JP2005317629A - Thermoelectric conversion module - Google Patents

Thermoelectric conversion module Download PDF

Info

Publication number
JP2005317629A
JP2005317629A JP2004131371A JP2004131371A JP2005317629A JP 2005317629 A JP2005317629 A JP 2005317629A JP 2004131371 A JP2004131371 A JP 2004131371A JP 2004131371 A JP2004131371 A JP 2004131371A JP 2005317629 A JP2005317629 A JP 2005317629A
Authority
JP
Japan
Prior art keywords
screw
thermoelectric
thermoelectric element
insulator
conversion module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004131371A
Other languages
Japanese (ja)
Inventor
Akihiro Hidaka
明弘 日高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal SMI Electronics Device Inc
Original Assignee
Sumitomo Metal SMI Electronics Device Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal SMI Electronics Device Inc filed Critical Sumitomo Metal SMI Electronics Device Inc
Priority to JP2004131371A priority Critical patent/JP2005317629A/en
Publication of JP2005317629A publication Critical patent/JP2005317629A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoelectric conversion module which suppresses the generation of thermal stress at a bonding portion between a semiconductor and an electrode forming a thermoelectric element, and prevents cracking of the semiconductor. <P>SOLUTION: The thermoelectric conversion module 10 is formed by connecting a plurality of pairs of thermoelectric elements in series, wherein a pair of cylindrical or prismatic p-type and n-type semiconductors 13 and 13a are arranged side by side, between first and second insulators 11 and 11a facing each other in nearly parallel by means of electrodes 14 that are respectively provided on the first and second insulators 11 and 11a. The end of the thermoelectric element 12 to be connected with the electrode 14 of the first insulator 11 or the second insulator 11a is provided with a thread 15 made of the same material as that of the electrode 14 or a different material, and a tapped hole 16 with the screwed thread 15 is provided in the electrode 14. The thread 15 is screwed in the tapped hole 16 to electrically connect the thermoelectric element 12 with the electrode 14, and a clearance 17 is formed between the thread 15 and the tapped hole 16 so that they may mutually move horizontally. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、温度差による発電、あるいは直流電力の供給によって冷却又は加熱として作用させることができる熱電変換モジュールに関する。   The present invention relates to a thermoelectric conversion module that can act as cooling or heating by power generation due to a temperature difference or supply of DC power.

図3に示すように、従来の熱電変換モジュール50は、P型半導体51とN型半導体51aの一対の半導体で構成される熱電素子52を板状のセラミック基板や樹脂基板、フィルム状の樹脂シート等からなる第1、第2の絶縁体53、53aに形成された電極54を介してP型半導体51とN型半導体51aを交互且つ連続的に導電性樹脂や、半田等の接合材55で接合して直列に接続し、両方から第1、第2の絶縁体53、53aで挟み込むようにして締め付け具56等で締め付けることで形成されている。そして、例えば、熱電発電装置として用いるのに、高温側の一方の第1の絶縁体53には、第1の絶縁体53に高温度を効率的に伝えることができるヒートシンク板57を介して第1の伝熱体58を、低温側の他方の第2の絶縁体53aには、第2の伝熱体58aを接触させることで、第1と第2の伝熱体58、58aから熱電素子52のそれぞれの端子部分に伝わった温度の温度差に比例した大きさの電位を熱電素子52で発生させるゼーベック効果で発電を行い、その発電電力を電極54の両端部に接続させたリード線59、59aから取り出している。また、熱電変換モジュール50を用いる装置としては、リード線59、59aから熱電素子52へ給電することによるペルチェ効果で第1の伝熱体58の冷却と第2の伝熱体58aの加熱、あるいは、これと反対の第1の伝熱体58の加熱と第2の伝熱体58aの冷却を行うのに用いることもできる。なお、熱電素子52と電極54の接合材55に導電性樹脂を用いる場合には、導電性樹脂の耐熱性が低いので、接合後の加熱温度に限界が生じ熱電変換モジュール50としての用途が限られることになる。   As shown in FIG. 3, a conventional thermoelectric conversion module 50 includes a thermoelectric element 52 composed of a pair of semiconductors of a P-type semiconductor 51 and an N-type semiconductor 51a as a plate-like ceramic substrate, a resin substrate, or a film-like resin sheet. The P-type semiconductor 51 and the N-type semiconductor 51a are alternately and continuously connected with a conductive resin or a bonding material 55 such as solder through electrodes 54 formed on the first and second insulators 53 and 53a. They are joined and connected in series, and are clamped with a clamp 56 or the like so as to be sandwiched between the first and second insulators 53 and 53a from both sides. For example, for use as a thermoelectric generator, the first insulator 53 on the high temperature side is connected to the first insulator 53 via a heat sink plate 57 that can efficiently transmit the high temperature. The first heat transfer body 58 is brought into contact with the other second insulator 53a on the low temperature side, whereby the second heat transfer body 58a is brought into contact with the thermoelectric element from the first and second heat transfer bodies 58 and 58a. Power is generated by the Seebeck effect that causes the thermoelectric element 52 to generate a potential having a magnitude proportional to the temperature difference between the temperatures transmitted to the respective terminal portions 52, and the generated power is connected to both ends of the electrode 54. , 59a. In addition, as a device using the thermoelectric conversion module 50, cooling of the first heat transfer body 58 and heating of the second heat transfer body 58a by the Peltier effect by supplying power from the lead wires 59 and 59a to the thermoelectric element 52, or The first heat transfer body 58 and the second heat transfer body 58a opposite to the above can be heated and cooled. When a conductive resin is used for the bonding material 55 between the thermoelectric element 52 and the electrode 54, the heat resistance of the conductive resin is low, so that the heating temperature after bonding is limited, and the use as the thermoelectric conversion module 50 is limited. Will be.

熱電変換モジュールを熱電発電装置として用いる場合には、熱電素子から取り出される電力を大きくしようとすると、高温側の伝熱体の温度を高くして低温側の伝熱体との温度差を大きくする必要がある。この場合の半導体と電極との接合には、通常半田が用いられるが、半田に軟ろうである低温半田が用いられると半田の耐熱性が約150℃と低く、発電効率を向上させるための妨げとなっている。そこで、低温半田に代わって高温半田を使用することが考えられるが、この場合には、高温側の伝熱体の温度を高くすることができるものの高温半田の成分が熱電素子を構成する半導体内に拡散し、しかも半田成分のSnや、Pbが電極のCuと親和性が高いので、Cuが高温半田を介して半導体内に拡散し、半導体自体の経時的熱電変換効率の低下をきたしている。そこで、熱電素子を構成する半導体と電極の間には、介在層を設けて接合するものが提案されている(例えば、特許文献1参照)。また、熱電素子を構成する半導体と電極との接合部分には、高温側の熱膨張と低温側の熱収縮によって応力が加わることとなり、長期間の使用によってクラックを発生することがあった。そこで、熱電素子を構成する半導体は、形状を球状とする応力の加わりにくい構造のものとすることが提案されている(例えば、特許文献2参照)。
特開平9−293906号公報 特開平10−163537号公報
When the thermoelectric conversion module is used as a thermoelectric power generation device, if the electric power extracted from the thermoelectric element is increased, the temperature of the high temperature side heat transfer body is increased to increase the temperature difference from the low temperature side heat transfer body. There is a need. In this case, solder is usually used for bonding the semiconductor and the electrode. However, when low-temperature solder that is soft solder is used, the heat resistance of the solder is as low as about 150 ° C., which hinders improvement in power generation efficiency. It has become. Therefore, it is conceivable to use high-temperature solder instead of low-temperature solder. In this case, although the temperature of the heat transfer body on the high temperature side can be increased, the components of the high-temperature solder are contained in the semiconductor constituting the thermoelectric element. In addition, since Sn and Pb of the solder component have high affinity with Cu of the electrode, Cu diffuses into the semiconductor through the high-temperature solder, and the thermoelectric conversion efficiency of the semiconductor itself is lowered over time. . In view of this, there has been proposed a structure in which an intervening layer is provided and bonded between a semiconductor and electrodes constituting a thermoelectric element (see, for example, Patent Document 1). In addition, stress is applied to the bonding portion between the semiconductor and the electrode constituting the thermoelectric element due to the thermal expansion on the high temperature side and the thermal contraction on the low temperature side, and cracks may occur due to long-term use. In view of this, it has been proposed that the semiconductor constituting the thermoelectric element has a spherical shape and is not easily subjected to stress (see, for example, Patent Document 2).
JP-A-9-293906 JP-A-10-163537

しかしながら、前述したような従来の熱電変換モジュールは、次のような問題がある。
熱電素子を構成する半導体と、電極との接合を半田で行う場合においては、例え半導体と電極との間に介在層を設けたとしても、半田接合が剛的接合であるので、稼働時の加熱や停止時の冷却による接合部の熱応力を吸収することができず、この応力によって脆い特性を有する半導体に発生するクラックを完全に防止することができない。同様に、半導体を球状とした場合においても、剛的な半田接合である限り、半導体の熱応力を吸収できないので、半導体に発生するクラックを完全に防止することができない。半導体は、このクラックの発生によって、熱電性能が著しく低下している。
本発明は、かかる事情に鑑みてなされたものであって、熱電素子を構成する半導体と電極の接合部分の熱応力の発生を防止して半導体のクラックの発生を防止する熱電変換モジュールを提供することを目的とする。
However, the conventional thermoelectric conversion module as described above has the following problems.
In the case where the semiconductor constituting the thermoelectric element and the electrode are joined by soldering, even if an intervening layer is provided between the semiconductor and the electrode, the solder joining is a rigid joining, so heating during operation Further, it is impossible to absorb the thermal stress of the joint due to cooling at the time of stopping, and it is impossible to completely prevent cracks generated in a semiconductor having brittle characteristics due to this stress. Similarly, even when the semiconductor is made spherical, as long as it is a rigid solder joint, the thermal stress of the semiconductor cannot be absorbed, so that the cracks generated in the semiconductor cannot be completely prevented. The semiconductor has a markedly reduced thermoelectric performance due to the occurrence of cracks.
The present invention has been made in view of such circumstances, and provides a thermoelectric conversion module that prevents the occurrence of cracks in a semiconductor by preventing the occurrence of thermal stress at the junction between a semiconductor and an electrode constituting a thermoelectric element. For the purpose.

前記目的に沿う本発明に係る熱電変換モジュールは、略平行に平面どうしで対向する第1と第2の絶縁体間に、円柱体又は多角柱体のP型半導体とN型半導体の一対を並設してなる熱電素子の複数組が第1と第2の絶縁体のそれぞれに設けられる電極を介してP型半導体とN型半導体を電気的に直列に連結して形成される熱電変換モジュールにおいて、第1の絶縁体又は第2の絶縁体の電極と接続する熱電素子の端部に熱電素子と同材質又は異材質からなるねじを有すると共に、ねじをねじ込むためのねじ穴を電極に有し、ねじをねじ穴にねじ止めして熱電素子が電気的に接続され、しかもねじとねじ穴との間にねじとねじ穴が相互に水平移動できるクリアランスを有する。
ここで、熱電変換モジュールは、ねじとねじ穴との接合部分に導電性グリースが塗布されているのがよい。
A thermoelectric conversion module according to the present invention that meets the above-described object is provided by arranging a pair of cylindrical and polygonal P-type semiconductors and N-type semiconductors between first and second insulators facing each other in a plane substantially parallel to each other. In a thermoelectric conversion module in which a plurality of sets of thermoelectric elements provided are formed by electrically connecting a P-type semiconductor and an N-type semiconductor in series via electrodes provided on the first and second insulators, respectively. The end of the thermoelectric element connected to the electrode of the first insulator or the second insulator has a screw made of the same or different material as the thermoelectric element, and has a screw hole for screwing in the electrode. The thermoelectric element is electrically connected by screwing the screw into the screw hole, and there is a clearance that allows the screw and the screw hole to move horizontally between the screw and the screw hole.
Here, in the thermoelectric conversion module, it is preferable that conductive grease is applied to the joint portion between the screw and the screw hole.

請求項1及びこれに従属する請求項2記載の熱電変換モジュールは、第1又は第2の絶縁体の電極と接続する熱電素子の端部に熱電素子と同材質又は異材質からなるねじを有すると共に、ねじ穴を電極に有し、ねじをねじ穴にねじ止めして熱電素子が電気的に接続され、しかもねじとねじ穴との間にねじとねじ穴が相互に水平移動できるクリアランスを有するので、熱電素子と電極との間には、ねじとねじ穴によるねじ止めによって、電気的な導通を確保できると共に、ねじとねじ穴とのクリアランスによって、熱電素子を構成する半導体と絶縁体の異材質間の熱膨張や熱収縮の差を吸収できるので、熱応力の発生を防止して、半導体のクラック発生を防止することができる。   The thermoelectric conversion module according to claim 1 and claim 2 dependent thereon has a screw made of the same or different material as the thermoelectric element at the end of the thermoelectric element connected to the electrode of the first or second insulator. In addition, a screw hole is provided in the electrode, the screw is screwed into the screw hole, the thermoelectric element is electrically connected, and the screw and the screw hole have a clearance that can move horizontally between the screw and the screw hole. Therefore, electrical conduction can be secured between the thermoelectric element and the electrode by screwing with a screw and a screw hole, and the difference between the semiconductor and the insulator constituting the thermoelectric element can be ensured by the clearance between the screw and the screw hole. Since differences in thermal expansion and contraction between materials can be absorbed, the generation of thermal stress can be prevented and the occurrence of cracks in the semiconductor can be prevented.

特に、請求項2記載の熱電変換モジュールは、ねじとねじ穴との接合部分に導電性グリースが塗布されているので、接合部分での電気的接続及び熱伝導的接続の安定性を得ることができる。   Particularly, in the thermoelectric conversion module according to claim 2, since the conductive grease is applied to the joint portion between the screw and the screw hole, the stability of the electrical connection and the heat conductive connection at the joint portion can be obtained. it can.

続いて、添付した図面を参照しつつ、本発明を具体化した実施するための最良の形態について説明し、本発明の理解に供する。
ここに、図1は本発明の一実施の形態に係る熱電変換モジュールの説明図、図2(A)、(B)はそれぞれ同熱電変換モジュールの接合部分の変形例の拡大説明図である。
Subsequently, the best mode for carrying out the present invention will be described with reference to the accompanying drawings to provide an understanding of the present invention.
Here, FIG. 1 is an explanatory diagram of a thermoelectric conversion module according to an embodiment of the present invention, and FIGS.

図1に示すように、本発明の一実施の形態に係る熱電変換モジュール10は、略平行に平面どうしで対向する、例えば、窒化アルミニウム、アルミナ等の板状のセラミック基板や、板状の樹脂基板や、フィルム状の樹脂シート、あるいはこれらの組み合わせ等からなる第1の絶縁体11と、第2の絶縁体11aとの間に複数の熱電素子12を有している。この熱電素子12は、円柱体又は多角柱体の、例えば、ビスマス・テルル系や、コバルト・アンチモン系等、あるいはこれらの接合体等からなるP型半導体13とN型半導体13aの一対によって形成されている。一対で構成されるそれぞれP型半導体13とN型半導体13aは、第1の絶縁体11と第2の絶縁体11aのそれぞれに設けられる、例えば、銅や、モリブデン、あるいはこれらの合金等からなる電極14を介して電気的に直列に接続されると共に、一対のP型半導体13とN型半導体13aからなる熱電素子12の複数組を連続的に電気的に直列に連結している。   As shown in FIG. 1, a thermoelectric conversion module 10 according to an embodiment of the present invention includes a plate-shaped ceramic substrate, such as aluminum nitride or alumina, or a plate-shaped resin, facing each other substantially in parallel with each other. A plurality of thermoelectric elements 12 are provided between the first insulator 11 made of a substrate, a film-like resin sheet, or a combination thereof, and the second insulator 11a. The thermoelectric element 12 is formed of a pair of a P-type semiconductor 13 and an N-type semiconductor 13a made of a cylindrical body or a polygonal cylinder, for example, bismuth-tellurium-based, cobalt-antimony-based, etc., or a joined body thereof. ing. Each of the P-type semiconductor 13 and the N-type semiconductor 13a configured as a pair is formed of, for example, copper, molybdenum, or an alloy thereof provided in each of the first insulator 11 and the second insulator 11a. A plurality of sets of thermoelectric elements 12 composed of a pair of P-type semiconductor 13 and N-type semiconductor 13a are continuously and electrically connected in series through electrodes 14 and in series.

このP型半導体13とN型半導体13aからなる熱電素子12の端部には、第1の絶縁体11又は第2の絶縁体11aの電極14に電気的に接続させて、電極14に熱電素子12を取り付けるために、熱電素子12と同材質、すなわち半導体からなり、熱電素子12の端部から延設されるねじ15を有している。電極14には、このねじ15をねじ込んでねじ止めして接合するためのねじ穴16を有し、ねじ15をねじ穴16でねじ止めしている。このねじ止めによって、P型半導体13とN型半導体13aからなる熱電素子12は、電気的に直列に接続させることができ、更に、P型半導体13とN型半導体13aで構成される熱電素子12の平面視してマトリックス状に配列する複数組を連結して全体を電気的に直列状態とすることができる。しかも、ねじ15とねじ穴16との間には、ねじ15をねじ穴16にねじ止めした時に、ねじ15がねじ穴16から抜け落ちないと同時に、ねじ15とねじ穴16が相互に水平移動できるクリアランス17を有している。このクリアランス17によって、熱電素子12と電極14との接合は、接合部が半田接合のような剛的な接合でなく、ねじ15とねじ穴16間の接合部に余裕を持たせた接合とすることができて接合部の熱応力集中を吸収でき、熱電素子12である半導体に発生しやすいクラックの発生を防止することができる。   An end portion of the thermoelectric element 12 composed of the P-type semiconductor 13 and the N-type semiconductor 13a is electrically connected to the electrode 14 of the first insulator 11 or the second insulator 11a, and the electrode 14 is connected to the thermoelectric element. In order to attach 12, the thermoelectric element 12 is made of the same material, that is, a semiconductor, and has a screw 15 extending from the end of the thermoelectric element 12. The electrode 14 has a screw hole 16 for screwing and joining the screw 15, and the screw 15 is screwed by the screw hole 16. By this screwing, the thermoelectric element 12 composed of the P-type semiconductor 13 and the N-type semiconductor 13a can be electrically connected in series. Further, the thermoelectric element 12 composed of the P-type semiconductor 13 and the N-type semiconductor 13a. By connecting a plurality of sets arranged in a matrix in plan view, the whole can be electrically connected in series. Moreover, between the screw 15 and the screw hole 16, when the screw 15 is screwed into the screw hole 16, the screw 15 does not fall out of the screw hole 16, and at the same time, the screw 15 and the screw hole 16 can move horizontally. Clearance 17 is provided. Due to this clearance 17, the thermoelectric element 12 and the electrode 14 are joined not by a rigid joint such as a solder joint, but by joining the joint between the screw 15 and the screw hole 16 with a margin. Therefore, it is possible to absorb the thermal stress concentration at the joint and to prevent the generation of cracks that are likely to occur in the semiconductor that is the thermoelectric element 12.

図2(A)に示すように、本発明の一実施の形態に係る熱電変換モジュール10には、P型半導体13とN型半導体13aで構成される熱電素子12の端部と、第1の絶縁体11又は第2の絶縁体11aの電極14を接続させるために、熱電素子12である半導体と異なる材質、例えば、銅や、モリブデン等の金属からなるねじ15aが熱電素子12に半田等の接合材20で接合して形成されるものがある。また、図2(B)に示すように、本発明の一実施の形態に係る熱電変換モジュール10には、熱電素子12の端部と、第1の絶縁体11又は第2の絶縁体11aの電極14とを接続させるために、熱電素子12である半導体と同じ材質、又は熱電素子12である半導体とは異なる材質からなり、接合面の両方側でねじ止めできるねじ15bの一方側が熱電素子12の端部に設けた接合用のねじ穴16aにねじ止めして形成されるものがある。このねじ止めの場合には、ねじ15bと、ねじ穴16aとの間に、ねじ15bがねじ穴16aと嵌合できればよく、特段のクリアランスを設ける必要はない。そして、電極14には、このねじ15a、15bをねじ込んでねじ止めして接合するためのねじ穴16を有し、ねじ15a、15bをこのねじ穴16でねじ止めすることで、P型半導体13とN型半導体13aからなる熱電素子12の複数組を電気的に直列状態としている。ねじ15a、15bとねじ穴16との間には、ねじ15a、15bをねじ穴16にねじ止めした時に、ねじ15a、15bがねじ穴16から抜け落ちないと同時に、ねじ15a、15bとねじ穴16が相互に水平移動できるクリアランス17を有している。   As shown in FIG. 2A, the thermoelectric conversion module 10 according to an embodiment of the present invention includes an end portion of a thermoelectric element 12 composed of a P-type semiconductor 13 and an N-type semiconductor 13a, In order to connect the electrode 14 of the insulator 11 or the second insulator 11a, a screw 15a made of a material different from the semiconductor that is the thermoelectric element 12, for example, a metal such as copper or molybdenum, is connected to the thermoelectric element 12 by soldering or the like. Some are formed by bonding with the bonding material 20. Further, as shown in FIG. 2B, the thermoelectric conversion module 10 according to one embodiment of the present invention includes an end portion of the thermoelectric element 12, and the first insulator 11 or the second insulator 11a. In order to connect the electrode 14, one side of the screw 15 b that is made of the same material as the semiconductor that is the thermoelectric element 12 or a different material from the semiconductor that is the thermoelectric element 12 and can be screwed on both sides of the joint surface is the thermoelectric element 12. There are some which are formed by screwing into a screw hole 16a for joining provided at the end of each. In the case of this screwing, it is sufficient that the screw 15b can be fitted to the screw hole 16a between the screw 15b and the screw hole 16a, and it is not necessary to provide a special clearance. The electrode 14 has a screw hole 16 for screwing and screwing the screws 15a and 15b, and by screwing the screws 15a and 15b with the screw holes 16, the P-type semiconductor 13 A plurality of sets of thermoelectric elements 12 made of N-type semiconductor 13a are electrically in series. Between the screws 15 a and 15 b and the screw hole 16, when the screws 15 a and 15 b are screwed into the screw hole 16, the screws 15 a and 15 b do not fall out of the screw hole 16, and at the same time, the screws 15 a and 15 b and the screw hole 16. Have a clearance 17 that can move horizontally with respect to each other.

ここで、熱電変換モジュール10は、ねじ15、15a、15bとねじ穴16との接合部分に、導電性グリースが塗布されているのがよい。この導電性グリースには、電気的な導電性と熱的な熱伝導性を兼ね備えさせることができるので、ねじ15、15a、15bとねじ穴16との接合部分での電気的接合、及び熱伝導的接合の安定化を促進させることができる。   Here, in the thermoelectric conversion module 10, conductive grease is preferably applied to a joint portion between the screws 15, 15 a, 15 b and the screw hole 16. Since this conductive grease can have both electrical conductivity and thermal thermal conductivity, electrical connection at the joint between the screws 15, 15a, 15b and the screw hole 16 and heat conduction can be achieved. Stabilization of the mechanical joint can be promoted.

上記の熱電変換モジュール10を熱電変換装置の一種である熱電発電装置として用いる場合には、例えば、第1の絶縁体11側に銅や、モリブデン、あるいはこれらの合金等からなるヒートシンク板18を介して、排気ガスや、廃熱等のような高温の気体や、高温体を冷却した後の排水のような高温の液体等の高温媒体を通過させることができる空洞体等からなる第1の伝熱体19を設けている。また、第2の絶縁体11a側には、例えば、冷却水や、冷風のような低温媒体を通過させることができる空洞体等からなる第2の伝熱体19aを設けている。なお、ヒートシンク板18は、高温の気体や、高温の液体等から得られ高温の熱を熱電素子12に効率的に伝熱させるために設けられている。また、第1の伝熱体19と第2の伝熱体19aを第1の絶縁体11と第2の絶縁体11aにそれぞれが接することができるようにするためには、締め付け具21で締め付けることで熱伝導を強固にしている。上記のように構成された熱電発電装置は、第1の伝熱体19と第2の伝熱体19aから熱電素子12のそれぞれの端子部分に伝わった温度の温度差に比例した大きさの電位を熱電素子12で発生させるゼーベック効果で発電を行い、その発電電力を熱電素子12を直列に接続させた両端の電極14のそれぞれから延設させたリード線22、22aから取り出すことで電力を得ている。   When the thermoelectric conversion module 10 is used as a thermoelectric power generation device which is a kind of thermoelectric conversion device, for example, a heat sink plate 18 made of copper, molybdenum, or an alloy thereof is provided on the first insulator 11 side. In addition, the first transmission made of a hollow body or the like that can pass a high-temperature gas such as exhaust gas, high-temperature gas such as waste heat, or high-temperature liquid such as waste water after cooling the high-temperature body. A heating element 19 is provided. Further, on the second insulator 11a side, for example, a second heat transfer body 19a made of a hollow body or the like through which a cooling medium or a low-temperature medium such as cold air can pass is provided. The heat sink plate 18 is provided in order to efficiently transfer high-temperature heat obtained from a high-temperature gas, a high-temperature liquid, or the like to the thermoelectric element 12. Further, in order to allow the first heat transfer body 19 and the second heat transfer body 19a to be in contact with the first insulator 11 and the second insulator 11a, the first heat transfer body 19 and the second heat transfer body 19a are tightened with a tightening tool 21. In this way, heat conduction is strengthened. The thermoelectric power generator configured as described above has a potential proportional to the temperature difference between the temperatures transmitted from the first heat transfer body 19 and the second heat transfer body 19a to the respective terminal portions of the thermoelectric element 12. Is generated by the Seebeck effect generated by the thermoelectric element 12, and the generated power is taken out from the lead wires 22 and 22a extending from the electrodes 14 at both ends where the thermoelectric elements 12 are connected in series. ing.

また、この熱電変換モジュール10を用いる熱電変換装置には、リード線22、22aから熱電素子12へ給電することによるペルチェ効果によって、第1の伝熱体19側の冷却と第2の伝熱体19a側の加熱、あるいは、第1の伝熱体19側の加熱と第2の伝熱体19a側の冷却を行うために熱移動をさせることができるこれと接する被接触物の加熱や冷却のための装置として各種の応用ができる。なお、第1の絶縁体11及び/又は第2の絶縁体11aにセラミック基板を用いる場合には、熱伝導率の高い、例えば、窒化アルミニウム基板を用いることでそれぞれの熱媒体を有効に活用できたり、被加熱物又は被冷却物を効率的に加熱又は冷却させることができる。   Further, in the thermoelectric conversion device using the thermoelectric conversion module 10, the cooling on the first heat transfer body 19 side and the second heat transfer body are performed by the Peltier effect by supplying power from the lead wires 22 and 22 a to the thermoelectric element 12. Heating and cooling of the contacted object that can be moved by heat to heat the 19a side or heat the first heat transfer body 19 and cool the second heat transfer body 19a As a device for this, various applications can be made. When a ceramic substrate is used for the first insulator 11 and / or the second insulator 11a, each heat medium can be effectively utilized by using, for example, an aluminum nitride substrate having a high thermal conductivity. Or the object to be heated or the object to be cooled can be efficiently heated or cooled.

本発明の熱電変換モジュールは、高温側と低温側との温度差が大きくなっても熱電素子である半導体に不具合を発生させることなく大きい電力を得ることができ、廃熱等を利用して発電できる熱電発電装置や、高い電力を流して高温側と低温側との温度差を大きくしても熱電素子である半導体に不具合を発生させることなく高温や、低温が引き出せる冷、温風器、加熱、冷却装置、狭い所や、過酷な所で用いるための電力供給用としての各種装置、熱媒体を循環させる経済的な発電装置等に用いることができる。   The thermoelectric conversion module of the present invention can obtain a large electric power without causing a defect in a semiconductor as a thermoelectric element even if a temperature difference between a high temperature side and a low temperature side becomes large, and generates power using waste heat or the like. Thermoelectric power generators that can be used, and even if the temperature difference between the high-temperature side and the low-temperature side is increased by flowing high power, high temperatures and cold, hot air heaters, heating that can draw out low temperatures without causing defects in the semiconductor that is the thermoelectric element It can be used for a cooling device, various devices for supplying power for use in a narrow place or a severe place, an economical power generator for circulating a heat medium, and the like.

本発明の一実施の形態に係る熱電変換モジュールの説明図である。It is explanatory drawing of the thermoelectric conversion module which concerns on one embodiment of this invention. (A)、(B)はそれぞれ同熱電変換モジュールの接合部分の変形例の拡大説明図である。(A), (B) is an expansion explanatory drawing of the modification of the junction part of the thermoelectric conversion module, respectively. 従来の熱電変換モジュールの説明図である。It is explanatory drawing of the conventional thermoelectric conversion module.

符号の説明Explanation of symbols

10:熱電変換モジュール、11:第1の絶縁体、11a:第2の絶縁体、12:熱電素子、13:P型半導体、13a:N型半導体、14:電極、15、15a、15b:ねじ、16、16a:ねじ穴、17:クリアランス、18:ヒートシンク板、19:第1の伝熱体、19a:第2の伝熱体、20:接合材、21:締め付け具、22、22a:リード線   10: thermoelectric conversion module, 11: first insulator, 11a: second insulator, 12: thermoelectric element, 13: P-type semiconductor, 13a: N-type semiconductor, 14: electrode, 15, 15a, 15b: screw 16, 16a: screw holes, 17: clearance, 18: heat sink plate, 19: first heat transfer body, 19a: second heat transfer body, 20: bonding material, 21: clamping tool, 22, 22a: lead line

Claims (2)

略平行に平面どうしで対向する第1と第2の絶縁体間に、円柱体又は多角柱体のP型半導体とN型半導体の一対を並設してなる熱電素子の複数組が前記第1と第2の絶縁体のそれぞれに設けられる電極を介して前記P型半導体と前記N型半導体を電気的に直列に連結して形成される熱電変換モジュールにおいて、
前記第1の絶縁体又は前記第2の絶縁体の前記電極と接続する前記熱電素子の端部に該熱電素子と同材質又は異材質からなるねじを有すると共に、該ねじをねじ込むためのねじ穴を前記電極に有し、前記ねじを前記ねじ穴にねじ止めして前記熱電素子が電気的に接続され、しかも前記ねじと前記ねじ穴との間に該ねじと該ねじ穴が相互に水平移動できるクリアランスを有することを特徴とする熱電変換モジュール。
A plurality of sets of thermoelectric elements in which a pair of a P-type semiconductor and an N-type semiconductor in the form of a cylinder or a polygonal column are arranged in parallel between first and second insulators facing each other in a plane substantially parallel to each other. And a thermoelectric conversion module formed by electrically connecting the P-type semiconductor and the N-type semiconductor in series via electrodes provided on each of the second insulator and the second insulator,
The end of the thermoelectric element connected to the electrode of the first insulator or the second insulator has a screw made of the same or different material as the thermoelectric element, and a screw hole for screwing the screw And the thermoelectric element is electrically connected by screwing the screw into the screw hole, and the screw and the screw hole move horizontally between the screw and the screw hole. A thermoelectric conversion module characterized by having a possible clearance.
請求項1記載の熱電変換モジュールにおいて、前記ねじと前記ねじ穴との接合部分に導電性グリースが塗布されていることを特徴とする熱電変換モジュール。   The thermoelectric conversion module according to claim 1, wherein conductive grease is applied to a joint portion between the screw and the screw hole.
JP2004131371A 2004-04-27 2004-04-27 Thermoelectric conversion module Pending JP2005317629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004131371A JP2005317629A (en) 2004-04-27 2004-04-27 Thermoelectric conversion module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004131371A JP2005317629A (en) 2004-04-27 2004-04-27 Thermoelectric conversion module

Publications (1)

Publication Number Publication Date
JP2005317629A true JP2005317629A (en) 2005-11-10

Family

ID=35444759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004131371A Pending JP2005317629A (en) 2004-04-27 2004-04-27 Thermoelectric conversion module

Country Status (1)

Country Link
JP (1) JP2005317629A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015088577A (en) * 2013-10-30 2015-05-07 アイシン高丘株式会社 Thermoelectric element and thermoelectric module
JP2017152694A (en) * 2016-02-24 2017-08-31 三菱マテリアル株式会社 Thermoelectric conversion cell and thermoelectric conversion module
WO2017146014A1 (en) * 2016-02-24 2017-08-31 三菱マテリアル株式会社 Thermoelectric conversion cell and thermoelectric conversion module
CN113098327A (en) * 2021-04-15 2021-07-09 上海空间电源研究所 Thermoelectric device with low-stress mounting structure and mounting and fixing method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015088577A (en) * 2013-10-30 2015-05-07 アイシン高丘株式会社 Thermoelectric element and thermoelectric module
WO2015063673A1 (en) * 2013-10-30 2015-05-07 Aisin Takaoka Co., Ltd. Thermoelectric element, thermoelectric module and manufacturing method thereof
US10290792B2 (en) 2013-10-30 2019-05-14 Aisin Takaoka Co., Ltd. Thermoelectric element and thermoelectric module comprising threaded screws, and manufacturing method thereof
JP2017152694A (en) * 2016-02-24 2017-08-31 三菱マテリアル株式会社 Thermoelectric conversion cell and thermoelectric conversion module
WO2017146014A1 (en) * 2016-02-24 2017-08-31 三菱マテリアル株式会社 Thermoelectric conversion cell and thermoelectric conversion module
US10510939B2 (en) 2016-02-24 2019-12-17 Mitsubishi Materials Corporation Thermoelectric conversion cell and thermoelectric conversion module
CN113098327A (en) * 2021-04-15 2021-07-09 上海空间电源研究所 Thermoelectric device with low-stress mounting structure and mounting and fixing method thereof
CN113098327B (en) * 2021-04-15 2022-06-28 上海空间电源研究所 Thermoelectric device with low-stress mounting structure and mounting and fixing method thereof

Similar Documents

Publication Publication Date Title
JP2005317648A (en) Thermoelectric conversion module
KR101215695B1 (en) Heat dissipation device and power module
US3208877A (en) Thermoelectric panels
JPH0997930A (en) Thermoelectric cooling module and manufacture thereof
JP2014514904A (en) Thermoelectric cluster, method for operating it, thermoelectric drive based thereon, generator (deformation) and device for connecting active elements in said cluster to heat pump (deformation)
JP2008503895A (en) Thermoelectric module
JP4296881B2 (en) Thermoelectric converter
JPWO2015029511A1 (en) Semiconductor device and manufacturing method thereof
US20120023970A1 (en) Cooling and heating water system using thermoelectric module and method for manufacturing the same
JP2009194299A (en) Thermoelectric generator
JP2008028163A (en) Power module device
JP4622585B2 (en) Cascade module for thermoelectric conversion
JP2005317629A (en) Thermoelectric conversion module
JP2006086210A (en) Thermoelectric conversion system
JP2010080795A (en) Heat generating component mounted circuit board
JP2009021445A (en) Inverter apparatus
CN111670505A (en) Thermoelectric module for generating electricity and corresponding production method
JP3506199B2 (en) Thermoelectric converter
JP2003179274A (en) Thermoelectric converting device
JP2000091648A (en) Peltier module
RU2704568C1 (en) Installation method of thermoelectric modules
JP2005322848A (en) Thermoelectric transducing module
JP2003222426A (en) Heat exchanger
JPH08293628A (en) Thermoelectricity conversion device
JP2014107290A (en) Power module with cooler and method of manufacturing the same