JP2005319657A - Pneumatic tire vulcanizing and molding method - Google Patents

Pneumatic tire vulcanizing and molding method Download PDF

Info

Publication number
JP2005319657A
JP2005319657A JP2004138773A JP2004138773A JP2005319657A JP 2005319657 A JP2005319657 A JP 2005319657A JP 2004138773 A JP2004138773 A JP 2004138773A JP 2004138773 A JP2004138773 A JP 2004138773A JP 2005319657 A JP2005319657 A JP 2005319657A
Authority
JP
Japan
Prior art keywords
tire
molding
mold
inner mold
rigid inner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004138773A
Other languages
Japanese (ja)
Other versions
JP4412050B2 (en
Inventor
Takuzo Sano
拓三 佐野
Akikazu Seko
明和 瀬古
Noboru Takada
昇 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2004138773A priority Critical patent/JP4412050B2/en
Publication of JP2005319657A publication Critical patent/JP2005319657A/en
Application granted granted Critical
Publication of JP4412050B2 publication Critical patent/JP4412050B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pneumatic tire vulcanizing and molding method constituted so as to shorten a tire molding time and a tire vulcanizing and molding time to efficiently perform molding work with high precision. <P>SOLUTION: In this embodiment, the inner surface form of a tire is held to a rigid inner mold 2 at the time of vulcanizing and molding of the tire or during the period from the start of a tire molding process to the completion of a tire vulcanizing and molding process. At the time of the tire molding process, a divided first segment 13a and a divided second segment 13b are contracted in diameter to constitute the annular rigid inner mold 2 and, while this annular rigid inner mold 2 is held by the main shaft of a molding machine and rotated, a rubbery elastic material being a tire constituting material is successively wound around or pasted on or laminated to the outer peripheral surface of the annular rigid inner mold 2 to form an unvulcanized tire W. After the unvulcanized tire W is molded, the unvulcanized tire W is detached from the main shaft of the molding machine along with the rigid inner mold 2 and fed to a vulcanizing and molding apparatus 1 to be connected and set to the clamp mechanism 3 of the vulcanizing and molding apparatus 1 and the connection port 19a of the waveguide 19 of a supply means 18 (oscillator) of microwaves G to perform the vulcanizing and molding of the unvulcanized tire W. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、空気入りタイヤの加硫成形方法にかかわり、更に詳しくはタイヤ成形時間及びタイヤ加硫成形時間の短縮化を図り、成形作業を効率良く、しかも高精度に製造することが出来る空気入りタイヤの加硫成形方法に関するものである。   The present invention relates to a method for vulcanizing and forming a pneumatic tire, and more specifically, to reduce the time required for molding a tire and the time for vulcanizing and molding a tire so that the forming operation can be efficiently performed with high accuracy. The present invention relates to a tire vulcanization molding method.

近年、高性能な空気入りタイヤを効率良く製造する目的で、タイヤ成形開始時から加硫成形完了まで、タイヤ内部に環状に分割された剛性内型(または剛性中子)を配置する方法が提案されている(例えば、特許文献1参照)。   In recent years, in order to efficiently produce high-performance pneumatic tires, a method has been proposed in which a rigid inner mold (or rigid core) divided into an annular shape is placed inside the tire from the start of tire molding to the completion of vulcanization molding. (For example, refer to Patent Document 1).

また、このような剛性内型を使用して加硫成形する場合、加硫成形時に剛性内型にスチーム等の熱源を導入することにより剛性内型を所定温度に加熱した状態で加硫する加硫成形方法も提案されている(例えば、特許文献2参照)。   In addition, when vulcanization molding is performed using such a rigid inner mold, a heat source such as steam is introduced into the rigid inner mold at the time of vulcanization molding so that the rigid inner mold is vulcanized while being heated to a predetermined temperature. A sulfur molding method has also been proposed (see, for example, Patent Document 2).

ところで、上記のように剛性内型を使用した空気入りタイヤの加硫装置では、加硫成形時に剛性内型にスチームを導入して剛性内型を所定温度(例えば、140℃〜200℃)に加熱する方法であるため、剛性内型がスチーム等の流通路等により複雑になると共に、加硫装置全体がスチーム配管等により複雑になり、コストアップになると共に、装置全体が大型化すると言う問題があった。   By the way, in the pneumatic tire vulcanizing apparatus using the rigid inner mold as described above, steam is introduced into the rigid inner mold at the time of vulcanization molding to bring the rigid inner mold to a predetermined temperature (for example, 140 ° C. to 200 ° C.). Because it is a heating method, the rigid inner mold becomes complicated due to the flow passage such as steam, etc., and the entire vulcanizing apparatus becomes complicated due to the steam piping etc., resulting in an increase in cost and an increase in the size of the entire apparatus. was there.

また、タイヤ加硫成形時に剛性内型にスチームを導入して所定温度まで昇温させる必要があるため、加硫開始まで時間がかかり、従って加硫時間の短縮化を図ることが難しく、生産性の向上を図ることが難しいと言う問題があった。
特開2003−311741号公報 特開昭2003−340824号公報
In addition, since it is necessary to introduce steam into the rigid inner mold and raise the temperature to a predetermined temperature during tire vulcanization molding, it takes time to start vulcanization, so it is difficult to shorten the vulcanization time, and productivity There was a problem that it was difficult to improve.
JP 2003-311741 A JP-A-2003-340824

この発明は、かかる従来の問題点に着目して案出されたもので、タイヤ加硫成形時、またはタイヤ成形工程開始からタイヤ加硫成形終了までの間に用いる剛性内型を短時間で所定温度まで昇温させるようにして、タイヤの成形時間及びタイヤ加硫成形時間を短縮化し、成形作業を効率良く、しかも高精度に行うことが出来る空気入りタイヤの加硫成形方法を提供することを目的とするものである。   The present invention has been devised by paying attention to such conventional problems. A rigid inner mold used at the time of tire vulcanization molding or from the start of the tire molding process to the end of the tire vulcanization molding is determined in a short time. The object is to provide a method for vulcanizing and forming a pneumatic tire, which can increase the temperature to a temperature, shorten the tire molding time and the tire vulcanization molding time, and perform the molding operation efficiently and with high accuracy. It is the purpose.

この発明は、上記目的を達成するため、未加硫タイヤの加硫成形時に、前記剛性内型の内表面の全面または一部に設けた発熱体をマイクロ波により発熱させると共に、剛性内型を所定温度に加熱して加硫成形を行うことを要旨とするものである。   In order to achieve the above-mentioned object, the present invention allows a heating element provided on the whole or a part of the inner surface of the rigid inner mold to generate heat by microwaves during vulcanization molding of an unvulcanized tire, The gist is to perform vulcanization molding by heating to a predetermined temperature.

ここで、前記外型及び剛性内型は、周方向に複数に分割された環状の拡縮可能なセグメントにより構成され、前記剛性内型の内表面に設けた炭化ケイ素の焼結体から成る発熱体をタイヤ加硫時にマイクロ波により発熱させると共に剛性内型を所定温度に加熱して加硫成形する。また、前記未加硫タイヤのタイヤ成形工程では、剛性内型の表面にタイヤ構成材料を巻付け、または貼合わせて成形し、このようにして成形された未加硫タイヤをタイヤ成形工程から取外し、剛性内型と共に加硫機に搬送してセットし、加硫成形を行うものである。   Here, the outer mold and the rigid inner mold are constituted by annular expandable / contractible segments divided into a plurality of parts in the circumferential direction, and the heating element is a silicon carbide sintered body provided on the inner surface of the rigid inner mold. When the tire is vulcanized, heat is generated by microwaves, and the rigid inner mold is heated to a predetermined temperature and vulcanized. Further, in the tire molding process of the unvulcanized tire, the tire constituent material is wound or bonded to the surface of the rigid inner mold and molded, and the unvulcanized tire thus molded is removed from the tire molding process. In addition, it is conveyed to a vulcanizer and set together with a rigid inner mold to perform vulcanization molding.

この発明の原理は、タイヤ加硫成形時、またはタイヤ成形工程開始時からタイヤ加硫成形終了時までの間に用いる剛性内型の内表面の全面、または一部に発熱体を構成する所定の厚さの炭化ケイ素の焼結体を配置する。そして、この発熱体を構成する炭化ケイ素の焼結体を、マイクロ波(マイクロ波加熱)により発熱させ、この発熱した熱エネルギーを発熱体を介してアルミニユウムやアルミ合金等で構成される剛性内型に伝熱させて短時間に加熱することで、空気入りタイヤを短時間に加硫成形しようとするものである。   The principle of the present invention is that a predetermined heating element is formed on the entire or part of the inner surface of the rigid inner mold used at the time of tire vulcanization molding or from the start of the tire molding process to the end of tire vulcanization molding. A silicon carbide sintered body having a thickness is disposed. The silicon carbide sintered body constituting the heating element is heated by microwave (microwave heating), and the generated heat energy is made of aluminum, aluminum alloy, etc. through the heating element. It is intended to vulcanize and mold a pneumatic tire in a short time by conducting heat transfer to and heating in a short time.

即ち、マイクロ波加熱(2,450MHz:電波法により規定されている) は、マイクロ波を金属材料に照射すると反射するが、一定の組成を有する炭化ケイ素の焼結体は、所定の周波数のマイクロ波が照射されると炭化ケイ素の分子の振動による摩擦エネルギーにより発熱する。この発熱した熱エネルギーを利用して、金属材料から成る剛性内型に伝熱させて加硫に必要な温度に短時間に昇温させるようにしたものである。   That is, microwave heating (2,450 MHz: stipulated by the Radio Law) is reflected when a metal material is irradiated with microwaves, but a sintered body of silicon carbide having a certain composition has a predetermined frequency of microwaves. When it is irradiated, heat is generated by frictional energy generated by vibration of silicon carbide molecules. Using the heat energy generated, the heat is transferred to a rigid inner mold made of a metal material, and the temperature is raised to a temperature required for vulcanization in a short time.

これにより、従来、剛性内型を加熱するために要していた時間を短縮化でき、タイヤ構成材料の物性を変化させることなく、短時間に高性能なタイヤを加硫成形するこきが出来るものである。   As a result, the time required to heat the rigid inner mold can be shortened, and high-performance tires can be vulcanized and molded in a short time without changing the physical properties of the tire components. It is.

