JP2005322864A - 短パルス光源 - Google Patents

短パルス光源 Download PDF

Info

Publication number
JP2005322864A
JP2005322864A JP2004167825A JP2004167825A JP2005322864A JP 2005322864 A JP2005322864 A JP 2005322864A JP 2004167825 A JP2004167825 A JP 2004167825A JP 2004167825 A JP2004167825 A JP 2004167825A JP 2005322864 A JP2005322864 A JP 2005322864A
Authority
JP
Japan
Prior art keywords
optical fiber
mirror
fabry
output
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004167825A
Other languages
English (en)
Inventor
Shinji Yamashita
真司 山下
Yun Set Sze
ジ イヨン セット
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ALNAIR LABS KK
Original Assignee
ALNAIR LABS KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ALNAIR LABS KK filed Critical ALNAIR LABS KK
Priority to JP2004167825A priority Critical patent/JP2005322864A/ja
Publication of JP2005322864A publication Critical patent/JP2005322864A/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

【課題】高速・長距離光ファイバ通信システムで使用する高繰り返し周波数パルス光源の不安定性解消、小型化、通信路データレートへのロック機能、波長可変機能、多波長パルス生成を安価に実現する。
【解決手段】高利得光ファイバと可飽和吸収素子を有するファブリペロー型共振器、励起用レーザダイオード、レーザダイオード出力を結合するカプラを用いた受動モード同期光ファイバレーザにおいて、可飽和吸収素子としてカーボンナノチューブを使用する構成で、この使用するカーボンナノチューブは、研磨した光ファイバ端面に積層したり、樹脂やガラス中に分散してデバイス化して使用することで課題を解決したものである。
【選択図】 図1

Description

本発明は、繰り返し周波数が高くパルス幅の狭い、高速・長距離光ファイバ通信システムで使用される短パルスレーザ光源に関するものである。
従来の光ファイバ通信システムの光源としては、連続発振する半導体レーザからの連続光を強度変調器によりNRZ(Non−Return−to−Zero)フォーマットで変調したものが用いられてきた。
しかしながら、高速・長距離光ファイバ通信システムにおいては、光ファイバの非線形性の存在により、NRZよりもRZ(Return−to−Zero)フォーマットの方が有利であることが知られている。この方式では、パルス光源と強度変調器の組み合わせが用いられ、安定かつ繰り返し周波数が高いパルス光源が必要となる。
繰り返し周波数が高いパルス光源としては、能動モード同期光ファイバレーザがある。能動モード同期光ファイバレーザでは、共振器として10m以上の長い光ファイバを使用し、この中に能動モード同期素子(=強度変調器)を入れて光をスイッチすることによりパルスを得るものである。
繰り返し周波数はレーザ共振器長で決まり、高い周波数を得るためには、共振器長を短くしなければならない。ただし、高調波モード同期技術を用いると、ある程度繰り返し周波数を高くすることが可能である。
能動モード同期光ファイバレーザは、レーザ共振器長が長いため、不安定という欠点を有し、安定化のための手段が必要となり、その部分のコストが大きくなる。
一方、安定なパルス光源としては、受動モード同期光ファイバレーザがある。受動モード同期光ファイバレーザは、光ファイバレーザの中に受動モード同期素子を入れて光を自身でスイッチさせることによりパルスを得るものである。受動モード同期素子は可飽和吸収特性を有する非線形素子であり、高い光パワーを与えると透過率が高くなる性質を有する。
受動モード同期光ファイバレーザでは、高調波モード同期技術は使用できず、高い繰り返し周波数を得るためには、レーザ共振器長を短くすることが必要である。
また、高い繰り返し周波数では必然的にパルス幅も狭くしなければならず、非常に高速で動作する可飽和吸収体が必要になる。
現状技術における可飽和吸収体の一つとして光ファイバ型可飽和吸収体がある。可飽和吸収体の動作速度は超高速であるが、長い光ファイバが必要となり、繰り返し周波数の高いパルス光源を得るための共振器長の短距離化に適していない。
他の可飽和吸収体として半導体型可飽和吸収体がある。
半導体型可飽和吸収体は小型であり、これを使用して高繰り返し周波数のレーザが実現されているが、可飽和吸収体の高速化のためには、特殊な製造プロセスが必要であり、コスト高の欠点を有する。
また、半導体型可飽和吸収体は光ファイバとの結合が困難であり、光ファイバを使用した高繰り返し周波数を実現する受動モード同期光ファイバレーザへの使用は困難である。
近年、ナノテクノロジーの代表的な物質として、カーボンナノチューブがさまざまな分野で研究開発が急速に進められている。これまではカーボンナノチューブの光学特性はそれほど注目されてこなかったが、ごく最近、カーボンナノチューブが、光ファイバ通信で用いられる波長1.55μm帯でピコセカンド以下の超高速な非線形吸収特性を持つことが見出された。このカーボンナノチューブをリング型光ファイバレーザ中に用いることで受動モード同期光ファイバレーザを構成し、パルス幅1ピコ秒以下の短パルスが得られることが示されている。
カーボンナノチューブを使用したリング型光ファイバレーザは、従来の装置に比べれば大幅な小型化が図られているが、ここで使用されるカプラ、アイソレータ等光デバイスの形状寸法に小型化の制約があり、装置のさらなる小型化には限界がある。
また、リング型光ファイバレーザの繰り返し周波数は、リング一巡時間で決定されるが、大部分は光ファイバ長で決定され、繰り返し周波数を微細に調整することは非常に困難を伴う。
通信システムで使用する場合、パルス光源の繰り返し周波数を通信路のデータレートにロックする機能が必須であり、この機能実現のためには、リング一巡時間を微細に調整する必要があるが、この調整を行うことはきわめて困難であり、複雑な機構が必要である。
以上、能動モード同期光ファイバレーザ、光ファイバ型可飽和吸収体使用受動モード同期光ファイバレーザ、半導体型可飽和吸収体使用受動モード同期光ファイバレーザ、カーボンナノチューブ使用リング光ファイバレーザとも、高速・長距離光ファイバ通信システムで使用するパルス光源としてはそれぞれに欠点を有している。
一方、光ファイバを使用するファブリペロー型共振器のミラー間の短距離化に関しては、高い利得をもつエルビウム・イットリウムドープ光ファイバ(Er:Yb光ファイバ)を用いることにより、長さ数百ミクロンから数センチメートルの短い共振器長が実現されている。
高速・長距離光ファイバ通信システムで使用するパルス光源としては、高繰り返し周波、高安定、小型、通信路のデータレートにロックする機能付で、波長可変、多波長発生が可能な、安価な光源が求められている。
I.N.Duling,ed.,"Compact sources for ultrashort pulses,"Cambridge University Press,1995. U.Keller,D.Miller,G.Boyd,T.Chiu,J.Ferguson,and M.Asorn,"Solid−state low−loss intracavity saturable absorber for Nd:YLF lasers:an antiresonant semiconductor Fabry−Perot saturable absorber,"Opt.Lett.,vol.17,No.7,pp.505−507,1992. V.J.Matsas,T.P.Newson,D.J.Richardson,and D.J.Payne,"Selfstarting passively mode−locked fibre ring soliton laser exploiting nonlinear polarisation rotation,"Electron.Lett.,vol.28,pp.1391−1393,1992.N.J.Doran,D.Wood,"Non−linear optical loop mirror,"Opt.Lett.,14,pp.56−58,1988. S.Y.Set,H.Yaguchi,Y.Tanaka,M.Jablonski,Y,Sakakibara,A.Rozhin,M.Tokumoto H.Kataura,Y.Achiba,K.Kikuchi,"Mode−locked fiber lasers based on a saturable absorber incorporating carbon nanotubes,"OFC’03,no.PD44,2003. K.Hsu,C.M.Miller,J.T.Kringlebotn,E.M.Taylor,J.Townsend,and D.N. Payne,"Single−mode tunable erbium:ytterbium fibre Fabry−Perot microlaser,"Opt.Lett.,vol.19,no.12,pp.886−888,June 1994. K.Mori,et al.,"Flatly broadband supercontinuum spectrum generated in a dispersion decreasing fibre with convex dispersion profile,"Optics Letters,vol.33,no.21,pp.1806−1807,1997.
発明が解決しようとしている課題
解決しようとする課題は、高速・長距離光ファイバ通信システムで使用する高繰り返し周波数パルス光源の不安定性を解消し、小型化を容易にすること、エネルギー消費を減らすこと、さらに、通信路のデータレートにロックすること、波長可変機能を容易に実現すること、多波長パルスを容易に生成すること、これらの課題解決を安価に実現することである。
課題を解決するための手段
請求項1の発明は、2枚のミラー間に高利得光ファイバと可飽和吸収体を有するファブリペロー型共振器と、該共振器に励起光パワーを供給するレーザダイオードと、レーザダイオードへの電流供給回路と、レーザダイオード出力パワーを共振器へ供給するためのカプラと、レーザ出力のためのアイソレータおよびこれらを結合する光ファイバから構成される受動モード同期光ファイバレーザにおいて、可飽和吸収体としてカーボンナノチューブを使用した短パルス光源である。
上記発明において、研磨した高利得光ファイバ端面にカーボンナノチューブを積層することで形成することで使用する。
さらに、カーボンナノチューブを樹脂またはガラス中に分散してデバイス化することで使用する方法である。
さらに、ファブリペロー型共振器を構成するミラーは、研磨した光ファイバ端面に反射材を直接蒸着して作成する。
また、カーボンナノチューブは、ファブリペロー型共振器を構成する2枚のミラーの内の片方のミラーの表面に積層することで作成することも可能である。
請求項6の発明は、2枚のミラー間に高利得光ファイバと可飽和吸収体を有するファブリぺロー型共振器と、該共振器に励起光パワーを供給するレーザダイオードと、レーザダイオードへの電流供給回路と、レーザダイオード出力パワーを共振器へ供給するためのカプラと、レーザ出力のためのアイソレータおよびこれらを結合する光ファイバから構成される受動モード同期光ファイバレーザにおいて、出力と反対側のミラーからファブリペロー型共振器内のパワーの一部を取り出す構造を有し、取り出した光パワーを検出する受光回路と、受光回路出力および通信路クロックパルスを入力とし受光回路出力と通信路クロックパルスとの周波数差に応じた誤差信号を出力するコントローラと、コントローラ出力の誤差信号でファブリペロー型共振器の一方のミラーを移動しミラー間隔を変化させるミラー間隔調整機能を備えた短パルス光源である。
請求項6の発明に、出力と反対側のミラーからファブリペロー型共振器内のパワーの一部を取り出す構造を追加し、取り出した光パワーを検出する受光回路と受光回路出力にモード同期判定部を付加し、モード同期状態検出信号により励起レーザダイオードの駆動電流を変化させる駆動電流制御回路を有した短パルス光源である。
請求項6の発明に、光増幅器と非線形光ファイバと光フィルタを接続し、コントローラの通信路クロックパルス入力に任意の周波数のクロックを入力する短パルス光源である。
請求項9の発明は、2枚のミラー間に高利得光ファイバと可飽和吸収体を有するファブリペロー型共振器と、該共振器に励起光パワーを供給するレーザダイオードと、レーザダイオード電流供給回路と、レーザダイオード出力パワーを共振器へ供給するためのカプラと、レーザ出力のためのアイソレータおよびこれらを結合する光ファイバから構成される受動モード同期光ファイバレーザにおいて、高利得光ファイバの可飽和吸収体とは反対側の端面にファブリペロー型共振器を構成するミラーより反射率を低くしたミラーを挿入し、反射率を低くしたミラーと対向するファブリペロー型共振器を構成するミラーとの間隔を変化させる調整機能と、調整機能を制御する制御部を備えたことを特徴とする短パルス光源である。
請求項9の発明には、請求項6のミラー間隔調整機能と同等の機能を付加した短パルス光源も実現される。請求項9の発明に、出力と反対側のミラーからファブリペロー型共振器内のパワーの一部を取り出す構造と、取り出した光パワーを検出する受光回路と、受光回路出力および通信路クロックパルスを入力とし受光回路と通信路クロックパルスの周波数差に応じた誤差信号を出力するコントローラと、コントローラ出力の誤差信号でファブリぺロー型共振器の可飽和吸収体側のミラーを移動し、ミラー間隔を変化させるミラー間隔調整機能を追加した短パルス光源である。
発明の効果
請求項1の発明の効果として、カーボンナノチューブを使用することにより、可飽和吸収体の製作が半導体の場合のような特殊な製造プロセスを使用することなく、かつ、市販のカーボンナノチューブを使用して可能となり、大幅なコスト削減が可能である。
カーボンナノチューブを研磨した光ファイバ端面に積層する方法では、可飽和吸収体として独立の部品は不要となり、コスト削減に寄与する。
カーボンナノチューブを、光ファイバ端面に形成する方法では、カーボンナノチューブを塗布する等簡単な工程で実現でき、コスト削減に寄与する。
カーボンナノチューブを樹脂またはガラス中に分散してデバイス化する場合、表面保護のための工程が不要となり、工程削減になる。
さらにミラーは研磨した光ファイバ端面に反射材を蒸着させるため独立の部品は不要となる、これによりコスト削減に寄与する。
カーボンナノチューブは、ミラー表面に直接積層させることにより、更に構造が簡単となり、コスト削減に貢献する。
ファブリペロー型共振器を構成する光ファイバに高利得光ファイバを使用することにより、ファブリペロー型共振器のミラー間の距離を短くすることができ、高繰り返し周波数化と小型化に有効である。
請求項6の発明の効果として、高速・長距離光ファイバ通信システムにおいて、パルスの繰り返し周波数を通信のデータレートに正確に一致させる必要があるが、わずかな機能追加でこれを可能とするものであり、コスト削減に寄与する。
ここで、ミラー間隔を変化させる調整機構としては、微細調整が可能な方法であれば何を使用してもよく、装置設計の自由度が大きい効果がある。
さらに請求項6の発明では、レーザ起動時のみ励起レーザダイオードに大電流を流し、モード同期となった定常状態では励起レーザダイオードの電流を減少させており、省エネルギー化に貢献する。
また、請求項6の発明の効果として、コントローラの通信路クロックパルス入力に任意の繰り返し周波数のクロックを入力することにより、高速・長距離光ファイバ通信システムにおいて、波長多重あるいは波長変換を行う時のパルス発生を容易に実現できる。
請求項9の発明では、受動モード同期光ファイバレーザの出力波長を任意の値に制御することが出来、高速・長距離光ファイバ通信システムの多波長化に貢献する。
さらに、請求項9に請求項6で述べたものと同等の機能を追加することにより、波長を制御することにより生じる繰り返し周波数の変動を吸収し、発生するパルスを通信のデータレートに正確に一致させることが可能となる。
本発明は、高速・長距離光ファイバ通信システムで使用する高繰り返し周波数、短パルスの発生を行うものである。
パルス発生方式として受動モード同期光ファイバレーザを用い、ここで使用される可飽和吸収体としてカーボンナノチューブを使用し、ファブリペロー型共振器を構成する光ファイバに高利得光ファイバを使用し、小型でコストの安いレーザを実現すること、パルスの繰り返し周波数を通信のデータレートに正確に一致させる手段を提供すること、消費電力の節減をはかる手段を実現すること、および、波長多重あるいは波長変換を行う時の任意の波長のパルスの発生法を提供するものである。
請求項1、2、3、4、5の発明は、高速・長距離光ファイバ通信システムで使用するパルス発生部としての受動モード同期光ファイバレーザであり、図1にその構成を示す。
1および3はミラー、5は波長1.55μm帯で高利得を有する光ファイバである。
本実施例では高利得光ファイバとしてエルビウム・イットリウムドープ光ファイバ(Er:Yb光ファイバ)を使用しているが、高利得を有する光ファイバであれば、Er:Yb光ファイバに限定されること無く、例えば、イットリウム、エルビウム、ツリウム等の希土類ドープ光ファイバも使用可能である。また、希土類ガラス導波路を使用することも可能である。
6はカーボンナノチューブであり可飽和吸収体として作用する。7はWDMカプラ、8は高利得光ファイバ励起用レーザダイオードであり波長は980nmである。9は励起用レーザダイオード8の電流供給回路である。
2、4、10および12は単一モード光ファイバ、11はアイソレータである。
短パルス光源の出力は、単一モード光ファイバ12を経由して取り出される。
13、14および15はフェルールであり、光ファイバを保持する役割を有する。
ミラー1、3は単一モード光ファイバ2および4の端面を研磨し、その上に反射材を蒸着することにより形成される。
6は、高利得光ファイバ5の端面を研磨し、その上にカーボンナノチューブを1μm程度積層したものである。積層の方法は手段を問わない。
カーボンナノチューブの積層されたものは、カーボンナノチューブがバンドル状態となり、このバンドルが複雑に絡み合って網状になっている。劣悪な環境下では適宜保護膜等を使用してカーボンナノチューブを保護する。
ミラー1とカーボンナノチューブ6、高利得光ファイバ5とミラー3は光軸を一致させ、密着させて配置されている。この間隔は光の広がりが少ない範囲の空間は許容され、数十μmまでは可能範囲である。
カーボンナノチューブは、研磨した光ファイバ端面に積層する方法の他に、ガラスまたは樹脂表面に積層する方法、樹脂またはガラス中に分散してデバイス化することでも、可飽和吸収体として作用させることができる。
更に、カーボンナノチューブを内蔵したファイバも使用することが出来る。
高繰り返し周波数の受動モード同期光ファイバレーザで使用する可飽和吸収体は、使用波長帯域で可飽和吸収特性が高速動作可能なものでなければならない。
半導体型可飽和吸収体は、高速化のために特殊な製造プロセスが必要でコストが高く、さらにファイバレーザとの結合が困難である。
これに対し、カーボンナノチューブは、可飽和吸収特性そのものが高速動作であり、カーボンナノチューブの構造とチューブの直径を選択することにより、高速・長距離光ファイバ通信システムで使用される光波長1.55μm帯で可飽和吸収特性を出現させることが可能である。
本実施例では、CNI社(Carbon Nanotechnologies Incorporated)製の1.1μm〜1.7μmに可飽和吸収特性を持つ単層カーボンナノチューブを使用し、積層して可飽和吸収特性を出現させるための膜厚は約1μmとした。この膜厚は、異なる製品のカーボンナノチューブの場合、その製品に最適な膜厚を選択する。
上記のごとく、カーボンナノチューブは、市販製品の使用が可能であり、積層する場合、高利得光ファイバの端面に積層すればよく、特別のプロセス、部品も不要であり、コスト削減に大きく寄与する。
現在の市販製品のカーボンナノチューブでは、半導体型と金属型のカーボンナノチューブが混在している。この中から、半導体型のみを抽出することが出来るようになると、金属型が混在することによる損失が減少する。これにより、カーボンナノチューブの可飽和吸収体としての損失が減少し、高利得光ファイバの利得を下げることが出来、より短い光ファイバでレーザの構成が可能となり、更に繰り返し周波数の高いパルス光源が実現される。
高利得光ファイバ5は、カーボンナノチューブの損失、ミラーの損失および高利得光ファイバ自身の損失を補償し、さらに共振を持続させるためのゲイン媒体である。
実施例では、共振器内で使用する光ファイバとして、高利得のEr:Yb光ファイバを使用することにより、短共振器長を実現した。
電流供給回路9で駆動される励起用レーザダイオード8の励起パワーは、WDMカプラ7、単一モード光ファイバ4を通して、ミラー1、3で構成されるファブリペロー型共振器に印加される。この励起パワーを順次高めていくと、初めは不安定な多モード発振を行う。この状態は可飽和吸収体が無い場合と同じである。さらに励起パワーを高めると、モード同期状態となり、所定の繰り返し周波数での安定なパルス発振状態となる。
ファブリペロー型共振器内の光パワーの一部はミラー3を通して外部に導出され、WDMカプラ7、アイソレータ11を経由して単一モード光ファイバ12から出力として取り出される。
受動モード同期光ファイバレーザの繰り返し周波数は、レーザ共振器長と共振器に使用される光ファイバの屈折率で決まる。
共振器がファブリペロー型の場合は
f=c/2nL (数式1)
の関係にある。ここで
f:繰り返し周波数
c:光速度(3×10m)
n:共振器に使用される光ファイバの屈折率
L:共振器長(ミラー1、3間距離)
実施例では、n=1.5、L=20mm(20×10−3m、ミラー間隔2cm)であり、上記数式1に代入すると
f=5×10Hz=5GHz (数式2)
すなわち、繰り返し周波数5GHzの受動モード同期光ファイバレーザとなる。
発振波長の中心値は、ゲイン媒体である高利得光ファイバ5の飽和時の最低損失波長で決まり、実施例で使用したEr:Yb光ファイバでは、波長1.565μmで最低損失となる。これにより、実施例では波長1.565μmの受動モード同期光ファイバレーザとなる。
ちなみに、Er:Yb光ファイバの非飽和状態の最低損失は波長1.535μmであり、その値は0.1dB/mm、励起レーザの波長である980nm帯では2.4dB/mmである。
図2から図6は、本発明を実証する各種波形であり、図2は横軸を波長とする出力スペクトル波形、図3は図2の出力スペクトルの頂点部分の拡大図、図4はSGH自己相関波形、図5は横軸を周波数とする出力のスペクトル波形、図6は出力のパルス間時間幅測定のためのサンプリングオシロスコープ波形である。
図2の出力スペクトルの中心波長は1,565nm、3dBスペクトル幅は約4.7nmである。
図3では、モード同期状態を示す縦モード構造が明確に観測され、モード間隔は約0.04nmである。
図4から推測されるパルス時間幅は0.68psecである。
図5から、正確な繰り返し周波数は5.18GHzである。
図6の波形ピーク間の時間は、周波数5.18GHzに相当する190psecである。
実施例1では、長さ2cmのEr:Yb光ファイバを用いて繰り返し周波数約5GHzのレーザを実現したが、使用したEr:Yb光ファイバより更に高い利得を持つ光ファイバを用いれば、さらに共振器の寸法を短くすることができ、繰り返し周波数がより高い10GHz、40GHzのレーザの実現も可能である。
さらに、Er:Yb光ファイバ以外の希土類ドープ光ファイバを使用すると、発振波長が1.5μm帯域以外の波長の高繰り返し短パルスレーザを実現することも可能である。
例えばイットリビウムドープ光ファイバを用いれば、波長1μm帯域のレーザとなる。
なお、上記カーボンナノチューブ6は、高利得光ファイバ5の端面に形成したが、ミラー1の表面に直接カーボンナノチューブを積層してもよい。
この場合の構成図を図7に示す。ここで、6−1がカーボンナノチューブである。
その他1〜5、7〜15は図1と同じである。
これにより、高利得光ファイバ側の加工が不要となり、コスト削減に寄与する。
他の発明は、請求項6に示され、高速・長距離光ファイバ通信システムにおいて、パルスの繰り返し周波数を通信のデータレートに正確に一致させる受動モード同期光ファイバレーザであり、図8にその構成を示す。
受動モード同期光ファイバレーザの可飽和吸収体としては、カーボンナノチューブは絶対条件ではなく、他の可飽和吸収体を用いたものでも可能である。
1〜15は図1と同じ受動モード同期光ファイバレーザであり、動作原理は実施例1と同じである。
16は受光回路、17はコントローラ入力信号線、18は他のコントローラ入力信号線、19はコントローラ、20はミラー間隔調整機能であり、実施例ではピエゾ素子を使用している。
ミラー1、3で構成されるファブリペロー型共振器のミラー1側にも、ミラー3側と同様に光パワーを導出し、この光パワーを受光回路16で電気信号に変換し、コントローラ19の一方の入力17に印加する。コントローラ19の他方の入力18には、通信システムで使用しているクロック信号が印加される。
コントローラ19では入力17,18の周波数を比較しその周波数差に応じた誤差信号をミラー間隔調整機能20へ送出する。
ミラー間隔調整機能20では、誤差信号に応じてミラー1を左右に移動させる。レーザの繰り返し周波数はミラー1、ミラー3間の距離で決められるが、ミラー1の移動により、ミラー1、ミラー3間の距離が変動し、これに応じて繰り返し周波数が変化し、コントローラ19の誤差信号がゼロになるまで制御が行われる。このようにして、通信システムのデータレートと一致した繰り返し周波数の光パルスが生成される。
20のミラー間隔調整機能として、ピエゾ素子を一例として説明したが、微細な制御を可能とする方法であれば手段は問わない。本実施例では、制御幅は50μmの変位で約25MHzとなる。更に変位を大きくすることも可能であるが、その場合、ミラー1とカーボンナノチューブ6間の空間伝播距離が増加し伝播損失が増加するが、光ファイバ5の利得を上げるか、ミラー1の表面を湾曲させて損失を軽減させることにより、対策を講じることができる。
実施例2の付加機能として、請求項7で示される受動モード同期光ファイバレーザの消費電力の節減を図る機能も実現され、図9にその構成図を示す。
図9の1〜16は、図8と同じである。21はモード同期判定部、22は励起用レーザダイオード8用の駆動電流制御回路である。
モード同期判定部21は、受光回路16の信号を受け、モード同期状態になったことを検出する機能を有する。
受動モード同期光ファイバレーザでは、ファブリペロー型共振器に与える励起パワーが弱いと不安定な多モード発振を行う。この状態は、可飽和吸収体がない場合と同じである。励起パワーを上昇させると、レーザはモード同期を始め、安定なパルス発振状態となる。
本実施例の場合、励起光パワーを100mW程度与えると、モード同期状態となり、5、18GHzの繰り返し周波数で安定なパルス発振を始める。一旦モード同期が始まると、励起光パワーを低下させても、モード同期は持続する。この特性を利用し、消費電力の節減を行う。
レーザを立ち上げる時は、駆動電流制御回路22は、励起光が最大パワーとなるように設定される。モード同期判定部21で、レーザがモード同期状態になり出力が安定なパルス発振となったことを検出すると、この信号は駆動電流制御回路22に与えられる。駆動電流制御回路22は、この信号を受けると、励起レーザダイオード8の駆動電流を減少させるように働く。
実施例では、励起光パワーの最大値を100mW、モード同期後の励起光パワーを60mWとなるように励起レーザダイオードの駆動電流を供給しており、大幅な電力節減を実現している。
実施例2の更なる付加機能として、請求項8で示され、高速・長距離光ファイバ通信システムにおいて、波長多重あるいは波長変換を行う時のパルスを発生させる機能があり、図10にその構成を示す。
23は光増幅器、24は非線形光ファイバ(HNL−DSF)、25は光フィルタ(BPF)であり、26は出力である。
実施例2で説明した受動モード同期光ファイバレーザの出力を、光ファイバ12を経由して光増幅器23で増幅し、非線形光ファイバ24に与える。非線形光ファイバ24の出力は入力パルスの形状を保ったまま光スペクトルが非常に広帯域にわたって広がる状態となる。この現象はスーパーコンティニウム(SC)と呼ばれる。
非線形光ファイバ24の出力を光フィルタ25に通すことにより、広がりのあるスペクトルの一部のみを切り出し、必要とする任意の波長のパルス光源を得ることが出来る。
ここで、光フィルタをアレイ導波路回折格子(AWG)に置き換えても同様の効果が得られる。
ここにおいて、コントローラ19の一方の入力18に任意の繰り返し周波数を与えることにより、目的とする任意の繰り返し周波数で任意の波長のパルスを発生することが出来る。
さらなる発明は請求項9で示され、波長可変機能を具備した受動モード同期光ファイバレーザであり、図11にその構成を示す。
受動モード同期光ファイバレーザの可飽和吸収体としては、カーボンナノチューブは絶対条件ではなく、他の可飽和吸収体を用いたものでも可能である。
図11で、1〜15は図1と同じである。
27は、高利得光ファイバ5の可飽和吸収体と反対側の端面に形成したミラーであり、反射率をミラー1、3より低くしたものである。
ミラー3とミラー27は対向でファブリペローフィルタを構成し、ミラー間距離を変化させることにより、フィルタの波長可変が行われる。
ファブリペローフィルタの透過帯域は構成するミラーの反射率で決められ、反射率が高くなると透過帯域は狭くなる。本実施例のレーザはモード同期レーザであり、レーザ光はスペクトルの広がりを有している。このスペクトルの広がりのあるレーザ光を通過させるため、波長可変のためのフィルタの透過帯域は広くする必要がある。ファブリペローフィルタを構成する片側のミラー3は受動モード同期光ファイバレーザのファブリペロー型共振器を構成するミラーであり、高反射率ミラーである。このため、ファブリペローフィルタを構成する対向のミラー27の反射率を低くすることにより、フィルタの透過帯域幅を広げている。
ミラー1とミラー3はファブリペロー型共振器を構成し、その間に低反射率のミラー27が挿入されているが、受動モード同期光ファイバレーザを構成し、動作原理は実施例1と同じである。
28はミラー3とミラー27の間隔を変化させるためのフィルタ調整機能、29は該調整機能の制御部である。
実施例3ではファブリペローフィルタの波長可変機能を使用して発生するパルスの波長可変を実現するものである。
具体的には、受動モード同期光ファイバレーザ出力のスペクトル波形を観測し、パルスの発振波長が目的の値になるよう制御部29を操作する。この時、フィルタ調整機能28は制御部29の信号により、ミラー3とミラー27との間隔を変化させ、所定の波長のフィルタが構成される。
フィルタ調整機能28は、実施例ではピエゾ素子を使用しているが、微細な制御が可能であれば手段は選ばない。
ミラー3とミラー27の間隔が変化すると、ミラー1とミラー3で構成される共振器長が変化するため、光パルスの繰り返し周波数は変化する。
通信システムにおいては、通信路のデータレートと一致した繰り返し周波数が必要となる。このため、実施例3の構成での繰り返し周波数の変化を防止し、通信システムのデータレートと一致させる手段をとして、実施例3に実施例2と同様の機能を付加するものであり、請求項10で示される。
図12に構成図を示す。
1〜15、27〜29は図11と同じである。
16〜20は図8と同じである。
図12において、コントローラ入力信号線18には通信システムで使用しているクロック信号が印加される。
波長を設定するために制御部29を操作すると、ミラー3とミラー27の間隔が変化し、結果としてミラー1とミラー3で構成されるファブリペロー型共振器長が変化し、繰り返し周波数が変動する。
繰り返し周波数が変動すると、コントローラ19から周波数差に応じた誤差信号がミラー間隔調整機構20に与えられ、レーザの繰り返し周波数を、コントローラ入力信号線18のクロックに一致させるようミラー1を移動させる。これにより繰り返し周波数は、通信システムで使用しているクロック信号に一致する。
本発明に係わる第1の実施形態における構成例を示した図である。 本発明に係わる横軸を波長とするレーザ出力スペクトル波形例を示した図である。 図2のレーザ出力スペクトルの頂点部分を拡大した波形例を示した図である。 本発明に係わるSGH自己相関波形例を示した図である。 本発明に係わる横軸を周波数とするレーザ出力のスペクトル波形例を示した図である。 本発明に係わる出力のサンプリングオシロスコープ波形例を示した図である。 本発明に係わる第1の実施形態における他の構成例を示した図である。 本発明に係わる第2の実施形態における構成例を示した図である。 本発明に係わる第2の実施形態における他の構成例を示した図である。 本発明に係わる第2の実施形態におけるさらなる他の構成例を示した図である。 本発明に係わる第3の実施形態における構成例を示した図である。 本発明に係わる第3の実施形態における他の構成例を示した図である。
符号の説明
1:ミラー
2:単一モード光ファイバ
3:ミラー
4:単一モード光ファイバ
5:高利得光ファイバ
6:カーボンナノチューブ
6−1:カーボンナノチューブ
7:WDMカプラ
8:励起用レーザダイオード
9:電流供給回路
10:単一モード光ファイバ
11:アイソレータ
12:単一モード光ファイバ
13:フェルール
14:フェルール
15:フェルール
16:受光回路
17:コントローラ入力信号線
18:他のコントローラ入力信号線
19:コントローラ
20:ミラー間隔調整機能
21:モード同期判定部
22:駆動電流制御回路
23:光増幅器
24:非線形光ファイバ
25:光フィルタ
26:出力
27:ミラー
28:フィルタ調整機能
29:制御部

Claims (10)

  1. 2枚のミラー間に高利得光ファイバと可飽和吸収体を有するファブリペロー型共振器と、
    該共振器に励起光パワーを供給するレーザダイオードと、
    レーザダイオード電流供給回路と、
    レーザダイオード出力パワーを共振器へ供給するためのカプラと、
    レーザ出力のためのアイソレータ
    およびこれらを結合する光ファイバから構成される受動モード同期光ファイバレーザにおいて、
    可飽和吸収体としてカーボンナノチューブを使用することを特徴とする、短パルス光源。
  2. 前記カーボンナノチューブを、研磨した高利得光ファイバ端面に積層して使用することを特徴とする請求項1記載の短パルス光源。
  3. 前記カーボンナノチューブを、樹脂またはガラス中に分散してデバイス化することを特徴とする、請求項1記載の短パルス光源。
  4. 前記ファブリペロー型共振器を構成するミラーを、研磨した光ファイバ端面に反射材を直接蒸着することにより作成することを特徴とする請求項1乃至請求項3記載の短パルス光源。
  5. 前記カーボンナノチューブを、請求項4の2枚のミラーの片方の表面に積層して使用することを特徴とする、請求項1記載の短パルス光源
  6. 2枚のミラー間に高利得光ファイバと可飽和吸収体を有するファブリペロー型共振器と、
    該共振器に励起光パワーを供給するレーザダイオードと、
    レーザダイオード電流供給回路と、
    レーザダイオード出力パワーを共振器へ供給するためのカプラと、
    レーザ出力のためのアイソレータ
    およびこれらを結合する光ファイバから構成される受動モード同期光ファイバレーザにおいて、
    出力と反対側のミラーからファブリペロー型共振器内のパワーの一部を取り出す構造を有し、取り出した光パワーを検出する受光回路と、
    受光回路出力および通信路クロックパルスを入力とし受光回路と通信路クロックパルスの周波数差に応じた誤差信号を出力するコントローラと、
    コントローラ出力の誤差信号でファブリペロー型共振器の一方のミラーを移動しミラー間隔を変化させるミラー間隔調整機能を備えたことを特徴とする短パルス光源。
  7. 請求項6に加え、
    出力と反対側のミラーからファブリペロー型共振器内のパワーの一部を取り出す構造を有し、取り出した光パワーを検出する受光回路と、
    受光回路出力にモード同期判定部を付加し、
    モード同期状態検出信号により励起レーザダイオードの駆動電流を変化させる駆動電流制御回路を有することを特徴とする請求項6記載の短パルス光源。
  8. 請求項6の短パルス光源の出力に、
    光増幅器と
    非線形光ファイバと
    可変光フィルタあるいはアレイ導波路回折格子を有し、
    コントローラの通信路クロックパルス入力に任意の周波数のクロックを入力することを特徴とする請求項6記載の短パルス光源。
  9. 2枚のミラー間に高利得光ファイバと可飽和吸収体を有するファブリペロー型共振器と、
    該共振器に励起光パワーを供給するレーザダイオードと、
    レーザダイオード電流供給回路と、
    レーザダイオード出力パワーを共振器へ供給するためのカプラと、
    レーザ出力のためのアイソレータ
    およびこれらを結合する光ファイバから構成される受動モード同期光ファイバレーザにおいて、
    高利得光ファイバの可飽和吸収体とは反対側の端面にファブリペロー型共振器を構成するミラーより反射率を低くしたミラーを挿入し、
    この反射率を低くしたミラーと対向するファブリペロー型共振器を構成するミラーとの間隔を変化させる調整機能と、
    調整機能を制御する制御部を備えたことを特徴とする短パルス光源。
  10. 請求項9に加えて、
    出力と反対側のミラーからファブリペロー型共振器内のパワーの一部を取り出す構造を有し、取り出した光パワーを検出する受光回路と、
    受光回路出力および通信路クロックパルスを入力とし受光回路と通信路クロックパルスの周波数差に応じた誤差信号を出力するコントローラと、
    コントローラ出力の誤差信号でファブリペロー型共振器の可飽和吸収体側のミラーを移動し、ファブリペロー型共振器を構成するミラー間隔を変化させるミラー間隔調整機能を備えたことを特徴とする、請求項9記載の短パルス光源。
JP2004167825A 2004-05-11 2004-05-11 短パルス光源 Withdrawn JP2005322864A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004167825A JP2005322864A (ja) 2004-05-11 2004-05-11 短パルス光源

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004167825A JP2005322864A (ja) 2004-05-11 2004-05-11 短パルス光源

Publications (1)

Publication Number Publication Date
JP2005322864A true JP2005322864A (ja) 2005-11-17

Family

ID=35469890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004167825A Withdrawn JP2005322864A (ja) 2004-05-11 2004-05-11 短パルス光源

Country Status (1)

Country Link
JP (1) JP2005322864A (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007042798A (ja) * 2005-08-02 2007-02-15 Aisin Seiki Co Ltd パルスレーザーの共振器モニタ装置
JP2008112163A (ja) * 2006-10-27 2008-05-15 Furukawa Electric North America Inc 光ファイバ上におけるカーボン・ナノチューブの選択的堆積
JP2008176135A (ja) * 2007-01-19 2008-07-31 Alnair Labs:Kk 光導波路構造体、その製造方法、モード同期光ファイバレーザ装置、微粒子堆積方法および微粒子抽出方法。
WO2009064935A2 (en) * 2007-11-13 2009-05-22 Oewaves, Inc. Fiber-based on multi-resonator optical filters
CN102244351A (zh) * 2011-05-27 2011-11-16 深圳大学 基于单壁碳纳米管的被动锁模器件及其制备方法
KR101296284B1 (ko) 2012-01-12 2013-08-20 한국과학기술원 포화흡수체 커넥터 간의 거리 조절을 통해 다양한 펄스파를 발생시키는 장치
US20130287051A1 (en) * 2012-04-09 2013-10-31 Korea Advanced Institute Of Science And Technology Apparatus and method for stabilizing pulse of fiber-type femtosecond laser
JP2014519205A (ja) * 2011-05-27 2014-08-07 イムラ アメリカ インコーポレイテッド コンパクトな光周波数コム・システム
CN106058623A (zh) * 2016-08-12 2016-10-26 重庆大学 基于可饱和吸收材料与超弱倏逝场的全光纤超快激光器
JP2016534548A (ja) * 2013-10-25 2016-11-04 アトラ レイザーズ アクティーゼルスカブ グラフェンをベースとした光学サブシステム
CN107611757A (zh) * 2017-09-23 2018-01-19 华南理工大学 一种两段式弱调制f‑p腔
JP2018142001A (ja) * 2018-04-25 2018-09-13 株式会社Ihi 可飽和吸収素子、及びレーザ装置
CN111668689A (zh) * 2020-05-29 2020-09-15 华南理工大学 一种双波长高速扫频同步脉冲光源
CN112930489A (zh) * 2018-10-26 2021-06-08 浜松光子学株式会社 纤维构造体、脉冲激光装置、超连续谱光源及纤维构造体的制造方法
WO2023179747A1 (zh) * 2022-03-24 2023-09-28 华南理工大学 一种重复频率可调的超短谐振腔高重频光纤激光器
CN117353148A (zh) * 2023-10-07 2024-01-05 重庆大学 基于腔镜反射率不对称的线型法珀腔光反馈频率锁定装置

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007042798A (ja) * 2005-08-02 2007-02-15 Aisin Seiki Co Ltd パルスレーザーの共振器モニタ装置
JP2008112163A (ja) * 2006-10-27 2008-05-15 Furukawa Electric North America Inc 光ファイバ上におけるカーボン・ナノチューブの選択的堆積
JP2008176135A (ja) * 2007-01-19 2008-07-31 Alnair Labs:Kk 光導波路構造体、その製造方法、モード同期光ファイバレーザ装置、微粒子堆積方法および微粒子抽出方法。
US9360626B2 (en) 2007-11-13 2016-06-07 Anatoliy Savchenkov Fiber-based multi-resonator optical filters
WO2009064935A2 (en) * 2007-11-13 2009-05-22 Oewaves, Inc. Fiber-based on multi-resonator optical filters
WO2009064935A3 (en) * 2007-11-13 2009-07-02 Oewaves Inc Fiber-based on multi-resonator optical filters
JP2014519205A (ja) * 2011-05-27 2014-08-07 イムラ アメリカ インコーポレイテッド コンパクトな光周波数コム・システム
US9787051B2 (en) 2011-05-27 2017-10-10 The Regents Of The University Of Colorado, A Body Corporate Compact optical frequency comb systems
CN102244351A (zh) * 2011-05-27 2011-11-16 深圳大学 基于单壁碳纳米管的被动锁模器件及其制备方法
US8817364B2 (en) 2012-01-12 2014-08-26 Korea Advanced Institute Of Science And Technology Device which produces various types of pulses by controlling the distance between the saturable absorber connectors
KR101296284B1 (ko) 2012-01-12 2013-08-20 한국과학기술원 포화흡수체 커넥터 간의 거리 조절을 통해 다양한 펄스파를 발생시키는 장치
US20130287051A1 (en) * 2012-04-09 2013-10-31 Korea Advanced Institute Of Science And Technology Apparatus and method for stabilizing pulse of fiber-type femtosecond laser
KR101356386B1 (ko) 2012-04-09 2014-02-05 한국과학기술원 파이버 타입 펨토초 레이저의 펄스 안정화 장치 및 그 방법
JP2016534548A (ja) * 2013-10-25 2016-11-04 アトラ レイザーズ アクティーゼルスカブ グラフェンをベースとした光学サブシステム
CN106058623A (zh) * 2016-08-12 2016-10-26 重庆大学 基于可饱和吸收材料与超弱倏逝场的全光纤超快激光器
CN107611757A (zh) * 2017-09-23 2018-01-19 华南理工大学 一种两段式弱调制f‑p腔
CN107611757B (zh) * 2017-09-23 2024-04-19 华南理工大学 一种两段式弱调制f-p腔
JP2018142001A (ja) * 2018-04-25 2018-09-13 株式会社Ihi 可飽和吸収素子、及びレーザ装置
CN112930489A (zh) * 2018-10-26 2021-06-08 浜松光子学株式会社 纤维构造体、脉冲激光装置、超连续谱光源及纤维构造体的制造方法
EP3872543A4 (en) * 2018-10-26 2022-07-06 Hamamatsu Photonics K.K. FIBER STRUCTURE, PULSE LASER DEVICE, SUPERCONTINUUM LIGHT SOURCE AND METHOD FOR PRODUCING FIBER STRUCTURE
CN112930489B (zh) * 2018-10-26 2023-03-28 浜松光子学株式会社 纤维构造体、脉冲激光装置、超连续谱光源及纤维构造体的制造方法
CN111668689A (zh) * 2020-05-29 2020-09-15 华南理工大学 一种双波长高速扫频同步脉冲光源
CN111668689B (zh) * 2020-05-29 2024-04-23 华南理工大学 一种双波长高速扫频同步脉冲光源
WO2023179747A1 (zh) * 2022-03-24 2023-09-28 华南理工大学 一种重复频率可调的超短谐振腔高重频光纤激光器
CN117353148A (zh) * 2023-10-07 2024-01-05 重庆大学 基于腔镜反射率不对称的线型法珀腔光反馈频率锁定装置
CN117353148B (zh) * 2023-10-07 2024-05-03 重庆大学 基于腔镜反射率不对称的线型法珀腔光反馈频率锁定装置

Similar Documents

Publication Publication Date Title
Set et al. Mode-locked fiber lasers based on a saturable absorber incorporating carbon nanotubes
US6097741A (en) Passively mode-locked fiber lasers
CN101322290B (zh) 光梳频率源
Rudy et al. Amplified 2-μm thulium-doped all-fiber mode-locked figure-eight laser
EP1676344B1 (en) An optical system for providing short laser-pulses
US7940816B2 (en) Figure eight fiber laser for ultrashort pulse generation
US20090003391A1 (en) Low-repetition-rate ring-cavity passively mode-locked fiber laser
US20140202994A1 (en) Compact, coherent, high brightness light sources for the mid and far ir
US20050169324A1 (en) Self-similar laser oscillator
US20070133626A1 (en) Mid-infrared raman fiber laser system
JP4913396B2 (ja) 極短パルス光源
JP2005322864A (ja) 短パルス光源
CN107230927A (zh) 基于SMF‑SIMF‑GIMF‑SMF光纤结构的2μm锁模光纤激光器
CN103124044B (zh) 频率间隔可调的多波长反斯托克斯四波混频光纤激光器
CN103151682B (zh) 实现多波长输出的反斯托克斯拉曼光纤激光器
JP2009506560A (ja) ファイバレーザ
Zhang et al. All-fiber saturable absorber using nonlinear multimode interference in a chalcogenide fiber
WO2010008693A2 (en) High-repetition-rate guided-mode femtosecond laser
CN109149336A (zh) 基于sbs和法布里珀罗干涉仪的被动调q锁模激光器
Zhao et al. High fundamental repetition rate fiber lasers operated in strong normal dispersion regime
CN109273973B (zh) 一种2微米波段的耗散孤子激光器
CN110600984A (zh) 一种波长可调被动锁模光纤激光器
Wang et al. Theoretical and experimental optimization of O-band multiwavelength mixed-cascaded phosphosilicate Raman fiber lasers
CN211265955U (zh) 一种可调超高重频超短脉冲光纤激光器
US10965092B2 (en) Pulsed lasers based on spatiotemporal mode-locking

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070807