JP2005317550A - Manufacturing method of negative electrode material of natural graphite lithium ion battery - Google Patents

Manufacturing method of negative electrode material of natural graphite lithium ion battery Download PDF

Info

Publication number
JP2005317550A
JP2005317550A JP2005133333A JP2005133333A JP2005317550A JP 2005317550 A JP2005317550 A JP 2005317550A JP 2005133333 A JP2005133333 A JP 2005133333A JP 2005133333 A JP2005133333 A JP 2005133333A JP 2005317550 A JP2005317550 A JP 2005317550A
Authority
JP
Japan
Prior art keywords
natural graphite
cladding
graphite
ion battery
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005133333A
Other languages
Japanese (ja)
Inventor
Haiping Hu
胡▲海▼平
Jianqiao Wang
王▲剣▼▲橋▼
▲馬▼▲軍▼旗
Junqi Ma
Ho Ri
李▲鵬▼
▲張▼殿浩
Dianhao Zhang
Zhenming He
付振明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEIHA SANSAN SHINZAIRYO KAGI Y
NEIHA SANSAN SHINZAIRYO KAGI YUGENKOSHI
Original Assignee
NEIHA SANSAN SHINZAIRYO KAGI Y
NEIHA SANSAN SHINZAIRYO KAGI YUGENKOSHI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEIHA SANSAN SHINZAIRYO KAGI Y, NEIHA SANSAN SHINZAIRYO KAGI YUGENKOSHI filed Critical NEIHA SANSAN SHINZAIRYO KAGI Y
Publication of JP2005317550A publication Critical patent/JP2005317550A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide the manufacturing method of a negative electrode material of a lithium ion battery easy to practice, having high cladding effect, low irreversible capacity, and stable circulation performance. <P>SOLUTION: The manufacturing method of the negative electrode material of the lithium ion battery is that (1) natural graphite, a cladding material, and a solvent are mixed, the solvent is removed by evacuation, and the natural graphite is clad with raw material of the cladding material. (2) By applying thermal polymerization reaction to the clad natural graphite, a fine capsule-like cladding layer is formed on the surface of the natural graphite. (3) By carbonizing or graphitizing the product obtained by (2), a carbon negative electrode material whose surface is covered with a carbonized layer or a natural graphite layer, or the negative electrode material of the lithium ion battery can be obtained. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は電池陰極材料の製造方法としての一種のリチウム・イオン電池陰極材料の製造方法に関するものである。   The present invention relates to a method for producing a kind of lithium ion battery cathode material as a method for producing battery cathode material.

リチウム・イオン電池陰極材料は、炭素材料を主として、主に人造黒鉛と天然黒鉛が二種類ある。人造黒鉛は、中間相炭素微小球、例えば、CMSとMCMB、また、中間相炭素繊維MCFと人造黒鉛粉末がある。前二種類の人造黒鉛は広く使われている、陰極材料として、その粒子の形がよく,非可逆容量損失が低く、循環寿命が安定であるとの利点がある。   Lithium-ion battery cathode materials are mainly carbon materials, mainly two types of artificial graphite and natural graphite. Artificial graphite includes mesophase carbon microspheres such as CMS and MCMB, and mesophase carbon fiber MCF and man-made graphite powder. The former two types of artificial graphite are widely used as cathode materials and have the advantage of good particle shape, low irreversible capacity loss, and stable circulation life.

しかし、生産コストが高く、放電容量が低い欠点もあり、その中間相炭素微小球の放電容量が、一般に、約320mAh/gである。不規則型の人造黒鉛粉末は、嵩密度が低く、比表面積が高い欠点があるので、陰極材料として直接的に適用できないのに対して、天然黒鉛原材料はコストが低く、その高い黒鉛化度によってリチウムを嵌め込む能力が比較的、高い。しかし、片状天然黒鉛にも嵩密度が低く、比表面積が高いとの欠点があるので、陰極材料として直接的に適用できない。性能改善されていない天然黒鉛陰極材料は普通初回の非可逆容量損失が10%と高く、かつ循環中、溶剤をも嵌め込む事が発生することで、容量減衰がはやくなるなどの問題を起こしてしまう。   However, there are also drawbacks in that the production cost is high and the discharge capacity is low, and the discharge capacity of the mesophase carbon microspheres is generally about 320 mAh / g. Irregular artificial graphite powder has the disadvantages of low bulk density and high specific surface area, so it cannot be directly applied as a cathode material, whereas natural graphite raw material is low in cost and has a high degree of graphitization. The ability to fit lithium is relatively high. However, flake natural graphite also has the disadvantages of low bulk density and high specific surface area, so it cannot be directly applied as a cathode material. Natural graphite cathode materials that have not been improved in performance usually have high irreversible capacity loss of 10% for the first time, and also cause problems such as rapid capacity decay due to the fact that the solvent is also inserted during circulation. End up.

長期にわたって、人造黒鉛の電気容量を向上させること、天然黒鉛の初回非可逆容量損失を低減すること、循環性能を高めることは以前から研究開発の重点となっていた。特に天然黒鉛の性能改善について多くの方法が提案された。   Over the long term, improving the electric capacity of artificial graphite, reducing the first irreversible capacity loss of natural graphite, and improving the circulation performance have been the focus of research and development. In particular, many methods have been proposed for improving the performance of natural graphite.

日本特許JP10294111の製造方法において、ピッチを用い、黒鉛炭素材料を低温でクラッディングした後、不融解処理と軽粉砕をしなければならない。この方法では、均一的にクラッディングすることが非常に難しい。   In the manufacturing method of Japanese Patent JP10294111, pitch is used, and after the graphite carbon material is clad at a low temperature, infusible treatment and light pulverization must be performed. In this method, uniform cladding is very difficult.

日本特許JP11246209の製造方法においては、黒鉛と硬い炭素粒子を10〜300℃の温度下で、ピッチ或はタールの中に浸漬して、溶剤の分離と熱処理をする。この方法では、黒鉛と硬い炭素表面にはある程度の厚みを有する高重合ピッチ層が形成しにくいので、天然黒鉛の構造安定性を高めることが制限される。   In the production method of Japanese Patent JP11246209, graphite and hard carbon particles are immersed in pitch or tar at a temperature of 10 to 300 ° C. to separate the solvent and perform heat treatment. In this method, it is difficult to form a highly polymerized pitch layer having a certain thickness on the surface of graphite and hard carbon, so that it is limited to increase the structural stability of natural graphite.

日本特許JP20000003708の方法においては、機械方法で黒鉛材料を丸くして、重油とタール或はピッチの中に浸漬して、また分離と洗浄する。単にクラッディング方法から見れば、JP11246209と似ている。   In the method of Japanese Patent JP20000003708, a graphite material is rounded by a mechanical method, immersed in heavy oil and tar or pitch, and separated and washed. From the perspective of the cladding method, it is similar to JP11246209.

日本特許JP2000182617の方法においては、天然黒鉛などとピッチと、或は樹脂かその混合物とを共に炭化させる。この方法では、黒鉛材料の、比表面積を低下できるが、よいクラッディング効果に達することが難しい。   In the method of Japanese Patent JP20000182617, natural graphite or the like and pitch, or resin or a mixture thereof are carbonized together. This method can reduce the specific surface area of the graphite material, but it is difficult to achieve a good cladding effect.

日本特許JP2000243398の方法においては、ピッチ熱分解発生した気体を利用して、黒鉛材料に対して表面処理をする。この方法では、性能改善された材料の形を改善する可能性が少ないので,電気性能の向上が制限されている。   In the method of Japanese Patent JP20000243398, a surface treatment is performed on a graphite material using a gas generated by pyrolysis of pitch. This method limits the improvement in electrical performance because there is less chance of improving the shape of the improved material.

日本特許JP2002042816の方法においては、CVD法で芳香族炭化水素を原料としてクラッディングをする、或は、ピッチ・フェノール樹脂を用いてクラッディングをする。この方法は効果としては、JP2000182617とJP2000283398に似ているところがある。   In the method of Japanese Patent JP2002042816, cladding is performed using aromatic hydrocarbon as a raw material by CVD, or cladding is performed using pitch / phenol resin. This method is similar in effect to JP20000182617 and JP20000283398.

本発明は、現有技術の上記問題を解決するために、一種の天然黒鉛リチウム・イオン電池陰極材料の製造方法を提案しようとするものである。   The present invention seeks to propose a method for producing a kind of natural graphite lithium ion battery cathode material in order to solve the above-mentioned problems of the existing technology.

本発明方法は、次の順序で行う。   The method of the present invention is performed in the following order.

(1)天然黒鉛とクラッディング材料と溶剤とを150〜350℃の温度で混合し、溶剤を除去して、黒鉛にクラッディング材料の原料をクラッディングするのに有効となるように真空引き処理する。温度が150℃より低い場合クラッディング材料がよい流動状態にならないのでクラッディング層は形成しにくくなる。温度が350℃より高い場合、クラッディング層生成中重合反応が発生して、材料の湿潤効果に悪影響をおよぼしてクラッディング層の品質に影響をもたらすことがある。   (1) Natural graphite, cladding material and solvent are mixed at a temperature of 150 to 350 ° C., the solvent is removed, and vacuuming is performed so as to be effective for cladding the material of the cladding material on graphite. To do. When the temperature is lower than 150 ° C., the cladding material is not in a good fluid state, so that it is difficult to form the cladding layer. When the temperature is higher than 350 ° C., a polymerization reaction may occur during the formation of the cladding layer, which may adversely affect the wetting effect of the material and affect the quality of the cladding layer.

前記黒鉛は優選球状天然黒鉛であり、その粒子の平均直径D50が5〜45μmであり、優選炭素含有量が99%以上であり、その嵩密度が0.90g/cm3以上に達する。 The graphite is a preferential spherical natural graphite, the average diameter D 50 of the particles is 5 to 45 μm, the preferential carbon content is 99% or more, and the bulk density reaches 0.90 g / cm 3 or more.

前記クラッディング材料の原料は、コール・タール、コール・ピッチ、石油ピッチ、或は、中間相炭素微小球製造中の副産物であるピッチ、或はその混合物を含み、黒鉛とクラッディング材との比例値が1/0.03以上である場合、クラッディング材料は黒鉛の表面を覆う完全なクラッディング層を生成することができない。黒鉛とクラッディング材との比例値が1/0.10以下である場合、過量のクラッディング材は顆粒の粘着が発生することがある。   The raw material of the cladding material includes coal tar, coal pitch, petroleum pitch, pitch which is a by-product during the production of mesophase carbon microspheres, or a mixture thereof, and the proportion of graphite and cladding material If the value is greater than 1 / 0.03, the cladding material cannot produce a complete cladding layer covering the surface of the graphite. When the proportional value of graphite and the cladding material is 1 / 0.10 or less, an excessive amount of the cladding material may cause adhesion of granules.

前記溶剤はアントラセン、洗い油、キシレン、メチル・ベンゼン或いはディーゼル・オイルなどの中の一種或いはその混合物を含み、黒鉛との重量比が1/0.1〜0.5である。黒鉛と溶剤との比例が1/0.1以上である場合、溶剤量が少ないのでクラッディング材料を顆粒の表面に均一におおうことができない。黒鉛と溶剤との比例が1/0.5以下である場合、過量の溶剤はクラッディング効果を改善する効き目が著しく少なく、溶剤が無駄に消耗される。   The solvent includes one or a mixture of anthracene, washing oil, xylene, methyl benzene, diesel oil, and the like, and the weight ratio to graphite is 1 / 0.1 to 0.5. When the ratio of graphite to solvent is 1 / 0.1 or more, the amount of solvent is small, so that the cladding material cannot be uniformly coated on the surface of the granules. When the ratio of graphite to the solvent is 1 / 0.5 or less, an excessive amount of solvent has a remarkably little effect on improving the cladding effect, and the solvent is wasted.

術語の「嵩密度」は、「粉末材料を振動コンテナーに入れて、規定条件で振動充填した後、測定した粉末密度である」。該術語は、Q/TEZI01−2001 5.5嵩密度の測定規格(この規格は国際規格ISO3953−1977「金属粉末―嵩密度の測定」を参照して制定したものである)に明確に定義されている。   The term “bulk density” is “the powder density measured after placing a powder material in a vibrating container and vibrating and filling under specified conditions”. The terminology is clearly defined in the Q / TEZI01-2001 5.5 Bulk Density Measurement Standard (this standard was established with reference to International Standard ISO3953-1977 "Metal Powder-Measurement of Bulk Density"). ing.

(2)次に、上記物を350〜500℃の温度で熱重合反応させる。重合反応圧力は0.01〜10Pa、反応時間は420〜5minである。これにより、天然黒鉛表面に微カプセルクラッディング層が生成する。温度は350℃以下であれば、重合反応が遅く、500℃以上であれば、重合反応が速い。両方ともプロセスコントロールに不利なので350〜500℃の範囲が好ましい。反応温度がより高い場合、重合反応は速くなるので、反応時間が短くなる。反応温度がより低い場合、重合反応は遅くなるので、反応時間が長くなる。350〜500℃の反応温度にすれば、反応時間は420〜5minの範囲になり好ましい。   (2) Next, the above product is subjected to a thermal polymerization reaction at a temperature of 350 to 500 ° C. The polymerization reaction pressure is 0.01 to 10 Pa, and the reaction time is 420 to 5 minutes. Thereby, a fine capsule cladding layer is formed on the surface of natural graphite. If the temperature is 350 ° C. or lower, the polymerization reaction is slow, and if it is 500 ° C. or higher, the polymerization reaction is fast. Since both are disadvantageous for process control, the range of 350 to 500 ° C. is preferred. When the reaction temperature is higher, the polymerization reaction becomes faster and the reaction time becomes shorter. When the reaction temperature is lower, the polymerization reaction becomes slower and the reaction time becomes longer. If the reaction temperature is 350 to 500 ° C., the reaction time is preferably in the range of 420 to 5 minutes.

(3)順序(2)によって得られた生成物を800〜2200℃の温度で炭化させ、表面が炭素層でクラッディングされた炭素陰極材料を得る。また、上記生成物を2400〜3000℃、最適2800〜3000℃の温度で黒鉛化させて、表面が天然黒鉛層でクラッディングされた炭素陰極材料を得る。これら材料はリチウム・イオン電池陰極材料となる。   (3) The product obtained by the order (2) is carbonized at a temperature of 800 to 2200 ° C. to obtain a carbon cathode material whose surface is clad with a carbon layer. The product is graphitized at a temperature of 2400 to 3000 ° C. and optimally 2800 to 3000 ° C. to obtain a carbon cathode material whose surface is clad with a natural graphite layer. These materials become lithium ion battery cathode materials.

Q/TEZI01−2001 5.7の電気化学容量の測定規格に準じて、得られた電池陰極材料を測定した、結果は下記の通りである。   The obtained battery cathode material was measured according to the electrochemical capacity measurement standard of Q / TEZI01-2001 5.7, and the results are as follows.

嵩密度が1.08以上、比表面積が2.20以下、初回放電容量が350mAh/g以上(非可逆容量が25mAh/gより低い)、初回充電効率が93.0%以上であり、450回循環しても容量を初回容量の90%以上に保つことができる。   Bulk density is 1.08 or more, specific surface area is 2.20 or less, initial discharge capacity is 350 mAh / g or more (irreversible capacity is lower than 25 mAh / g), initial charge efficiency is 93.0% or more, 450 times Even if it is circulated, the capacity can be maintained at 90% or more of the initial capacity.

上述した技術説明から明らかなように、本発明の方法は、実施しやすく、クラッディングを効率的に行うことができ、比容量が高く、非可逆容量が低く、循環性能が安定である優れた特徴がある。   As is clear from the above technical explanation, the method of the present invention is easy to implement, can perform cladding efficiently, has high specific capacity, low irreversible capacity, and excellent circulation performance. There are features.

本発明によれば、クラッディングを効率的に行うことができる上に非可逆容量が低く、循環性能が安定しているリチウム・イオン電池陰極材料を簡単なプロセスで得ることができる。   According to the present invention, it is possible to obtain a lithium ion battery cathode material that can efficiently perform cladding, has low irreversible capacity, and has stable circulation performance by a simple process.

球状天然黒鉛と、クラッディング材の原料であるコール・ピッチと、溶剤である洗い油とを1/0.08/0.4の比例値で200℃の温度条件で混合し、350℃に昇温して真空引きし、溶剤を除去して、黒鉛顆粒にクラッディング材の原料を均一にクラッディングする。その後450℃に昇温し、クラッディング原料を0.1PMaの反応圧力で60分間、熱重合反応させ、黒鉛表面に微カプセル化クラッディング層を生成する。上記の得られた生成物を1000℃の温度で炭化させて天然黒鉛層の表面を炭化層で覆った炭素陰極材料、すなわち本発明のリチウム・イオン電池陰極材料が得られる。   Spherical natural graphite, coal pitch, which is a raw material for the cladding material, and washing oil, which is a solvent, are mixed at a proportional value of 1 / 0.08 / 0.4 at a temperature of 200 ° C., and the temperature is raised to 350 ° C. Heat and vacuum to remove the solvent, and uniformly clad the material of the cladding material into the graphite granules. Thereafter, the temperature is raised to 450 ° C., and the cladding material is subjected to a thermal polymerization reaction at a reaction pressure of 0.1 PMa for 60 minutes to form a microencapsulated cladding layer on the graphite surface. A carbon cathode material obtained by carbonizing the obtained product at a temperature of 1000 ° C. and covering the surface of the natural graphite layer with the carbonized layer, that is, the lithium ion battery cathode material of the present invention is obtained.

球状天然黒鉛と、クラッディング原料であるコール・ピッチと、溶剤であるキシレンとを1/0.05/0.5の比例値で100℃の温度条件で混合し、350℃に昇温して、真空引きし、溶剤を除去して、黒鉛顆粒にクラッディング材の原料を均一にクラッディングする。その後420℃に昇温し、クラッディング原料を0.1PMaの反応圧力で120分間、熱重合反応させて、黒鉛表面に微カプセル化クラッディング層を生成する。上記の得られた生成物を2600℃の温度で黒鉛化させて、表面を天然黒鉛層により覆った炭素陰極材料、すなわち本発明のリチウム・イオン電池陰極材料が得られる。   Spherical natural graphite, coal pitch, which is a cladding raw material, and xylene, which is a solvent, are mixed at a proportional value of 1 / 0.05 / 0.5 at a temperature condition of 100 ° C. and heated to 350 ° C. Then, vacuuming is performed to remove the solvent, and the cladding material is uniformly clad into the graphite granules. Thereafter, the temperature is raised to 420 ° C., and the cladding material is subjected to a thermal polymerization reaction at a reaction pressure of 0.1 PMa for 120 minutes to form a microencapsulated cladding layer on the graphite surface. The obtained product is graphitized at a temperature of 2600 ° C. to obtain a carbon cathode material whose surface is covered with a natural graphite layer, that is, a lithium ion battery cathode material of the present invention.

その他の実施例3〜13は下記の方法に従って行う。   Other Examples 3 to 13 are performed according to the following method.

天然黒鉛とクラッディング材料と溶剤を1:0.03〜0.10:0.1〜0.5の割合で150〜350℃の温度で混合し、350℃に昇温して、真空引きし、溶剤を除去して、黒鉛顆粒にクラッディング材の原料を均一にクラッディングする。その後350〜500℃に昇温しクラッディング原料を0.01〜10PMaの反応圧力で5〜420分間、熱重合反応させ、黒鉛表面に微カプセル化クラッディング層を生成する。上記の得られた生成物を800〜2200℃の温度で炭化させ、又は、2400〜3000℃の温度で黒鉛化させて、表面を炭化層又は天然黒鉛層で覆った炭素陰極材料、すなわち本発明のリチウム・イオン電池陰極材料が得られる。   Natural graphite, cladding material and solvent are mixed at a ratio of 1: 0.03-0.10: 0.1-0.5 at a temperature of 150-350 ° C., heated to 350 ° C., and evacuated. The solvent is removed and the cladding material is uniformly clad into the graphite granules. Thereafter, the temperature is raised to 350 to 500 ° C., and the cladding material is subjected to a thermal polymerization reaction at a reaction pressure of 0.01 to 10 PMa for 5 to 420 minutes to form a microencapsulated cladding layer on the graphite surface. The above-obtained product is carbonized at a temperature of 800 to 2200 ° C. or graphitized at a temperature of 2400 to 3000 ° C., and the surface is covered with a carbonized layer or a natural graphite layer, that is, the present invention. Lithium ion battery cathode material is obtained.

実施例1〜13
プロセス条件は下表の通り:

Figure 2005317550
Examples 1-13
The process conditions are as follows:
Figure 2005317550

Q/TEZI01−2001 5.7電気化学容量の測定規定に凖じて、実施例1〜13の生成物と二つ対比例を測定した、結果は下記の通りである。

Figure 2005317550
実施例と対比例の実験結果から見ると、天然黒鉛を用いる本発明方法によると、嵩密度が元の0.95g/cm3左右から、1.08g/cm3以上に上がり、比表面積は元の6.3から2.20以下に下がり、人造黒鉛の容量が350mAh/g以上に保たれ、かつ、非可逆容量が25mAh/g以下に下がり。循環性能もいちじるしく改善されて、安定的に循環することができない状況から450回循環しても容量を初回容量の90%以上に保つことができる。
Q / TEZI01-2001 5.7 According to the measurement rule of electrochemical capacity, the product of Examples 1 to 13 and the two-proportion were measured. The results are as follows.
Figure 2005317550
From the experimental results in comparison with the examples, according to the method of the present invention using natural graphite, the bulk density increased from the original 0.95 g / cm 3 left and right to 1.08 g / cm 3 or more, and the specific surface area was the original. From 6.3 to 2.20 or less, the capacity of artificial graphite is maintained at 350 mAh / g or more, and the irreversible capacity is reduced to 25 mAh / g or less. The circulation performance is remarkably improved, and the capacity can be maintained at 90% or more of the initial capacity even if the circulation is performed 450 times from the situation where the circulation is impossible.

Claims (7)

一種のリチウム・イオン電池陰極材料の製造方法であり、次の順序で製造を行う。
(1)天然黒鉛とクラッディング材料と溶剤とを150〜350℃の温度下で混合して、真空引きし、溶剤を除去して、天然黒鉛にクラッディング材料の原料をクラッディングすること、
前記クラッディング材料の原料が、コール・タール、コール・ピッチ、石油ピッチ、或は、中間相炭素微小球製造中の副産物であるピッチ、或は、その混合物を含むこと、
(2)次に、上記物を350〜500℃の温度及び0.01〜10Paの重合反応圧力で5〜420分間熱重合反応させること、
(3)順序(2)によって得られた生成物を800〜2200℃の温度で炭化させて表面が炭素層でクラッディングされた炭素陰極材料を得、或は、2400〜3000℃の温度で黒鉛化させて表面が天然黒鉛層でクラッディングされた炭素陰極材料を得、該材料をリチウム・イオン電池陰極材料とする、
ことを特徴とする天然黒鉛のリチウム・イオン電池陰極材料の製造方法。
This is a method of manufacturing a kind of lithium ion battery cathode material, which is manufactured in the following order.
(1) mixing natural graphite, a cladding material, and a solvent at a temperature of 150 to 350 ° C., evacuating, removing the solvent, and cladding the raw material of the cladding material on natural graphite;
The raw material of the cladding material comprises coal tar, coal pitch, petroleum pitch, pitch, which is a by-product during the production of mesophase carbon microspheres, or a mixture thereof;
(2) Next, the above product is subjected to a thermal polymerization reaction at a temperature of 350 to 500 ° C. and a polymerization reaction pressure of 0.01 to 10 Pa for 5 to 420 minutes,
(3) The product obtained in the order (2) is carbonized at a temperature of 800 to 2200 ° C. to obtain a carbon cathode material whose surface is clad with a carbon layer, or graphite at a temperature of 2400 to 3000 ° C. To obtain a carbon cathode material whose surface is clad with a natural graphite layer, which is used as a lithium ion battery cathode material,
A method for producing a natural graphite lithium-ion battery cathode material, characterized in that:
前記天然黒鉛に含まれている炭素量が99%以上であることを特徴とする請求項1に記載の製造方法。 The production method according to claim 1, wherein the amount of carbon contained in the natural graphite is 99% or more. 前記天然黒鉛の粒子平均直径が5〜45μmであることを特徴とする請求項1或は請求項2に記載の製造方法。 The method according to claim 1 or 2, wherein the natural graphite has an average particle diameter of 5 to 45 µm. 前記天然黒鉛は優選嵩密度が0.90g/cm3以上である球状天然黒鉛であることを特徴とする請求項1、請求項2或は請求項3に記載の製造方法。 The method according to claim 1, 2 or 3, wherein the natural graphite is spherical natural graphite having a preferential bulk density of 0.90 g / cm 3 or more. 前記天然黒鉛とクラッディング材料の重量比が1:0.03〜0.10であることを特徴とする請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein a weight ratio of the natural graphite to the cladding material is 1: 0.03 to 0.10. 前記溶剤がアントラセン、洗い油、キシレン、メチル・ベンゼン或はディ―ゼル・オイルなどの中の一種、或は、その混合物を含んでいることを特徴とする請求項1に記載の製造方法。 2. The method according to claim 1, wherein the solvent contains one or a mixture of anthracene, washing oil, xylene, methyl benzene, diesel oil and the like. 前記黒鉛と溶剤の重量比が1:0.1〜0.5であることを特徴とする請求項1に記載の製造方法。
The weight ratio of the said graphite and a solvent is 1: 0.1-0.5, The manufacturing method of Claim 1 characterized by the above-mentioned.
JP2005133333A 2004-04-29 2005-04-28 Manufacturing method of negative electrode material of natural graphite lithium ion battery Pending JP2005317550A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2004100180782A CN100341173C (en) 2004-04-29 2004-04-29 Method for preparing natural graphite cathode material of lithium ion battery

Publications (1)

Publication Number Publication Date
JP2005317550A true JP2005317550A (en) 2005-11-10

Family

ID=35346628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005133333A Pending JP2005317550A (en) 2004-04-29 2005-04-28 Manufacturing method of negative electrode material of natural graphite lithium ion battery

Country Status (2)

Country Link
JP (1) JP2005317550A (en)
CN (1) CN100341173C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111628146A (en) * 2020-04-23 2020-09-04 湖南中科星城石墨有限公司 Process for preparing lithium ion battery negative electrode material by filling microcrystalline graphite with asphalt

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101186292B (en) * 2006-11-22 2014-05-28 辽宁工程技术大学 Method for preparing carbon cathode material and lithium iron battery using the material
CN101108918B (en) * 2007-08-16 2010-06-30 湛江市新蓄能源科技有限公司 High softening point bitumen used as lithium ion battery negative pole coating layer material and manufacture thereof
CN102117911B (en) * 2009-12-30 2014-06-04 上海杉杉科技有限公司 Graphite cathode material for lithium ion battery and preparation method thereof
CN101969122A (en) * 2010-09-14 2011-02-09 东莞市迈科新能源有限公司 Core-shell structured carbon for cathode material of lithium ion battery and preparation method thereof
CN102637859B (en) * 2012-04-06 2014-08-27 宁德新能源科技有限公司 Lithium ion battery, graphite cathode material of lithium ion battery, and preparation method of graphite anode material
CN103094536A (en) * 2013-02-05 2013-05-08 新乡远东电子科技有限公司 High-capacity lithium ion secondary battery cathode carbon material
CN107316982B (en) * 2016-04-27 2022-02-01 上海杉杉科技有限公司 Silicon-carbon negative electrode material of lithium ion secondary battery and preparation method thereof
CN106848239A (en) * 2017-02-24 2017-06-13 鞍山兴德材料科技股份有限公司 A kind of high-grade self assembly carbon/carbon compound materials of SCC and preparation method thereof
CN110890529A (en) * 2019-10-28 2020-03-17 鞍钢股份有限公司 Method for coating graphite negative electrode material
CN110828798B (en) * 2019-10-31 2022-06-07 方大炭素新材料科技股份有限公司 Method for preparing lithium ion battery graphite negative electrode material by wet pressurizing coating
CN110880600B (en) * 2019-11-21 2021-09-07 广东东岛新能源股份有限公司 Negative electrode material with high temperature resistance, preparation method thereof and application thereof in lithium ion battery
CN114873591B (en) * 2022-04-29 2023-12-19 广东东岛新能源股份有限公司 Low-temperature long-life natural graphite anode material and preparation method and application thereof
CN114751407B (en) * 2022-04-29 2024-01-26 广东东岛新能源股份有限公司 Modified natural graphite negative electrode material and preparation method and application thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0684516A (en) * 1992-09-03 1994-03-25 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary cell
JPH1154123A (en) * 1997-05-30 1999-02-26 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JPH11273728A (en) * 1998-01-22 1999-10-08 Sony Corp Nonaqueous electrolyte battery
JP2002121570A (en) * 2000-10-18 2002-04-26 Sumitomo Metal Ind Ltd Process for manufacturing bulk mesophase carbon and graphite powder
JP2002313320A (en) * 2001-04-09 2002-10-25 Asahi Kasei Corp Nonaqueous secondary battery
JP2003187798A (en) * 2001-12-21 2003-07-04 Hitachi Ltd Lithium secondary battery
JP2003243033A (en) * 2001-12-10 2003-08-29 Sony Corp Secondary battery and electrolyte used in it
JP2004063456A (en) * 2002-06-05 2004-02-26 Mitsubishi Chemicals Corp Manufacturing method of carbon material for electrode
JP2004196609A (en) * 2002-12-19 2004-07-15 Jfe Chemical Corp Production method for composite graphite particle, composite graphite particle, cathode material for lithium ion secondary battery, and lithium ion secondary battery
JP2005285633A (en) * 2004-03-30 2005-10-13 Osaka Gas Co Ltd Non-aqueous system secondary battery and its charging method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0861804A4 (en) * 1995-11-14 2000-07-19 Osaka Gas Co Ltd Cathode material for lithium secondary battery, process for manufacturing the same, and secondary battery using the same
JP4081621B2 (en) * 1998-03-05 2008-04-30 大阪瓦斯株式会社 Negative electrode carbon material for lithium secondary battery and lithium secondary battery
US6482547B1 (en) * 1998-05-21 2002-11-19 Samsung Display Devices Co., Ltd. Negative active material for lithium secondary battery and lithium secondary battery using the same
JP4336087B2 (en) * 2002-09-19 2009-09-30 シャープ株式会社 Lithium polymer battery and manufacturing method thereof

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0684516A (en) * 1992-09-03 1994-03-25 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary cell
JPH1154123A (en) * 1997-05-30 1999-02-26 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JPH11273728A (en) * 1998-01-22 1999-10-08 Sony Corp Nonaqueous electrolyte battery
JP2002121570A (en) * 2000-10-18 2002-04-26 Sumitomo Metal Ind Ltd Process for manufacturing bulk mesophase carbon and graphite powder
JP2002313320A (en) * 2001-04-09 2002-10-25 Asahi Kasei Corp Nonaqueous secondary battery
JP2003243033A (en) * 2001-12-10 2003-08-29 Sony Corp Secondary battery and electrolyte used in it
JP2003187798A (en) * 2001-12-21 2003-07-04 Hitachi Ltd Lithium secondary battery
JP2004063456A (en) * 2002-06-05 2004-02-26 Mitsubishi Chemicals Corp Manufacturing method of carbon material for electrode
JP2004196609A (en) * 2002-12-19 2004-07-15 Jfe Chemical Corp Production method for composite graphite particle, composite graphite particle, cathode material for lithium ion secondary battery, and lithium ion secondary battery
JP2005285633A (en) * 2004-03-30 2005-10-13 Osaka Gas Co Ltd Non-aqueous system secondary battery and its charging method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111628146A (en) * 2020-04-23 2020-09-04 湖南中科星城石墨有限公司 Process for preparing lithium ion battery negative electrode material by filling microcrystalline graphite with asphalt
CN111628146B (en) * 2020-04-23 2023-09-12 湖南中科星城石墨有限公司 Process for preparing lithium ion battery anode material by filling microcrystalline graphite with asphalt

Also Published As

Publication number Publication date
CN100341173C (en) 2007-10-03
CN1691373A (en) 2005-11-02

Similar Documents

Publication Publication Date Title
JP2005317550A (en) Manufacturing method of negative electrode material of natural graphite lithium ion battery
JP2005317549A (en) Manufacturing method of negative electrode material of artificial graphite lithium ion battery
US11394028B2 (en) Graphene-carbon hybrid foam-protected anode active material coating for lithium-ion batteries
JP5064803B2 (en) Carbon-coated silicon particle powder as positive electrode material for lithium ion battery and method for producing the same
JP5365674B2 (en) Carbon material manufacturing method
CN103633293B (en) Lithium ion battery negative electrode piece using hard carbon and soft carbon as active materials and lithium ion battery
JP5509458B2 (en) Negative electrode material and manufacturing method thereof
CN104638240B (en) Method for preparing lithium ion battery silicon carbon composite anode material and product prepared by method
CN111682173B (en) Composite material of multi-heteroatom co-doped carbon shell coated silicon and preparation method thereof
US20040247872A1 (en) Carbon material, production method and use thereof
JP2010525549A (en) Method of depositing silicon on carbon material to form anode for lithium ion battery
KR20110004391A (en) Anode powders for batteries
WO2005055346A1 (en) A process of production of carbon negative electrode material for lithium ion battery
JP2004519408A (en) Spherical carbon and method for producing the same (SPHERICALCARBONSANDMETHODFORPARPARINGTHESAME)
JP2013529169A (en) Organic coated fine particle powder
CN106395810A (en) Preparation method of graphite negative electrode material used for low graphitization degree HEV
CN114572978B (en) Preparation method of high-magnification graphite anode material, anode material and lithium battery
CN103996855B (en) The production method of intermediate-phase carbon coated graphite negative material
CN115706230B (en) Composite graphite negative electrode material, negative electrode plate and lithium ion battery
CN117096324A (en) Composite anode material and preparation method and application thereof
TWI805421B (en) Particles of silicon-carbon composite material and method of manufacturing the same
WO2020154258A1 (en) Graphene-carbon hybrid foam-protected anode active material coating for lithium-ion batteries
CN107749462A (en) A kind of high-performance lithium ion power battery cathode material
CN113451575A (en) Lithium ion battery cathode material, preparation method thereof, cathode and lithium ion battery
CN109786722B (en) Method for producing electrochemically active material

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090618

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100720