この発明は上記のように未加硫タイヤの加硫成形時に、前記剛性内型の内表面の全面または一部に設けた発熱体をマイクロ波により発熱させると共に、剛性内型を所定温度に加熱して加硫成形を行うので、剛性内型を短時間で所定温度まで昇温させることが出来、タイヤの成形時間とタイヤ加硫成形時間との短縮化を図ることが出来、タイヤの生産性の向上を図ることが出来る効果がある。   In the present invention, as described above, during vulcanization molding of an unvulcanized tire, the heating element provided on the entire inner surface or a part of the inner surface of the rigid inner mold is heated by microwaves, and the rigid inner mold is heated to a predetermined temperature. Therefore, the rigid inner mold can be heated to a predetermined temperature in a short time, and the tire molding time and the tire vulcanization molding time can be shortened. There is an effect that can improve.

また、タイヤ加硫成形時、またはタイヤ成形工程開始からタイヤ加硫成形終了までの間を剛性内型を取外すことなく成形し、しかも剛性内型は、マイクロ波により短時間に加熱できるので、高性能、高精度の空気入りタイヤを製造することが出来る効果がある。   In addition, it is molded without removing the rigid inner mold at the time of tire vulcanization molding or from the start of the tire molding process to the end of tire vulcanization molding, and the rigid inner mold can be heated in a short time by microwave. Performance and high-precision pneumatic tires can be produced.

以下、添付図面に基づきこの発明の実施の形態を説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1は、この発明を実施した空気入りタイヤの加硫成形装置の概略構成図を示し、この加硫成形装置1は、中心部にアルミニユウムやアルミ合金等で構成される剛性内型2のクランプ機構3を設け、上下には、上部サイドプレート4と下部サイドプレート5に取付けられた上モールド6(上型)と下モールド7(下型)とが配設され、また周囲には、周方向に複数に分割(8〜12分割)され、かつ中心に向かって拡縮移動する外型を構成するセクターモールド8が配設されている。   FIG. 1 shows a schematic configuration diagram of a pneumatic tire vulcanization molding apparatus embodying the present invention. The vulcanization molding apparatus 1 is a clamp for a rigid inner mold 2 made of aluminum, aluminum alloy or the like at the center. The mechanism 3 is provided, and an upper mold 6 (upper mold) and a lower mold 7 (lower mold) attached to the upper side plate 4 and the lower side plate 5 are arranged on the upper and lower sides. A sector mold 8 is provided which constitutes an outer mold that is divided into a plurality of sections (8 to 12 sections) and expands and contracts toward the center.

前記セクターモールド8は、成形用のグリーンタイヤWのプロファイル面を備えた各セクターピース9をそれぞれ着脱可能に取付けるバックセグメント10と、この各バッグセグメントの背面側に形成された所定角度α(例えば、摩擦や負荷等を考慮して15°〜20°)の摺接面11に摺動可能なガイド部材12とを備え、このガイド部材12は、昇降可能な支持プレート12Aに吊設されている。   The sector mold 8 includes a back segment 10 to which each sector piece 9 having a profile surface of a green tire W for molding is detachably attached, and a predetermined angle α (for example, formed on the back side of each bag segment. The guide member 12 is slidable on a slidable contact surface 11 of 15 ° to 20 ° in consideration of friction and load, and the guide member 12 is suspended from a support plate 12A that can be moved up and down.

また、前記タイヤ加硫成形時、またはタイヤ成形工程開始時からタイヤ加硫成形終了時までの間に用いる剛性内型2は、図2及び図3に示すように、周方向に複数に分割(この実施形態では10分割であるが、分割数については、特に限定されない)された環状の拡縮可能な第1セグメント13aと第2セグメント13bとにより構成され、この剛性内型2の内表面の全面または一部には、マイクロ波Gにより発熱する発熱体14が取付けてある。   Further, the rigid inner mold 2 used during the tire vulcanization molding or from the start of the tire molding process to the end of the tire vulcanization molding is divided into a plurality of pieces in the circumferential direction as shown in FIGS. In this embodiment, the number of divisions is 10. However, the number of divisions is not particularly limited. The first and second segments 13a and 13b can be expanded and contracted, and the entire inner surface of the rigid inner mold 2 is formed. Alternatively, a heating element 14 that generates heat by the microwave G is attached to a part thereof.

前記発熱体14としては、この実施形態では、マイクロ波Gにより発熱する一定の組成を有する所定の厚さ及び大きさの炭化ケイ素の焼結体を使用しているが、マイクロ波Gにより発熱して、熱伝導率の良い材料であれば特に限定されるものではない。また、分割された環状の第1セグメント13aと第2セグメント13bとの全体、即ち、剛性内型2の全体を、前記マイクロ波Gを受けて発熱する炭化ケイ素の焼結体から成る発熱体14で構成することも可能である。   In this embodiment, the heating element 14 is a sintered body of silicon carbide having a predetermined thickness and size having a constant composition that generates heat by the microwave G. The material is not particularly limited as long as it has a good thermal conductivity. The divided annular first segment 13a and second segment 13b, that is, the entire rigid inner mold 2, are heated by a heating element 14 made of a sintered body of silicon carbide that generates heat upon receiving the microwave G. It is also possible to configure.

前記分割された第1セグメント13aと第2セグメント13bとは、この発明の実施形態では、5個ずつ交互に配設され、第1セグメント13aは、略扇状に形成され、中心方向に向かって小径となる傾斜当接側面15を備え、また第2セグメント13bは、略方形状に形成され、前記第1セグメント13aの傾斜当接側面15に当接する傾斜当接側面16を備えている。   In the embodiment of the present invention, the divided first segment 13a and second segment 13b are alternately arranged by five, and the first segment 13a is formed in a substantially fan shape and has a small diameter toward the center. In addition, the second segment 13b is formed in a substantially square shape and includes an inclined contact side surface 16 that contacts the inclined contact side surface 15 of the first segment 13a.

前記剛性内型2の上下内径部には、剛性内型2の内部を密閉するための着脱可能な支持プレート17a,17bを設け、前記上下の支持プレート17a,17bの一方に、即ち、この実施形態では、下側の支持プレート17bには、前記マイクロ波Gの供給手段18(発振器)に接続するための導波管19の接続口19aを形成し、この接続口19aと対向する他方の上側の支持プレート17aの内面には、前記マイクロ波Gを前記発熱体14に向かって反射させる逆円錐台状の金属製の反射板20が設けてある。   Removable support plates 17a and 17b for sealing the inside of the rigid inner mold 2 are provided in the upper and lower inner diameter portions of the rigid inner mold 2, and one of the upper and lower support plates 17a and 17b, that is, this embodiment is provided. In the embodiment, a connection port 19a of a waveguide 19 for connecting to the microwave G supply means 18 (oscillator) is formed in the lower support plate 17b, and the other upper side facing this connection port 19a. On the inner surface of the support plate 17a, an inverted frustoconical metal reflector 20 that reflects the microwave G toward the heating element 14 is provided.

また、前記剛性内型2の内部は、金属製の仕切り板21を介して複数の反射室22に区画形成(この実施形態では4区画であるが、特に区画数は限定されない)し、この区画した反射室22の下側の支持プレート17bに、図4に示すように、前記マイクロ波Gの供給手段18(発振器)に接続するための導波管19の接続口19aが形成してあり、前記金属製の仕切り板21は、前記反射板20と一体的に形成することも可能である。   Further, the inside of the rigid inner mold 2 is partitioned into a plurality of reflection chambers 22 via a metal partition plate 21 (in this embodiment, there are four sections, but the number of sections is not particularly limited). As shown in FIG. 4, a connection port 19a of the waveguide 19 for connection to the microwave G supply means 18 (oscillator) is formed in the lower support plate 17b of the reflection chamber 22, The metal partition plate 21 may be formed integrally with the reflection plate 20.

前記供給手段18に接続するための導波管19には、アイソレータ23が設置してあり、この実施形態では、前記複数に区画分割された二つの反射室22に、マイクロ波Gを均一に分配させて照射させるために、図5及び図6に示すように、に示すように、アイソレータ23に分岐された整合器用導波管24a,24bを連結して接続口19aに接続させて構成してある。   The waveguide 19 for connection to the supply means 18 is provided with an isolator 23. In this embodiment, the microwave G is uniformly distributed to the two reflection chambers 22 divided into a plurality of sections. As shown in FIGS. 5 and 6, the matching device waveguides 24a and 24b branched to the isolator 23 are connected and connected to the connection port 19a. is there.

なお、図1及び図2において、25a,25bは、上モールド6と下モールド7との加熱手段(ヒータまたは電磁誘導加熱)、26は上側の支持プレート12Aを昇降される昇降シリンダー、27はクランプ機構3を構成するパワーシリンダー、28は下モールド7の昇降シリンダーを示している。   1 and 2, 25a and 25b are heating means (heater or electromagnetic induction heating) of the upper mold 6 and the lower mold 7, 26 is an elevating cylinder that moves up and down the upper support plate 12A, and 27 is a clamp. A power cylinder 28 constituting the mechanism 3 is an elevating cylinder of the lower mold 7.

次に、上記のような加硫成形装置1を用いて空気入りタイヤの加硫方法を説明する。
この発明の実施形態では、タイヤ加硫成形時、またはタイヤ成形工程開始時からタイヤ加硫成形終了時までの間、タイヤの内面形態を剛性内型2で保持するものであって、タイヤ成形工程時には、図7(a),(b)〜図11(a),(b)に示すように、分割された第1セグメント13aと第2セグメント13bと縮径させて環状の剛性内型2に構成し、この環状の剛性内型2を成形機の主軸で保持させて回転させながらその外周面に、タイヤ構成材料であるゴム状弾性材料を順次巻付け、または貼合わせて積層させることにより未加硫タイヤWを形成する。
Next, a method for vulcanizing a pneumatic tire using the vulcanization molding apparatus 1 as described above will be described.
In the embodiment of the present invention, the inner surface of the tire is held by the rigid inner mold 2 during the tire vulcanization molding or from the start of the tire molding process to the end of the tire vulcanization molding, and the tire molding process Sometimes, as shown in FIGS. 7A and 7B to FIGS. 11A and 11B, the divided first segment 13a and second segment 13b are reduced in diameter to form an annular rigid inner mold 2. The annular rigid inner mold 2 is held by the main shaft of the molding machine and rotated while the rubber-like elastic material, which is a tire constituent material, is sequentially wound or laminated on the outer peripheral surface, and then laminated. A vulcanized tire W is formed.

そして、未加硫タイヤWの成形後には、図1及び図4に示すように、成形機の主軸から剛性内型2と共に未加硫タイヤWを取外し、加硫成形装置1に搬送して加硫成形装置1のクランプ機構3及びマイクロ波Gの供給手段18(発振器)の導波管19の接続口19aに接続してセットし、加硫成形を行うのである。   After the unvulcanized tire W is molded, as shown in FIGS. 1 and 4, the unvulcanized tire W is removed from the main shaft of the molding machine together with the rigid inner mold 2 and conveyed to the vulcanization molding apparatus 1 for vulcanization. The vulcanization molding is performed by connecting and setting the clamp mechanism 3 of the vulcanization molding apparatus 1 and the connection port 19a of the waveguide 19 of the microwave G supply means 18 (oscillator).

即ち、加硫成形方法は、加硫成形装置1において未加硫タイヤWの内外表面をアルミニユウムやアルミ合金等で構成される外型を構成するセクターモールド8とアルミニユウムやアルミ合金等で構成される分割された剛性内型2とで保持すると共に、未加硫タイヤWの上下面を上モールド6(上型)と下モールド7(下型)により保持し、前記外型を構成するセクターモールド8,剛性内型2及び上モールド6(上型)と下モールド7(下型)を所定温度に加熱して空気入りタイヤを加硫成形する。   That is, the vulcanization molding method is composed of the sector mold 8 that constitutes the outer mold composed of aluminum or aluminum alloy on the inner and outer surfaces of the unvulcanized tire W in the vulcanization molding apparatus 1 and aluminum or aluminum alloy. The sector mold 8 is held by the divided rigid inner mold 2 and the upper and lower surfaces of the unvulcanized tire W are held by the upper mold 6 (upper mold) and the lower mold 7 (lower mold) to constitute the outer mold. The pneumatic inner tire 2 and the upper mold 6 (upper mold) and the lower mold 7 (lower mold) are heated to a predetermined temperature to vulcanize the pneumatic tire.

そして、未加硫タイヤWの加硫成形時に、前記剛性内型2の内表面の全面または一部に設けた発熱体14を供給手段18(発振器)から発振した所定の周波数のマイクロ波Gにより発熱させると共に、剛性内型2を所定温度に加熱して加硫成形を行うのである。   During the vulcanization molding of the unvulcanized tire W, the heating element 14 provided on the entire inner surface or a part of the inner surface of the rigid inner mold 2 is caused by the microwave G having a predetermined frequency oscillated from the supply means 18 (oscillator). While generating heat, the rigid inner mold 2 is heated to a predetermined temperature to perform vulcanization molding.

即ち、供給手段18(発振器)から発振した所定の周波数のマイクロ波Gは、図4に示すように、導波管19の接続口19aから複数に区画分割された二つの反射室22に入り、反射板20及び金属製の仕切り板21に反射して発熱体14に照射されて発熱させ、更に発熱体14の発熱した熱エネルギーは、金属材料から成る剛性内型2に伝熱させて加硫に必要な温度に短時間(140℃〜200℃)に昇温させる。   That is, the microwave G having a predetermined frequency oscillated from the supply means 18 (oscillator) enters the two reflection chambers 22 divided into a plurality from the connection port 19a of the waveguide 19, as shown in FIG. Reflected by the reflecting plate 20 and the metal partition plate 21 and irradiated to the heating element 14 to generate heat, and the heat energy generated by the heating element 14 is transferred to the rigid inner mold 2 made of a metal material for vulcanization. The temperature is raised to the temperature required for the heating in a short time (140 ° C. to 200 ° C.).

これにより、従来、剛性内型を加熱するために要していた時間を短縮化でき、タイヤ構成材料の物性を変化させることなく、短時間に高性能なタイヤを加硫成形することが出来るものである。なお、Gxはマイクロ波Gの反射波を示している。   This can shorten the time conventionally required to heat the rigid inner mold and can vulcanize a high-performance tire in a short time without changing the physical properties of the tire constituent material. It is. Gx represents a reflected wave of the microwave G.

このようにして、タイヤの加硫成形が完了したら、加硫成形装置1のクランプ機構3及びマイクロ波Gの供給手段18(発振器)の導波管19の接続口19aから、タイヤと共に剛性内型2を取外し、加硫成形装置1の近傍に設置された図示しない搬送装置を介してタイヤ成形工程に搬送する。   When the vulcanization molding of the tire is completed in this way, the rigid inner mold together with the tire from the clamping mechanism 3 of the vulcanization molding apparatus 1 and the connection port 19a of the waveguide 19 of the microwave G supply means 18 (oscillator). 2 is removed and conveyed to a tire molding process via a conveyance device (not shown) installed in the vicinity of the vulcanization molding apparatus 1.

そして、タイヤ成形工程では、図7(a),(b)〜図10(a),(b)及び図12(a),(b)に示すように、成形されたタイヤWxの剛性内型2から、クランプ機構3及び金属製の反射板20,仕切り板21及びその他の部品類を順次取外し、次いで剛性内型2の分割取外しを行う。   In the tire molding process, as shown in FIGS. 7A and 7B to FIGS. 10A and 10B and FIGS. 12A and 12B, the rigid inner mold of the molded tire Wx is formed. 2, the clamp mechanism 3, the metal reflector 20, the partition plate 21 and other components are sequentially removed, and then the rigid inner mold 2 is divided and removed.

剛性内型2の分割取外しの具体的な工程としては、先ず図12(a)〜(f)に示すように、タイヤ成形工程の支持台29上に設置された剛性内型2の第1セグメント13aと第2セグメント13bとに対応して設置された複数台の取外し装置30により行うものである。即ち、取外し装置30は、図12(c)〜(f)に示すように、フォーク状の二本の保持アーム31と水平シリンダー32とで構成され、先ず略方形状に形成された各第2セグメント13bは、図12(d)に示すように、各第2セグメント13bに対応して設置された複数台の取外し装置30により中心方向に押圧して成形タイヤWxの内側から取外し、図12(e)に示すように、この各第2セグメント13bを昇降シリンダー33により上方に持ち上げる。   As a specific process of dividing and removing the rigid inner mold 2, first, as shown in FIGS. 12A to 12F, the first segment of the rigid inner mold 2 installed on the support base 29 in the tire forming process is shown. This is performed by a plurality of detaching devices 30 installed corresponding to 13a and the second segment 13b. That is, as shown in FIGS. 12C to 12F, the detaching device 30 is composed of two fork-shaped holding arms 31 and a horizontal cylinder 32. First, each second device formed in a substantially rectangular shape. As shown in FIG. 12 (d), the segment 13b is pressed from the inside of the molded tire Wx by being pressed in the center direction by a plurality of removing devices 30 installed corresponding to the second segments 13b. As shown in e), each second segment 13b is lifted upward by the lift cylinder 33.

次いで、図12(d)に示すように、略扇状に形成された第1セグメント13aを、それに対応して設置された複数台の取外し装置30により中心方向に押圧して成形タイヤWxの内側から取外す。このようにして、成形タイヤWxから剛性内型2の第1セグメント13aと第2セグメント13bと取外した後、成形タイヤWxを剛性内型2から抜き取り、次工程へ搬送する。   Next, as shown in FIG. 12 (d), the first segment 13a formed in a substantially fan shape is pressed in the center direction by a plurality of detaching devices 30 installed corresponding to the first segment 13a from the inside of the molded tire Wx. Remove. In this manner, after removing the first segment 13a and the second segment 13b of the rigid inner mold 2 from the molded tire Wx, the molded tire Wx is extracted from the rigid inner mold 2 and conveyed to the next process.

また、上記のような剛性内型2を使用して、未加硫タイヤの成形や、加硫成形を行う場合には、上記の操作と逆操作を順次行うことにより、剛性内型2と共に、未加硫タイヤWの加硫成形を行うことが出来るものである。   In addition, when molding the unvulcanized tire or vulcanization molding using the rigid inner mold 2 as described above, by sequentially performing the above operation and the reverse operation, together with the rigid inner mold 2, The vulcanized molding of the unvulcanized tire W can be performed.

この発明は、上記のように構成したので、剛性内型を短時間で所定温度まで昇温させることが出来、タイヤの成形時間とタイヤ加硫成形時間との短縮化を図ることが出来ると共に、タイヤ加硫成形時間の短縮化を図ることが出来る結果、生産性の向上を図ることが出来るものである。   Since the present invention is configured as described above, the rigid inner mold can be heated to a predetermined temperature in a short time, and the tire molding time and the tire vulcanization molding time can be shortened. As a result of shortening of the tire vulcanization molding time, productivity can be improved.

この発明を実施した空気入りタイヤの加硫成形装置の概略構成図である。It is a schematic block diagram of the vulcanization molding apparatus of the pneumatic tire which implemented this invention. この発明の加硫成形装置に使用する剛性内型の平面図である。It is a top view of the rigid inner mold used for the vulcanization molding apparatus of this invention. 図2のA−A矢視縦断正面図である。It is an AA arrow vertical front view of FIG. 剛性内型をマイクロ波の供給手段の導波管に接続した状態を示す一部拡大断面図である。It is a partially expanded sectional view which shows the state which connected the rigid internal type | mold to the waveguide of the supply means of a microwave. マイクロ波の供給手段の他の実施形態を示す一部概略平面図である。It is a partial schematic plan view which shows other embodiment of the supply means of a microwave. マイクロ波の供給手段の他の実施形態を示す一部概略正面図である。It is a partial schematic front view which shows other embodiment of the supply means of a microwave. (a),(b)は、剛性内型の成形タイヤから取外す工程の説明図である。(A), (b) is explanatory drawing of the process of removing from a rigid internal type molded tire. (a),(b)は、剛性内型の成形タイヤから取外す工程の説明図である。(A), (b) is explanatory drawing of the process of removing from a rigid internal type molded tire. (a),(b)は、剛性内型の成形タイヤから取外す工程の説明図である。(A), (b) is explanatory drawing of the process of removing from a rigid internal type molded tire. (a),(b)は、剛性内型の成形タイヤから取外す工程の説明図である。(A), (b) is explanatory drawing of the process of removing from a rigid internal type molded tire. (a),(b)は、剛性内型の成形タイヤから取外す工程の説明図である。(A), (b) is explanatory drawing of the process of removing from the molded tire of a rigid inner type. (a)〜(f)は、タイヤ成形工程において剛性内型の成形タイヤから取外す工程の説明図である。(A)-(f) is explanatory drawing of the process of removing from a rigid internal type molded tire in a tire formation process.

符号の説明Explanation of symbols

1 加硫成形装置 2 剛性内型
3 クランプ機構 4 上部サイドプレート
5 下部サイドプレート 6 上モールド
7 下モールド 8 セクターモールド
9 セクターピース 10 バックセグメント
11 摺接面 12 ガイド部材
12A 支持プレート 13a 第1セグメント
13b 第2セグメント 14 発熱体
G マイクロ波 15 傾斜当接側面
16 傾斜当接側面 17a,17b 支持プレート
18 供給手段(発振器) 19 導波管
19a 接続口 20 反射板
21 仕切り板 22 反射室
23 アイソレータ 24a,24b 整合器用導波管
25a,25b 加熱手段(ヒータまたは電磁誘導加熱)
26 昇降シリンダー 27 パワーシリンダー
28 昇降シリンダー 29 支持台
30 取外し装置 31 保持アーム
32 水平シリンダー 33 昇降シリンダー
W グリーンタイヤ Wx 成形タイヤ
G マイクロ波 Gx マイクロ波の反射波
DESCRIPTION OF SYMBOLS 1 Vulcanization molding apparatus 2 Rigid inner mold 3 Clamp mechanism 4 Upper side plate 5 Lower side plate 6 Upper mold 7 Lower mold 8 Sector mold 9 Sector piece 10 Back segment 11 Sliding surface 12 Guide member 12A Support plate 13a First segment 13b Second segment 14 Heating element G Microwave 15 Inclined contact side surface 16 Inclined contact side surface 17a, 17b Support plate 18 Supply means (oscillator) 19 Waveguide 19a Connection port 20 Reflector plate 21 Partition plate 22 Reflector chamber 23 Isolator 24a, 24b Matching device waveguide 25a, 25b Heating means (heater or electromagnetic induction heating)
26 Lifting cylinder 27 Power cylinder 28 Lifting cylinder 29 Support base 30 Detachment device 31 Holding arm 32 Horizontal cylinder 33 Lifting cylinder W Green tire Wx Molded tire G Microwave Gx Microwave reflected wave

Claims (3)

未加硫タイヤの内外表面を剛体から成る外型と剛性内型とで保持すると共に、未加硫タイヤの上下面を上型及び下型により保持し、前記外型,剛性内型及び上型,下型を所定温度に加熱して空気入りタイヤを加硫成形する空気入りタイヤの加硫成形方法において、
前記未加硫タイヤの加硫成形時に、前記剛性内型の内表面の全面または一部に設けた発熱体をマイクロ波により発熱させると共に、剛性内型を所定温度に加熱して加硫成形を行うことを特徴とする空気入りタイヤの加硫成形方法。
The inner and outer surfaces of the unvulcanized tire are held by a rigid outer mold and a rigid inner mold, and the upper and lower surfaces of the unvulcanized tire are held by an upper mold and a lower mold, and the outer mold, the rigid inner mold and the upper mold In the vulcanization molding method for a pneumatic tire, the lower mold is heated to a predetermined temperature to vulcanize the pneumatic tire.
At the time of vulcanization molding of the unvulcanized tire, a heating element provided on the whole or part of the inner surface of the rigid inner mold is heated by microwaves, and the rigid inner mold is heated to a predetermined temperature to perform vulcanization molding. A method for vulcanizing and forming a pneumatic tire, comprising:
前記外型及び剛性内型は、周方向に複数に分割された環状の拡縮可能なセグメントにより構成され、前記剛性内型の内表面に設けた炭化ケイ素の焼結体から成る発熱体をタイヤ加硫時にマイクロ波により発熱させると共に剛性内型を所定温度に加熱して加硫成形する請求項1に記載の空気入りタイヤの加硫成形方法。 Each of the outer mold and the rigid inner mold is formed of an annular expandable / contractible segment divided into a plurality of parts in the circumferential direction, and a heating element made of a sintered body of silicon carbide provided on the inner surface of the rigid inner mold is added to the tire. The method for vulcanizing and molding a pneumatic tire according to claim 1, wherein the vulcanization molding is performed by heating the rigid inner mold to a predetermined temperature while generating heat by microwaves during vulcanization. 前記未加硫タイヤのタイヤ成形工程では、剛性内型の表面にタイヤ構成材料を巻付け、または貼合わせて成形し、このようにして成形された未加硫タイヤをタイヤ成形工程から取外し、剛性内型と共に加硫機に搬送してセットし、加硫成形を行う請求項1または2に記載の空気入りタイヤの加硫成形方法。
In the tire molding process of the unvulcanized tire, a tire constituent material is wound or bonded to the surface of the rigid inner mold and molded, and the unvulcanized tire thus molded is removed from the tire molding process and rigid. The method for vulcanizing and molding a pneumatic tire according to claim 1 or 2, wherein the vulcanized molding is performed by conveying and setting together with the inner mold to a vulcanizer.
JP2004138773A 2004-05-07 2004-05-07 Pneumatic tire vulcanization molding method Expired - Fee Related JP4412050B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004138773A JP4412050B2 (en) 2004-05-07 2004-05-07 Pneumatic tire vulcanization molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004138773A JP4412050B2 (en) 2004-05-07 2004-05-07 Pneumatic tire vulcanization molding method

Publications (2)

Publication Number Publication Date
JP2005319657A true JP2005319657A (en) 2005-11-17
JP4412050B2 JP4412050B2 (en) 2010-02-10

Family

ID=35467287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004138773A Expired - Fee Related JP4412050B2 (en) 2004-05-07 2004-05-07 Pneumatic tire vulcanization molding method

Country Status (1)

Country Link
JP (1) JP4412050B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007108521A1 (en) * 2006-03-22 2007-09-27 The Yokohama Rubber Co., Ltd. Method and device for separating and removing rigid core for building tire

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5975028U (en) * 1982-11-12 1984-05-22 住友ゴム工業株式会社 Microwave heating device for tire vulcanizer
JPH02503888A (en) * 1987-05-07 1990-11-15 ポーラス・プラスチックス・リミテッド Method and device for manufacturing articles by microwave heating
JPH06297473A (en) * 1993-04-13 1994-10-25 Bridgestone Corp Tire vulcanizing device
JPH0866924A (en) * 1994-08-30 1996-03-12 Sumitomo Rubber Ind Ltd Manufacture of pneumatic tire
JP2003320534A (en) * 2002-04-30 2003-11-11 Bridgestone Corp Method and apparatus for manufacturing pneumatic tire
JP2004122650A (en) * 2002-10-04 2004-04-22 Kobe Steel Ltd Apparatus and method for vulcanizing tire

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5975028U (en) * 1982-11-12 1984-05-22 住友ゴム工業株式会社 Microwave heating device for tire vulcanizer
JPH02503888A (en) * 1987-05-07 1990-11-15 ポーラス・プラスチックス・リミテッド Method and device for manufacturing articles by microwave heating
JPH06297473A (en) * 1993-04-13 1994-10-25 Bridgestone Corp Tire vulcanizing device
JPH0866924A (en) * 1994-08-30 1996-03-12 Sumitomo Rubber Ind Ltd Manufacture of pneumatic tire
JP2003320534A (en) * 2002-04-30 2003-11-11 Bridgestone Corp Method and apparatus for manufacturing pneumatic tire
JP2004122650A (en) * 2002-10-04 2004-04-22 Kobe Steel Ltd Apparatus and method for vulcanizing tire

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007108521A1 (en) * 2006-03-22 2007-09-27 The Yokohama Rubber Co., Ltd. Method and device for separating and removing rigid core for building tire
US8034204B2 (en) 2006-03-22 2011-10-11 The Yokoham Rubber Co., Ltd. Method and device for separating and removing rigid core for building tire
US8449281B2 (en) 2006-03-22 2013-05-28 The Yokohama Rubber Co., Ltd. Method and device for separating and removing rigid core for building tire
US8580059B2 (en) 2006-03-22 2013-11-12 The Yokohama Rubber Co., Ltd. Method and device for separating and removing rigid core for building tire

Also Published As

Publication number Publication date
JP4412050B2 (en) 2010-02-10

Similar Documents

Publication Publication Date Title
JP6123753B2 (en) Electromagnetic induction heating mold equipment for molding and vulcanization of rubber packing
JP2006224417A (en) Vulcanizer
JP4412050B2 (en) Pneumatic tire vulcanization molding method
JP4438506B2 (en) Pneumatic tire vulcanization molding equipment
US20120222700A1 (en) Template substrate processing apparatus and template substrate processing method
JP4438505B2 (en) Pneumatic tire manufacturing inner mold
JP2008168490A (en) Method and apparatus for manufacturing pneumatic tire
US9496157B2 (en) Ultraviolet curing apparatus having top liner and bottom liner made of low-coefficient of thermal expansion material
JP2008120645A (en) Apparatus and method of manufacturing optical element
KR20000077221A (en) Bladder for vulcanizer, vulcanizer using the same and vulcanizing-molding method
JPH0796525A (en) Tire vulcanizing method and apparatus
CN104385502B (en) Electromagnetic induction heating tyre vulcanization outer mold
JP2007203684A (en) Manufacturing process and apparatus of retreaded tire
JP2007022010A (en) Method for preliminarily heating rigid inner mold for tire vulcanization forming, and apparatus therefor
JP2009132090A (en) Manufacturing method for pneumatic tire
JP2011126019A (en) Method for manufacturing tire and tire
JP2017071153A (en) Tire vulcanizing apparatus
CN107206638A (en) Tire preheating device, tire vulcanizing system, tire pre-heating mean and tire manufacturing method
KR100791762B1 (en) Advanced single stage vacuum thermoforming method having improved electric power efficiency and productivity
JP2007290150A (en) Setting method of mold for vulcanizing and molding sectional type tire
JP2006180679A (en) Heating device and heating method
JP6002635B2 (en) Raw tire heating method and apparatus
CN203651015U (en) Drum-type vulcanization device for high-performance radial tire
JP2016179640A (en) Method and apparatus for preheating tire vulcanizing mold
JP2008280187A (en) Method for producing glass cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees