JP2005326743A - Zooming lens and information device having photographing function - Google Patents

Zooming lens and information device having photographing function Download PDF

Info

Publication number
JP2005326743A
JP2005326743A JP2004146191A JP2004146191A JP2005326743A JP 2005326743 A JP2005326743 A JP 2005326743A JP 2004146191 A JP2004146191 A JP 2004146191A JP 2004146191 A JP2004146191 A JP 2004146191A JP 2005326743 A JP2005326743 A JP 2005326743A
Authority
JP
Japan
Prior art keywords
lens
lens group
zoom lens
zoom
object side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004146191A
Other languages
Japanese (ja)
Other versions
JP4496009B2 (en
Inventor
Kazuyasu Ohashi
和泰 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2004146191A priority Critical patent/JP4496009B2/en
Priority to US11/064,515 priority patent/US7151638B2/en
Publication of JP2005326743A publication Critical patent/JP2005326743A/en
Application granted granted Critical
Publication of JP4496009B2 publication Critical patent/JP4496009B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1441Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive
    • G02B15/144113Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive arranged +-++

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)
  • Studio Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a zooming lens which has a variable magnification ratio as high as ≥4.5 while having a sufficiently wide angle of view as ≥35° half angle of view in the wide-angle limit, and which has sufficient resolving power even for imaging an object image by a compact size pickup device having a 3- to 5-million pixel range. <P>SOLUTION: The zooming lens comprises, from the object side to the image side, first to third lens groups having positive, negative and positive refractive powers, respectively, and an aperture diaphragm disposed between the second lens group II and the third lens group III. When a scaling is changed from the wide-angle limit to the telescopic limit, the interval between the first and second lens groups is increased and the interval between the second lens group and the third lens group is decreased. In the zooming lens, the ratio Y'<SB>max</SB>/f<SB>w</SB>of the maximum image height Y'<SB>max</SB>to the focal length f<SB>w</SB>of the whole system in the wide-angle limit is in the range of (1): 0.70<Y'<SB>max</SB>/f<SB>w</SB><1.00. The second lens group II comprises three lenses: from the object side to the image side, a negative lens having a surface with a large curvature facing the image side, a positive lens having a surface with a large curvature facing the image side, and a negative lens having a surface with a large curvature facing the object side. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、ズームレンズおよび撮影機能を有する情報装置に関する。撮影機能を有する情報装置は、スチルカメラや電子スチルカメラ、動画撮影機能を持つデジタルカメラやビデオカメラ等のカメラ装置、これらを撮影機能部として有する情報機器、特に携帯情報端末装置として実施できる。   The present invention relates to an information device having a zoom lens and a photographing function. An information device having a photographing function can be implemented as a still camera, an electronic still camera, a camera device such as a digital camera or a video camera having a moving image photographing function, an information device having these as a photographing function unit, particularly a portable information terminal device.

物体像を撮影する機能を持った装置は、従来のスチルカメラから電子スチルカメラ、動画撮影機能を持つデジタルカメラやビデオカメラ、さらには携帯情報端末装置等の各種情報装置へと一般化しつつある。これらの装置に用いられるレンズとしてもズームレンズが一般化し、その変倍域はますます高変倍比化が求められ、また高性能化の要求も強い。   Devices having a function of capturing an object image are becoming common from a conventional still camera to an electronic still camera, a digital camera and a video camera having a moving image shooting function, and various information devices such as a portable information terminal device. As a lens used in these devices, a zoom lens is generalized, and its zooming region is required to have a higher zooming ratio, and there is a strong demand for higher performance.

特に、物体像を撮像素子に結像させるズームレンズの場合、昨今では300万〜500万画素の撮像素子に対応した解像力を全ズーム域にわたって有することが必要であるが、撮像素子のサイズ自体がさらに小型化し、撮像素子の対角寸法は6〜9mm程度が実用化されつつあり、このような小型の撮像素子で300万〜500万画素を実現する場合、画素ピッチは3μm以下となるため一層高度な収差補正が要求される。   In particular, in the case of a zoom lens that forms an object image on an image sensor, it is necessary to have a resolution corresponding to an image sensor with 3 to 5 million pixels over the entire zoom range. Further downsizing, the diagonal size of the image sensor is about 6-9 mm being put into practical use, and when realizing 3 million to 5 million pixels with such a small image sensor, the pixel pitch is 3 μm or less, so that Advanced aberration correction is required.

例えば、画素ピッチを2.5μmとすると、ナイキスト周波数は200本/mmとなり、回折限界も問題となるため、銀塩カメラ用に用いる場合に比して許容できる収差量は相対的にも非常に小さくなる。   For example, if the pixel pitch is 2.5 μm, the Nyquist frequency is 200 lines / mm, and the diffraction limit is also a problem. Get smaller.

また、撮影レンズに対して広画角化の要請も強く、ズームレンズの広角端での半画角は少なくとも35度、できれば38度以上であることが望ましい。半画角:38度は35mm銀塩カメラ(いわゆる「ライカ版」)換算の焦点距離で28mmに相当する。このような広画角化に際しては、歪曲収差や倍率色収差等の軸外収差の発生が大きくなり易く、撮像素子の画素ピッチが小さいことと相まってレンズ設計は非常に難しい。   Further, there is a strong demand for a wide angle of view with respect to the photographing lens, and it is desirable that the half angle of view at the wide angle end of the zoom lens is at least 35 degrees, preferably 38 degrees or more. Half angle of view: 38 degrees corresponds to a focal length of 28 mm in terms of a 35 mm silver salt camera (so-called “Leica version”). In such a wide angle of view, off-axis aberrations such as distortion and lateral chromatic aberration are likely to be generated, and the lens design is very difficult in combination with the small pixel pitch of the image sensor.

変倍比については「35mm銀塩カメラ換算の焦点距離」で28〜135mm相当程度(約4.8倍)のズームレンズであれば、一般的な撮影の殆どをこなすことが可能であると考えられる.
ズームレンズで「高変倍化に適したタイプ」として、物体側より順に、正の屈折力を有する第1レンズ群、負の屈折力を有する第2レンズ群、正の屈折力を有する第3レンズ群を配して成り、第3レンズ群の物体側近傍に開口絞りを有し、広角端から望遠端への変倍に際し、第1レンズ群と第2レンズ群の間隔が大きくなり、第2レンズ群と第3レンズ群の間隔が小さくなるように各群を移動または固定するものが知られている(特許文献1〜3等)。
Regarding the zoom ratio, a zoom lens equivalent to 28 to 135 mm (about 4.8 times) with a “35 mm silver salt camera equivalent focal length” is considered to be able to handle most of the general photography. It is possible.
As a “type suitable for high zoom ratio” as a zoom lens, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens having a positive refractive power The lens unit is arranged, and has an aperture stop in the vicinity of the third lens unit on the object side. When zooming from the wide-angle end to the telephoto end, the distance between the first lens unit and the second lens unit is increased. There are known ones in which each group is moved or fixed so that the distance between the second lens group and the third lens group is small (Patent Documents 1 to 3, etc.).

また、上記構成に加え、第3レンズ群の像側に「正の屈折力を有する第4レンズ群」を有するものも知られている(特許文献4〜7等)。   In addition to the above configuration, there is also known a lens having a “fourth lens group having a positive refractive power” on the image side of the third lens group (Patent Documents 4 to 7, etc.).

これら従来から知られたズームレンズは、3レンズ群構成・4レンズ群構成の何れの場合も変倍比は5倍を超えるものが多いが、広角端の半画角が35度を超えるものはない。「最も広画角の実施例」が開示されている特許文献2でも変倍比が3〜5倍程度で、半画角は25〜34度度程度であり、最も広い半画角:34度を達成した実施例では変倍比が3倍に止まっており、広画角化と高変倍化の両立という点でも、性能に対する近時の要請に十分応えられるものとは言いがたい。   These conventionally known zoom lenses have a zoom ratio of more than 5 times in any of the three-lens group configuration and the four-lens group configuration, but those whose half angle of view at the wide-angle end exceeds 35 degrees. Absent. In Patent Document 2 in which “an embodiment of the widest angle of view” is disclosed, the zoom ratio is about 3 to 5 times, the half angle of view is about 25 to 34 degrees, and the widest half angle of view is 34 degrees. In the embodiment which achieved the above, the zoom ratio is only 3 times, and it is difficult to say that it can sufficiently meet the recent demand for performance in terms of both wide angle of view and high zoom ratio.

特開平11−109236号公報JP-A-11-109236 特開平11−142733号公報JP-A-11-142733 特開平11−242157号公報JP 11-242157 A 特開昭62−024213号公報JP-A-62-024213 特開平03−033710号公報Japanese Patent Laid-Open No. 03-033710 特開2001−56436JP 2001-56436 A 特開平06−094997号公報Japanese Patent Laid-Open No. 06-094997

この発明は、上述した事情に鑑み、広角端の半画角が35度以上と十分に広画角でありながら4.5倍以上の変倍比を有し、300万〜500万画素で小型の撮像素子に物体像を結像させる場合にも十分な解像力を有するズームレンズの実現を課題とする。
この発明はまた、上記ズームレンズを撮影用光学系として有する「撮影機能を有する情報装置」の実現を課題とする。
In view of the above-mentioned circumstances, the present invention has a zoom ratio of 4.5 times or more while the half angle of view at the wide angle end is sufficiently wide as 35 degrees or more, and has a zoom ratio of 4.5 times or more, and is small with 3 to 5 million pixels. An object of the present invention is to realize a zoom lens having sufficient resolving power even when an object image is formed on the image pickup element.
Another object of the present invention is to realize an “information device having a photographing function” having the zoom lens as a photographing optical system.

この発明のズームレンズは「物体側から像側へ向かって、正の屈折力を有する第1レンズ群、負の屈折力を有する第2レンズ群、正の屈折力を有する第3レンズ群を上記順序に有するとともに、第2レンズ群と第3レンズ群との間に開口絞りを有し、広角端から望遠端への変倍に際し、第1レンズ群と第2レンズ群の間隔が大きくなり、第2レンズ群と第3レンズ群の間隔が小さくなるズームレンズ」であって以下のごとき特徴を有する(請求項1)。   According to the zoom lens of the present invention, “from the object side to the image side, the first lens group having a positive refractive power, the second lens group having a negative refractive power, and the third lens group having a positive refractive power are described above. In addition to having an aperture stop between the second lens group and the third lens group, the distance between the first lens group and the second lens group is increased upon zooming from the wide-angle end to the telephoto end. This is a “zoom lens in which the distance between the second lens group and the third lens group is small”, and has the following characteristics (claim 1).

広角端における全系の焦点距離:fWと、最大像高:Y'maxの比:Y'max/fWが、条件:
(1) 0.70 < Y'max/fW < 1.00
の範囲にある。
第2レンズ群は、物体側から像側へ向かって、像側に曲率の大きな面を向けた負レンズ、像側に曲率の大きな凸面を向けた正レンズ、物体側に曲率の大きな凹面を向けた負レンズの3枚のレンズを配して構成される。即ち、第2レンズ群は「物体側の負レンズと像側の負レンズとの間に正レンズが挟まれた構成」である。
The ratio of the focal length of the entire system at the wide angle end: f W and the maximum image height: Y ′ max : Y ′ max / f W is the condition:
(1) 0.70 <Y ' max / f W <1.00
It is in the range.
The second lens group is a negative lens having a large curvature surface facing the image side from the object side to the image side, a positive lens having a convex surface having a large curvature toward the image side, and a concave surface having a large curvature toward the object side. Further, it is configured by arranging three negative lenses. In other words, the second lens group has a “configuration in which a positive lens is sandwiched between a negative lens on the object side and a negative lens on the image side”.

請求項1記載のズームレンズは、第2レンズ群中の「像側の負レンズ」の像側面(第2レンズ群中で最も像側の面)を「光軸から離れるに従って負の屈折力が弱まるような形状の非球面」とし、第2レンズ群中の「像側の負レンズ」の材質の屈折率:N2I、第2レンズ群の「最も像側の非球面における最大光線有効高さの8割」における非球面量:X2I(H0.8)、最大像高:Y'maxが、条件:
(2) 0.0010 < (1−N2I)×X2I(H0.8)/Y'max < 0.0500
を満足することが好ましい(請求項2)。
In the zoom lens according to claim 1, an image side surface (a surface closest to the image side in the second lens group) of the “image side negative lens” in the second lens group has a negative refractive power as the distance from the optical axis increases. Refractive index of the material of the “image side negative lens” in the second lens group: N 2I , “maximum effective ray height on the most aspherical surface on the image side” Of aspherical surface: X 2I (H 0.8 ), maximum image height: Y ′ max , conditions:
(2) 0.0010 <(1−N 2I ) × X 2I (H 0.8 ) / Y ' max <0.0500
Is preferably satisfied (claim 2).

この請求項2記載のズームレンズにおいて、第2レンズ群中の「物体側の負レンズ」の物体側面(第2レンズ群中で最も物体側の面)を非球面とし、第2レンズ群中の「物体側の負レンズ」の材質の屈折率:N20、第2レンズ群中の「像側の負レンズ」の材質の屈折率:N2I、第2レンズ群の「最も物体側の非球面における最大光線有効高さの8割」における非球面量:X20(H0.8)、第2レンズ群の「最も像側の非球面における最大光線有効高さの8割」における非球面量:X2I(H0.8)、最大像高:Y'maxが、条件:
(3) -0.0500 < {(N2O−1)×X2O(H0.8)+(1-N2I)×X2I(H0.8)}/Y'max < 0.1500
を満足することが好ましい(請求項3)。
3. The zoom lens according to claim 2, wherein an object side surface (most object side surface in the second lens group) of the “negative lens on the object side” in the second lens group is an aspherical surface. Refractive index of the material of the “negative lens on the object side”: N 20 , Refractive index of the material of the “negative lens on the image side” in the second lens group: N 2I , “the most aspheric surface on the object side” of the second lens group Aspherical amount at 80% of the maximum effective ray height at X: X 20 (H 0.8 ), aspherical amount at 80% of the maximum effective ray height at the image side aspherical surface of the second lens group: X 2I (H 0.8 ), maximum image height: Y ′ max , conditions:
(3) -0.0500 <{(N 2O −1) × X 2O (H 0.8 ) + (1-N 2I ) × X 2I (H 0.8 )} / Y ′ max <0.1500
Is preferably satisfied (Claim 3).

