support base 5 when viewed in plan. It is configured so that it can be oriented.

即ち、実施例1の装置では、支持基台5が支持基台5自体を鉛直軸XBを回転軸として回転させる基台回動駆動機構14を有していて、この基台回動駆動機構14により支持基台5を鉛直軸XB周りに回転させることによって、平面視した場合にC型アーム4を天板1の中心線1Aに対して交差角度θで斜めに交差する向きにできるのに加え、支持基台5の回転角度を調節することにより交差角度θが変化する構成とされている。   That is, in the apparatus according to the first embodiment, the support base 5 includes the base rotation drive mechanism 14 that rotates the support base 5 itself about the vertical axis XB as the rotation axis. In addition to rotating the support base 5 about the vertical axis XB, the C-arm 4 can be inclined obliquely at an intersecting angle θ with respect to the center line 1A of the top plate 1 in plan view. The crossing angle θ is changed by adjusting the rotation angle of the support base 5.

基台回動駆動機構14は、図7に示すように、モータ14Aと、モータ14Aの回転を伝達するエンドレスベルト14Bと、エンドレスベルト14Bの回転を鉛直軸XB周りの回転に変換するギヤボックス14Cと、ギヤボックス14Cで変換された鉛直軸XB周りの回転を伝達する駆動ギヤ14Dと、鉛直軸XBに軸芯が一致していると共に駆動ギヤ14Dと噛み合っている従動ギヤ14Eとを有し、従動ギヤ14Eが床面にボールベアリング(図示省略)を介して鉛直軸XBに円滑回転可能に床面に設置されている構成とされている。基台回動駆動機構14によれば、モータ14Aの回転がエンドレスベルト14B〜ギヤボックス14C〜駆動ギヤ14Dという経由で従動ギヤ14Eに伝えられることにより、従動ギヤ14Eが支持基台5ごと鉛直軸XB周りに回転するのに伴って、C型アーム4は天板1の中心線1Aに対する交差角度θで斜めに交差する向きにされる。モータ14Aの回転方向と回転量を制御して従動ギヤ14Eの回転量を調節することで、天板1の中心線1Aに対するC型アーム4の交差角度θを希望角度とすることができる。   As shown in FIG. 7, the base rotation drive mechanism 14 includes a motor 14A, an endless belt 14B that transmits the rotation of the motor 14A, and a gear box 14C that converts the rotation of the endless belt 14B into rotation about the vertical axis XB. A drive gear 14D that transmits rotation about the vertical axis XB converted by the gear box 14C, and a driven gear 14E that has an axial center coincident with the vertical axis XB and meshes with the drive gear 14D, The driven gear 14E is configured on the floor surface so as to be smoothly rotated about the vertical axis XB via a ball bearing (not shown) on the floor surface. According to the base rotation drive mechanism 14, the rotation of the motor 14 </ b> A is transmitted to the driven gear 14 </ b> E via the endless belt 14 </ b> B to the gear box 14 </ b> C to the drive gear 14 </ b> D. Along with the rotation around XB, the C-arm 4 is orientated at an intersecting angle θ with respect to the center line 1A of the top plate 1 at an oblique angle. By controlling the rotation direction and the rotation amount of the motor 14A to adjust the rotation amount of the driven gear 14E, the crossing angle θ of the C-arm 4 with respect to the center line 1A of the top plate 1 can be set as a desired angle.

このように、X線撮影の際、平面視した場合にC型アーム4を天板1の中心線1Aに対して交差角度θで斜めに交差する向きにすると、天板1の上の被検体MにC型アーム4が覆い被さる程度が緩和されるので、X線撮影と平行して術者や介護者がC型アーム4に妨げられずに施術や介護を行なえる。交差角度θは、通常30°〜60°の範囲の角度(例えば45°の角度)とされる。   As described above, when the C-arm 4 is obliquely intersected at the intersection angle θ with respect to the center line 1A of the top board 1 when viewed in plan during X-ray imaging, the subject on the top board 1 is observed. Since the degree to which the C-type arm 4 covers M is alleviated, the surgeon and caregiver can perform treatment and care without being interrupted by the C-type arm 4 in parallel with X-ray imaging. The intersection angle θ is usually an angle in the range of 30 ° to 60 ° (for example, an angle of 45 °).

また、実施例1の装置の場合、操作部12などによる入力操作で交差角度θが設定できる構成とされているのに加え、基台回動駆動機構14の前段に基台回動制御部15が備えられていて、基台回動制御部15が操作部12などによる入力操作で設定された交差角度θに基づいて基台回動駆動機構14を制御すると共に、基台回動制御部15の制御にしたがって基台回動駆動機構14が支持基台5を回転させてC型アーム4を天板1の中心線1Aに対して操作部12などで設定された交差角度θで斜めに交差する向きにする。   Further, in the case of the apparatus of the first embodiment, in addition to the configuration in which the crossing angle θ can be set by an input operation using the operation unit 12 or the like, the base rotation control unit 15 is provided at the front stage of the base rotation drive mechanism 14. The base rotation control unit 15 controls the base rotation drive mechanism 14 based on the crossing angle θ set by the input operation by the operation unit 12 and the like, and the base rotation control unit 15 Under the control, the base rotation drive mechanism 14 rotates the support base 5 and crosses the C-shaped arm 4 diagonally with respect to the center line 1A of the top plate 1 at the crossing angle θ set by the operation unit 12 or the like. Make the orientation.

さらに、実施例1の装置は、放射コーン8および2次元X線検出器3をX線照射軸XAを回転中心として回転させる撮像系回転駆動機構16と、C型アーム4の天板1の中心線1Aに対する交差角度θに基づいて放射コーン8と2次元X線検出器3をX線照射軸XAを回転中心として同じ向きに同じ角度だけ回転させてC型アーム4を天板1の中心線1Aに対して交差角度θで斜めに交差する向きにした時に起こる天板1の中心線1Aに対する撮像系の向きのズレを解消する制御を撮像系回転駆動機構16に対して行なう撮像系回転制御部17とを備えている。   Further, the apparatus of the first embodiment includes an imaging system rotation drive mechanism 16 that rotates the radiation cone 8 and the two-dimensional X-ray detector 3 about the X-ray irradiation axis XA, and the center of the top plate 1 of the C-type arm 4. Based on the crossing angle θ with respect to the line 1A, the radiation cone 8 and the two-dimensional X-ray detector 3 are rotated in the same direction by the same angle with the X-ray irradiation axis XA as the rotation center, so that the C-arm 4 is the center line of the top plate 1 Imaging system rotation control for controlling the imaging system rotation drive mechanism 16 to eliminate the deviation of the orientation of the imaging system with respect to the center line 1A of the top plate 1 that occurs when it is obliquely intersected with 1A at an intersection angle θ. Part 17.

撮像系回転駆動機構16は、図2および図7に示すように、放射コーン回転部16AとX線検出器回転部16Bとからなる。   As shown in FIGS. 2 and 7, the imaging system rotation drive mechanism 16 includes a radiation cone rotation unit 16A and an X-ray detector rotation unit 16B.

放射コーン回転部16Aは、モータ16A1と、モータ16A1の回転を伝達する伝達ギヤ16A2と、X線照射軸XAに軸芯が一致していると共に伝達ギヤ16A2と噛み合っている従動ギヤ16A3とを有し、従動ギヤ16A3が放射コーン8の外周に嵌められた状態で取り付けられている構成とされている。放射コーン回転部16Aによれば、モータ16A1の回転が伝達ギヤ16A2を経て従動ギヤ16A3に伝えられるのに伴って、従動ギヤ16A3がX線照射軸XA周りに回転し、放射コーン8はX線照射軸XAを回転中心として回転する。モータ16A1の回転方向と回転量を制御して従動ギヤ16A3の回転方向と回転量を調節することで、放射コーン8の回転の向きと量を制御できる。   The radiation cone rotating unit 16A includes a motor 16A1, a transmission gear 16A2 that transmits the rotation of the motor 16A1, and a driven gear 16A3 that has an axial center coincident with the X-ray irradiation axis XA and meshes with the transmission gear 16A2. The driven gear 16A3 is attached in a state of being fitted on the outer periphery of the radiation cone 8. According to the radiation cone rotating portion 16A, as the rotation of the motor 16A1 is transmitted to the driven gear 16A3 via the transmission gear 16A2, the driven gear 16A3 rotates around the X-ray irradiation axis XA, and the radiation cone 8 It rotates about the irradiation axis XA as the center of rotation. The direction and amount of rotation of the radiation cone 8 can be controlled by adjusting the direction and amount of rotation of the driven gear 16A3 by controlling the direction and amount of rotation of the motor 16A1.

X線検出器回転部16Bは、モータ16B1と、モータ16B1の回転を伝達する伝達ギヤ16B2と、X線照射軸XAに軸芯が一致していると共に伝達ギヤ16B2と噛み合っている従動ギヤ16B3とを有し、従動ギヤ16B3が2次元X線検出器3の外周に嵌められた状態で取り付けられている構成とされている。X線検出器回転部16Bによれば、モータ16B1の回転が伝達ギヤ16B2を経て従動ギヤ16B3に伝えられるのに伴って、従動ギヤ16B3がX線照射軸XA周りに回転し、2次元X線検出器3はX線照射軸XAを回転中心として回転する。モータ16B1の回転方向と回転量を制御して従動ギヤ16B3の回転方向と回転量を調節することで、2次元X線検出器3の回転の向きと量を制御できる。   The X-ray detector rotating unit 16B includes a motor 16B1, a transmission gear 16B2 that transmits the rotation of the motor 16B1, and a driven gear 16B3 that has the same axis as the X-ray irradiation axis XA and meshes with the transmission gear 16B2. And the driven gear 16B3 is attached in a state of being fitted on the outer periphery of the two-dimensional X-ray detector 3. According to the X-ray detector rotating unit 16B, as the rotation of the motor 16B1 is transmitted to the driven gear 16B3 via the transmission gear 16B2, the driven gear 16B3 rotates around the X-ray irradiation axis XA, and the two-dimensional X-ray The detector 3 rotates about the X-ray irradiation axis XA. The direction and amount of rotation of the two-dimensional X-ray detector 3 can be controlled by controlling the direction and amount of rotation of the motor 16B1 to adjust the direction and amount of rotation of the driven gear 16B3.

これら放射コーン回転部16AとX線検出器回転部16Bは、撮像系回転制御部17の制御にしたがって、放射コーン回転部16Aにより天板1の中心線1Aに対するC型アーム4の交差角度θに基づいて放射コーン8と2次元X線検出器3をX線照射軸XAを回転中心として同じ向きに同じ角度だけ回転させて、C型アーム4を天板1の中心線1Aに対して交差角度θで斜めに交差する向きにした時に起こる天板1の中心線に対する撮像系の向きのズレを解消する。   The radiation cone rotating unit 16A and the X-ray detector rotating unit 16B are set at the intersection angle θ of the C-arm 4 with respect to the center line 1A of the top board 1 by the radiation cone rotating unit 16A according to the control of the imaging system rotation control unit 17. Based on this, the radiation cone 8 and the two-dimensional X-ray detector 3 are rotated by the same angle in the same direction with the X-ray irradiation axis XA as the rotation center, and the C-arm 4 is intersected with the center line 1A of the top 1 The deviation of the orientation of the imaging system with respect to the center line of the top plate 1 that occurs when the orientation is obliquely intersected by θ is eliminated.

なお、主制御部18は、コンピュータ(CPU)と動作プログラムを中心に構成されていて、操作部12による各種の指令入力、あるいは、X線撮影の進行状況などに応じて適当な命令信号やデータを必要なところへ適時に送出し、装置全体を常に適切に動作させる統括制御機能を果たす。   The main control unit 18 is mainly composed of a computer (CPU) and an operation program. Appropriate command signals and data are input according to various command inputs from the operation unit 12 or the progress of X-ray imaging. Is delivered to the necessary places in a timely manner, and the overall control function is performed so that the entire apparatus is always operated properly.

2次元X線検出器3の正方形のX線検出エリア3aは、図5に示すように、天板1の中心線1Aに対して交差角度θがゼロとなる平行な向きにある時を基準状態として、X線検出エリア3aの検出点と取得されるX線透視画像の画素との対応が付けられている。したがって、C型アーム4が天板1の中心線1Aに対して交差角度θで斜めに交差する向きになるのに伴って、図6に二点鎖線で示すように、2次元X線検出器3のX線検出エリア3aが、天板1の中心線1Aに対して交差角度θで斜めに交差する向きになると、X線検出エリア3aの検出点と取得されるX線透視画像の画素との対応関係が崩れ、取得されるX線透視画像の向きが斜めになってしまう。そこで、実施例1の装置の場合、X線検出器回転部16Bにより、2次元X線検出器3をX線照射軸XAを回転中心として交差角度θに見合う分だけ逆に回転させることで、図6に実線で示すように、X線検出エリア3aを天板1の中心線1Aに対して交差角度θがゼロとなる平行な向きとして、X線検出エリア3aの検出点と取得されるX線透視画像の画素との対応関係が崩れるのを阻止する。   As shown in FIG. 5, the square X-ray detection area 3a of the two-dimensional X-ray detector 3 is a reference state when the crossing angle θ is parallel to the center line 1A of the top board 1 so that the crossing angle θ is zero. The correspondence between the detection points of the X-ray detection area 3a and the pixels of the acquired X-ray fluoroscopic image is attached. Accordingly, the two-dimensional X-ray detector as shown by a two-dot chain line in FIG. 6 as the C-shaped arm 4 obliquely intersects the center line 1A of the top board 1 at the intersection angle θ. When the X-ray detection area 3a of 3 is obliquely intersected with the center line 1A of the top board 1 at an intersection angle θ, the detection points of the X-ray detection area 3a and the pixels of the acquired X-ray fluoroscopic image Is broken, and the direction of the acquired X-ray fluoroscopic image becomes oblique. Therefore, in the case of the apparatus according to the first embodiment, the X-ray detector rotating unit 16B rotates the two-dimensional X-ray detector 3 in the reverse direction by an amount corresponding to the intersection angle θ with the X-ray irradiation axis XA as the rotation center. As shown by a solid line in FIG. 6, the X-ray detection area 3a is set in parallel with the crossing angle θ being zero with respect to the center line 1A of the top board 1, and the detected X of the X-ray detection area 3a is acquired. It prevents that the correspondence with the pixel of a fluoroscopic image collapses.

ただ、図6に二点鎖線で示すように、X線検出エリア3aが天板1の中心線1Aに対して交差角度θがゼロとなる平行な向きであっても、C型アーム4が天板1の中心線1Aに対して交差角度θで斜めに交差する向きになるのに伴って、図3に一点鎖線で拡大図示するように、X線ビーム2aの横断面形状を規定する放射コーン8の向きも天板1の中心線1Aに対して交差角度θで斜めに交差する向きになってしまったとすると、図6に二点鎖線で示すように、X線ビーム2aの向きも天板1の中心線1Aに対して交差角度θで斜めに交差する向きとなる。もし、こうなるとX線ビーム2aとX線検出エリア3aの間に交差角度θのズレが生じ、X線検出エリア3aの角の処は透過X線が検出されない(当たらない)ので、角の欠けたX線透視画像になってしまう。そこで、実施例1の装置の場合、放射コーン8もX線照射軸XAを回転中心として交差角度θに見合う分だけ逆に回転させることで、図6に実線で示すように、X線ビーム2aを天板1の中心線1Aに対して交差角度θがゼロとなる平行な向きとして、X線ビーム2aとX線検出エリア3aの間の交差角度θのズレを阻止する。   However, as indicated by a two-dot chain line in FIG. 6, even if the X-ray detection area 3a is parallel to the center line 1A of the top plate 1 so that the crossing angle θ is zero, A radiation cone that defines the cross-sectional shape of the X-ray beam 2a as shown in an enlarged view by a one-dot chain line in FIG. 3 as it becomes obliquely intersecting with the center line 1A of the plate 1 at an intersecting angle θ. Assuming that the direction of 8 is also obliquely intersecting with the center line 1A of the top plate 1 at an intersection angle θ, the direction of the X-ray beam 2a is also the top plate as shown by a two-dot chain line in FIG. It is in a direction that obliquely intersects the center line 1A of 1 at an intersection angle θ. If this occurs, a deviation of the crossing angle θ occurs between the X-ray beam 2a and the X-ray detection area 3a, and transmitted X-rays are not detected (does not hit) at the corners of the X-ray detection area 3a. X-ray fluoroscopic image. Therefore, in the case of the apparatus of the first embodiment, the radiation cone 8 is also rotated reversely by an amount corresponding to the crossing angle θ with the X-ray irradiation axis XA as the rotation center, as shown by the solid line in FIG. Is set to be parallel to the center line 1A of the top plate 1 so that the crossing angle θ becomes zero, thereby preventing the deviation of the crossing angle θ between the X-ray beam 2a and the X-ray detection area 3a.

このように、実施例1の装置の場合、2次元X線検出器3をX線照射軸XAを回転中心として交差角度θに見合う分だけ逆に回転させるのに加えて、放射コーン8もX線照射軸XAを回転中心として交差角度θに見合う分だけ逆に回転させることによって、C型アーム4を天板1の中心線1Aに対して交差角度θで斜めに交差する向きにした時に起こる天板1の中心線に対する撮像系の向きのズレが回避される。その結果、C型アーム4が天板1の中心線1Aに対して交差角度θで斜めに交差する向きであっても、取得されるX線透視画像の向きが斜めになったり、X線透視画像の角が欠けたりすることはない。   As described above, in the case of the apparatus of the first embodiment, in addition to rotating the two-dimensional X-ray detector 3 in the reverse direction corresponding to the intersection angle θ with the X-ray irradiation axis XA as the rotation center, the radiation cone 8 is also X Occurs when the C-arm 4 is rotated obliquely at a crossing angle θ with respect to the center line 1A of the top plate 1 by rotating the line irradiation axis XA as the rotation center in the reverse direction corresponding to the crossing angle θ. A misalignment of the orientation of the imaging system with respect to the center line of the top plate 1 is avoided. As a result, even when the C-shaped arm 4 is obliquely intersected with the center line 1A of the top board 1 at the intersection angle θ, the direction of the acquired X-ray fluoroscopic image becomes oblique or X-ray fluoroscopic The corners of the image are not missing.

さらに、C型アーム4を天板1の中心線1Aに対して交差角度θで斜めに交差する向きにした時に起こる天板1の中心線1Aに対する撮像系の向きのズレを解消する際にX線管2の全体を回転させるのではなく、X線管2の全体からすると一部であるX線ビーム整形用の放射コーン8だけを回転させるので、相当な重量と大きさがあるX線管2の全体を回転させる場合のような困難は伴わない。   Furthermore, when the deviation of the orientation of the imaging system with respect to the center line 1A of the top plate 1 that occurs when the C-shaped arm 4 is obliquely intersected with the center line 1A of the top plate 1 at an intersecting angle θ, Instead of rotating the entire X-ray tube 2, only the X-ray beam shaping radiation cone 8 that is a part of the X-ray tube 2 as a whole is rotated, so that the X-ray tube has a considerable weight and size. There is no difficulty as in rotating the whole of 2.

よって、この発明のX線透視撮影装置によれば、X線照射用のX線管2とX線検出用の2次元X線検出器3を対向配置状態で保持しているC型アーム4を、被検体Mを載置する天板1の中心線1Aに対して斜めに交差する向きにした時に起こる天板1の中心線1Aに対する撮像系の向きのズレを適切なかたちで解消することができる。   Therefore, according to the X-ray fluoroscopic apparatus of the present invention, the C-shaped arm 4 holding the X-ray tube 2 for X-ray irradiation and the two-dimensional X-ray detector 3 for X-ray detection in an opposed arrangement state. The deviation of the orientation of the imaging system with respect to the center line 1A of the top plate 1 that occurs when the subject M is placed obliquely intersecting the center line 1A of the top plate 1 can be eliminated in an appropriate manner. it can.

この発明のX線診断装置の実施例2を説明する。図8は実施例2に係る医用のX線透視撮影装置の撮像系回転駆動機構16の構成を中心に示す正面図である。   A second embodiment of the X-ray diagnostic apparatus according to the present invention will be described. FIG. 8 is a front view showing mainly the configuration of the imaging system rotation drive mechanism 16 of the medical X-ray fluoroscopic apparatus according to the second embodiment.

実施例2のX線透視撮影装置は、図8に示すように、X線管2が放射コーン8の前方にコリメータ19を有していて、放射コーン8とコリメータ19によって放射X線が正方形の横断面形状のX線ビーム2aに整えられると共に、撮像系回転駆動機構16が、放射コーン回転部16AとX線検出器回転部16Bの他に、コリメータ19をX線照射軸XAを回転中心として回転させるコリメータ回転部16Cを有していて、撮像系回転制御部17による撮像系回転駆動機構16の制御によってコリメータ回転部16Cがコリメータ19をX線照射軸XAを回転中心として放射コーン8と同じ向きに同じ角度だけ回転させる構成とされている以外は、実施例1の装置と実質的に同一のものであるので、相違する点のみを説明し、共通する点についての説明は省略する。   As shown in FIG. 8, the X-ray fluoroscopic apparatus according to the second embodiment includes a collimator 19 in front of the radiation cone 8 and the radiation cone 8 and the collimator 19 have a square radiation X-ray. The X-ray beam 2a having a cross-sectional shape is arranged, and the imaging system rotation drive mechanism 16 uses a collimator 19 around the X-ray irradiation axis XA as a rotation center in addition to the radiation cone rotation unit 16A and the X-ray detector rotation unit 16B. The collimator rotating unit 16 </ b> C is rotated, and the collimator rotating unit 16 </ b> C is the same as the radiation cone 8 with the collimator 19 as the rotation center of the X-ray irradiation axis XA by the control of the imaging system rotation driving mechanism 16 by the imaging system rotation control unit 17. Since the apparatus is substantially the same as the apparatus of the first embodiment except that the direction is rotated by the same angle, only the differences will be described, and common points will be described. Explanations are omitted.

即ち、コリメータ回転部16Cは、モータ16C1と、モータ16C1の回転を伝達する伝達ギヤ16C2と、X線照射軸XAに軸芯が一致していると共に伝達ギヤ16C2と噛み合っている従動ギヤ16C3とを有し、従動ギヤ16C3がコリメータ19の外周に嵌められた状態で取り付けられている構成とされている。コリメータ回転部16Cによれば、モータ16C1の回転が伝達ギヤ16C2を経て従動ギヤ16C3に伝えられるのに伴って、従動ギヤ16C3がX線照射軸XA周りに回転し、コリメータ19はX線照射軸XAを回転中心として回転する。モータ16C1の回転方向と回転量を制御して従動ギヤ16C3の回転方向と回転量を調節することで、コリメータ19の回転の向きと量を制御できる。   That is, the collimator rotating unit 16C includes a motor 16C1, a transmission gear 16C2 that transmits the rotation of the motor 16C1, and a driven gear 16C3 that has the same axis as the X-ray irradiation axis XA and meshes with the transmission gear 16C2. And the driven gear 16C3 is attached in a state of being fitted on the outer periphery of the collimator 19. According to the collimator rotating unit 16C, as the rotation of the motor 16C1 is transmitted to the driven gear 16C3 via the transmission gear 16C2, the driven gear 16C3 rotates around the X-ray irradiation axis XA, and the collimator 19 is rotated to the X-ray irradiation axis. Rotate around XA. The direction and amount of rotation of the collimator 19 can be controlled by controlling the direction and amount of rotation of the motor 16C1 to adjust the direction and amount of rotation of the driven gear 16C3.

X線ビーム2aは放射コーン8と同様にコリメータ19によって横断面形状が規定されるので、X線検出エリア3aが天板1の中心線1Aに対して交差角度θがゼロとなる平行な向きであるとしても、C型アーム4が天板1の中心線1Aに対して交差角度θで斜めに交差する向きになるのに伴って、X線ビーム2aの横断面形状の規定因子であるコリメータ19の向きが、天板1の中心線1Aに対して交差角度θで斜めに交差する向きのままだと、X線ビーム2aは、完全には、天板1の中心線1Aに対して交差角度θがゼロとなる平行な向きにならない。その結果、やはりX線ビーム2aとX線検出エリア3aの間に交差角度θに応じたズレが生じ、X線検出エリア3aの一部では透過X線が検出されず、X線透視画像は一部が欠ける事態が起こる。そこで、実施例2の装置の場合も、放射コーン8に加えてコリメータ19もX線照射軸XAを回転中心として交差角度θに見合う分だけ逆に回転させる(つまりコリメータ19もX線照射軸XAを回転中心として放射コーン8と同じ向きに同じ角度だけ回転させる)ことで、X線ビーム2aを完全に天板1の中心線1Aに対して交差角度θがゼロとなる平行な向きにして、X線ビーム2aとX線検出エリア3aの間に交差角度θに応じたズレが生じるのを阻止する。   Since the X-ray beam 2a has a cross-sectional shape defined by the collimator 19 similarly to the radiation cone 8, the X-ray detection area 3a is parallel to the center line 1A of the top plate 1 so that the crossing angle θ is zero. Even if there is a collimator 19 which is a defining factor of the cross-sectional shape of the X-ray beam 2a as the C-arm 4 is obliquely intersected with the center line 1A of the top plate 1 at an intersecting angle θ. The X-ray beam 2a is completely crossed with respect to the center line 1A of the top board 1 if the orientation of the X-ray beam 2a remains obliquely crossed with the center line 1A of the top board 1 at the crossing angle θ. The orientation is not parallel so that θ is zero. As a result, a deviation corresponding to the crossing angle θ occurs between the X-ray beam 2a and the X-ray detection area 3a, and transmitted X-rays are not detected in a part of the X-ray detection area 3a. The situation where a part is missing occurs. Therefore, also in the case of the apparatus of the second embodiment, in addition to the radiation cone 8, the collimator 19 is also rotated reversely by an amount corresponding to the intersection angle θ with the X-ray irradiation axis XA as the rotation center (that is, the collimator 19 is also the X-ray irradiation axis XA). Is rotated in the same direction as the radiation cone 8 by the same angle), and the X-ray beam 2a is completely parallel to the center line 1A of the top plate 1 so that the crossing angle θ is zero, It prevents the deviation according to the crossing angle θ between the X-ray beam 2a and the X-ray detection area 3a.

このように、実施例2の装置の場合、放射コーン8とコリメータ19の両方で放射X線が正方形の横断面形状のX線ビーム2aに整えられるので、放射X線を放射コーン8だけで非正方形の横断面形状のX線ビームに整える場合に比べて、X線ビームの横断面形状を整える際の自由度が増す。また、撮像系回転制御部17による撮像系回転駆動機構16の制御の際、コリメータ19も放射コーン8と2次元X線検出器3をX線照射軸XAを回転中心として同じ向きに同じ角度だけ回転させられるので、コリメータ19の向きも元のままとなり、C型アーム4を天板1の中心線1Aに対して交差角度θで斜めに交差する向きにした時に起こる天板1の中心線1Aに対する撮像系の向きのズレを解消する制御がコリメータ19によって妨げられることはない。   As described above, in the case of the apparatus of the second embodiment, the radiation X-rays are adjusted to the X-ray beam 2a having a square cross section by both the radiation cone 8 and the collimator 19, so The degree of freedom in adjusting the cross-sectional shape of the X-ray beam is increased as compared with the case of adjusting the X-ray beam having a square cross-sectional shape. When the imaging system rotation control unit 17 controls the imaging system rotation drive mechanism 16, the collimator 19 also uses the radiation cone 8 and the two-dimensional X-ray detector 3 with the X-ray irradiation axis XA as the rotation center in the same direction and the same angle. Since it is rotated, the orientation of the collimator 19 remains unchanged, and the center line 1A of the top plate 1 that occurs when the C-shaped arm 4 is obliquely intersected with the center line 1A of the top plate 1 at an intersection angle θ. The collimator 19 does not prevent the collimator 19 from canceling the deviation of the orientation of the imaging system with respect to.

この発明は、上記の実施例に限られるものではなく、以下のように変形実施することも可能である。   The present invention is not limited to the above embodiment, and can be modified as follows.

(1)実施例1,2の装置の場合、X線管2の放射口に取り付けられている放射コーン8がX線ビーム2aの横断面形状を正方形に整えるものであった。しかし、この発明の装置の場合、放射コーンは、X線ビームの横断面形状を正方形に整えるものに限られるものではなく、X線ビームの横断面形状を、例えば長方形や楕円形などのように正方形以外の他の非真円形に整える放射コーンであれば、用いることができる。   (1) In the case of the apparatuses of Examples 1 and 2, the radiation cone 8 attached to the radiation port of the X-ray tube 2 adjusts the cross-sectional shape of the X-ray beam 2a to a square. However, in the case of the apparatus of the present invention, the radiation cone is not limited to the one in which the cross-sectional shape of the X-ray beam is adjusted to a square, and the cross-sectional shape of the X-ray beam is, for example, rectangular or elliptical. Any radiation cone that arranges into a non-round shape other than a square can be used.

(2)実施例2の装置の場合、放射コーン8の前方に配備されたコリメータ19は一段構成のものであったが、この発明の装置の場合、放射コーンの前方に配備されるコリメータは二段構成のものであってもよい。   (2) In the case of the apparatus of the second embodiment, the collimator 19 provided in front of the radiation cone 8 has a one-stage configuration, but in the case of the apparatus of the present invention, two collimators are provided in front of the radiation cone. It may be of a stage configuration.

(3)実施例1,2の装置の場合、X線管2と2次元X線検出器3を対向配置状態で保持する撮像系保持部材がC型アーム4であったが、X線管2と2次元X線検出器3を保持する撮像系保持部材は、C型アーム4に限られるものではなく、例えばU型アームであってもよい。   (3) In the case of the apparatuses of Examples 1 and 2, the imaging system holding member that holds the X-ray tube 2 and the two-dimensional X-ray detector 3 in the opposed arrangement state is the C-type arm 4, but the X-ray tube 2 The imaging system holding member that holds the two-dimensional X-ray detector 3 is not limited to the C-type arm 4 and may be, for example, a U-type arm.

(4)実施例1,2の装置は、支持基台5が床設置型であったが、床設置型の支持基台5の代わりに、天井吊設型の支持基台を用いた他は、実施例1または実施例2と同様の構成のX線透視撮影装置が、それぞれ、変形例として挙げられる。   (4) In the devices of Examples 1 and 2, the support base 5 was a floor installation type, but instead of the floor installation type support base 5, a ceiling suspended type support base was used. The X-ray fluoroscopic apparatus having the same configuration as that of Example 1 or Example 2 is given as a modified example.

(5)実施例1,2の装置は、基台回動駆動機構14が基台回動制御部15の制御にしたがって支持基台5を回転させる構成であったが、支持基台5は電気モータではなく手動で回転させられると共に、支持基台5の回転に天板1の中心線1Aに対するC型アーム4の交差角度θを検出する角度検出機構が支持基台5に配備されていて、角度検出機構で検出された交差角度θに基づいて撮像系回転制御部17が撮像系回転駆動機構16を制御する構成である他は、実施例1または実施例2と同様の構成のX線透視撮影装置が、それぞれ、変形例として挙げられる。   (5) In the devices of Examples 1 and 2, the base rotation drive mechanism 14 is configured to rotate the support base 5 according to the control of the base rotation control unit 15. An angle detection mechanism that detects the crossing angle θ of the C-arm 4 with respect to the center line 1A of the top plate 1 in the rotation of the support base 5 is provided in the support base 5 while being rotated manually instead of the motor. X-ray fluoroscopy having the same configuration as in the first or second embodiment except that the imaging system rotation control unit 17 controls the imaging system rotation drive mechanism 16 based on the intersection angle θ detected by the angle detection mechanism. Each of the imaging devices is given as a modification.

(6)実施例1,2の装置は、X線透視撮影装置であったが、この発明はX線透視撮影装置以外のX線診断装置にも適用することができる。   (6) Although the apparatuses of Examples 1 and 2 are X-ray fluoroscopic apparatuses, the present invention can be applied to X-ray diagnostic apparatuses other than X-ray fluoroscopic apparatuses.

(7)実施例1,2の装置は、医用の装置であったが、この発明の装置は、医用に限らず、例えば工業用の装置などにも適用することができる。   (7) Although the devices of the first and second embodiments are medical devices, the device of the present invention is not limited to medical devices, and can be applied to, for example, industrial devices.

実施例1に係る医用のX線透視撮影装置の全体構成を示すブロック図である。1 is a block diagram illustrating an overall configuration of a medical X-ray fluoroscopic apparatus according to Embodiment 1. FIG. 実施例1のX線透視撮影装置の撮像台を示す正面図である。1 is a front view showing an imaging stand of an X-ray fluoroscopic apparatus of Example 1. FIG. 実施例1のX線透視撮影装置のX線管を示す斜視図である。1 is a perspective view showing an X-ray tube of an X-ray fluoroscopic apparatus according to Embodiment 1. FIG. 実施例1の装置のX線管で照射されるX線ビームの横断面形状を示す模式図である。It is a schematic diagram which shows the cross-sectional shape of the X-ray beam irradiated with the X-ray tube of the apparatus of Example 1. FIG. 実施例1の装置の2次元X線検出器のX線検出エリアを示す模式図である。3 is a schematic diagram illustrating an X-ray detection area of a two-dimensional X-ray detector of the apparatus according to Embodiment 1. FIG. 実施例1の装置でのX線ビームとX線検出エリアの対応関係を示す模式図である。It is a schematic diagram which shows the correspondence of the X-ray beam and X-ray detection area in the apparatus of Example 1. 実施例1の装置の基台回動駆動機構および撮像系回転駆動機構の構成を中心に示す正面図である。It is a front view which mainly shows the structure of the base rotation drive mechanism of the apparatus of Example 1, and an imaging system rotation drive mechanism. 実施例2の装置の撮像系回転駆動機構の構成を中心に示す正面図である。It is a front view which mainly shows the structure of the imaging system rotation drive mechanism of the apparatus of Example 2. FIG. 従来のX線透視撮影装置の撮影台の要部構成を示す平面図である。It is a top view which shows the principal part structure of the imaging stand of the conventional X-ray fluoroscope. 他の従来のX線透視撮影装置の撮影台の要部構成を示す平面図である。It is a top view which shows the principal part structure of the imaging stand of another conventional X-ray fluoroscopic imaging apparatus. 従来の装置におけるC型アームの斜め挿入とX線検出エリアの向きの関係を示す模式図である。It is a schematic diagram which shows the relationship between the diagonal insertion of the C-arm in the conventional apparatus, and the direction of an X-ray detection area. 従来の装置におけるC型アームの斜め挿入とX線ビームの向きの関係を示す模式図である。It is a schematic diagram which shows the relationship between the diagonal insertion of the C-arm in the conventional apparatus, and the direction of an X-ray beam. 従来の装置におけるC型アームの斜め挿入時のX線検出エリアとX線ビームの対応関係を示す模式図である。It is a schematic diagram which shows the correspondence of the X-ray detection area and X-ray beam at the time of the diagonal insertion of the C-type arm in the conventional apparatus.

符号の説明Explanation of symbols

1 … 天板
1A … (天板の)中心線
2 … X線管(X線照射手段)
2a … X線ビーム
3 … 2次元X線検出器
3a … X線検出エリア
4 … C型アーム(撮像系保持部材)
5 … 支持基台
8 … 放射コーン
16 … 撮像系回転駆動機構(撮像系回転駆動手段)
17 … 撮像系回転制御部(撮像系回転制御手段)
19 … コリメータ
M … 被検体
XA … X線照射軸
θ … 交差角度
DESCRIPTION OF SYMBOLS 1 ... Top plate 1A ... Centerline (of top plate) 2 ... X-ray tube (X-ray irradiation means)
2a ... X-ray beam 3 ... Two-dimensional X-ray detector 3a ... X-ray detection area 4 ... C-type arm (imaging system holding member)
DESCRIPTION OF SYMBOLS 5 ... Support base 8 ... Radiation cone 16 ... Imaging system rotation drive mechanism (imaging system rotation drive means)
17: Imaging system rotation control unit (imaging system rotation control means)
19 ... Collimator M ... Subject XA ... X-ray irradiation axis θ ... Crossing angle

Claims (3)

被検体を載置する天板と、放射X線を制限して非真円形の横断面形状のX線ビームに整える放射コーンが放射口に取り付けられているX線照射用のX線管と、X線ビームの横断面形状に対応した形のX線検出エリアで天板の上の被検体を透過したX線を検出するX線検出用の2次元X線検出器と、X線管と2次元X線検出器をX線管の焦点を通るX線照射軸が2次元X線検出器のX線検出面の中心を通ると共にX線管と2次元X線検出器が対向している状態で保持している撮像系保持部材と、X線管と2次元X線検出器の間に天板が位置する状態で撮像系保持部材を支持すると共に平面視した場合に撮像系保持部材を天板の中心線に対して交差角度θで斜めに交差する向きにすることができる支持基台と、放射コーンおよび2次元X線検出器をX線照射軸を回転中心として回転させる撮像系回転駆動手段と、撮像系保持部材の天板の中心線に対する交差角度θに基づいて放射コーンと2次元X線検出器をX線照射軸を回転中心として同じ向きに同じ角度だけ回転させて撮像系保持部材を天板の中心線に対して交差角度θで斜めに交差する向きにした時に起こる天板の中心線に対する撮像系の向きのズレを解消する制御を撮像系回転駆動手段に対して行なう撮像系回転制御手段とを備えていることを特徴とするX線診断装置。   An X-ray tube for X-ray irradiation, in which a top plate on which the subject is placed, a radiation cone that restricts the radiation X-rays to prepare a non-circular cross-sectional X-ray beam, and is attached to the radiation port; A two-dimensional X-ray detector for X-ray detection for detecting X-rays transmitted through the subject on the top plate in an X-ray detection area corresponding to the cross-sectional shape of the X-ray beam, an X-ray tube, and 2 A state in which the X-ray irradiation axis passing through the focal point of the X-ray tube passes through the center of the X-ray detection surface of the two-dimensional X-ray detector and the X-ray tube and the two-dimensional X-ray detector face each other. The imaging system holding member is supported by the imaging system holding member, and the imaging system holding member is supported when the imaging system holding member is supported in a plan view with the top plate positioned between the X-ray tube and the two-dimensional X-ray detector. Support base that can be oriented obliquely at a crossing angle θ with respect to the center line of the plate, radiation cone, and two-dimensional X-ray detector An imaging system rotation driving means for rotating the X-ray irradiation axis about the rotation center, and an X-ray irradiation axis for rotating the radiation cone and the two-dimensional X-ray detector based on an intersection angle θ with respect to the center line of the imaging system holding member. Rotation of the imaging system with respect to the center line of the top plate that occurs when the imaging system holding member is rotated at the same angle in the same direction as the center so that the imaging system holding member is obliquely intersected with the crossing angle θ with respect to the center line of the top plate An X-ray diagnostic apparatus, comprising: an imaging system rotation control unit that performs control for canceling the imaging system rotation driving unit. 請求項1に記載のX線診断装置において、X線管では放射コーンが放射X線を制限して方形の横断面形状のX線ビームに整えると共に、2次元X線検出器では方形のX線検出エリアが透過X線を検出するX線診断装置。   2. The X-ray diagnostic apparatus according to claim 1, wherein in the X-ray tube, a radiation cone restricts the emitted X-rays to form an X-ray beam having a rectangular cross-sectional shape, and in the two-dimensional X-ray detector, a square X-ray. An X-ray diagnostic apparatus whose detection area detects transmitted X-rays. 請求項1または2に記載のX線診断装置において、X線管が放射コーンの前方にコリメータを有していて、放射コーンとコリメータとによって放射X線が非真円形の横断面形状のX線ビームに整えられると共に、撮像系回転駆動手段がコリメータもX線照射軸を回転中心として回転させるのに加え、撮像系回転制御手段による撮像系回転駆動手段の制御によって、コリメータもX線照射軸を回転中心として放射コーンと同じ向きに同じ角度だけ回転させられるX線診断装置。
3. The X-ray diagnostic apparatus according to claim 1 or 2, wherein the X-ray tube has a collimator in front of the radiation cone, and the radiation X-ray has a non-circular cross-sectional shape with the collimator. The collimator also adjusts the X-ray irradiation axis by controlling the imaging system rotation driving means by the imaging system rotation control means in addition to rotating the collimator around the X-ray irradiation axis as the rotation center. An X-ray diagnostic device that can be rotated by the same angle in the same direction as the radiation cone as the center of rotation.
JP2004150317A 2004-05-20 2004-05-20 X-ray diagnosys apparatus Pending JP2005329033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004150317A JP2005329033A (en) 2004-05-20 2004-05-20 X-ray diagnosys apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004150317A JP2005329033A (en) 2004-05-20 2004-05-20 X-ray diagnosys apparatus

Publications (1)

Publication Number Publication Date
JP2005329033A true JP2005329033A (en) 2005-12-02

Family

ID=35484056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004150317A Pending JP2005329033A (en) 2004-05-20 2004-05-20 X-ray diagnosys apparatus

Country Status (1)

Country Link
JP (1) JP2005329033A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010042089A (en) * 2008-08-11 2010-02-25 Yoshida Dental Mfg Co Ltd X-ray imaging apparatus and signal processing method of the same
JP2013017759A (en) * 2011-07-14 2013-01-31 Shimadzu Corp X-ray equipment
EP3254290A4 (en) * 2015-02-03 2018-06-27 Samsung Electronics Co., Ltd. X-ray apparatus and method of operating the same
CN112754506A (en) * 2019-10-21 2021-05-07 株式会社岛津制作所 X-ray fluoroscopic photographing apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010042089A (en) * 2008-08-11 2010-02-25 Yoshida Dental Mfg Co Ltd X-ray imaging apparatus and signal processing method of the same
JP2013017759A (en) * 2011-07-14 2013-01-31 Shimadzu Corp X-ray equipment
EP3254290A4 (en) * 2015-02-03 2018-06-27 Samsung Electronics Co., Ltd. X-ray apparatus and method of operating the same
US10441242B2 (en) 2015-02-03 2019-10-15 Samsung Electronics Co., Ltd. X-ray apparatus comprising a collimator and method of operating the collimator
CN112754506A (en) * 2019-10-21 2021-05-07 株式会社岛津制作所 X-ray fluoroscopic photographing apparatus

Similar Documents

Publication Publication Date Title
US20070211851A1 (en) X-ray diagnosis apparatus
JP5550355B2 (en) X-ray diagnostic imaging equipment
EP3342349B1 (en) Robotic operating table and hybrid operating system
JP2013128585A (en) X-ray diagnostic apparatus
JP2010082431A (en) X-ray diagnostic imaging apparatus and x-ray apparatus
JP5389443B2 (en) X-ray inspection equipment
CN111432729A (en) X-ray CT imaging device
US11109827B2 (en) X-ray imaging apparatus
JP2005329033A (en) X-ray diagnosys apparatus
JP2002263094A (en) Fluororoentgenograph
JPH08112272A (en) 2-way roentgenography apparatus
JP2006122448A (en) X-ray video apparatus
JP4174598B2 (en) Tomography equipment
JP4562976B2 (en) Method of operating medical X-ray apparatus and medical X-ray apparatus
JP6687036B2 (en) X-ray equipment
JP4325465B2 (en) Radioscopic imaging equipment
WO2014041725A1 (en) Radiography apparatus
JP4016636B2 (en) Arm-mounted X-ray equipment
CN112055562A (en) X-ray CT imaging device and control method for X-ray CT imaging device
JPH09117446A (en) Medical fluoroscope
JP4360266B2 (en) Radiation diagnostic equipment
JP2014023611A (en) Radiographic apparatus, control method, and program
JP6708768B2 (en) Robotic operating table and hybrid operating room
US11229415B2 (en) Radiographic imaging apparatus
JP2009195581A (en) X-ray fluoroscopic photographing apparatus and x-ray fluoroscopic photographing system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091006