JP2005326150A - Method for measuring prostate specific antigen - Google Patents

Method for measuring prostate specific antigen Download PDF

Info

Publication number
JP2005326150A
JP2005326150A JP2004141832A JP2004141832A JP2005326150A JP 2005326150 A JP2005326150 A JP 2005326150A JP 2004141832 A JP2004141832 A JP 2004141832A JP 2004141832 A JP2004141832 A JP 2004141832A JP 2005326150 A JP2005326150 A JP 2005326150A
Authority
JP
Japan
Prior art keywords
psa
antigen
antibody
reagent
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004141832A
Other languages
Japanese (ja)
Inventor
Makoto Watanabe
渡辺  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eiken Chemical Co Ltd
Original Assignee
Eiken Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eiken Chemical Co Ltd filed Critical Eiken Chemical Co Ltd
Priority to JP2004141832A priority Critical patent/JP2005326150A/en
Publication of JP2005326150A publication Critical patent/JP2005326150A/en
Pending legal-status Critical Current

Links

Landscapes

  • Peptides Or Proteins (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new immunological agglutination measuring method which enables the precise measurement of PSA in serum regardless of the presence ratio of free PSA and α1 anti-chymotrypsin combined PSA, and a measuring reagent. <P>SOLUTION: In the immunological agglutination measuring method of serum PSA using insoluble carrier particles of latex or the like, a monoclonal antibody reacted with both of free PSA and α1 anti-chymotrypsin combined PSA and different in reactivity with respect to both of them is utilized. The measuring reagent used in this measuring method is also disclosed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、前立腺特異抗原の測定法に関し、さらに詳しくは免疫学的凝集法による前立腺特異抗原の測定法に関する。   The present invention relates to a method for measuring prostate-specific antigen, and more particularly to a method for measuring prostate-specific antigen by immunological aggregation.

前立腺特異抗原(以下「PSA」と略)は、1979年Wang等によって発見された前立腺上皮細胞より産生される分子量約34,000のセリン蛋白分解酵素であり、1964年原等により見出されたγ−セミノプロテインと、アミノ酸配列と蛋白分解酵素の機能から、同一物質であることが明らかとなった。PSAは、前立腺には特異的であるが、癌に特異的というわけではなく、正常な前立腺細胞でも産生されるため、前立腺肥大症や前立腺炎等の前立腺癌以外の前立腺疾患でも上昇することが報告されている。しかし、前立腺癌の各種治療の効果判定、治療後の再発・再燃の評価、さらには根治的前立腺全摘除術後の残存腫瘍の早期検出等その有用性に優れるため、それまでの前立腺酸性ホスファターゼに代わって、前立腺という臓器に特異的な腫瘍マーカーとして位置付けされている。   Prostate-specific antigen (hereinafter abbreviated as “PSA”) is a serine proteolytic enzyme having a molecular weight of about 34,000 produced from prostate epithelial cells discovered by Wang et al. In 1979. It was revealed that γ-seminoprotein was the same substance from the amino acid sequence and the function of the protease. Although PSA is specific to the prostate, it is not specific to cancer and is also produced by normal prostate cells, so it can be increased in prostate diseases other than prostate cancer such as benign prostatic hyperplasia and prostatitis. It has been reported. However, because of its usefulness such as assessment of the effects of various treatments for prostate cancer, evaluation of recurrence / relapse after treatment, and early detection of residual tumor after radical prostatectomy, Instead, it is positioned as a tumor marker specific to the organ called the prostate.

PSAは、成人男子では、血清中に精漿の約10-6倍の濃度で放出されるが、前立腺疾患では、悪性、良性を問わず、一応に著しく多量のPSAが血清中に検出される。そして、その大部分は、蛋白分解酵素による組織障害を防ぐ作用のあるα1−アンチキモトリプシン(以下「ACT」と略)やα2−マクログロブリン(以下「α2M」と略)等の蛋白分解酵素阻害蛋白との複合型として存在しており、一部は、非複合型である遊離型PSA(以下「F−PSA」と略)として存在している。 In adult males, PSA is released in serum at a concentration of about 10 -6 times that of seminal plasma. In prostate disease, regardless of whether it is malignant or benign, a significantly large amount of PSA is detected in the serum. . And most of them are protease inhibitors such as α1-antichymotrypsin (hereinafter abbreviated as “ACT”) and α2-macroglobulin (hereinafter abbreviated as “α2M”), which have an action to prevent tissue damage caused by proteolytic enzymes. And a part of it is present as a non-complex free PSA (hereinafter abbreviated as “F-PSA”).

通常PSAは、ACT複合型のPSA(以下「ACT−PSA」と略)とF−PSAを併せた総PSA(以下「T−PSA」と略)として測定されており、その測定法は、放射免疫測定法(以下「IRMA法」と略)や酵素免疫測定法(以下「EIA法」と略)等の免疫学的測定法が主流である。   Usually, PSA is measured as total PSA (hereinafter abbreviated as “T-PSA”), which is a combination of ACT composite type PSA (hereinafter abbreviated as “ACT-PSA”) and F-PSA. Immunological measurement methods such as immunoassay (hereinafter abbreviated as “IRMA method”) and enzyme immunoassay (hereinafter abbreviated as “EIA method”) are the mainstream.

PSAの臨床的意義は、前立腺癌ではACT−PSAが増加するのに対し、前立腺肥大症等の非癌疾患ではF−PSAの割合が高いことが判明している。したがって、血清中のT−PSA、ACT−PSAおよびF−PSAの測定値より、前立腺癌と前立腺肥大症との鑑別ができるため、ひいては前立腺癌の早期発見が可能である。なお、α2Mと結合しているPSAに関しては、PSA分子全体がα2Mで覆われているため、抗PSA抗体では認識されず、その結果、PSAとして免疫学的な測定はできないと言われている。したがって、免疫学的に測定される複合型PSAは、通常ACT−PSAである。   The clinical significance of PSA has been found to be high in the proportion of F-PSA in non-cancer diseases such as benign prostatic hyperplasia while ACT-PSA increases in prostate cancer. Therefore, since it is possible to distinguish prostate cancer from benign prostatic hyperplasia from the measured values of T-PSA, ACT-PSA, and F-PSA in serum, early detection of prostate cancer is possible. Note that PSA bound to α2M is not recognized by anti-PSA antibodies because the entire PSA molecule is covered with α2M, and as a result, it is said that immunological measurement as PSA is not possible. Thus, the immunologically measured complex PSA is usually ACT-PSA.

ところで、生体試料特に血清中のT−PSA測定の大きな問題点として、T−PSAを測定するために市販されている20数種類の試薬キット間差、すなわちキットにより測定値が大きく異なることが挙げられる。これは、各試薬キットの、F−PSAとACT−PSAに対する反応性の違いによるところが大きい。特にACT−PSA/F−PSA比が高くなるとその傾向は顕著になると報告されているが、これは、ACT−PSAに対する反応性のバラツキが原因となっている。   By the way, as a big problem of T-PSA measurement in a biological sample, particularly serum, there is a difference between 20 or more kinds of reagent kits commercially available for measuring T-PSA, that is, the measurement value varies greatly depending on the kit. . This is largely due to the difference in reactivity of each reagent kit with respect to F-PSA and ACT-PSA. In particular, it has been reported that the tendency becomes prominent when the ACT-PSA / F-PSA ratio becomes high, but this is caused by a variation in reactivity to ACT-PSA.

1997年来、血清T−PSAの標準化を目指したサーベイが日本泌尿器科学会主催で行われており、臨床や検診の場でも最も問題となる20ng/mL以下(特に4〜10ng/mLのグレーゾーン)できちんと測定でき、さらに精製された試料のみではなく、血清試料でも同じような反応性を示す試薬キットが要望されている。そのため、T−PSAを精度良く測定するためには、血清中のF−PSAとACT−PSAの存在比に関係なく、それぞれに対する反応性が等しくなるような(等モル反応)測定法が求められている。   Since 1997, a survey aimed at standardization of serum T-PSA has been conducted by the Japanese Urological Association, and it is less than 20 ng / mL (especially in the gray zone of 4 to 10 ng / mL), which is the most problematic in clinical and screening settings. There is a need for a reagent kit that can be measured properly and that shows not only a purified sample but also a serum sample with similar reactivity. Therefore, in order to accurately measure T-PSA, there is a need for a measurement method (equimolar reaction) in which the reactivity to each is equal regardless of the abundance ratio of F-PSA and ACT-PSA in serum. ing.

IRMA法やEIA法においては、F−PSAとACT−PSAそれぞれのモノクローナル抗体を組み合わせて、F−PSAとACT−PSAは等モルで反応が起こることが報告されているが(非特許文献1)、ラテックス等を使用する免疫学的凝集測定法では、F−PSAとACT−PSAの反応性を等しくすることが難しいと言われている。これは、EIA等では、モノクローナル抗体の片方は、標識抗体として反応液中での自由に動き回れるため(自由度が高い)複合体との反応性が高くなるのに対し、凝集法では、モノクローナル抗体両方が固相化されているため、標識抗体単独より自由度が低くなり、その結果、複合体との反応性が制限されると推測されている。そこで、免疫学的凝集測定法において、F−PSAとACT−PSAの反応性を等しくする方法が幾つか提案されている。   In IRMA and EIA methods, it has been reported that F-PSA and ACT-PSA react in equimolar amounts by combining monoclonal antibodies of F-PSA and ACT-PSA (Non-patent Document 1). It is said that it is difficult to equalize the reactivity of F-PSA and ACT-PSA by immunological aggregation measurement method using latex or the like. In EIA and the like, one of the monoclonal antibodies can freely move around in the reaction solution as a labeled antibody (high degree of freedom), while the reactivity with the complex is high. Since both antibodies are immobilized, it is presumed that the degree of freedom is lower than that of labeled antibody alone, and as a result, the reactivity with the complex is limited. Thus, several methods have been proposed for equalizing the reactivity of F-PSA and ACT-PSA in immunological aggregation measurement methods.

被検液にACT−PSAとは反応しないF−PSAに対する抗体を添加し、ついでPSAに対する抗体を感作した担体を添加する方法が提案されている。本技術は、F−PSAのACTと結合可能な領域にある程度大きな分子量の蛋白(抗体)を結合させることにより、F−PSAとACT−PSAの分子量を近づけ、エピトープの数を揃えることでPSAに対する抗体に対するF−PSAの反応性とACT−PSAの反応性を近づけ、PSAに対する抗体を感作した担体と両者とを等モル反応で測定する方法である(特許文献1)。   There has been proposed a method in which an antibody against F-PSA that does not react with ACT-PSA is added to a test solution, and then a carrier sensitized with an antibody against PSA is added. This technology allows F-PSA and ACT-PSA to have a similar molecular weight by binding a protein (antibody) having a relatively large molecular weight to a region capable of binding to ACT of F-PSA. In this method, the reactivity of F-PSA to an antibody and the reactivity of ACT-PSA are brought close to each other, and a carrier sensitized with an antibody to PSA and both are measured by equimolar reaction (Patent Document 1).

F−PSAでもACT−PSAでも反応するが競合しない2種のモノクローナル抗体と、さらにF−PSAでは反応せずACT−PSAでは反応するモノクローナル抗体を、別々に不溶性担体に感作し、T−PSAとACT−PSAを測定する免疫凝集測定法が開示されている(特許文献2)。本技術は、3種類のモノクローナル抗体を感作したラテックスを、それぞれ特定の2種類を組み合わせて(混合させて)用いることで、F−PSAとACT−PSAの存在比に影響されることなく測定できる試薬と、複合体のみに特異的な試薬を完成させている。しかし、この方法においては、遊離型でも複合体でも結合力に変化のないモノクローナル抗体が選択されており、その結果、F−PSAの100%に対し、ACT−PSAは約80%の反応性しか得られていない。   Two types of monoclonal antibodies that react with F-PSA or ACT-PSA but do not compete with each other and another monoclonal antibody that does not react with F-PSA but reacts with ACT-PSA are separately sensitized to an insoluble carrier, and T-PSA And an immunoagglutination measurement method for measuring ACT-PSA (Patent Document 2). This technology uses latex that has been sensitized with three types of monoclonal antibodies in combination (mixed) with two specific types, so that measurement is not affected by the abundance ratio of F-PSA and ACT-PSA. We have completed a reagent that can be used and a reagent specific only to the complex. However, in this method, monoclonal antibodies that have no change in binding ability in both free and complex forms are selected. As a result, ACT-PSA has only about 80% reactivity compared to 100% of F-PSA. Not obtained.

Stamey TA「Urology」1995年、45巻、p729−744Tamay TA "Urology" 1995, 45, p729-744 特開平2001−311733号公報JP-A-2001-311733 特開平2001−108681号公報Japanese Patent Laid-Open No. 2001-108681

本発明は、生体試料特に血清中のT−PSAを、F−PSAおよびACT−PSAの存在比に関係なく、精度良く測定できる新規な免疫学的凝集測定法および測定用試薬を提供することを目的とする。   The present invention provides a novel immunological agglutination measurement method and a reagent for measurement capable of accurately measuring T-PSA in a biological sample, particularly serum, irrespective of the abundance ratio of F-PSA and ACT-PSA. Objective.

本発明者は、上記課題を解決するために鋭意研究を行った結果、ラテックス等の不溶性担体粒子を使用した免疫学的凝集測定法において、F−PSAとACT−PSAに対し、反応性の異なるモノクローナル抗体を利用した測定法およびそれに使用する測定試薬を見出し、本発明を完成した。   As a result of intensive studies to solve the above problems, the present inventor has different reactivity to F-PSA and ACT-PSA in an immunological aggregation measurement method using insoluble carrier particles such as latex. A measuring method using a monoclonal antibody and a measuring reagent used therefor have been found, and the present invention has been completed.

すなわち、本発明は以下の構成からなる。
(1)不溶性担体粒子に感作した抗体を抗原と反応させ、抗原抗体反応によって生じる不溶性担体粒子の凝集を観察することによって抗原を検出または測定する方法であって、測定対象抗原の遊離型と、その遊離型に結合可能な分子と結合している複合型の両方に反応し、かつ遊離型よりも複合型に対し結合力の強いモノクローナル抗体を感作した不溶性担体粒子を使用することを特徴とする免疫学的凝集測定法。
(2)前記モノクローナル抗体の解離定数(KD)が、測定対象抗原の遊離型より、その遊離型に結合可能な分子と結合している複合型の方が小さいことを特徴とする(1)記載の測定法。
(3)前記モノクローナル抗体の解離定数(KD)の、測定対象抗原の遊離型に対する、その遊離型に結合可能な分子と結合している複合型の比率が0.1〜0.25であることを特徴とする(1)〜(2)記載の測定法。
(4)測定対象抗原が前立腺特異抗原である(1)〜(3)記載の免疫学的凝集測定法。
(5)不溶性担体粒子に感作した抗体を抗原と反応させ、抗原抗体反応によって生じる不溶性担体粒子の凝集を観察することによって抗原を検出または測定する試薬であって、測定対象抗原の遊離型と、その遊離型に結合可能な分子と結合している複合型の両方に反応し、かつ遊離型よりも複合型に対し結合力の強いモノクローナル抗体を感作した不溶性担体粒子を含む免疫学的凝集測定用試薬。
(6)前記モノクローナル抗体の解離定数(KD)が、測定対象抗原の遊離型より、その遊離型に結合可能な分子と結合している複合型の方が小さいことを特徴とする(5)記載の測定用試薬。
(7)前記モノクローナル抗体の解離定数(KD)の、測定対象抗原の遊離型に対する、その遊離型に結合可能な分子と結合している複合型の比率が0.1〜0.25であることを特徴とする(5)〜(6)記載の測定用試薬。
(8)測定対象抗原が前立腺特異抗原である(5)〜(7)記載の免疫学的凝集測定用試薬。
(9)不溶性担体粒子がラテックスである(5)〜(8)記載の免疫学的凝集測定用試薬。
That is, the present invention has the following configuration.
(1) A method for detecting or measuring an antigen by reacting an antibody sensitized to an insoluble carrier particle with an antigen and observing the aggregation of the insoluble carrier particle caused by the antigen-antibody reaction, wherein Using insoluble carrier particles sensitized with a monoclonal antibody that reacts with both the complex type bound to the molecule capable of binding to the free type and has a stronger binding force to the complex type than the free type And immunological aggregation assay.
(2) The dissociation constant (KD) of the monoclonal antibody is smaller in the complex type bound to the molecule capable of binding to the free form than in the free form of the antigen to be measured (1) Measurement method.
(3) The ratio of the dissociation constant (KD) of the monoclonal antibody to the free form of the antigen to be measured is 0.1 to 0.25. (1)-(2) measuring method characterized by these.
(4) The immunological aggregation measurement method according to any one of (1) to (3), wherein the antigen to be measured is a prostate specific antigen.
(5) A reagent for detecting or measuring an antigen by reacting an antibody sensitized to an insoluble carrier particle with an antigen and observing the aggregation of the insoluble carrier particle caused by the antigen-antibody reaction, comprising a free form of the antigen to be measured Immunological aggregation comprising insoluble carrier particles sensitized with a monoclonal antibody that reacts with both the complex type bound to the molecule capable of binding to the free form and has a stronger binding force to the complex type than the free form Reagent for measurement.
(6) The dissociation constant (KD) of the monoclonal antibody is smaller in the complex type bound to the molecule capable of binding to the free form than in the free form of the antigen to be measured (5) Reagent for measurement.
(7) The ratio of the dissociation constant (KD) of the monoclonal antibody to the free form of the antigen to be measured is 0.1 to 0.25. (5)-(6) measuring reagent characterized by these.
(8) The reagent for measuring immunological aggregation according to (5) to (7), wherein the antigen to be measured is a prostate specific antigen.
(9) The reagent for immunological aggregation measurement according to (5) to (8), wherein the insoluble carrier particles are latex.

本発明の方法により、生体試料特に血清中のT−PSAを、F−PSAおよびACT−PSAの存在比に関係なく、精度良く測定することができる。以下、本発明についてさらに詳細に説明する。   By the method of the present invention, T-PSA in a biological sample, particularly serum, can be accurately measured regardless of the abundance ratio of F-PSA and ACT-PSA. Hereinafter, the present invention will be described in more detail.

測定対象物であるPSAと結合するモノクローナル抗体は通常2種類が用意されるが、それらは、異なるエピトープを有し、かつF−PSAおよびACT−PSAの両方に結合するモノクローナル抗体である。このとき、使用される第1のモノクローナル抗体は、F−PSAに比べACT−PSAに特に結合力が強いもの、すなわちF−PSAに対する解離定数に比べACT−PSAに対する解離定数の方が低く、ACT−PSA/F−PSA(解離定数の比率)が0.25以下のモノクローナル抗体が選択される。また、別に使用されるモノクローナル抗体のそれぞれに対する結合力は、両方に対して等しくても、また逆にF−PSAに強くてもよく、特に限定されない。   Normally, two types of monoclonal antibodies that bind to PSA as a measurement object are prepared, and these are monoclonal antibodies that have different epitopes and bind to both F-PSA and ACT-PSA. At this time, the first monoclonal antibody used has a particularly strong binding force to ACT-PSA compared to F-PSA, that is, the dissociation constant for ACT-PSA is lower than that for F-PSA. -A monoclonal antibody having a PSA / F-PSA (dissociation constant ratio) of 0.25 or less is selected. In addition, the binding force to each of the separately used monoclonal antibodies may be equal to both, or conversely strong against F-PSA, and is not particularly limited.

本発明に用いるモノクローナル抗体は、公知の方法によって得ることができる。すなわち、マウスやラット等の免疫動物をポリクローナル抗体の免疫操作と同じように免疫し、抗体価の上昇を確認したところでその抗体産生細胞を回収する。回収した抗体産生細胞は、ミエローマとの細胞融合でハイブリドーマとする、あるいはEBVトランスフォーム等により形質転換させ不死化する。これを抗体産生能でスクリーニングし、更に必要な活性を持つ抗体を産生する株をクローニングすれば抗体産生株を樹立することができる。抗体産生株は、マウス等免疫動物の腹腔に接種して培養すれば腹水としてモノクローナル抗体を得られる。またin vitroで抗体産生株を大量に培養してモノクローナル抗体を製造することもできる。   The monoclonal antibody used in the present invention can be obtained by a known method. That is, immunized animals such as mice and rats are immunized in the same manner as polyclonal antibody immunization, and when antibody titer increases are confirmed, antibody-producing cells are collected. The collected antibody-producing cells are made into hybridomas by cell fusion with myeloma, or transformed by EBV transform or the like and immortalized. An antibody producing strain can be established by screening this with an antibody producing ability and further cloning a strain producing an antibody having a necessary activity. When an antibody-producing strain is inoculated into the abdominal cavity of an immunized animal such as a mouse and cultured, a monoclonal antibody can be obtained as ascites. In addition, a monoclonal antibody can be produced by culturing a large amount of an antibody-producing strain in vitro.

本発明に用いるモノクローナル抗体を感作する不溶性担体粒子としては、測定が、生化学項目でも測定できるいわゆる汎用型、または専用型の自動分析装置で行われるのに適しているラテックス粒子が有用である。またラテックス粒子の材質としては、ポリスチレン、スチレン−ブタジエン重合体等が挙げられ、免疫学的凝集測定法で汎用されているポリスチレン製が好ましいが、抗体感作に適していれば特に限定されない。またラテックスの粒子径は、通常使用されている50〜700nmが好ましい。さらに、粒子径の均一性に関しては、粒子径の均一なラテックス、あるいは異なる粒子径のラテックスを混合させたものが使用できるが、特に限定されない。   As the insoluble carrier particles for sensitizing the monoclonal antibody used in the present invention, latex particles suitable for being measured by a so-called general-purpose type or a dedicated type automatic analyzer that can measure biochemical items are useful. . Further, examples of the material of the latex particles include polystyrene, styrene-butadiene polymer and the like, and those made of polystyrene which are widely used in immunological aggregation measurement methods are preferable, but are not particularly limited as long as they are suitable for antibody sensitization. The particle diameter of the latex is preferably 50 to 700 nm that is usually used. Furthermore, regarding the uniformity of the particle diameter, latex having a uniform particle diameter or a mixture of latexes having different particle diameters can be used, but is not particularly limited.

ラテックス粒子への抗体の感作は、公知の技術を利用して実施できる。通常は、ポリスチレンの表面は疎水性であるため、ラテックス表面への物理的吸着で可能である。また、表面にアミノ基やカルボキシル基を有するラテックス粒子を用いるのであれば、グルタルアルデヒド、カルボジイミド試薬を使用した化学的結合によって、ラテックス粒子表面に抗体を結合することができる。   Sensitization of antibodies to latex particles can be performed using known techniques. Usually, since the surface of polystyrene is hydrophobic, physical adsorption to the latex surface is possible. If latex particles having an amino group or a carboxyl group are used on the surface, the antibody can be bound to the surface of the latex particles by chemical binding using glutaraldehyde or a carbodiimide reagent.

本発明で利用される測定法は凝集測定法であるが、測定操作は公知の方法により行うことができる。例えば、光学的に測定する場合、血清等の生体試料と、担体粒子に感作させた抗体を反応させ、エンドポイント法またはレート法により、透過光や散乱光を測定することで達成できる。   The measuring method used in the present invention is an aggregating measuring method, but the measuring operation can be performed by a known method. For example, optical measurement can be achieved by reacting a biological sample such as serum with an antibody sensitized to carrier particles, and measuring transmitted light or scattered light by an endpoint method or a rate method.

本発明における測定法の実施形態の一例を示す。測定対象物であるPSAと結合するモノクローナル抗体のうち、F−PSAとACT−PSAの両方に結合し、かつF−PSAよりACT−PSAに対して結合力の強いモノクローナル抗体を第1のモノクローナル抗体としてラテックス粒子に感作する。このラテックス粒子に感作された第1モノクローナル抗体と生体試料例えば血清とを接触させる。次いで、前記第1のモノクローナル抗体と異なる部位で、F−PSAとACT−PSAの両方に結合する別のラテックス粒子に感作されたモノクローナル抗体を接触させる。生体試料中に測定対象物が存在すれば、抗原抗体反応によって生じるラテックス凝集が光学的に測定されることになる。   An example of embodiment of the measuring method in this invention is shown. Of the monoclonal antibodies that bind to PSA as the measurement object, the first monoclonal antibody binds to both F-PSA and ACT-PSA and has a stronger binding force to ACT-PSA than F-PSA. Sensitize to latex particles as The first monoclonal antibody sensitized to the latex particles is brought into contact with a biological sample such as serum. The sensitized monoclonal antibody is then contacted with another latex particle that binds to both F-PSA and ACT-PSA at a different site than the first monoclonal antibody. If the measurement object is present in the biological sample, latex aggregation caused by the antigen-antibody reaction is optically measured.

以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらにより何ら限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

実施例1.抗PSAモノクローナル抗体の抗原に対する結合力
(1)センサーチップ(CM5)への抗マウスIgGFcウサギ抗体の固定化
アフィニティー測定用装置BiacoreX( ビアコア社製 )のセンサーチップ上にあるカルボキシメチルデキストランのカルボキシル基をNHS(N−ヒドロキシスクシンイミド)で7分間活性化し、EDC[N−エチル−N’−(3−ジメチルアミノプロピル)カルボジイミドハイドロクロリド]を縮合剤として、抗マウスIgGFcウサギ抗体を固定化した。
(2)サンプル抗体の結合
(1)で作製した抗マウスIgGFcウサギ抗体固定化センサーチップに、定法通り得られた抗PSA抗体G3(または抗PSA抗体P2)50μg/mLの5μLをアプライし、前記センサーチップに結合させた。
(3)PSA抗原の結合
(2)で抗体を結合させたセンサーチップに、10nMのPSA抗原であるF−PSA(またはACT−PSA)を50μLをアプライし、4分間のセンサーグラム(反応曲線)をモニターさせた。
(4)繰り返し操作
(3)で使用したセンサーチップに、10mMのNaOH水溶液を10μLアプライし、(2)および(3)の操作で結合させた抗PSAモノクローナル抗体およびPSA抗原をセンサーチップから剥離させ、洗浄後、再生した。次いで、20、40、80、160nMのPSA抗原について、(2)〜(4)の同様の操作を行った。
(5)アフィニティーの計算
前記(3)および(4)で得られたセンサーグラムを装置付属の解析ソフトで、解離定数すなわちアフィニティー(KD)を求めた。
Example 1. Anti-PSA monoclonal antibody binding force to antigen (1) Immobilization of anti-mouse IgG Fc rabbit antibody on sensor chip (CM5) The carboxyl group of carboxymethyldextran on the sensor chip of BiacoreX (Biacore) for affinity measurement It was activated with NHS (N-hydroxysuccinimide) for 7 minutes, and an anti-mouse IgG Fc rabbit antibody was immobilized using EDC [N-ethyl-N ′-(3-dimethylaminopropyl) carbodiimide hydrochloride] as a condensing agent.
(2) Binding of sample antibody To the anti-mouse IgG Fc rabbit antibody-immobilized sensor chip prepared in (1), 5 μL of 50 μg / mL of anti-PSA antibody G3 (or anti-PSA antibody P2) obtained as usual was applied, Coupled to sensor chip.
(3) Binding of PSA antigen 50 μL of 10 nM PSA antigen F-PSA (or ACT-PSA) was applied to the sensor chip to which the antibody was bound in (2), and a sensorgram (response curve) for 4 minutes. Was monitored.
(4) Repeat operation 10 μL of 10 mM NaOH aqueous solution is applied to the sensor chip used in (3), and the anti-PSA monoclonal antibody and the PSA antigen bound in the operations of (2) and (3) are peeled off from the sensor chip. After washing, it was regenerated. Subsequently, the same operations (2) to (4) were performed on the 20, 40, 80, and 160 nM PSA antigens.
(5) Calculation of affinity The dissociation constant, that is, affinity (KD) was obtained from the sensorgram obtained in (3) and (4) above using the analysis software attached to the apparatus.

(6)結果
その結果を表1に示す。KD値が小さい程、抗原に対する結合力が高いことを示す。KD値の比率より、モノクローナル抗体G3は、F−PSAよりもACT−PSAに対し、結合力が約5倍高いことがわかる。一方、モノクローナル抗体P2は、ACT−PSAよりもF−PSAに対し、結合力が約2倍高いことがわかる。
(6) Results Table 1 shows the results. A smaller KD value indicates a higher binding force to the antigen. From the ratio of the KD values, it can be seen that the monoclonal antibody G3 has about 5 times higher binding force to ACT-PSA than F-PSA. On the other hand, it can be seen that the monoclonal antibody P2 has about two times higher binding force to F-PSA than ACT-PSA.

Figure 2005326150
Figure 2005326150

実施例2.抗PSAモノクローナル抗体を用いた免疫学的凝集測定および抗体の反応性の評価
1.試薬の調整
(1)抗PSA(前立腺特異抗原)マウスモノクローナル抗体(No.G3)(以下「抗PSA抗体G3」)担持ラテックス懸濁液の調製
平均粒径0.162μm、固形分10%w/v(以下「%w/v」の濃度表示は「%」と略して表示)のポリスチレンラテックス溶液を精製水にて希釈し、0.2%ラテックス液を作製した。ラテックス感作用の抗体液は、抗PSA抗体G3を、タンパク質濃度が100μg/mLとなるように抗体希釈用緩衝液で希釈して作製した。0.2%ラテックス溶液1mLを室温下で攪拌しながら抗体液0.8mLを素早く添加し、37℃で1時間インキュベートした。その後、ブロッキング用緩衝液を0.2mL添加し、さらに37℃で1時間インキュベートし、次いで、4℃、60,000rpmにて20分間遠心分離を行った。未吸着の抗体を含む上清を除去し、得られた沈殿物に洗浄用緩衝液を2mL添加後攪拌洗浄し、以下同様に遠心分離および洗浄操作を2回繰り返すによって、沈殿物を洗浄した。最後に、この沈殿物にブロッキング用緩衝液を2mL添加し、よく攪拌後、超音波にて分散処理を行うことで、0.1%抗PSA抗体G3担持ラテックス懸濁液を作製した。
(2)抗PSA(前立腺特異抗原)マウスモノクローナル抗体(No.P2)(以下「抗PSA抗体P2」)担持ラテックス懸濁液の調製
(1)同様の方法にて、0.1%抗PSA抗体P2担持ラテックス懸濁液を作製した。
(3)PSA測定用第1試薬の調製
検体希釈用希釈液にて、0.1%抗PSA抗体G3担持ラテックス懸濁液を4倍希釈(0.025%)した液をR(G3)−1とした。なお、比較例1として、前記希釈液のみ用いた液R(BL)−1、さらに比較例2として、0.1%抗PSA抗体P2担持ラテックス懸濁液を4倍希釈(0.025%)した液R(P2)−1を調製した。
(4)PSA測定用第2試薬の調製
検体希釈用希釈液にて、0.1%抗PSA抗体P2担持ラテックス懸濁液を4倍希釈(0.025%)した液をR(P2)−2とした。なお、比較例1として、0.1%抗PSA抗体G3担持ラテックス懸濁液および0.1%抗PSA抗体P2担持ラテックス懸濁液を、各々希釈液にて2倍希釈して同量ずつ混合した液R(GP)−2、さらに比較例2として、0.1%抗PSA抗体G3担持ラテックス懸濁液を前記希釈液にて4倍希釈(0.025%)した液R(G3)−2も調製した。
Example 2 1. Measurement of immunological aggregation using anti-PSA monoclonal antibody and evaluation of antibody reactivity Preparation of Reagent (1) Preparation of Anti-PSA (Prostate Specific Antigen) Mouse Monoclonal Antibody (No. G3) (hereinafter “Anti-PSA Antibody G3”)-Supported Latex Suspension Average Particle Size 0.162 μm, Solid Content 10% w / A polystyrene latex solution of v (hereinafter, “% w / v” is abbreviated as “%”) was diluted with purified water to prepare a 0.2% latex solution. The latex-sensitive antibody solution was prepared by diluting the anti-PSA antibody G3 with an antibody dilution buffer so that the protein concentration was 100 μg / mL. While stirring 1 mL of 0.2% latex solution at room temperature, 0.8 mL of antibody solution was quickly added and incubated at 37 ° C. for 1 hour. Thereafter, 0.2 mL of a blocking buffer was added, further incubated at 37 ° C. for 1 hour, and then centrifuged at 4 ° C. and 60,000 rpm for 20 minutes. The supernatant containing unadsorbed antibody was removed, and 2 mL of a washing buffer solution was added to the resulting precipitate, followed by stirring and washing. Thereafter, centrifugation and washing operations were repeated twice in the same manner to wash the precipitate. Finally, 2 mL of blocking buffer was added to the precipitate, and after stirring well, a dispersion treatment was performed with ultrasonic waves to prepare a 0.1% anti-PSA antibody G3-supported latex suspension.
(2) Preparation of anti-PSA (prostate specific antigen) mouse monoclonal antibody (No. P2) (hereinafter “anti-PSA antibody P2”)-supported latex suspension (1) 0.1% anti-PSA antibody in the same manner A P2 supported latex suspension was prepared.
(3) Preparation of first reagent for PSA measurement A solution obtained by diluting a 0.1% anti-PSA antibody G3-supported latex suspension 4 times (0.025%) with a diluent for specimen dilution is R (G3)- It was set to 1. In addition, as comparative example 1, liquid R (BL) -1 using only the diluted solution, and as comparative example 2, 0.1% anti-PSA antibody P2-supported latex suspension was diluted 4 times (0.025%). Liquid R (P2) -1 was prepared.
(4) Preparation of Second Reagent for PSA Measurement A solution obtained by diluting a 0.1% anti-PSA antibody P2-supported latex suspension 4 times (0.025%) with a diluent for specimen dilution is R (P2)- 2. As Comparative Example 1, 0.1% anti-PSA antibody G3-supported latex suspension and 0.1% anti-PSA antibody P2-supported latex suspension were each diluted 2-fold with a diluent and mixed in the same amount. Liquid R (GP) -2, and as Comparative Example 2, liquid R (G3)-in which 0.1% anti-PSA antibody G3-supported latex suspension was diluted 4-fold (0.025%) with the diluent. 2 was also prepared.

2.測定試薬の反応性の評価
既に述べたようにPSAの測定においては、F−PSAとACT−PSAに等モルずつ反応することが重要である。ここで、Stanford大学より入手した精製F−PSAおよびACT−PSAをそれぞれ10ng/mLとなるように希釈し、それぞれ異なる割合で混合した試料(F−PSA:ACT−PSA=10:0、8:2、6:4、4:6、2:8および0:10)について測定することにより、F−PSAとACT−PSAの反応性を調べた。
(1)測定
測定は、自動分析装置TBA−120FR( 東芝メディカル社製 )を使用した。本装置では、検体(12μL)と第1試薬(90μL)が分注された後、約296秒後に第2試薬(90μL)が分注されることによって測定が行われるが、測定値は、第1試薬分注後の569秒と587秒の吸光度(測定波長572nm)の平均値から、第1試薬分注後の317秒と335秒の吸光度(測定波長同)の平均値を差し引いた吸光度から算出される。
2. Evaluation of Reactivity of Measuring Reagent As described above, it is important to react equimolarly with F-PSA and ACT-PSA in the measurement of PSA. Here, purified F-PSA and ACT-PSA obtained from Stanford University were each diluted to 10 ng / mL and mixed at different ratios (F-PSA: ACT-PSA = 10: 0, 8: 2, 6: 4, 4: 6, 2: 8 and 0:10), the reactivity of F-PSA and ACT-PSA was examined.
(1) Measurement An automatic analyzer TBA-120FR (manufactured by Toshiba Medical) was used for measurement. In this apparatus, after the sample (12 μL) and the first reagent (90 μL) are dispensed, the measurement is performed by dispensing the second reagent (90 μL) about 296 seconds later. From the absorbance obtained by subtracting the average value of absorbance at 317 seconds and 335 seconds after the first reagent dispensing (same measurement wavelength) from the average value of absorbance at 569 seconds and 587 seconds after dispensing one reagent (measurement wavelength: 572 nm) Calculated.

(2)結果
その結果を表2に示す。実施例は、第1試薬にG3担持ラテックス懸濁液R(G3)−1、第2試薬にP2担持ラテックス懸濁液R(P2)−2を使用した系である。比較例1は、第1試薬に希釈液R(BL)−1、第2試薬にG3およびP2担持ラテックス懸濁液の混合液R(GP)−2を使用した系であり、一方、比較例2は、実施例とは逆の試薬組成で、第1試薬にP2担持ラテックス懸濁液R(P2)−1、第2試薬にG3担持ラテックス懸濁液R(G3)−2を使用した系である。比較例1および2では、F−PSAが100%濃度であれば10〜11ng/mLと測定されるが、ACT−PSAの比率が高くなるにつれて測定値は低下し、ACT−PSA100%濃度のときは7〜8ng/mLとなる。すなわち、F−PSA100%濃度に対する相対値として約65〜75%しか測定されてない。これは、いずれも第2試薬にG3担持ラテックスを使用しているが、ACT−PSAと十分に反応するための時間が足りないことを示唆している。一方、実施例のように、第1試薬にACT−PSAと高い結合力を有するモノクローナル抗体(G3)を担持したラテックス試薬を使用した系では、F−PSAとACT−PSAの混合比を問わず、ほぼ一定の値(前述相対値90%以上)を示した。このことから、第1試薬にACT−PSAに結合力が強い抗体を感作したラテックス試薬を用いることで、F−PSAとACT−PSAにほぼ同じ反応性を示す測定系を完成させることができる。
(2) Results Table 2 shows the results. The example is a system using G3 supported latex suspension R (G3) -1 as the first reagent and P2 supported latex suspension R (P2) -2 as the second reagent. Comparative Example 1 is a system in which diluent R (BL) -1 is used as the first reagent, and mixed liquid R (GP) -2 of G3 and P2-supported latex suspension is used as the second reagent. 2 is a reagent composition opposite to that used in the examples, and a system using a P2-supported latex suspension R (P2) -1 as the first reagent and a G3-supported latex suspension R (G3) -2 as the second reagent. It is. In Comparative Examples 1 and 2, when F-PSA is 100% concentration, it is measured as 10 to 11 ng / mL, but the measured value decreases as the ratio of ACT-PSA increases, and when ACT-PSA is 100% concentration Is 7-8 ng / mL. That is, only about 65 to 75% is measured as a relative value with respect to 100% F-PSA concentration. This suggests that G3-supported latex is used as the second reagent, but there is not enough time to react sufficiently with ACT-PSA. On the other hand, in the system using a latex reagent carrying a monoclonal antibody (G3) having high binding force with ACT-PSA as the first reagent as in the example, the mixing ratio of F-PSA and ACT-PSA is not limited. An almost constant value (the above relative value of 90% or more) was exhibited. Therefore, by using a latex reagent sensitized with an antibody having a strong binding force to ACT-PSA as the first reagent, a measurement system showing almost the same reactivity to F-PSA and ACT-PSA can be completed. .

Figure 2005326150
Figure 2005326150

Claims (9)

不溶性担体粒子に感作した抗体を抗原と反応させ、抗原抗体反応によって生じる不溶性担体粒子の凝集を観察することによって抗原を検出または測定する方法であって、測定対象抗原の遊離型と、その遊離型に結合可能な分子と結合している複合型の両方に反応し、かつ遊離型よりも複合型に対し結合力の強いモノクローナル抗体を感作した不溶性担体粒子を使用することを特徴とする免疫学的凝集測定法。   A method of detecting or measuring an antigen by reacting an antibody sensitized to an insoluble carrier particle with an antigen and observing the aggregation of the insoluble carrier particle caused by the antigen-antibody reaction, wherein the free form of the antigen to be measured and its release Immunity characterized by the use of insoluble carrier particles sensitized with a monoclonal antibody that reacts with both the complex type bound to the molecule capable of binding to the mold and has a stronger binding force to the complex type than the free type Agglutination assay. 前記モノクローナル抗体の解離定数(KD)が、測定対象抗原の遊離型より、その遊離型に結合可能な分子と結合している複合型の方が小さいことを特徴とする請求項1記載の測定法。   2. The method according to claim 1, wherein the dissociation constant (KD) of the monoclonal antibody is smaller in the complex type bound to the molecule capable of binding to the free form than in the free form of the antigen to be measured. . 前記モノクローナル抗体の解離定数(KD)の、測定対象抗原の遊離型に対する、その遊離型に結合可能な分子と結合している複合型の比率が0.1〜0.25であることを特徴とする請求項1〜2記載の測定法。   The ratio of the dissociation constant (KD) of the monoclonal antibody to the free form of the antigen to be measured is 0.1 to 0.25. The measuring method according to claim 1 or 2. 測定対象抗原が前立腺特異抗原である請求項1〜3記載の免疫学的凝集測定法。   The immunological aggregation measurement method according to claim 1, wherein the antigen to be measured is a prostate-specific antigen. 不溶性担体粒子に感作した抗体を抗原と反応させ、抗原抗体反応によって生じる不溶性担体粒子の凝集を観察することによって抗原を検出または測定する試薬であって、測定対象抗原の遊離型と、その遊離型に結合可能な分子と結合している複合型の両方に反応し、かつ遊離型よりも複合型に対し結合力の強いモノクローナル抗体を感作した不溶性担体粒子を含む免疫学的凝集測定用試薬。   A reagent for detecting or measuring an antigen by reacting an antibody sensitized to an insoluble carrier particle with an antigen and observing the aggregation of the insoluble carrier particle caused by the antigen-antibody reaction. A reagent for measuring immunological agglutination comprising insoluble carrier particles that react with both a complex that binds to a mold and a complex that binds to the mold and that is sensitized with a monoclonal antibody that has a stronger binding force than the free form . 前記モノクローナル抗体の解離定数(KD)が、測定対象抗原の遊離型より、その遊離型に結合可能な分子と結合している複合型の方が小さいことを特徴とする請求項5記載の測定用試薬。   6. The measurement type according to claim 5, wherein the dissociation constant (KD) of the monoclonal antibody is smaller in the complex type bound to the molecule capable of binding to the free type than in the free type of the antigen to be measured. reagent. 前記モノクローナル抗体の解離定数(KD)の、測定対象抗原の遊離型に対する、その遊離型に結合可能な分子と結合している複合型の比率が0.1〜0.25であることを特徴とする請求項5〜6記載の測定用試薬。   The ratio of the dissociation constant (KD) of the monoclonal antibody to the free form of the antigen to be measured is 0.1 to 0.25. The measuring reagent according to claim 5. 測定対象抗原が前立腺特異抗原である請求項5〜7記載の免疫学的凝集測定用試薬。   The reagent for measuring immunological agglutination according to claims 5 to 7, wherein the antigen to be measured is a prostate specific antigen. 不溶性担体粒子がラテックスである請求項5〜8記載の免疫学的凝集測定用試薬。
The reagent for measuring immunological agglutination according to claim 5, wherein the insoluble carrier particles are latex.
JP2004141832A 2004-05-12 2004-05-12 Method for measuring prostate specific antigen Pending JP2005326150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004141832A JP2005326150A (en) 2004-05-12 2004-05-12 Method for measuring prostate specific antigen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004141832A JP2005326150A (en) 2004-05-12 2004-05-12 Method for measuring prostate specific antigen

Publications (1)

Publication Number Publication Date
JP2005326150A true JP2005326150A (en) 2005-11-24

Family

ID=35472630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004141832A Pending JP2005326150A (en) 2004-05-12 2004-05-12 Method for measuring prostate specific antigen

Country Status (1)

Country Link
JP (1) JP2005326150A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006068206A1 (en) * 2004-12-24 2006-06-29 Daiichi Pure Chemicals Co., Ltd. Reagent for assaying antigen and method of assaying antigen
WO2007114337A1 (en) * 2006-03-31 2007-10-11 Nissui Pharmaceutical Co., Ltd., Immune agglutination reaction reagent kit and method of assaying antigen
JP2010237105A (en) * 2009-03-31 2010-10-21 Eiken Chem Co Ltd Immunoassay reagent and immunoassay method
WO2023035142A1 (en) * 2021-09-07 2023-03-16 山东博科生物产业有限公司 Sensitive total prostate-specific antigen detection kit

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006068206A1 (en) * 2004-12-24 2006-06-29 Daiichi Pure Chemicals Co., Ltd. Reagent for assaying antigen and method of assaying antigen
JP4755112B2 (en) * 2004-12-24 2011-08-24 積水メディカル株式会社 Reagent for measuring antigen and method for measuring antigen
WO2007114337A1 (en) * 2006-03-31 2007-10-11 Nissui Pharmaceutical Co., Ltd., Immune agglutination reaction reagent kit and method of assaying antigen
JPWO2007114337A1 (en) * 2006-03-31 2009-08-20 日水製薬株式会社 Immunoagglutination reagent kit and antigen measurement method
JP5199067B2 (en) * 2006-03-31 2013-05-15 日水製薬株式会社 Immunoagglutination reagent kit and antigen measurement method
JP2010237105A (en) * 2009-03-31 2010-10-21 Eiken Chem Co Ltd Immunoassay reagent and immunoassay method
WO2023035142A1 (en) * 2021-09-07 2023-03-16 山东博科生物产业有限公司 Sensitive total prostate-specific antigen detection kit

Similar Documents

Publication Publication Date Title
JP3486413B2 (en) Prostate specific antigen immunoassay
JP5807300B2 (en) Method and reagent for measuring C-reactive protein in sample
JP5170742B2 (en) Aggregation measuring reagent and aggregation measuring method
JP4668768B2 (en) Immunoassay method and non-specific reaction suppression method
JP4176826B2 (en) Aggregation inhibition measurement method and aggregation inhibition measurement reagent
JPWO2007063616A1 (en) Ultrasensitive C-reactive protein measuring reagent and measuring method
JP2006017745A (en) Immunological particle agglutination reaction method
JP5276924B2 (en) Antibody to ochratoxin, affinity column using the antibody, and kit for immunological detection of ochratoxin
KR102520342B1 (en) Reagent and method for measuring thrombin antithrombin complex
JP2007163319A (en) Immunoassay and reagent kit for immunoassay
JP5984670B2 (en) Reagent for FDP measurement, reagent kit, and measurement method
JP3652029B2 (en) Highly sensitive immunoassay
WO2018047792A1 (en) Method and reagent for measuring thyroglobulin
JPH11337551A (en) Non-specific reaction suppression agent, immunity measuring reagent, and immunity measuring method
TW201802472A (en) Anti-human hemoglobin monoclonal antibody or antibody kit, insoluble carrier particle to which anti-human hemoglobin monoclonal antibody is immobilized, and measurement reagent and measurement method using same
JPWO2002048711A1 (en) Immunological analysis reagent and analysis method
JP2013125005A (en) Latex agglutination immunoreagent for ck-mb measurement and measuring method
JP2005326150A (en) Method for measuring prostate specific antigen
JP5156677B2 (en) Immunological measuring reagent and immunological measuring method
JP2016194444A (en) Measuring reagent of thrombin/antithrombin complex and measurement method
KR20230110262A (en) Myocardial troponin I detection methods and kits
JP2004191332A (en) Immunological analysis reagent and immunological analysis method
JP3663516B2 (en) Post-synthesis chemical modification of particle reagents
JP7355140B2 (en) Reagents for detecting or measuring serine proteases
JP5880029B2 (en) Method for measuring substances present in two or more types of forms