「非球面量:X(H)」は、非球面の近軸曲率で定義される球面と、実際の非球面との光軸からの高さ:Hにおけるサグ量(デプス)の差であり、物体側から像側に向かう方向を正とする。   “Aspheric amount: X (H)” is the difference between the sag amount (depth) at the height: H from the optical axis between the spherical surface defined by the paraxial curvature of the aspheric surface and the actual aspheric surface. The direction from the object side to the image side is positive.

上記請求項1〜3の任意の1に記載のズームレンズは、第2レンズ群中において物体側から数えて第i番目のレンズの材質の屈折率およびアッベ数:N2iおよびν2iが条件:
(4) 1.75 < N21 < 1.90,35 < ν21 < 50
(5) 1.65 < N22 < 1.90,20 < ν22 < 35
(6) 1.75 < N23 < 1.90,35 < ν23 < 50
を満足することが好ましい(請求項4)。
The zoom lens according to any one of claims 1 to 3, wherein the refractive index and the Abbe number of materials of the i-th lens counted from the object side in the second lens group are N 2i and ν 2i :
(4) 1.75 <N 21 <1.90, 35 <ν 21 <50
(5) 1.65 <N 22 <1.90, 20 <ν 22 <35
(6) 1.75 <N 23 <1.90, 35 <ν 23 <50
Is preferably satisfied (claim 4).

請求項1〜4の任意の1に記載のズームレンズにおいて第2レンズ群を構成する3枚のレンズを「物体側から順に、像側に曲率の大きな面を向けた負レンズ、像側に曲率の大きな凸面を向けた正レンズ、物体側に曲率の大きい凹面を向けた負レンズ」とし、上記正レンズとその像側の負レンズとが接合された構成とすることができる(請求項5)。この場合において、「第2レンズ群における正レンズと負レンズとの接合面」の曲率半径:R2Cと、最大像高:Y'maxとの比:R2C/Y'maxが条件:
(7) -3.5 < (R2C/Y'max) < -1.0
を満足することが好ましい(請求項6)。
勿論、第2レンズ群は、物体側から順に配置される負・正・負のレンズをそれぞれ別個に構成しても良い。
5. The zoom lens according to claim 1, wherein three lenses constituting the second lens group are expressed as “a negative lens having a large curvature surface on the image side and a curvature on the image side in order from the object side”. A positive lens having a large convex surface and a negative lens having a concave surface having a large curvature on the object side ”, and the positive lens and the negative lens on the image side can be cemented. . In this case, the ratio between the radius of curvature of the “joint surface between the positive lens and the negative lens in the second lens group”: R 2C and the maximum image height: Y ′ max is R 2C / Y ′ max.
(7) -3.5 <(R 2C / Y ' max ) <-1.0
Is preferably satisfied (claim 6).
Of course, in the second lens group, negative, positive, and negative lenses arranged in order from the object side may be configured separately.

請求項1〜6の任意の1に記載のズームレンズは、広角端から望遠端への変倍に際し、第1レンズ群が物体側に単調に移動し、広角端における第1,第2レンズ群の間隔:D12W、望遠端における第1,第2レンズ群の間隔:D12T、望遠端における全系の焦点距離:fTが、条件:
(8) 0.50 < (D12T−D12W)/fT < 0.85
を満足することが好ましい(請求項7)。
The zoom lens according to any one of claims 1 to 6, wherein the first lens unit monotonously moves toward the object side upon zooming from the wide-angle end to the telephoto end, and the first and second lens units at the wide-angle end. The distance: D 12W , the distance between the first and second lens units at the telephoto end: D 12T , the focal length of the entire system at the telephoto end: f T , the condition:
(8) 0.50 <(D 12T −D 12W ) / f T <0.85
Is preferably satisfied (claim 7).

請求項1〜7の任意の1に記載のズームレンズはまた、広角端から望遠端への変倍に際し、第3レンズ群が物体側に単調に移動し、広角端における第2,第3レンズ群の間隔:D23W、望遠端における第2,第3レンズ群の間隔:D23T、望遠端における全系の焦点距離:fTが、条件:
(9) 0.25 < (D23W−D23T)/fT < 0.65
を満足する構成とすることが好ましい(請求項8)。
The zoom lens according to any one of claims 1 to 7, wherein the third lens unit monotonously moves toward the object side upon zooming from the wide-angle end to the telephoto end, and the second and third lenses at the wide-angle end. The distance between the groups is D 23W , the distance between the second and third lens groups at the telephoto end is D 23T , and the focal length of the entire system at the telephoto end is f T.
(9) 0.25 <(D 23W −D 23T ) / f T <0.65
It is preferable that the configuration satisfies the above (claim 8).

請求項1〜8の任意の1に記載のズームレンズは、第2レンズ群の焦点距離:f2、第3レンズ群の焦点距離:f3が、条件:
(10) 0.5 < |f2|/f3 < 1.0
を満足することが好ましい。
The zoom lens according to any one of claims 1 to 8, wherein the focal length of the second lens group is f 2 and the focal length of the third lens group is f 3.
(10) 0.5 <| f 2 | / f 3 <1.0
Is preferably satisfied.

請求項1〜9の任意の1に記載のズームレンズは、第1レンズ群の焦点距離;f1、広角端における全系の焦点距離:fWが、条件:
(11) 6.0 < f1/fW < 12.0
を満足することが好ましい(請求項10)。
The zoom lens according to any one of claims 1 to 9, wherein the focal length of the first lens group; f 1 , the focal length of the entire system at the wide angle end: f W is a condition:
(11) 6.0 <f 1 / f W <12.0
Is preferably satisfied (claim 10).

請求項1〜10の任意の1に記載のズームレンズは、上述の如く「物体側から像側へ向かって、正の屈折力を有する第1レンズ群、負の屈折力を有する第2レンズ群、正の屈折力を有する第3レンズ群を上記順序に有する。」が、このような構成として、第1レンズ群ないし第3レンズ群の3レンズ群により構成することができる(請求項11)。   The zoom lens according to any one of claims 1 to 10, wherein, as described above, "from the object side to the image side, the first lens group having a positive refractive power and the second lens group having a negative refractive power". The third lens group having a positive refractive power is provided in the above order. ”As such a configuration, the first lens group to the third lens group can be configured by three lens groups. .

また、請求項1〜10の任意の1に記載のズームレンズにおいて、第3レンズ群の像側に「正の屈折力の第4レンズ群」を配置し、広角端から望遠端への変倍に際し、第1レンズ群と第2レンズ群の間隔が大きくなり、第2レンズ群と第3レンズ群の間隔が小さくなるように、少なくとも第1レンズ群および第3レンズ群が物体側に移動する構成とすることもできる(請求項12)。   The zoom lens according to any one of claims 1 to 10, wherein a "fourth lens unit having a positive refractive power" is disposed on the image side of the third lens unit, and zooming from the wide-angle end to the telephoto end. At this time, at least the first lens group and the third lens group move to the object side so that the distance between the first lens group and the second lens group is increased and the distance between the second lens group and the third lens group is decreased. A configuration may also be adopted (claim 12).

上記請求項11の3レンズ群構成や請求項12の4レンズ群構成の場合において、さらにこれらの群の像側に「弱い負のパワーを持った固定レンズ」を挿入するなどしても良い。即ち、請求項1〜10に記載のズームレンズの場合、第3レンズの像側にさらにレンズ群を付加する自由度を有する。   In the case of the three-lens group configuration of claim 11 or the four-lens group configuration of claim 12, a “fixed lens having weak negative power” may be further inserted on the image side of these groups. That is, the zoom lens according to any one of claims 1 to 10 has a degree of freedom to further add a lens group to the image side of the third lens.

請求項12記載のズームレンズは「第4レンズ群が、変倍の際に移動しない」構成とすることもできるし(請求項13)、広角端から望遠端への変倍に際し「第4レンズ群が像側へ変位する」構成とすることもできる(請求項14)。   The zoom lens according to a twelfth aspect may be configured such that the fourth lens group does not move during zooming (Claim 13), or the fourth lens group when zooming from the wide angle end to the telephoto end. A configuration in which the group is displaced toward the image side can also be adopted.

請求項1〜14の任意の1に記載のズームレンズは、第2レンズ群と第3レンズ群との間に開口絞りを有するが、広角端から望遠端への変倍に際し、開口絞りと第3レンズ群との間隔が「広角端で最も広く、望遠端で最も狭くなる」ように構成することができる(請求項15)。   The zoom lens according to any one of claims 1 to 14 has an aperture stop between the second lens group and the third lens group, and the aperture stop and the second lens unit at the time of zooming from the wide-angle end to the telephoto end. It is possible to configure such that the distance from the three lens groups is “widest at the wide-angle end and narrowest at the telephoto end”.

請求項1〜15の任意の1に記載のズームレンズにおける「開口絞りの開放径」は、変倍に係わらず一定とすることもできるし(請求項16)、開口絞りの開放径を倍率により変化するようにし、「長焦点端における開放径を短焦点端における開放径に比して大きく設定」することができる(請求項17)。   The “aperture diameter of the aperture stop” in the zoom lens according to any one of claims 1 to 15 can be constant regardless of the magnification (Claim 16), or the aperture diameter of the aperture stop can be changed according to the magnification. In other words, the opening diameter at the long focal end can be set larger than the opening diameter at the short focal end.

この発明の撮影機能を有する情報装置は、上記請求項1〜17の任意の1に記載のズームレンズを「撮影用光学系として有する」ことを特徴とする(請求項18)。この情報装置は勿論、通常の銀塩スチルカメラとして実施することができる。   An information apparatus having a photographing function according to the present invention is characterized in that the zoom lens according to any one of claims 1 to 17 "has as a photographing optical system" (claim 18). This information device can of course be implemented as a normal silver salt still camera.

請求項18記載の情報装置は「ズームレンズによる物体像が、撮像素子の受光面上に結像される」構成とすることができる(請求項19)。このような情報装置は、電子スチルカメラや動画撮影機能を持つデジタルカメラ、ビデオカメラ等として実施できる。
請求項19記載の情報装置は「対角寸法:9mm以下であり、画素数が300万画素以上の撮像素子」を用いる構成とすることができる(請求項20)。このような撮像素子は、例えば、対角寸法:9mmで500万画素のものや、対角寸法:6mmで300万画素のもの等である。請求項19または20記載の情報装置は「携帯情報端末装置」として構成することができる(請求項21)。
The information device according to claim 18 may be configured such that “the object image by the zoom lens is formed on the light receiving surface of the image sensor” (claim 19). Such an information device can be implemented as an electronic still camera, a digital camera having a video shooting function, a video camera, or the like.
The information device according to claim 19 may be configured to use “an imaging element having a diagonal size of 9 mm or less and a number of pixels of 3 million pixels or more” (claim 20). Such an image sensor has, for example, a diagonal dimension of 9 mm and 5 million pixels, a diagonal dimension of 6 mm and 3 million pixels. The information device according to claim 19 or 20 can be configured as a “portable information terminal device” (claim 21).

物体側から順に正・負・正の3レンズ群を有するズームレンズでは一般に、第2レンズ群が「主要な変倍作用を負担するレンズ群(所謂バリエータ)」として構成されるので、第2レンズ群の構成が重要である。特に上に例示したような「対角寸法:6mm〜9mmで300万〜500万画素」の小型の撮像素子を用いる「撮影機能を持つ情報装置」では、撮像素子の画素ピッチが小さいため高度な収差補正が要求され、軸外収差の補正が困難であるところから、第2レンズ群の構成には従来にない工夫が必要となる。   In a zoom lens having three lens groups of positive, negative, and positive in order from the object side, the second lens group is generally configured as a “lens group that bears a main zooming action (so-called variator)”. The composition of the group is important. In particular, in the “information device having a photographing function” using a small image pickup device of “diagonal dimension: 6 to 9 mm and 3 to 5 million pixels” as exemplified above, the pixel pitch of the image pickup device is small, so Since aberration correction is required and it is difficult to correct off-axis aberrations, the second lens group requires some unconventional ideas.

従来、正・負・正の3レンズ群構成のズームレンズで、第2レンズ群を3枚のレンズで構成するものでは、その殆ど全てが、第2レンズ群を「物体側から順に、像側に曲率の大きな面を向けた負レンズ、像側に凹面を向けた負レンズ、物体側に凸面を向けた正レンズの3枚を配置した構成」としている。このような第2レンズ群の構成は、上記の如き小型の撮像素子を用い、広角端の半画角が35度を超えるようなズームレンズの実現には最適な構成と言えない。   Conventionally, a zoom lens having a positive, negative, and positive three-lens group configuration, in which the second lens unit is configured by three lenses, almost all of the second lens unit is arranged in order from the object side to the image side. In other words, a negative lens having a large curvature surface, a negative lens having a concave surface on the image side, and a positive lens having a convex surface on the object side are arranged. Such a configuration of the second lens group cannot be said to be an optimal configuration for realizing a zoom lens using a small image sensor as described above and having a half angle of view at the wide angle end exceeding 35 degrees.

また、第2レンズ群を「物体側から順に、像側に曲率の大きな面を向けた負レンズ、負レンズ、正レンズ、負レンズの4枚のレンズを配置する構成」とするものも知られているが、レンズ枚数の増加させると第2レンズ群が厚くなり、収納時の全長が大きくなってコンパクト化を阻害し、コストアップの要因ともなる。   In addition, there is also known a configuration in which the second lens group is “a configuration in which four lenses of a negative lens, a negative lens, a positive lens, and a negative lens with a surface having a large curvature facing the image side are arranged in order from the object side”. However, if the number of lenses is increased, the second lens group becomes thick, the total length during storage becomes large, and compactness is hindered, resulting in an increase in cost.

この発明は、第2レンズ群を「構成枚数:3枚というレンズ枚数の制限」の下で、上述の如き小型の撮像素子の使用に適し、広角端の半画角が35度を超えるようなズームレンズを実現するのに適した「第2レンズ群の構成」を提示するものである。
即ち、この発明のズームレンズにおける第2レンズ群は、上記の如く「物体側から順に、像側に曲率の大きな面を向けた負レンズ、像側に曲率の大きな凸面を向けた正レンズ、物体側に曲率の大きな凹面を向けた負レンズ」の3枚で構成される。
In the present invention, the second lens group is suitable for use with a small-sized image sensor as described above under the “limit of the number of lenses: 3”, and the half angle of view at the wide angle end exceeds 35 degrees. This presents a “configuration of the second lens group” suitable for realizing a zoom lens.
That is, the second lens group in the zoom lens according to the present invention includes, as described above, “a negative lens having a large curvature surface facing the image side, a positive lens having a convex surface having a large curvature facing the image side, It is composed of three negative lenses having a concave surface with a large curvature on the side.

この発明のズームレンズが満足する条件(1)のパラメータ:Y'max/fWが0.70以下であると、歪曲収差を十分に補正した状態では、広角端において半画角:35度以上の広角化を実現できない。パラメータ:Y'max/fWが1.00以上であると、広角端における軸外収差の補正が極めて困難となり、また、第1レンズ群が大型化してズームレンズのコンパクト化、延いては撮影機能を持つ情報装置のコンパクト化が困難となる。 Condition (1) that the zoom lens of the present invention satisfies: When Y ′ max / f W is 0.70 or less, the half angle of view is 35 degrees or more at the wide-angle end when distortion is sufficiently corrected. Can not be realized. Parameter: When Y ′ max / f W is 1.00 or more, it is extremely difficult to correct off-axis aberrations at the wide-angle end, and the first lens group is enlarged to make the zoom lens more compact, and thus photography. It becomes difficult to downsize an information device having a function.

条件(1)を満足した状態で、第2レンズ群を、上記の如く、物体側から順に、像側に曲率の大きな面を向けた負レンズ、像側に曲率の大きな凸面を向けた正レンズ、物体側に曲率の大きな凹面を向けた負レンズの3枚で構成すると、広角端における軸外収差、特に倍率色収差を良好に補正することが可能となる。   In the state where the condition (1) is satisfied, the second lens group is arranged in order from the object side, as described above, with a negative lens having a large curvature surface on the image side and a positive lens having a convex surface having a large curvature on the image side. If the lens is composed of three negative lenses having a concave surface having a large curvature on the object side, off-axis aberrations at the wide-angle end, particularly chromatic aberration of magnification, can be favorably corrected.

この構成における重要なポイントは、第2レンズ群における「物体側から2番目の正レンズの像側面」と「物体側から3番目の負レンズの物体側面」を共に「像側に凸の形状」としたことにある。このような構成では、広角端付近の軸外光束が一般に「当該面に大きな入射角」で入射するため、当該面の曲率半径を微小変化させても、軸外収差を大きく変化させることができる。このため「第2レンズ群の他の面や他のレンズ群において相殺させるべき軸外収差」を、それら他の面や他のレンズ群の補正能力に応じ、当該面(上記の「像側に凸の形状の面」)において高い自由度で発生させることができ、従来の第2レンズ群構成よりも高いレベルの収差補正が可能となる。   An important point in this configuration is that both the “image side surface of the second positive lens from the object side” and the “object side surface of the third negative lens from the object side” in the second lens group are both “convex shape on the image side”. It is in that. In such a configuration, the off-axis light beam near the wide-angle end is generally incident at “a large incident angle on the surface”, so that the off-axis aberration can be greatly changed even if the curvature radius of the surface is slightly changed. . For this reason, the “off-axis aberration to be canceled in the other surface of the second lens group and the other lens group” is determined according to the correction capability of the other surface and the other lens group. It can be generated with a high degree of freedom in the “convex shaped surface”), and a higher level of aberration correction than in the conventional second lens group configuration is possible.

第2レンズ群を、従来から知られた「像側に曲率の大きな面を向けた負レンズ、像側に凹面を向けた負レンズ、物体側に凸面を向けた正レンズの3枚」で構成すると、物体側から2番目の負レンズの像側面と、物体側から3番目の正レンズの物体側面が共に「物体側に凸の形状」を有することになり、このような構成では、広角化に際して「軸外光束の光軸に対する角度」が大きくなった場合、軸外光束のこれらの面(物体側に凸の面)への入射角が小さくなり、発生する収差量の「変化させうるレンジ」が狭く限られてしまうため、軸外収差の補正に十分な効果を得ることができない。   The second lens group consists of the three known lenses: a negative lens with a large curvature on the image side, a negative lens with a concave surface on the image side, and a positive lens with a convex surface on the object side Then, the image side surface of the second negative lens from the object side and the object side surface of the third positive lens from the object side both have a “convex shape on the object side”. When the “angle of the off-axis light beam with respect to the optical axis” increases, the incident angle of the off-axis light beam on these surfaces (surfaces convex toward the object side) decreases, and the “variable range of the amount of aberration to be generated” ”Is limited to a narrow range, and a sufficient effect for correcting off-axis aberration cannot be obtained.

この発明のズームレンズにおいて「より良好な収差補正」を実現するためには、請求項2に記載されたように、第2レンズ群の最も像側に配設される負レンズの像側面が「光軸から離れるに従って負の屈折力が弱まるような形状の非球面」であることが望ましく、この非球面が条件(2)を満足することが望ましい。   In order to realize “better aberration correction” in the zoom lens according to the present invention, as described in claim 2, the image side surface of the negative lens disposed closest to the image side of the second lens group is “ It is desirable that the aspherical surface has a shape in which the negative refractive power decreases as the distance from the optical axis increases. It is desirable that this aspherical surface satisfies the condition (2).

条件(2)のパラメータ:(1−N2I)×X2I(H0.8)が0.0010以下、または、0.0500以上であると、歪曲収差と非点収差・コマ収差をバランス良く補正できず、特に広角端において「より高い結像性能」を確保する上で妨げとなる。 Condition (2) parameters: If (1−N 2I ) × X 2I (H 0.8 ) is 0.0010 or less, or 0.0500 or more, distortion, astigmatism and coma can be corrected in a well-balanced manner. In particular, this is an obstacle to ensuring “higher imaging performance” at the wide-angle end.

広角端における歪曲収差をより良好に補正するためには、請求項3に記載されたように、第2レンズ群の「像側に配設される負レンズ」の像側面に加え、第2レンズ群の「物体側に配設される負レンズ」の物体側面を非球面し、この非球面が条件(3)を満足することが望ましい。   In order to better correct distortion at the wide-angle end, as described in claim 3, in addition to the image side surface of the “negative lens disposed on the image side” of the second lens group, the second lens It is desirable that the object side surface of the “negative lens disposed on the object side” of the group is aspheric, and this aspherical surface satisfies the condition (3).

条件(3)のパラメータ:{(N2O−1)×X2O(H0.8)+(1−N2I)×X2I(H0.8)}/Y'maxが−0.0500以下であると、広角端における歪曲収差が「補正不足」となるか「変曲点を持つ不自然な形」となって好ましくない。上記パラメータが0.1500以上になると、歪曲収差が補正過剰となるばかりか、他の軸外収差を良好に補正することも難しくなる.
上記非球面の非球面量は「その絶対値が光軸からレンズ外周部へ向かって単調に増加する」ことを想定しており「最大光線有効高さの8割」の位置において、条件(2)および/または(3)が満足されれば、小型の撮像素子の受光領域内において良好な性能を実現することができる。
Condition (3) parameters: {(N 2 O −1) × X 2 O (H 0.8 ) + (1−N 2 I ) × X 2I (H 0.8 )} / Y ′ max is −0.0500 or less, This is not preferable because the distortion at the wide-angle end is “undercorrected” or “unnatural with an inflection point”. If the above parameter is 0.1500 or more, not only will distortion be overcorrected, but it will also be difficult to satisfactorily correct other off-axis aberrations.
The aspheric amount of the aspheric surface is assumed to be “the absolute value increases monotonously from the optical axis toward the lens outer peripheral portion”, and at the position “80% of the maximum effective ray height”, the condition (2 If (3) and / or (3) is satisfied, good performance can be realized in the light receiving region of the small image sensor.

また、条件(4)〜(6)を満足する硝種を選択することにより「色収差のより良好な補正」が可能となる。   Further, by selecting a glass type that satisfies the conditions (4) to (6), “better correction of chromatic aberration” becomes possible.

請求項5記載のズームレンズのように、第2レンズ群中で互いに大きく収差を発生する「物体側から2番目の正レンズと3番目の負レンズ」を接合することにより、偏心等の製造誤差による性能劣化が生じ難くなるほか、間隔環が不要となり、組み付け時の工数を低減できる等の効果が得られる。このとき接合面は条件(7)を満足することが好ましい。   6. A manufacturing error such as decentration by joining a “second positive lens and a third negative lens from the object side” that cause large aberrations in the second lens group as in the zoom lens according to claim 5. As a result, it is difficult to cause performance deterioration due to, and an interval ring is not required, so that the number of man-hours during assembly can be reduced. At this time, it is preferable that the joint surface satisfies the condition (7).

条件(7)のパラメータ:(R2C/Y'max)が−3.5以下となると、接合面の曲率が緩くなって「接合面で収差を発生させる自由度」が小さくなり、−1.0以上になると接合面の曲率が強くなりすぎて「発生する軸外収差が過剰」となり、第2レンズ群の他の面や他のレンズ群での収差の相殺が困難となる。 When the parameter of condition (7): (R 2C / Y ′ max ) is −3.5 or less, the curvature of the joint surface becomes loose and the “degree of freedom to generate aberration at the joint surface” becomes small, and −1. If it is 0 or more, the curvature of the cemented surface becomes too strong, and the “off-axis aberration that occurs” becomes excessive, and it becomes difficult to cancel out aberrations on the other surfaces of the second lens group and the other lens groups.

この発明のズームレンズにおいて「より高い変倍化」を達成するためには、広角端から望遠端への変倍に際して「第3レンズ群を物体側へ移動させることにより、第3レンズ群にも変倍作用を分担」させ、第2レンズ群の負担を軽くして収差補正の自由度を確保するのが良く、また、広角端から望遠端への変倍に際して「第1レンズ群を物体側へ移動させる」ことにより、広角端において「第1レンズ群を通過する光線高さ」を低くして、広角化に伴う第1レンズ群の大型化を抑制できるとともに、望遠端では第1レンズ群と第2レンズ群の間隔を大きく確保して長焦点化を達成できる。   In order to achieve “higher zooming ratio” in the zoom lens of the present invention, when zooming from the wide-angle end to the telephoto end, “by moving the third lens unit to the object side, It is better to share the zooming action "and lighten the burden on the second lens group to ensure the degree of freedom of aberration correction. Also, when zooming from the wide angle end to the telephoto end, By moving the lens to the wide-angle end, the height of the light beam passing through the first lens unit can be reduced at the wide-angle end, and the enlargement of the first lens unit accompanying the wide-angle can be suppressed. A long focal length can be achieved by ensuring a large distance between the second lens group and the second lens group.

この場合、条件(8)のパラメータ:(D12T−D12W)/fTを0.50以下とすると「第2レンズ群の変倍への寄与」が小さくなり、第3レンズ群の変倍への負担が増加するか「第1・第2レンズ群の屈折力」を強めなければならなくなり、何れにせよ「各種収差の悪化」を招く。また、広角端におけるレンズ全長が長くなり、第1レンズ群を通過する光線高さが増加して「第1レンズ群の大型化」を招来する。 In this case, if the parameter (8): (D 12T −D 12W ) / f T is 0.50 or less, the “contribution to the zooming of the second lens group” becomes small, and the zooming of the third lens group. Or the “refractive power of the first and second lens groups” must be increased, and in any case, “deterioration of various aberrations” is caused. In addition, the total lens length at the wide-angle end is increased, and the height of light passing through the first lens group is increased, leading to “upsizing of the first lens group”.

パラメータ:(D12T−D12W)/fTを0.85以上とすると「広角端での全長」が短くなりすぎるか、望遠端での全長が長くなりすぎる。広角端での全長が短くなりすぎると「第3レンズ群の移動スペース」が限定され、第3レンズ群の変倍への寄与が小さくなって全体の収差補正が困難となる。望遠端での全長が長くなりすぎると「全長方向の小型化」の妨げになるのみならず、望遠端での周辺光量確保のために径方向が大型化したり、鏡胴の倒れ等の製作誤差による像性能の劣化も招来し易くなる。 Parameter: (D 12T −D 12W ) / f When T is set to 0.85 or more, the “total length at the wide angle end” becomes too short, or the total length at the telephoto end becomes too long. If the total length at the wide-angle end is too short, the “moving space of the third lens group” is limited, and the contribution of the third lens group to the zooming is reduced, making it difficult to correct the entire aberration. If the total length at the telephoto end becomes too long, it will not only hinder "downsizing in the total length direction", but also the manufacturing error such as the radial direction will be enlarged to secure the peripheral light quantity at the telephoto end, or the lens barrel will fall down. Degradation of image performance due to the image is likely to be caused.

上記パラメータ:(D12T−D12W)/fTは、より好ましくは、条件:
(8A) 0.60 < (D12T−D12W)/fT < 0.75
を満足するのがよい。
The parameter: (D 12T −D 12W ) / f T is more preferably the condition:
(8A) 0.60 <(D 12T −D 12W ) / f T <0.75
It is good to satisfy.

一方、第2レンズ群と第3レンズ群との間隔の変化を規制する条件(9)のパラメータ:(D23W−D23T)/fTを0.25以下とすると、第3レンズ群の変倍への寄与が小さくなって第2ンズ群の変倍への負担が増加するか、第3レンズ群自体の屈折力を強めなければならなくなり、何れにせよ各種収差の悪化を招く。上記パラメータを0.65以上とすると「広角端におけるレンズ全長」が長くなって第1レンズ群を通過する光線高さが増加し、第1レンズ群の大型化を招来する。 On the other hand, when the parameter (9): (D 23W −D 23T ) / f T that regulates the change in the distance between the second lens group and the third lens group is 0.25 or less, the third lens group changes. The contribution to the magnification is reduced and the burden on the second lens group for changing the magnification is increased, or the refractive power of the third lens group itself must be increased, and in any case, various aberrations are deteriorated. If the parameter is 0.65 or more, the “lens total length at the wide-angle end” becomes longer, and the height of the light beam passing through the first lens group increases, leading to an increase in size of the first lens group.

上記パラメータ:(D23W−D23T)/fTは、より好ましくは、条件:
(9A) 0.30 < (D23W−D23T)/fT < 0.60
を満足することが好ましい。
The parameter: (D 23W −D 23T ) / f T is more preferably the condition:
(9A) 0.30 <(D 23W −D 23T ) / f T <0.60
Is preferably satisfied.

収差補正に関しては、さらに、条件(10)や条件(11)を満足するのがよく、条件(10)のパラメータ:|f2|/f3を0.5以下とすると、第2レンズ群の屈折力が強くなり過ぎ、逆に1.0以上とすると第3レンズ群の屈折力が強くなり過ぎ、何れにせよ「変倍に際する収差変動」が大きくなり易くなる。 As for aberration correction, it is preferable that the conditions (10) and (11) are satisfied. If the parameter (| f 2 | / f 3 ) of the condition (10) is 0.5 or less, the second lens group If the refractive power is too strong, on the other hand, if it is 1.0 or more, the refractive power of the third lens group becomes too strong, and in any case, “aberration fluctuation during zooming” tends to increase.

条件(11)のパラメータ:f1/fWを6.0以下にすると「第2レンズ群の結像倍率が等倍に近付いて変倍効率が上がり、高変倍化には有利」であるが、第1レンズ群の各レンズに大きな屈折力が必要になり、特に望遠端での色収差が悪化する等の弊害があり、また、第1レンズ群が厚肉化・大口径化し、特に収納状態での小型化にとって不利となる。逆に、パラメータ:f1/fWを12.0以上にすると、第2レンズ群の変倍への寄与が小さくなって高変倍化が難しくなる。 Parameter (11): When f 1 / f W is 6.0 or less, “the imaging magnification of the second lens unit approaches the same magnification and the zooming efficiency is improved, which is advantageous for high zooming”. However, each lens of the first lens group requires a large refractive power, and there is a detrimental effect such as deterioration of chromatic aberration particularly at the telephoto end. Also, the first lens group becomes thicker and larger in diameter, and is particularly housed. It is disadvantageous for miniaturization in the state. Conversely, if the parameter f 1 / f W is set to 12.0 or more, the contribution of the second lens group to the zooming becomes small, and it becomes difficult to achieve high zooming.

請求項15記載の場合のように、開口絞りを隣接するレンズ群とは独立に移動して「開口絞りと第3レンズ群との間隔」を、広角端で最も広くすることにより、広角端において開口絞りを第1レンズ群に近づけ、「第1レンズ群を通過する光線高さ」をより低くすることが可能となって第1レンズ群のさらなる小型化を達成できる。   As in the case of claim 15, the aperture stop is moved independently of the adjacent lens group so that the “interval between the aperture stop and the third lens group” is widest at the wide-angle end, so that at the wide-angle end. The aperture stop can be brought closer to the first lens group, and the “height of the light beam passing through the first lens group” can be made lower, so that further miniaturization of the first lens group can be achieved.

以下、ズームレンズの小型化を妨げない範囲で「より良好な収差補正」を行うための条件を説明する。
第1レンズ群は物体側から「少なくとも1枚の負レンズと、少なくとも1枚の正レンズを有する構成」であることが好ましい。より具体的には「物体側から順に、物体側に凸面を向けた負メニスカスレンズ、物体側に強い凸面を向けた正レンズの2枚」で構成するか、または「物体側から順に、物体側に凸面を向けた負メニスカスレンズ、物体側に強い凸面を向けた正レンズ、物体側に強い凸面を向けた正レンズの3枚」で構成するのが良い。
Hereinafter, conditions for performing “better aberration correction” within a range that does not hinder downsizing of the zoom lens will be described.
The first lens group is preferably “a configuration having at least one negative lens and at least one positive lens” from the object side. More specifically, it is composed of “a negative meniscus lens having a convex surface facing the object side in order from the object side and a positive lens having a strong convex surface facing the object side” or “object side in order from the object side” And a negative meniscus lens having a convex surface facing the surface, a positive lens having a strong convex surface facing the object side, and a positive lens having a strong convex surface facing the object side.

全系を「正・負・正の3レンズ群のみ」で構成する場合(請求項11)、第3レンズ群は「物体側から順に、正レンズ・正レンズ・負レンズ・正レンズの4枚」で構成することが好ましい。ここで、物体側から2番目のレンズと3番目のレンズは適宜接合しても良い。また、全系を「正・負・正・正の4レンズ群」で構成する場合、第3レンズ群は「物体側から順に、正レンズ・正レンズ・負レンズの3枚」で構成することが好ましい。この場合、物体側から2番目のレンズと3番目のレンズは適宜接合しても良い。   When the entire system is composed of “only three lenses of positive, negative, and positive” (Claim 11), the third lens group is “four lenses of positive lens, positive lens, negative lens, and positive lens in order from the object side”. Is preferable. Here, the second lens and the third lens from the object side may be appropriately joined. In addition, when the entire system is composed of “four lens groups of positive, negative, positive, and positive”, the third lens group is composed of “three lenses of a positive lens, a positive lens, and a negative lens in order from the object side”. Is preferred. In this case, the second lens and the third lens from the object side may be appropriately joined.

全系を正・負・正・正の4レンズ群で構成する場合、第4レンズ群は正レンズ1枚で構成することが好ましい。また「有限距離へのフォーカシング」の際には、第4レンズ群のみを移動させる方法が「移動させるべき物体の重量」が最も小さくて良い。第4レンズ群は変倍に際する移動量が小さく、変倍のための移動機構とフォーカシングのための移動機構を兼用できるメリットもある。   In the case where the entire system is configured with four positive, negative, positive, and positive lens groups, the fourth lens group is preferably configured with one positive lens. In “focusing to a finite distance”, the method of moving only the fourth lens group may have the smallest “weight of an object to be moved”. The fourth lens group has a small movement amount at the time of zooming, and there is an advantage that a moving mechanism for zooming can be used as a moving mechanism for focusing.

良好な収差補正を保ちながらより小型化を進めるためには非球面が不可欠であるが、第2レンズ群以外では、少なくとも第3レンズ群に1面以上の非球面を有することが好ましい。第3レンズ群内の非球面は、主として球面収差・コマ収差の補正に効果的である。   An aspherical surface is indispensable for further downsizing while maintaining good aberration correction, but it is preferable that at least the third lens unit has at least one aspherical surface other than the second lens unit. The aspherical surface in the third lens group is mainly effective for correcting spherical aberration and coma aberration.

非球面レンズとしては、光学ガラスや光学プラスチックを成型したもの(ガラスモールド非球面、プラスチックモールド非球面)や「ガラスレンズの面上に薄い樹脂層を成型し、その表面を非球面としたもの(ハイブリッド非球面、レプリカ非球面等と称される)」等を使用できる.
第2レンズ群の最も像側にガラスモールド非球面レンズを採用することを考えた場合、第2レンズ群の最も像側のレンズが正レンズであると、色収差補正のためには重フリント系の硝種が必要となるが、重フリント系の硝種にはモールドに適したものが少ないという不具合がある。この発明におけるように「第2レンズ群の最も像側のレンズ」が負レンズであると、色収差補正のためにはランタンクラウン系〜タンタルフリント系の硝種となりモールドに適した硝種が多い。
As an aspherical lens, optical glass or optical plastic molded (glass molded aspherical surface, plastic molded aspherical surface) or “a thin resin layer molded on the surface of the glass lens and the surface aspherical ( Hybrid aspherical surface, replica aspherical surface, etc.) ”can be used.
Considering the adoption of a glass mold aspherical lens on the most image side of the second lens group, if the lens on the most image side of the second lens group is a positive lens, a heavy flint system is used for chromatic aberration correction. Glass type is required, but there is a problem that few glass types of heavy flint type are suitable for molding. If the “lens closest to the image side of the second lens group” is a negative lens as in the present invention, a lanthanum crown type to tantalum flint type glass type is used for chromatic aberration correction, and many glass types are suitable for the mold.

また、「第2レンズ群の最も像側の面(像側の負レンズの像側面)」にハイブリッド非球面を採用することを考えた場合、樹脂層を成型するための金型を当て付ける都合上、やや大きなレンズ外径が必要となるが、第2レンズ群の最も像側のレンズが正レンズであるとレンズコバ厚が小さくなって加工できなくなる恐れがある。この発明のように、第2レンズ群の最も像側のレンズが負レンズであると、コバ厚は大きくなる方向であるため加工上の問題は生じない。   In addition, when considering using a hybrid aspherical surface for the “most image side surface of the second lens group (image side surface of the negative lens on the image side)”, it is convenient to apply a mold for molding the resin layer. In addition, a slightly larger lens outer diameter is required, but if the lens closest to the image side of the second lens group is a positive lens, the lens edge thickness may be reduced and processing may not be possible. If the lens on the most image side of the second lens group is a negative lens as in the present invention, the edge thickness is in the increasing direction, so that no processing problems occur.

請求項16に記載のように「絞りの開放径を変倍に係わらず一定とする」と、機構上簡略となって良い。また、請求項17記載のように、長焦点端の開放径を短焦点端に比べて大きくすることにより「変倍に伴うFナンバの変化」を小さくすることもできる。   According to the sixteenth aspect of the present invention, it may be simplified in terms of the mechanism that “the opening diameter of the aperture is made constant regardless of zooming”. Further, as described in claim 17, “change in F number due to zooming” can be reduced by increasing the open diameter of the long focal end compared to the short focal end.

「像面に到達する光量を減少させる必要」がある場合は、絞りを小径化しても良いが、絞り径を大きく変えることなく「NDフィルタ等の挿入」により光量を減少させた方が、回折現象による解像力の低下を防止できて好ましい。   If there is a need to reduce the amount of light reaching the image plane, the aperture may be made smaller. However, if the amount of light is reduced by "inserting an ND filter" without greatly changing the aperture diameter, diffraction is reduced. It is preferable because a reduction in resolution due to a phenomenon can be prevented.

上に説明したように、この発明により新規なズームレンズを実現できる。
このズームレンズは、実施例に示すように、広角端の半画角が35度以上と十分に広画角でありながら4.5倍以上の変倍比を有し、小型でかつ300万〜500万画素の撮像素子に対応した解像力を有する。従って、このようなズームレンズを撮影用光学系として用いることにより、良好な撮影機能を有する情報装置(デジタルカメラやビデオカメラ、携帯情報端末装置)を実現できる。勿論、この発明のズームレンズは銀塩スチルカメラ等に使用しても良好な性能を発揮する。
As explained above, a novel zoom lens can be realized by the present invention.
As shown in the examples, this zoom lens has a zoom ratio of 4.5 times or more while having a sufficiently wide angle of view at a wide angle end of 35 degrees or more, and is small in size and 3 million to Resolving power corresponding to an image sensor with 5 million pixels. Therefore, by using such a zoom lens as a photographing optical system, an information device (digital camera, video camera, portable information terminal device) having a good photographing function can be realized. Of course, the zoom lens of the present invention exhibits good performance even when used in a silver salt still camera or the like.

図17および図18を参照して、携帯情報端末装置としての「撮影機能をもった情報装置」の実施の形態を説明する。
図17の(a)、(b)は正面側と上部面とを示す図、(c)は背面側を示す図である。カメラ装置30は、撮影レンズ31として、上に説明した請求項1〜17の任意の1に記載のズームレンズ(より具体的には、例えば、後述の実施例1〜4の適宜のもの)を「撮影用のズームレンズ」として有する。
With reference to FIGS. 17 and 18, an embodiment of an “information device having a photographing function” as a portable information terminal device will be described.
17A and 17B are views showing the front side and the upper surface, and FIG. 17C is a view showing the back side. The camera device 30 includes the zoom lens according to any one of claims 1 to 17 described above (more specifically, for example, an appropriate one in Examples 1 to 4 described later) as the photographic lens 31. It has as a “zoom lens for photographing”.

図17(a)において、符号32はフラッシュ、符号33はファインダを示す。ズームレバー34とシャッタボタン35は、本体の上面側に配置されている。図17(b)は撮影レンズ31の使用状態を示す図である。   In FIG. 17A, reference numeral 32 denotes a flash, and reference numeral 33 denotes a finder. The zoom lever 34 and the shutter button 35 are disposed on the upper surface side of the main body. FIG. 17B is a diagram illustrating a usage state of the photographic lens 31.

撮影レンズ31は、使用されないときは、図17(a)に示すように、情報装置本体に「沈胴式」に収納される。後述するズームレンズの各実施例とも、レンズ枚数が9〜10枚と少なく、第2群の厚さも小さいので、沈胴式に収納すると薄い情報装置本体内に収納できる。   When the photographing lens 31 is not used, it is housed in a “collapsed type” in the information device main body as shown in FIG. In each of the embodiments of the zoom lens described later, the number of lenses is as small as 9 to 10 and the thickness of the second group is small.

図17(c)に示すように、電源スイッチ36、操作ボタン37、液晶モニタ38は情報装置本体の背面側に配置され、通信カード用スロット39Aと、メモリカードスロット39Bは、本体の側面に配置されている。   As shown in FIG. 17C, the power switch 36, the operation button 37, and the liquid crystal monitor 38 are arranged on the back side of the information device main body, and the communication card slot 39A and the memory card slot 39B are arranged on the side surface of the main body. Has been.

図18は、情報装置の「システム構造」を示す図である。情報装置30は「携帯情報端末装置」である。図18に示すように、情報装置30は、撮影レンズ31と受光素子(エリアセンサ)45を有し、撮影レンズ31によって形成される撮影対象物の像を受光素子45によって読取るように構成され、受光素子45からの出力は中央演算装置40の制御を受ける信号処理装置42によって処理されてデジタル情報に変換される。即ち、情報装置30は「撮影画像をデジタル情報とする機能」を有している。   FIG. 18 is a diagram illustrating a “system structure” of the information device. The information device 30 is a “portable information terminal device”. As shown in FIG. 18, the information device 30 includes a photographing lens 31 and a light receiving element (area sensor) 45, and is configured to read an image of a photographing target formed by the photographing lens 31 by the light receiving element 45. The output from the light receiving element 45 is processed by a signal processing device 42 under the control of the central processing unit 40 and converted into digital information. That is, the information device 30 has a “function of converting a captured image into digital information”.

信号処理装置42によってデジタル化された画像情報は、中央演算装置40の制御を受ける画像処理装置41において所定の画像処理を受けた後、半導体メモリ44(前記メモリカードスロット39Bにセットされる)に記録される。液晶モニタ38には、撮影中の画像を表示することもできるし、半導体メモリ44に記録されている画像を表示することもできる。また、半導体メモリ44に記録した画像は、通信カード43(前記通信カード用スロット39Aにセットされる)等を使用して外部へ送信することも可能である。   The image information digitized by the signal processing device 42 is subjected to predetermined image processing in the image processing device 41 under the control of the central processing unit 40 and then stored in the semiconductor memory 44 (set in the memory card slot 39B). To be recorded. The liquid crystal monitor 38 can display an image being photographed, or can display an image recorded in the semiconductor memory 44. The image recorded in the semiconductor memory 44 can also be transmitted to the outside using the communication card 43 (set in the communication card slot 39A) or the like.

図17(a)に示すように、撮影レンズ31は情報装置30の携帯時には「沈胴状態」にあり、ユーザが電源スイッチ36を操作して電源を入れると、図17(b)に示すように鏡胴が繰り出される。このとき、鏡胴内部でズームレンズの各群は、例えば「短焦点端の配置」となっており、ズームレバー34を操作することで各群の配置が変化して長焦点端への変倍を行うことができる。このとき、ファインダ33も撮影レンズの画角変化に連動して変倍する。   As shown in FIG. 17A, the photographing lens 31 is in the “collapsed state” when the information device 30 is carried, and when the user operates the power switch 36 to turn on the power, as shown in FIG. The lens barrel is paid out. At this time, each group of the zoom lens inside the lens barrel is, for example, “arrangement of the short focal point”, and by operating the zoom lever 34, the arrangement of each group is changed to change the magnification to the long focal point. It can be performed. At this time, the viewfinder 33 also zooms in conjunction with the change in the angle of view of the taking lens.

シャッタボタン35の「半押し」によりフォーカシングがなされる。フォーカシングは、第1群もしくは第3群、あるいは受光素子の移動によって行うことができる。シャッタボタン35を、半押し状態からさらに押し込むと撮影がなされ、その後は上記の「画像情報処理」が実行される。   Focusing is performed by “half-pressing” the shutter button 35. Focusing can be performed by moving the first group, the third group, or the light receiving element. When the shutter button 35 is further depressed from the half-pressed state, photographing is performed, and thereafter, the above-mentioned “image information processing” is executed.

半導体メモリ44に記録した画像を「液晶モニタ38に表示」する場合や、「通信カード43等を使用して外部へ送信」する場合は、操作ボタン37の操作により行う。   When the image recorded in the semiconductor memory 44 is “displayed on the liquid crystal monitor 38” or “sent to the outside using the communication card 43”, the operation button 37 is operated.

撮影レンズ31として、後述する実施例1〜4の任意のものを使用すると、これらは性能良好であるので、受光素子45として対角寸法:6mm〜9mm程度で、300万画素〜500万画素クラスのものを使用した高画質で小型の情報装置(携帯情報端末装置)を実現できる。   When any one of Examples 1 to 4 described later is used as the photographic lens 31, these have good performance, so that the light receiving element 45 has a diagonal dimension of about 6 mm to 9 mm, and has a class of 3 to 5 million pixels. It is possible to realize a small information device (portable information terminal device) with high image quality.

以下にズームレンズの具体的な実施例を挙げる。最大像高:Y'は、実施例1において3.50mm、実施例2〜4において3.70mmである。   Specific examples of the zoom lens are given below. The maximum image height: Y ′ is 3.50 mm in Example 1, and 3.70 mm in Examples 2 to 4.

各実施例において、レンズ系の像面側に配設される平行平板は、光学ローパスフィルタ・赤外カットフィルタ等の各種フィルタや、CCD等の撮像素子のカバーガラス(シールガラス)を想定したものである。   In each embodiment, the parallel plate disposed on the image plane side of the lens system is assumed to be various filters such as an optical low-pass filter and an infrared cut filter, and a cover glass (seal glass) of an image sensor such as a CCD. It is.

レンズ材質は、実施例3の第9レンズ(第4レンズ群)が光学プラスチックである他は、全て光学ガラスである。
各実施例とも、収差は十分に補正され、対角寸法:6〜9mm程度で画素数:300万画素〜500万画素の撮像素子に対応可能である。
The lens materials are all optical glass except that the ninth lens (fourth lens group) of Example 3 is optical plastic.
In each embodiment, the aberration is sufficiently corrected, and it is possible to cope with an imaging element having a diagonal size of about 6 to 9 mm and a number of pixels of 3 to 5 million pixels.

実施例における各記号の意味は以下の通りである.
f:全系の焦点距離
F:Fナンバ
ω:半画角(度)
R:曲率半径
D:面間隔(絞り面を含む)
Nd:屈折率
νd:アッベ数
K:非球面の円錐定数
A4:4次の非球面係数
A6:6次の非球面係数
A8:8次の非球面係数
A10:10次の非球面係数
非球面(各実施例のデータ中に*印を付して非球面であることを表した。)は、近軸曲率半径の逆数(近軸曲率)をC、光軸からの高さをHとして、周知の下式で定義されるものであり、円錐定数:K、高次の被球面係数:A4〜A10の値を与えて形状を特定する。
X=CH/[1+√{1−(1+K)C}]
+A・H+A・H+A・H+A10・H10
The meaning of each symbol in the examples is as follows.
f: Focal length of the entire system
F: F number ω: Half angle of view (degrees)
R: radius of curvature
D: Surface spacing (including aperture surface)
Nd: Refractive index νd: Abbe number
K: Aspheric conical constant
A 4 : Fourth-order aspheric coefficient
A 6 : 6th-order aspheric coefficient
A 8 : 8th-order aspheric coefficient
A 10 : 10th-order aspheric coefficient An aspheric surface (marked with an asterisk (*) in the data of each example to indicate an aspheric surface) represents the reciprocal of the paraxial radius of curvature (paraxial curvature) as C The height from the optical axis is defined as H, and the shape is specified by giving values of a conic constant: K and a higher-order spherical coefficient: A 4 to A 10 .
X = CH 2 / [1 + √ {1- (1 + K) C 2 H 2}]
+ A 4・ H 4 + A 6・ H 6 + A 8・ H 8 + A 10・ H 10

f = 4.42〜20.35,F = 2.89〜4.62,ω = 39.55〜9.62
面番号 R D Nd νd 備考
01 56.183 0.90 1.84666 23.78 第1レンズ
02 22.306 2.46 1.77250 49.62 第2レンズ
03 129.168 0.10
04 19.540 1.90 1.77250 49.62 第3レンズ
05 44.088 可変(A)
06* 31.255 0.84 1.83500 42.98 第4レンズ
07 3.826 2.10
08 143.581 2.45 1.76182 26.61 第5レンズ
09 -5.555 0.74 1.83500 42.98 第6レンズ
10* -39.380 可変(B)
11 絞り 可変(C)
12* 8.333 1.80 1.58913 61.25 第7レンズ
13 -152.107 0.23
14 7.167 2.74 1.48749 70.44 第8レンズ
15 14.162 0.85 1.84666 23.78 第9レンズ
16 4.894 0.24
17 5.782 2.02 1.48749 70.44 第10レンズ
18* -13.873 可変(D)
19 ∞ 0.90 1.51680 64.20 各種フィルタ
20 ∞ 。
f = 4.42 to 20.35, F = 2.89 to 4.62, ω = 39.55 to 9.62
Surface number RD Nd νd Remarks
01 56.183 0.90 1.84666 23.78 First lens
02 22.306 2.46 1.77250 49.62 Second lens
03 129.168 0.10
04 19.540 1.90 1.77250 49.62 Third lens
05 44.088 Variable (A)
06 * 31.255 0.84 1.83500 42.98 4th lens
07 3.826 2.10
08 143.581 2.45 1.76182 26.61 5th lens
09 -5.555 0.74 1.83500 42.98 6th lens
10 * -39.380 Variable (B)
11 Aperture variable (C)
12 * 8.333 1.80 1.58913 61.25 7th lens
13 -152.107 0.23
14 7.167 2.74 1.48749 70.44 Eighth lens
15 14.162 0.85 1.84666 23.78 9th lens
16 4.894 0.24
17 5.782 2.02 1.48749 70.44 10th lens
18 * -13.873 Variable (D)
19 ∞ 0.90 1.51680 64.20 Various filters
20 ∞.

非球面
第6面
K = 0.0,A4 = 1.84029×10-4,A6 = -4.83681×10-6,A8 = 1.03688×10-7
A10 = -1.32922×10-9
第10面
K = 0.0,A4 = -5.53512×10-4,A6 = -2.57934×10-5,A8 = 1.05288×10-6
A10 = -1.31801×10-7
第12面
K = 0.0,A4 = -2.23709×10-4,A6 = -8.77690×10-7,A8 = 3.19167×10-7
A10 = -1.93115×10-8
第18面
K = 0.0,A4 = 8.00477×10-4,A6 = 2.50817×10-6,A8 = 5.14171×10-7
A10 = -1.09665×10-7
Aspherical
6th page
K = 0.0, A 4 = 1.84029 × 10 -4 , A 6 = -4.83681 × 10 -6 , A 8 = 1.03688 × 10 -7 ,
A 10 = -1.32922 × 10 -9
10th page
K = 0.0, A 4 = -5.53512 × 10 -4 , A 6 = -2.57934 × 10 -5 , A 8 = 1.05288 × 10 -6 ,
A 10 = -1.31801 × 10 -7
12th page
K = 0.0, A 4 = -2.23709 × 10 -4 , A 6 = -8.77690 × 10 -7 , A 8 = 3.19167 × 10 -7 ,
A 10 = -1.93115 × 10 -8
18th page
K = 0.0, A 4 = 8.00477 × 10 -4 , A 6 = 2.50817 × 10 -6 , A 8 = 5.14171 × 10 -7 ,
A 10 = -1.09665 × 10 -7 .

可変量
短焦点端 中間焦点距離 長焦点端
f = 4.425 f = 9.488 f = 20.350
A 1.000 7.240 14.505
B 8.095 3.256 1.200
C 4.494 2.617 1.000
D 7.045 9.488 12.498 。
Variable amount Short focal end Medium focal length Long focal end
f = 4.425 f = 9.488 f = 20.350
A 1.000 7.240 14.505
B 8.095 3.256 1.200
C 4.494 2.617 1.000
D 7.045 9.488 12.498.

条件式のパラメータの値
Y'max/fW = 0.791
{(1-N2I)×X2I(H0.8)}/Y'max= 0.00732
{(N2O- 1)×X2O(H0.8)+(1- N2I)×X2I(H0.8)}/Y'max= 0.01593
2C/Y'max= -1.59
(D12T- D12W)/fT= 0.664
(D23W- D23T)/fT= 0.510
|f2|/f3= 0.689
|f1|/fW= 8.00
実施例1のズームレンズのレンズ構成を図1に示す。また、実施例1に関する短焦点端における収差図を図5に、中間焦点距離における収差図を図6に、長焦点端における収差図を図7に示す。
Parameter value of conditional expression
Y ' max / f W = 0.791
{(1-N 2I ) × X 2I (H0.8)} / Y ' max = 0.00732
{(N 2O -1) × X 2O (H0.8) + (1- N 2I ) × X 2I (H0.8)} / Y ' max = 0.01593
R 2C / Y ' max = -1.59
(D 12T -D 12W ) / f T = 0.664
(D 23W -D 23T ) / f T = 0.510
| f 2 | / f 3 = 0.689
| f 1 | / f W = 8.00
The lens configuration of the zoom lens of Example 1 is shown in FIG. FIG. 5 is an aberration diagram at the short focal point for Example 1, FIG. 6 is an aberration diagram at the intermediate focal length, and FIG. 7 is an aberration diagram at the long focal point.

レンズ構成の図において、Iは第1レンズ群、IIは第2レンズ群、IIIは第3レンズ群、Fは「各種フィルタ」、Sは絞りを示す。図2〜図4においても同様である。   In the lens configuration diagram, I is the first lens group, II is the second lens group, III is the third lens group, F is “various filters”, and S is the stop. The same applies to FIGS.

球面収差の図における破線は「正弦条件」、非点収差の図における実線はサジタル、破線はメリディオナルを表す。また、「g」、「d」はそれぞれ、g線およびd線を表す。他の収差図においても同様である。   The broken line in the spherical aberration diagram indicates “sine condition”, the solid line in the astigmatism diagram indicates sagittal, and the broken line indicates meridional. Further, “g” and “d” represent the g line and the d line, respectively. The same applies to other aberration diagrams.

f = 4.74〜21.55,F = 3.61〜4.80,ω = 39.16〜9.64
面番号 R D Nd νd 備考
01 18.565 0.90 1.92286 20.88 第1レンズ
02 12.194 3.90 1.72342 37.99 第2レンズ
03 58.393 可変(A)
04* 70.501 0.84 1.83500 42.98 第3レンズ
05 4.859 2.42
06 24.219 2.54 1.76182 26.61 第4レンズ
07 -9.529 0.74 1.83500 42.9 第5レンズ
08* -247.508 可変(B)
09 絞り 可変(C)
10* 8.333 3.01 1.58913 61.25 第6レンズ
11* -10.376 0.10
12 12.420 2.34 1.75500 52.32 第7レンズ
13 -7.111 1.35 1.68893 31.16 第8レンズ
14 4.591 可変(D)
15* 13.631 1.66 1.58913 61.25 第9レンズ
16 -45.606 可変 (E)
17 ∞ 0.90 1.51680 64.20 各種フィルタ
18 ∞ 。
f = 4.74 to 21.55, F = 3.61 to 4.80, ω = 39.16 to 9.64
Surface number RD Nd νd Remarks
01 18.565 0.90 1.92286 20.88 First lens
02 12.194 3.90 1.72342 37.99 Second lens
03 58.393 Variable (A)
04 * 70.501 0.84 1.83500 42.98 Third lens
05 4.859 2.42
06 24.219 2.54 1.76182 26.61 4th lens
07 -9.529 0.74 1.83500 42.9 5th lens
08 * -247.508 Variable (B)
09 Aperture variable (C)
10 * 8.333 3.01 1.58913 61.25 6th lens
11 * -10.376 0.10
12 12.420 2.34 1.75500 52.32 7th lens
13 -7.111 1.35 1.68893 31.16 Eighth lens
14 4.591 Variable (D)
15 * 13.631 1.66 1.58913 61.25 9th lens
16 -45.606 Variable (E)
17 ∞ 0.90 1.51680 64.20 Various filters
18 ∞.

非球面
第4面
K = 0.0,A4 = 1.78565×10-4,A6 = -1.75390×10-6,A8 = 6.61261×10-9
A10 = 1.23143×10-11
第8面
K = 0.0,A4 = -3.04000×10-4,A6 = -7.18126×10-6,A8 = 1.05398×10-7
A10 = -2.21354×10-8
第10面
K = 0.0,A4 = -6.40609×10-4,A6 = -7.03343×10-6,A8 = 8.98513×10-7
A10 = -9.73391×10-8
第11面
K = 0.0,A4 = 2.20124×10-4,A6 = -8.24086×10-6,A8 = 1.09927×10-6
A10 = -1.05069×10-7
第15面
K = 0.0,A4 = -5.79936×10-5,A6 = 8.76394×10-6,A8 = -2.58155×10-7
A10 = 4.31238×10-9
Aspherical
4th page
K = 0.0, A 4 = 1.78565 × 10 -4 , A 6 = -1.75390 × 10 -6 , A 8 = 6.61261 × 10 -9 ,
A 10 = 1.23143 × 10 -11
8th page
K = 0.0, A 4 = -3.04000 × 10 -4 , A 6 = -7.18126 × 10 -6 , A 8 = 1.05398 × 10 -7 ,
A 10 = -2.21354 × 10 -8
10th page
K = 0.0, A 4 = -6.40609 × 10 -4 , A 6 = -7.03343 × 10 -6 , A 8 = 8.98513 × 10 -7 ,
A 10 = -9.73391 × 10 -8
11th page
K = 0.0, A 4 = 2.20124 × 10 -4 , A 6 = -8.24086 × 10 -6 , A 8 = 1.09927 × 10 -6 ,
A 10 = -1.05069 × 10 -7
15th page
K = 0.0, A 4 = -5.79936 × 10 -5 , A 6 = 8.76394 × 10 -6 , A 8 = -2.58155 × 10 -7 ,
A 10 = 4.31238 × 10 -9 .

可変量
短焦点端 中間焦点距離 長焦点端
f = 4.738 f = 10.103 f = 21.545
A 0.600 7.679 15.059
B 10.083 4.179 1.200
C 4.076 2.608 1.000
D 3.075 6.493 10.666
E 2.597 2.591 2.553 。
Variable amount
Short focal end Intermediate focal length Long focal end
f = 4.738 f = 10.103 f = 21.545
A 0.600 7.679 15.059
B 10.083 4.179 1.200
C 4.076 2.608 1.000
D 3.075 6.493 10.666
E 2.597 2.591 2.553.

条件式のパラメータの値
Y'max/fW= 0.781
{(1-N2I)×X2I(H0.8)}/Y'max = 0.00923
{(N2O- 1)×X2O(H0.8)+(1- N2I)×X2I(H0.8)}/Y'max = 0.02940
2C/Y'max= -2.58
(D12T- D12W)/fT= 0.671
(D23W- D23T)/fT= 0.555
|f2|/f3= 0.860
|f1|/fW= 9.35
実施例2のズームレンズのレンズ構成を図2に示す。IVは第4レンズ群を示す。
また、実施例2に関する短焦点端における収差図を図8に、中間焦点距離における収差図を図9に、長焦点端における収差図を図10に示す。
Parameter value of conditional expression
Y'max / fW = 0.781
{(1-N 2I ) × X 2I (H0.8)} / Y ' max = 0.00923
{(N 2O -1) × X 2O (H0.8) + (1- N 2I ) × X 2I (H0.8)} / Y ' max = 0.02940
R 2C / Y ' max = -2.58
(D 12T -D 12W ) / f T = 0.671
(D 23W -D 23T ) / f T = 0.555
| f 2 | / f 3 = 0.860
| f 1 | / f W = 9.35
The lens configuration of the zoom lens of Example 2 is shown in FIG. IV denotes a fourth lens group.
In addition, FIG. 8 shows an aberration diagram at the short focal point for Example 2, FIG. 9 shows an aberration diagram at the intermediate focal length, and FIG. 10 shows an aberration diagram at the long focal point.

f = 4.74〜21.59,F = 3.32〜4.98,ω = 39.14〜9.55
面番号 R D Nd νd 備考
01 23.330 1.00 1.84666 23.80 第1レンズ
02 15.002 0.26
03 15.442 3.47 1.77250 49.60 第2レンズ
04 135.649 可変(A)
05* 91.446 0.84 1.83481 42.70 第3レンズ
06 4.439 1.77
07 15.704 2.67 1.74077 27.80 第4レンズ
08 -6.205 0.74 1.83481 42.70 第5レンズ
09* 632.018 可変(B)
10 絞り 可変(C)
11* 8.333 2.78 1.58913 61.15 第6レンズ
12* -8.607 0.10
13 15.588 2.42 1.83481 42.70 第7レンズ
14 -4.691 0.80 1.69895 30.10 第8レンズ
15 4.498 可変(D)
16* 12.500 2.21 1.54340 56.00 第9レンズ
17 -34.711 可変(E)
18 ∞ 0.90 1.51680 64.20 各種フィルタ
19 ∞ 。
f = 4.74 to 21.59, F = 3.32 to 4.98, ω = 39.14 to 9.55
Surface number RD Nd νd Remarks
01 23.330 1.00 1.84666 23.80 First lens
02 15.002 0.26
03 15.442 3.47 1.77250 49.60 Second lens
04 135.649 Variable (A)
05 * 91.446 0.84 1.83481 42.70 Third lens
06 4.439 1.77
07 15.704 2.67 1.74077 27.80 Fourth lens
08 -6.205 0.74 1.83481 42.70 5th lens
09 * 632.018 Variable (B)
10 Aperture variable (C)
11 * 8.333 2.78 1.58913 61.15 6th lens
12 * -8.607 0.10
13 15.588 2.42 1.83481 42.70 7th lens
14 -4.691 0.80 1.69895 30.10 Eighth lens
15 4.498 Variable (D)
16 * 12.500 2.21 1.54340 56.00 9th lens
17 -34.711 Variable (E)
18 ∞ 0.90 1.51680 64.20 Various filters
19 ∞.

非球面
第5面
K = 0.0,A4 = 2.42400×10-4,A6 = -2.92208×10-6,A8 = 9.40210×10-9
A10 = -4.16456×10-11
第9面
K = 0.0,A4 = -5.16761×10-4,A6 = 1.81605×10-6,A8 = -1.01642×10-6
A10 = -1.75699×10-8
第11面
K = 0.0,A4 = -1.08496×10-3,A6 = -2.17192×10-5,A8 = 5.79037×10-6
A10 = -5.25493×10-7
第12面
K = 0.0,A4 = 4.85474×10-4,A6 = -4.49460×10-5,A8 = 8.98429×10-6
A10 = -5.68154×10-7
第16面
K = 0.0,A4 = -5.46424×10-5,A6 = 1.80637×10-5,A8 = -9.17793×10-7
A10 = 2.09899×10-8
Aspherical
5th page
K = 0.0, A 4 = 2.42400 × 10 -4 , A 6 = -2.92208 × 10 -6 , A 8 = 9.40210 × 10 -9 ,
A 10 = -4.16456 × 10 -11
9th page
K = 0.0, A 4 = -5.16761 × 10 -4 , A 6 = 1.81605 × 10 -6 , A 8 = -1.01642 × 10 -6 ,
A 10 = -1.75699 × 10 -8
11th page
K = 0.0, A 4 = -1.08496 × 10 -3 , A 6 = -2.17192 × 10 -5 , A 8 = 5.79037 × 10 -6 ,
A 10 = -5.25493 × 10 -7
12th page
K = 0.0, A 4 = 4.85474 × 10 -4 , A 6 = -4.49460 × 10 -5 , A 8 = 8.98429 × 10 -6 ,
A 10 = -5.68154 × 10 -7
16th page
K = 0.0, A 4 = -5.46424 × 10 -5 , A 6 = 1.80637 × 10 -5 , A 8 = -9.17793 × 10 -7 ,
A 10 = 2.09899 × 10 −8 .

可変量
短焦点端 中間焦点距離 長焦点端
f = 4.740 f = 10.131 f = 21.591
A 0.600 6.655 15.680
B 7.051 4.217 1.200
C 3.043 1.054 1.000
D 2.000 7.725 10.995
E 3.484 2.583 2.382 。
Variable amount
Short focal end Intermediate focal length Long focal end
f = 4.740 f = 10.131 f = 21.591
A 0.600 6.655 15.680
B 7.051 4.217 1.200
C 3.043 1.054 1.000
D 2.000 7.725 10.995
E 3.484 2.583 2.382.

条件式のパラメータの値
Y'max/fW= 0.781
{(1-N2I)×X2I(H0.8)}/Y'max = 0.00536
{(N2O- 1)×X2O(H0.8)+(1- N2I)×X2I(H0.8)}/Y'max = 0.01951
2C/Y'max= -1.68
(D12T- D12W)/fT= 0.698
(D23W- D23T)/fT= 0.366
|f2|/f3= 0.792
|f1|/fW= 8.44
実施例3のズームレンズのレンズ構成を図3に示す。IVは第4レンズ群を示す。
また、実施例3に関する短焦点端における収差図を図11に、中間焦点距離における収差図を図12に、長焦点端における収差図を図13に示す。
Parameter value of conditional expression
Y'max / fW = 0.781
{(1-N 2I ) × X 2I (H0.8)} / Y ' max = 0.00536
{(N 2O -1) × X 2O (H0.8) + (1- N 2I ) × X 2I (H0.8)} / Y ' max = 0.01951
R 2C / Y ' max = -1.68
(D 12T -D 12W ) / f T = 0.698
(D 23W -D 23T ) / f T = 0.366
| f 2 | / f 3 = 0.792
| f 1 | / f W = 8.44
The lens configuration of the zoom lens of Example 3 is shown in FIG. IV denotes a fourth lens group.
In addition, FIG. 11 shows an aberration diagram at the short focal point relating to Example 3, FIG. 12 shows an aberration diagram at the intermediate focal length, and FIG. 13 shows an aberration diagram at the long focal point.

f = 4.74〜21.62,F = 3.42〜4.99,ω = 39.12〜9.50
面番号 R D Nd νd 備考
01 96.656 0.90 1.84666 23.78 第1レンズ
02 29.314 2.72 1.77250 49.62 第2レンズ
03 -219.341 0.10
04 20.153 1.80 1.77250 49.62 第3レンズ
05 33.538 可変(A)
06* 18.011 0.84 1.83500 42.98 第4レンズ
07 3.936 2.07
08 74.837 1.95 1.84666 23.78 第5レンズ
09 -9.146 0.74 1.80420 46.50 第6レンズ
10* 759.807 可変(B)
11 絞り 可変(C)
12* 8.333 3.34 1.58913 61.25 第7レンズ
13* -8.827 0.10
14 12.236 2.45 1.75500 52.32 第8レンズ
15 -7.054 0.80 1.69895 30.05 第9レンズ
16 4.892 可変(D)
17* 10.651 1.83 1.58913 61.25 第10レンズ
18 -261.223 可変(E)
19 ∞ 0.90 1.51680 64.20 各種フィルタ
20 ∞ 。
f = 4.74 to 21.62, F = 3.42 to 4.99, ω = 39.12 to 9.50
Surface number RD Nd νd Remarks
01 96.656 0.90 1.84666 23.78 First lens
02 29.314 2.72 1.77250 49.62 Second lens
03 -219.341 0.10
04 20.153 1.80 1.77250 49.62 Third lens
05 33.538 Variable (A)
06 * 18.011 0.84 1.83500 42.98 4th lens
07 3.936 2.07
08 74.837 1.95 1.84666 23.78 5th lens
09 -9.146 0.74 1.80420 46.50 6th lens
10 * 759.807 Variable (B)
11 Aperture variable (C)
12 * 8.333 3.34 1.58913 61.25 7th lens
13 * -8.827 0.10
14 12.236 2.45 1.75500 52.32 Eighth lens
15 -7.054 0.80 1.69895 30.05 9th lens
16 4.892 Variable (D)
17 * 10.651 1.83 1.58913 61.25 10th lens
18 -261.223 Variable (E)
19 ∞ 0.90 1.51680 64.20 Various filters
20 ∞.

非球面
第6面
K = 0.0,A4 = -8.08791×10-5,A6 = -2.03124×10-6,A8 = 6.26638×10-9
A10 = -6.12352×10-11
第10面
K = 0.0,A4 = -7.52609×10-4,A6 = -1.24401×10-5,A8 = -9.65466×10-7
A10 = -8.33332×10-8
第12面
K = 0.0,A4 = -7.07947×10-4,A6 = -1.16179×10-6,A8 = 6.72505×10-8
A10 = -2.53913×10-8
第13面
K = 0.0,A4 = 3.43658×10-4,A6 = -1.44022×10-6,A8 = -1.33484×10-7
A10 = -1.40822×10-8
第17面
K = 0.0,A4 = -4.75410×10-5,A6 = 1.15429×10-5,A8 = -4.87258×10-7
A10 = 9.54084×10-9
Aspherical 6th surface
K = 0.0, A 4 = -8.08791 × 10 -5 , A 6 = -2.03124 × 10 -6 , A 8 = 6.26638 × 10 -9 ,
A 10 = -6.12352 × 10 -11
10th page
K = 0.0, A 4 = -7.52609 × 10 -4 , A 6 = -1.24401 × 10 -5 , A 8 = -9.65466 × 10 -7 ,
A 10 = -8.33332 × 10 -8
12th page
K = 0.0, A 4 = -7.07947 × 10 -4 , A 6 = -1.16179 × 10 -6 , A 8 = 6.72505 × 10 -8 ,
A 10 = -2.53913 × 10 -8
Side 13
K = 0.0, A 4 = 3.43658 × 10 -4 , A 6 = -1.44022 × 10 -6 , A 8 = -1.33484 × 10 -7 ,
A 10 = -1.40822 × 10 -8
17th page
K = 0.0, A 4 = -4.75410 × 10 -5 , A 6 = 1.15429 × 10 -5 , A 8 = -4.87258 × 10 -7 ,
A 10 = 9.54084 × 10 -9 .

可変量
短焦点端 中間焦点距離 長焦点端
f = 4.741 f = 10.112 f = 21.624
A 0.600 6.160 15.040
B 6.288 2.111 1.200
C 3.888 3.173 1.000
D 2.000 7.785 11.065
E 3.440 2.547 2.351 。
Variable amount
Short focal end Intermediate focal length Long focal end
f = 4.741 f = 10.112 f = 21.624
A 0.600 6.160 15.040
B 6.288 2.111 1.200
C 3.888 3.173 1.000
D 2.000 7.785 11.065
E 3.440 2.547 2.351.

条件式のパラメータの値
Y'max/fW= 0.780
{(1-N2I)×X2I(H0.8)}/Y'max = 0.00728
{(N2O- 1)×X2O(H0.8)+(1- N2I)×X2I(H0.8)}/Y'max = 0.00080
2C/Y'max= -2.47
(D12T- D12W)/fT= 0.668
(D23W- D23T)/fT= 0.369
|f2|/f3= 0.795
|f1|/fW= 8.14
実施例4のズームレンズのレンズ構成を図4に示す。IVは第4レンズ群を示す。
また、実施例4に関する短焦点端における収差図を図14に、中間焦点距離における収差図を図15に、長焦点端における収差図を図16に示す。
Parameter value of conditional expression
Y'max / fW = 0.780
{(1-N 2I ) × X 2I (H0.8)} / Y ' max = 0.00728
{(N 2O -1) × X 2O (H0.8) + (1- N 2I ) × X 2I (H0.8)} / Y ' max = 0.00080
R 2C / Y ' max = -2.47
(D 12T -D 12W ) / f T = 0.668
(D 23W -D 23T ) / f T = 0.369
| f 2 | / f 3 = 0.795
| f 1 | / f W = 8.14
The lens configuration of the zoom lens of Example 4 is shown in FIG. IV denotes a fourth lens group.
In addition, FIG. 14 shows aberration diagrams at the short focal point for Example 4, FIG. 15 shows aberration diagrams at the intermediate focal length, and FIG. 16 shows aberration diagrams at the long focal point.

実施例1のズームレンズのレンズ構成を示す図である。3 is a diagram illustrating a lens configuration of a zoom lens according to Example 1. FIG. 実施例2のズームレンズのレンズ構成を示す図である。6 is a diagram illustrating a lens configuration of a zoom lens according to Example 2. FIG. 実施例3のズームレンズのレンズ構成を示す図である。7 is a diagram illustrating a lens configuration of a zoom lens according to Example 3. FIG. 実施例4のズームレンズのレンズ構成を示す図である。6 is a diagram illustrating a lens configuration of a zoom lens according to Example 4. FIG. 実施例1のズームレンズの短焦点端における収差図である。FIG. 4 is an aberration diagram at a short focal end of the zoom lens according to Example 1; 実施例1のズームレンズの中間焦点距離における収差図である。FIG. 4 is an aberration diagram for the zoom lens of Example 1 at an intermediate focal length. 実施例1のズームレンズの長焦点端における収差図である。FIG. 4 is an aberration diagram at the long focal end of the zoom lens according to Example 1; 実施例2のズームレンズの短焦点端における収差図である。FIG. 6 is an aberration diagram at a short focal end of the zoom lens according to Example 2; 実施例2のズームレンズの中間焦点距離における収差図である。6 is an aberration diagram at an intermediate focal length of the zoom lens of Example 2. FIG. 実施例2のズームレンズの長焦点端における収差図である。FIG. 6 is an aberration diagram at a long focal end of the zoom lens in Example 2; 実施例3のズームレンズの短焦点端における収差図である。FIG. 10 is an aberration diagram at a short focal end of the zoom lens according to Example 3; 実施例3のズームレンズの中間焦点距離における収差図である。FIG. 10 is an aberration diagram at an intermediate focal length of the zoom lens according to Example 3; 実施例3のズームレンズの長焦点端における収差図である。FIG. 6 is an aberration diagram at a long focal end of the zoom lens in Example 3; 実施例4のズームレンズの短焦点端における収差図である。FIG. 10 is an aberration diagram at a short focal end of the zoom lens according to Example 4; 実施例4のズームレンズの中間焦点距離における収差図である。FIG. 10 is an aberration diagram at an intermediate focal length of the zoom lens according to Example 4; 実施例4のズームレンズの長焦点端における収差図である。FIG. 10 is an aberration diagram at a long focal end of the zoom lens in Example 4; カメラ装置(携帯情報端末装置)の実施の1形態を示す外観図である。It is an external view showing one embodiment of a camera device (personal digital assistant device). 図17のカメラ装置のシステム構造を示す図である。It is a figure which shows the system structure of the camera apparatus of FIG.

符号の説明Explanation of symbols

I 第1群
II 第2群
III 第3群
IV 第4レンズ群
S 絞り
F 各種フィルタ
I First Group II Second Group III Third Group IV Fourth Lens Group S Aperture F Various Filters

Claims (21)

物体側から像側へ向かって、正の屈折力を有する第1レンズ群、負の屈折力を有する第2レンズ群、正の屈折力を有する第3レンズ群を上記順序に有するとともに、上記第2レンズ群と第3レンズ群との間に開口絞りを有し、
広角端から望遠端への変倍に際し、第1レンズ群と第2レンズ群の間隔が大きくなり、第2レンズ群と第3レンズ群の間隔が小さくなるズームレンズにおいて、
広角端における全系の焦点距離:fWと、最大像高:Y'maxの比:Y'max/fWが、条件:
(1) 0.70 < Y'max/fW < 1.00
の範囲にあり、
上記第2レンズ群が、物体側から像側へ向かって、像側に曲率の大きな面を向けた負レンズ、像側に曲率の大きな凸面を向けた正レンズ、物体側に曲率の大きな凹面を向けた負レンズの3枚のレンズを配して構成されていることを特徴とするズームレンズ。
From the object side to the image side, the first lens group having positive refracting power, the second lens group having negative refracting power, and the third lens group having positive refracting power are arranged in the above order, and the first An aperture stop between the second lens group and the third lens group;
In zoom lenses in which the distance between the first lens group and the second lens group is increased and the distance between the second lens group and the third lens group is decreased upon zooming from the wide-angle end to the telephoto end,
The ratio of the focal length of the entire system at the wide angle end: f W and the maximum image height: Y ′ max : Y ′ max / f W is the condition:
(1) 0.70 <Y ' max / f W <1.00
In the range of
The second lens group includes, from the object side to the image side, a negative lens having a large curvature surface on the image side, a positive lens having a convex surface having a large curvature on the image side, and a concave surface having a large curvature on the object side. A zoom lens comprising three negative lenses facing each other.
請求項1記載のズームレンズにおいて、
第2レンズ群中の像側の負レンズの像側面が、光軸から離れるに従って負の屈折力が弱まるような形状の非球面であり、
上記第2レンズ群中の像側の負レンズの材質の屈折率:N21、第2レンズ群の最も像側の非球面における最大光線有効高さの8割における非球面量:X2I(H0.8)と、最大像高:Y'maxが、条件:
(2) 0.0010 < (1−N2I)×X2I(H0.8)/Y'max < 0.0500
を満足することを特徴とするズームレンズ。
The zoom lens according to claim 1.
The image side surface of the negative lens on the image side in the second lens group is an aspherical surface having a shape in which the negative refractive power decreases as the distance from the optical axis increases.
Refractive index of the material of the negative lens on the image side in the second lens group: N 21 , Aspheric amount at 80% of the maximum effective ray height on the most aspheric surface on the image side of the second lens group: X 2I (H 0.8 ) and the maximum image height: Y ′ max , the condition:
(2) 0.0010 <(1−N 2I ) × X 2I (H 0.8 ) / Y ' max <0.0500
A zoom lens characterized by satisfying
請求項2記載のズームレンズにおいて、
第2レンズ群中の物体側の負レンズの物体側面が非球面であり、
上記第2レンズ群中の物体側の負レンズの材質の屈折率:N20、第2レンズ群中の像側の負レンズの材質の屈折率:N21、第2レンズ群の最も物体側の非球面における最大光線有効高さの8割における非球面量:X20(H0.8)、第2レンズ群の最も像側の非球面における最大光線有効高さの8割における非球面量:X2I(H0.8)と、最大像高:Y'maxが、条件:
(3) -0.0500 < {(N2O−1)×X2O(H0.8)+(1-N2I)×X2I(H0.8)}/Y'max < 0.1500
を満足することを特徴とするズームレンズ。
The zoom lens according to claim 2.
The object side surface of the negative lens on the object side in the second lens group is aspheric,
Refractive index of the material of the negative lens on the object side in the second lens group: N 20 , Refractive index of the material of the negative lens on the image side in the second lens group: N 21 , the most object side of the second lens group Aspherical amount at 80% of the maximum effective ray height on the aspherical surface: X 20 (H 0.8 ), Aspherical amount at 80% of the maximum effective ray height on the aspherical surface closest to the image side of the second lens group: X 2I (H 0.8 ) and the maximum image height: Y ′ max , the condition:
(3) -0.0500 <{(N 2O −1) × X 2O (H 0.8 ) + (1-N 2I ) × X 2I (H 0.8 )} / Y ′ max <0.1500
A zoom lens characterized by satisfying
請求項1〜3の任意の1に記載のズームレンズにおいて、
第2レンズ群中において物体側から数えて第i番目のレンズの材質の屈折率およびアッベ数:N2iおよびν2i(i=1〜3)が条件:
(4) 1.75 < N21 < 1.90,35 < ν21 < 50
(5) 1.65 < N22 < 1.90,20 < ν22 < 35
(6) 1.75 < N23 < 1.90,35 < ν23 < 50
を満足することを特徴とするズームレンズ。
The zoom lens according to any one of claims 1 to 3,
In the second lens group, the refractive index and Abbe number of the i-th lens material counted from the object side are N 2i and ν 2i (i = 1 to 3):
(4) 1.75 <N 21 <1.90, 35 <ν 21 <50
(5) 1.65 <N 22 <1.90, 20 <ν 22 <35
(6) 1.75 <N 23 <1.90, 35 <ν 23 <50
A zoom lens characterized by satisfying
請求項1〜4の任意の1に記載のズームレンズにおいて、
第2レンズ群を構成する3枚のレンズが物体側から順に、像側に曲率の大きな面を向けた負レンズ、像側に曲率の大きな凸面を向けた正レンズ、物体側に曲率の大きい凹面を向けた負レンズであり、上記正レンズとその像側の負レンズとが接合されていることを特徴とするズームレンズ。
The zoom lens according to any one of claims 1 to 4,
The three lenses constituting the second lens group are, in order from the object side, a negative lens having a large curvature surface facing the image side, a positive lens having a large curvature surface facing the image side, and a concave surface having a large curvature toward the object side. A zoom lens, wherein the positive lens is joined to the negative lens on the image side.
請求項5記載のズームレンズにおいて、
第2レンズ群における、正レンズと負レンズとの接合面の曲率半径:R2Cと最大像高:Y'maxとの比:R2C/Y'maxが条件:
(7) -3.5 < (R2C/Y'max) < -1.0
を満足することを特徴とするズームレンズ。
The zoom lens according to claim 5.
In the second lens group, the radius of curvature of the cemented surface of the positive lens and the negative lens: R 2C and the maximum image height: Y ′ max ratio: R 2C / Y ′ max is the condition:
(7) -3.5 <(R 2C / Y ' max ) <-1.0
A zoom lens characterized by satisfying
請求項1〜6の任意の1に記載のズームレンズにおいて、
広角端から望遠端への変倍に際し、第1レンズ群が物体側に単調に移動し、
広角端における第1,第2レンズ群の間隔:D12W、望遠端における第1,第2レンズ群の間隔:D12Tと、望遠端における全系の焦点距離:fTが、条件:
(8) 0.50 < (D12T−D12W)/fT < 0.85
を満足することを特徴とするズームレンズ。
The zoom lens according to any one of claims 1 to 6,
When zooming from the wide-angle end to the telephoto end, the first lens unit moves monotonously to the object side,
The distance between the first and second lens groups at the wide angle end: D 12W , the distance between the first and second lens groups at the telephoto end: D 12T, and the focal length of the entire system at the telephoto end: f T :
(8) 0.50 <(D 12T −D 12W ) / f T <0.85
A zoom lens characterized by satisfying
請求項1〜7の任意の1に記載のズームレンズにおいて、
広角端から望遠端への変倍に際し、第3レンズ群が物体側に単調に移動し、
広角端における第2,第3レンズ群の間隔:D23W、望遠端における第2,第3レンズ群の間隔:D23T、望遠端における全系の焦点距離:fTが、条件:
(9) 0.25 < (D23W−D23T)/fT < 0.65
を満足することを特徴とするズームレンズ。
The zoom lens according to any one of claims 1 to 7,
During zooming from the wide-angle end to the telephoto end, the third lens unit moves monotonously to the object side,
The distance between the second and third lens groups at the wide-angle end: D 23W , the distance between the second and third lens groups at the telephoto end: D 23T , and the focal length of the entire system at the telephoto end: f T :
(9) 0.25 <(D 23W −D 23T ) / f T <0.65
A zoom lens characterized by satisfying
請求項1〜8の任意の1に記載のズームレンズにおいて、
第2レンズ群の焦点距離:f2、第3レンズ群の焦点距離:f3が、条件:
(10) 0.5 < |f2|/f3 < 1.0
を満足することを特徴とするズームレンズ。
The zoom lens according to any one of claims 1 to 8,
The focal length of the second lens group: f 2 and the focal length of the third lens group: f 3 are the conditions:
(10) 0.5 <| f 2 | / f 3 <1.0
A zoom lens characterized by satisfying
請求項1〜9の任意の1に記載のズームレンズにおいて、
第1レンズ群の焦点距離;f1、広角端における全系の焦点距離:fWが、条件:
(11) 6.0 < f1/fW < 12.0
を満足することを特徴とするズームレンズ。
The zoom lens according to any one of claims 1 to 9,
The focal length of the first lens group; f 1 , the focal length of the entire system at the wide angle end: f W , the condition:
(11) 6.0 <f 1 / f W <12.0
A zoom lens characterized by satisfying
請求項1〜10の任意の1に記載のズームレンズにおいて、
第1レンズ群ないし第3レンズ群により構成されることを特徴とするズームレンズ。
The zoom lens according to any one of claims 1 to 10,
A zoom lens comprising a first lens group to a third lens group.
請求項1〜10の任意の1に記載のズームレンズにおいて、
第3レンズ群の像側に、正の屈折力の第4レンズ群が配置され、
広角端から望遠端への変倍に際し、第1レンズ群と第2レンズ群の間隔が大きくなり、第2レンズ群と第3レンズ群の間隔が小さくなるように、少なくとも第1レンズ群および第3レンズ群が物体側に移動することを特徴とするズームレンズ。
The zoom lens according to any one of claims 1 to 10,
A fourth lens group having a positive refractive power is disposed on the image side of the third lens group;
At the time of zooming from the wide-angle end to the telephoto end, at least the first lens group and the second lens group are arranged so that the distance between the first lens group and the second lens group becomes large and the distance between the second lens group and the third lens group becomes small. A zoom lens characterized in that the three lens groups move toward the object side.
請求項12記載のズームレンズにおいて、
第4レンズ群が、変倍の際に移動しないことを特徴とするズームレンズ。
The zoom lens according to claim 12, wherein
A zoom lens characterized in that the fourth lens group does not move during zooming.
請求項12記載のズームレンズにおいて、
広角端から望遠端への変倍に際し、第4レンズ群が像側へ変位することを特徴とするズームレンズ。
The zoom lens according to claim 12, wherein
A zoom lens, wherein the fourth lens unit is displaced toward the image side upon zooming from the wide-angle end to the telephoto end.
請求項1〜14の任意の1に記載のズームレンズにおいて、
広角端から望遠端への変倍に際し、開口絞りと第3レンズ群との間隔が、広角端で最も広く、望遠端で最も狭くなることを特徴とするズームレンズ。
The zoom lens according to any one of claims 1 to 14,
A zoom lens characterized in that, upon zooming from the wide-angle end to the telephoto end, the distance between the aperture stop and the third lens group is widest at the wide-angle end and narrowest at the telephoto end.
請求項1〜15の任意の1に記載のズームレンズにおいて、
開口絞りの開放径が変倍に係わらず一定であることを特徴とするズームレンズ。
The zoom lens according to any one of claims 1 to 15,
A zoom lens characterized in that the aperture diameter of the aperture stop is constant regardless of zooming.
請求項1〜15の任意の1に記載のズームレンズにおいて、
開口絞りの開放径が倍率により変化し、長焦点端における開放径が短焦点端における開放径に比して大きく設定されたことを特徴とするズームレンズ。
The zoom lens according to any one of claims 1 to 15,
A zoom lens, wherein an aperture diameter of an aperture stop changes depending on a magnification, and an aperture diameter at a long focal end is set larger than an aperture diameter at a short focus end.
請求項1〜17の任意の1に記載のズームレンズを、撮影用光学系として有することを特徴とする撮影機能を有する情報装置。   An information device having a photographing function, comprising the zoom lens according to claim 1 as a photographing optical system. 請求項18記載の情報装置において、
ズームレンズによる物体像が、撮像素子の受光面上に結像されることを特徴とする撮影機能を有する情報装置。
The information device according to claim 18,
An information device having a photographing function, wherein an object image formed by a zoom lens is formed on a light receiving surface of an image sensor.
請求項19記載の情報装置において、
撮像素子の対角寸法が9mm以下であり、画素数が300万画素以上であることを特徴とする撮影機能を有する情報装置。
The information device according to claim 19, wherein
An information device having an imaging function, wherein the diagonal dimension of the imaging element is 9 mm or less and the number of pixels is 3 million pixels or more.
請求項19または20記載の情報装置において、
携帯情報端末装置として構成されたことを特徴とする撮影機能を有する情報装置。
The information device according to claim 19 or 20,
An information device having a photographing function, characterized by being configured as a portable information terminal device.
JP2004146191A 2004-02-27 2004-05-17 Information device having zoom lens and photographing function Expired - Fee Related JP4496009B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004146191A JP4496009B2 (en) 2004-05-17 2004-05-17 Information device having zoom lens and photographing function
US11/064,515 US7151638B2 (en) 2004-02-27 2005-02-24 Zooming lens system and device using the zooming lens system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004146191A JP4496009B2 (en) 2004-05-17 2004-05-17 Information device having zoom lens and photographing function

Publications (2)

Publication Number Publication Date
JP2005326743A true JP2005326743A (en) 2005-11-24
JP4496009B2 JP4496009B2 (en) 2010-07-07

Family

ID=35473122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004146191A Expired - Fee Related JP4496009B2 (en) 2004-02-27 2004-05-17 Information device having zoom lens and photographing function

Country Status (1)

Country Link
JP (1) JP4496009B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007047538A (en) * 2005-08-11 2007-02-22 Konica Minolta Photo Imaging Inc Imaging optical system and imaging apparatus
JP2007232918A (en) * 2006-02-28 2007-09-13 Ricoh Co Ltd Zoom lens and imaging apparatus
JP2008203453A (en) * 2007-02-19 2008-09-04 Ricoh Co Ltd Zoom lens and imaging apparatus
JP2008286910A (en) * 2007-05-16 2008-11-27 Olympus Imaging Corp Imaging apparatus equipped with wide-viewing-angle zoom lens
US7535654B2 (en) 2006-06-22 2009-05-19 Ricoh Company, Ltd. Zoom lens, imaging device, and personal digital assistant
US7623306B2 (en) 2008-01-09 2009-11-24 Olympus Imaging Corp. Zoom lens and imaging apparatus incorporating the same
US7643219B2 (en) 2007-11-29 2010-01-05 Olympus Imaging Corp. Zoom lens and image pickup apparatus equipped with same
US7643224B2 (en) 2007-11-29 2010-01-05 Olympus Imaging Corp. Zoom lens and image pickup apparatus equipped with same
WO2010001944A1 (en) * 2008-07-03 2010-01-07 株式会社ニコン Zoom lens, imaging device, and method of manufacturing zoom lens
US7719774B2 (en) 2007-02-27 2010-05-18 Olympus Imaging Corp. Zoom lens system and electronic image pickup apparatus using the same
US7724448B2 (en) 2007-12-07 2010-05-25 Olympus Imaging Corp. Zoom lens and image pickup apparatus equipped with same
US7755848B2 (en) 2007-03-15 2010-07-13 Olympus Imaging Corp. Zoom lens system and electronic image pickup apparatus using the same
EP2273299A1 (en) 2009-07-06 2011-01-12 Ricoh Company, Ltd. Zoom lens and information device
EP2273298A1 (en) 2009-07-06 2011-01-12 Ricoh Company, Ltd. Zoom lens unit and information device
US7885013B2 (en) 2008-01-08 2011-02-08 Olympus Imaging Corp. Zoom lens and image pickup apparatus equipped with same
US8014079B2 (en) 2009-07-03 2011-09-06 Panasonic Corporation Zoom lens system, imaging device and camera
US8054559B2 (en) 2009-03-18 2011-11-08 Ricoh Company, Ltd. Zoom lens, information device, and imaging apparatus
US8149517B2 (en) 2009-04-24 2012-04-03 Ricoh Company, Ltd. Zoom lens unit, imaging device and portable information terminal device
US8253845B2 (en) 2010-02-08 2012-08-28 Fujifilm Corporation Zoom lens and imaging apparatus
JP2012163678A (en) * 2011-02-04 2012-08-30 Ricoh Co Ltd Zoom lens, camera, and portable information terminal device

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63180926A (en) * 1987-01-13 1988-07-26 エヌ・ベー・フィリップス・フルーイランペンファブリケン Zoom lens
JPH02223908A (en) * 1989-02-23 1990-09-06 Canon Inc Small-sized zoom lens
JPH05241072A (en) * 1992-02-28 1993-09-21 Konica Corp Zoom lens
JPH11119100A (en) * 1997-10-14 1999-04-30 Olympus Optical Co Ltd Zoom lens
JPH11305126A (en) * 1998-04-21 1999-11-05 Minolta Co Ltd Optical lens system
JP2000221401A (en) * 1999-02-03 2000-08-11 Minolta Co Ltd Lens optical system
JP2001111871A (en) * 1999-10-08 2001-04-20 Olympus Optical Co Ltd Image pickup device
JP2001242379A (en) * 2000-02-29 2001-09-07 Casio Comput Co Ltd Zoom lens
JP2001356269A (en) * 2000-06-13 2001-12-26 Casio Comput Co Ltd Zoom lens
JP2003202501A (en) * 2001-10-30 2003-07-18 Ricoh Co Ltd Zoom lens, camera device and personal digital assistant system
JP2003315676A (en) * 2002-04-19 2003-11-06 Pentax Corp Zoom lens system
JP2004102089A (en) * 2002-09-12 2004-04-02 Minolta Co Ltd Imaging apparatus
JP2004109653A (en) * 2002-09-19 2004-04-08 Canon Inc Zoom lens and camera with same

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63180926A (en) * 1987-01-13 1988-07-26 エヌ・ベー・フィリップス・フルーイランペンファブリケン Zoom lens
JPH02223908A (en) * 1989-02-23 1990-09-06 Canon Inc Small-sized zoom lens
JPH05241072A (en) * 1992-02-28 1993-09-21 Konica Corp Zoom lens
JPH11119100A (en) * 1997-10-14 1999-04-30 Olympus Optical Co Ltd Zoom lens
JPH11305126A (en) * 1998-04-21 1999-11-05 Minolta Co Ltd Optical lens system
JP2000221401A (en) * 1999-02-03 2000-08-11 Minolta Co Ltd Lens optical system
JP2001111871A (en) * 1999-10-08 2001-04-20 Olympus Optical Co Ltd Image pickup device
JP2001242379A (en) * 2000-02-29 2001-09-07 Casio Comput Co Ltd Zoom lens
JP2001356269A (en) * 2000-06-13 2001-12-26 Casio Comput Co Ltd Zoom lens
JP2003202501A (en) * 2001-10-30 2003-07-18 Ricoh Co Ltd Zoom lens, camera device and personal digital assistant system
JP2003315676A (en) * 2002-04-19 2003-11-06 Pentax Corp Zoom lens system
JP2004102089A (en) * 2002-09-12 2004-04-02 Minolta Co Ltd Imaging apparatus
JP2004109653A (en) * 2002-09-19 2004-04-08 Canon Inc Zoom lens and camera with same

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007047538A (en) * 2005-08-11 2007-02-22 Konica Minolta Photo Imaging Inc Imaging optical system and imaging apparatus
JP2007232918A (en) * 2006-02-28 2007-09-13 Ricoh Co Ltd Zoom lens and imaging apparatus
US7535654B2 (en) 2006-06-22 2009-05-19 Ricoh Company, Ltd. Zoom lens, imaging device, and personal digital assistant
JP2008203453A (en) * 2007-02-19 2008-09-04 Ricoh Co Ltd Zoom lens and imaging apparatus
US7719774B2 (en) 2007-02-27 2010-05-18 Olympus Imaging Corp. Zoom lens system and electronic image pickup apparatus using the same
US7755848B2 (en) 2007-03-15 2010-07-13 Olympus Imaging Corp. Zoom lens system and electronic image pickup apparatus using the same
JP2008286910A (en) * 2007-05-16 2008-11-27 Olympus Imaging Corp Imaging apparatus equipped with wide-viewing-angle zoom lens
US7643219B2 (en) 2007-11-29 2010-01-05 Olympus Imaging Corp. Zoom lens and image pickup apparatus equipped with same
US7643224B2 (en) 2007-11-29 2010-01-05 Olympus Imaging Corp. Zoom lens and image pickup apparatus equipped with same
US7724448B2 (en) 2007-12-07 2010-05-25 Olympus Imaging Corp. Zoom lens and image pickup apparatus equipped with same
US7885013B2 (en) 2008-01-08 2011-02-08 Olympus Imaging Corp. Zoom lens and image pickup apparatus equipped with same
US7623306B2 (en) 2008-01-09 2009-11-24 Olympus Imaging Corp. Zoom lens and imaging apparatus incorporating the same
JP2010014963A (en) * 2008-07-03 2010-01-21 Nikon Corp Zoom lens, imaging device, method for varying power of zoom lens
US8390937B2 (en) 2008-07-03 2013-03-05 Nikon Corporation Zoom lens, imaging apparatus and method for manufacturing zoom lens
WO2010001944A1 (en) * 2008-07-03 2010-01-07 株式会社ニコン Zoom lens, imaging device, and method of manufacturing zoom lens
US8264781B2 (en) 2009-03-18 2012-09-11 Ricoh Company, Ltd. Zoom lens, information device, and imaging apparatus
US8054559B2 (en) 2009-03-18 2011-11-08 Ricoh Company, Ltd. Zoom lens, information device, and imaging apparatus
US8149517B2 (en) 2009-04-24 2012-04-03 Ricoh Company, Ltd. Zoom lens unit, imaging device and portable information terminal device
US8014079B2 (en) 2009-07-03 2011-09-06 Panasonic Corporation Zoom lens system, imaging device and camera
US7933074B2 (en) 2009-07-06 2011-04-26 Ricoh Company, Ltd. Zoom lens unit and information device
US8179610B2 (en) 2009-07-06 2012-05-15 Ricoh Company, Ltd. Zoom lens and information device
EP2273298A1 (en) 2009-07-06 2011-01-12 Ricoh Company, Ltd. Zoom lens unit and information device
EP2273299A1 (en) 2009-07-06 2011-01-12 Ricoh Company, Ltd. Zoom lens and information device
US8253845B2 (en) 2010-02-08 2012-08-28 Fujifilm Corporation Zoom lens and imaging apparatus
JP2012163678A (en) * 2011-02-04 2012-08-30 Ricoh Co Ltd Zoom lens, camera, and portable information terminal device

Also Published As

Publication number Publication date
JP4496009B2 (en) 2010-07-07

Similar Documents

Publication Publication Date Title
JP4764644B2 (en) Zoom lens and information device
JP4916198B2 (en) Zoom lens, imaging device having zoom lens, camera device, and portable information terminal device
JP4664727B2 (en) Zoom lens and information device
JP5101262B2 (en) Zoom lens, imaging device, and portable information terminal device
JP5574225B2 (en) Zoom lens, imaging device, and information device
JP5590444B2 (en) Zoom lens, imaging device, and information device
JP4496009B2 (en) Information device having zoom lens and photographing function
JP5062734B2 (en) Image pickup apparatus provided with optical path reflection type zoom lens
JP2009098200A (en) Three-unit zoom lens and imaging device with the same
JP4911679B2 (en) Zoom lens and image pickup apparatus including the same
JP2009037125A (en) Three-group zoom lens system and image pickup apparatus using the same
JP2009098585A (en) Zoom lens, camera and personal digital assistant device
JP2011252962A (en) Imaging optical system and imaging apparatus having the same
JP2006078979A (en) Zoom lens, camera, and personal digital terminal unit
JP4690052B2 (en) Zoom lens and imaging apparatus using the same
JP5601584B2 (en) Wide angle lens, imaging lens unit, camera and information device
JP2004013169A (en) Variable magnification group in zoom lens, zoom lens, and camera system
JP4732006B2 (en) Zoom lens and information device
JP4518472B2 (en) Zoom lens, lens unit, camera, and portable information terminal device
JP4947992B2 (en) Zoom lens and imaging apparatus using the same
JP2003287679A (en) Zoom lens and camera device
JP2005024804A (en) Zoom lens, camera and personal digital assistance device
JP6016081B2 (en) Zoom lens, camera, and portable information terminal device
JP6160058B2 (en) Zoom lens, camera, and portable information terminal device
JP5691780B2 (en) Zoom lens, camera, and portable information terminal device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100412

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees