CN114751407B - Modified natural graphite negative electrode material and preparation method and application thereof - Google Patents

Modified natural graphite negative electrode material and preparation method and application thereof Download PDF

Info

Publication number
CN114751407B
CN114751407B CN202210475079.8A CN202210475079A CN114751407B CN 114751407 B CN114751407 B CN 114751407B CN 202210475079 A CN202210475079 A CN 202210475079A CN 114751407 B CN114751407 B CN 114751407B
Authority
CN
China
Prior art keywords
natural graphite
asphalt
modified natural
anode material
reaction kettle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210475079.8A
Other languages
Chinese (zh)
Other versions
CN114751407A (en
Inventor
刘明东
叶雨佐
吴其修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZHANJIANG JUXIN NEW ENERGY CO Ltd
GUANGDONG DONGDAO NEW ENERGY CO Ltd
Original Assignee
ZHANJIANG JUXIN NEW ENERGY CO Ltd
GUANGDONG DONGDAO NEW ENERGY CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZHANJIANG JUXIN NEW ENERGY CO Ltd, GUANGDONG DONGDAO NEW ENERGY CO Ltd filed Critical ZHANJIANG JUXIN NEW ENERGY CO Ltd
Priority to CN202210475079.8A priority Critical patent/CN114751407B/en
Publication of CN114751407A publication Critical patent/CN114751407A/en
Application granted granted Critical
Publication of CN114751407B publication Critical patent/CN114751407B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

The invention provides a modified natural graphite anode material, a preparation method and application thereof. Firstly, exhausting air in the natural graphite under vacuum, then coating the asphalt solution with low viscosity on the surface of the natural graphite at high temperature and high pressure, immersing the asphalt solution in the asphalt solution to the surfaces of all the spiral flake graphite layers in the natural graphite, converting the asphalt with low softening point into mesophase asphalt through high-temperature heating polymerization reaction, and finally compacting the mesophase asphalt and all the spiral flake graphite layers in the natural graphite by adopting an isostatic pressing technology, so that gaps are not formed in the natural graphite; the mesophase pitch belongs to graphitizable carbon, and can ensure that artificial graphite is coated on each spiral flake graphite layer in the natural graphite in the graphitization process, and finally, the artificial graphite is mixed with pitch to realize the coating of amorphous carbon. The method can realize synchronous modification integration of each spiral flake graphite layer inside the natural graphite and the outer surface of the natural graphite.

Description

Modified natural graphite negative electrode material and preparation method and application thereof
Technical Field
The invention relates to the technical field of carbon negative electrode materials of lithium ion batteries, in particular to a modified natural graphite negative electrode material, a preparation method and application thereof.
Background
The lithium ion battery has a series of advantages of high specific capacity, high working voltage, good safety, no memory effect and the like, and is widely applied to the fields of 3C products, power devices, energy storage equipment and the like. In recent years, as demands for miniaturization, light weight, multifunction, and long-time driving of electronic products and in-vehicle and energy storage devices are increasing, demands for high energy density, high rate performance, and long cycle life of lithium ion batteries are increasing.
The cathode material is used as one of the core components of the battery, and plays a key role in the comprehensive performance of the battery. At present, the negative electrode material of the commercial lithium ion battery is still a dominant graphite material, and the artificial graphite has good cycle performance, but has low self capacity and high price, thereby increasing the manufacturing cost of the power battery. Natural graphite is widely used because of its high charge and discharge capacity, good charge and discharge platform, wide source and low cost. However, natural graphite has unstable structure, and particularly, the graphite black layer sheet is easy to fall off in the charging and discharging process of the electrolyte containing PC, so that the problems of capacity attenuation, poor safety and the like of the battery are caused, and the defects of low charging and discharging efficiency, poor cycle performance, poor safety and the like of the battery are caused.
Disclosure of Invention
In order to overcome the defects in the prior art, the invention aims to provide a modified natural graphite anode material, and a preparation method and application thereof. The modified natural graphite anode material has high initial coulomb efficiency and long cycle life, is particularly suitable for batteries containing Propylene Carbonate (PC) electrolyte, and can replace artificial graphite to manufacture lithium battery anode materials, thereby greatly reducing cost.
The invention aims at realizing the following technical scheme:
a preparation method of a modified natural graphite anode material, which comprises the following steps:
(1) Respectively weighing natural graphite, asphalt and an organic solvent for standby;
(2) Adding asphalt into an organic solvent, and stirring to fully dissolve the asphalt to obtain an asphalt solution;
(3) Placing natural graphite into a reaction kettle, vacuumizing the reaction kettle, adding the asphalt solution obtained in the step (2), stirring, pressurizing and impregnating, depressurizing to make the internal pressure and the external pressure of the reaction kettle the same after the pressurizing and impregnating are finished, introducing nitrogen, and heating to remove the organic solvent;
(4) After the organic solvent in the reaction kettle in the step (3) is completely discharged, pressurizing, heating, maintaining pressure and preserving heat for a period of time to thermally polymerize the asphalt into mesophase asphalt, and cooling to room temperature and discharging;
(5) Carrying out isostatic compaction on the material obtained in the step (4), and then carrying out graphitization treatment and crushing;
(6) Mixing the crushed material in the step (5) with asphalt, and carbonizing to obtain the modified natural graphite anode material.
According to the invention, in the step (1), the asphalt is any one or a mixture of two of petroleum asphalt, coal tar asphalt and natural asphalt, the softening point of the asphalt is 60-90 ℃, and the quinoline insoluble content is less than or equal to 1%.
According to the invention, in the step (1), the natural graphite is at least one of spherical, approximately spherical, oval and potato, and the surface of the natural graphite is provided with open gaps. D of the natural graphite 50 5-17 mu m, and the carbon content is more than or equal to 80.0 percent.
According to the invention, in the step (1), the organic solvent is a hydrocarbon solvent, such as any one or a mixture of two of wash oil, naphthalene oil and phenol oil.
According to the invention, in step (2), the bitumen is: organic solvent: the mass ratio of the natural graphite is (15-35): (100-300): 100, preferably (20-30): (100-250): 100.
according to the invention, in the step (2), the stirring revolution is 20-80 r/min.
According to the invention, in step (2), the bitumen solution has a kinematic viscosity at 100℃of from 10 to 150 mPa.S, preferably from 50 to 100 mPa.S.
According to the invention, in step (3), the method of adding the asphalt solution of step (2) is, for example: opening an asphalt solution suction valve, sucking the asphalt solution in the step (2) into the reaction kettle, closing the suction valve after liquid feeding is finished, and stopping vacuumizing.
According to the invention, in the step (3), the vacuum degree of the reaction kettle is 0.07-0.09 MPa.
According to the invention, in the step (3), the vacuumizing time of the reaction kettle is 10-120 min, namely, the vacuum degree is kept for 10-120 min.
According to the invention, in the step (3), the pressure of the pressurized impregnation is 10MPa to 30MPa, and the time of the pressurized impregnation is 1 to 5 hours.
According to the invention, in step (3), the heating temperature is 200-300 ℃; the time of the heating is not particularly limited until the organic solvent is completely removed.
According to the invention, in step (4), the temperature is raised to 390-450 ℃, preferably 410-430 ℃; the time for the heat preservation is 1 to 10 hours, preferably 2 to 8 hours.
Alternatively, the temperature of the asphalt thermally polymerizes into mesophase asphalt, which is matched with the time, and a higher thermal polymerization temperature requires a shorter polymerization time, and a lower thermal polymerization temperature requires a longer polymerization time, but the temperature of the thermal polymerization is lower than the temperature at which mesophase asphalt is formed, and the transition of mesophase cannot be realized even if the polymerization time is longer, and the reaction speed is too high to form a desired microstructure.
According to the invention, in step (4), the pressurizing pressure is 1MPa to 3MPa.
According to the invention, in the step (5), the isostatic pressing pressure is 10-40 MPa, and the isostatic pressing time is 10-40 minutes.
According to the present invention, in step (5), the graphitization treatment is a method and conditions conventional in the art, and the temperature of the graphitization treatment is preferably 2800 to 3000 ℃.
According to the invention, in step (5), the crushing is performed in a crusher selected from the group consisting of a low-speed impact spheroidizing crusher, an air-flow vortex pulverizer, an ultra-fine crusher, and an ultra-fine ball mill; d of crushed material 50 7-19 μm.
According to the invention, in the step (6), the mass ratio of the crushed material to the asphalt is 100 (4-12), preferably 100 (5-10).
According to the invention, in step (6), the carbonization temperature is 800-1200 ℃, and the carbonization time is 4-10 hours.
According to the invention, in step (6), the carbonization is performed under a protective atmosphere, which may be nitrogen or argon.
The invention also provides a modified natural graphite anode material prepared by the method.
The invention also provides a modified natural graphite anode material, which has a core-shell structure, wherein the core is natural graphite with artificial graphite coated on the surface of each layer inside, and the shell is amorphous carbon.
According to the invention, the modified natural graphite anode material D 50 8-20 mu m.
According to the invention, the mass fraction of the artificial graphite in the modified natural graphite anode material is 10-15%, more preferably 14% of the total mass of the modified natural graphite anode material; the mass fraction of amorphous carbon in the modified natural graphite anode material is 2-8%, more preferably 5% of the total mass of the modified natural graphite anode material.
The invention also provides application of the modified natural graphite negative electrode material in preparing a negative electrode of a lithium ion battery.
The invention also provides a negative electrode of the lithium ion battery, which comprises the modified natural graphite negative electrode material.
The invention has the beneficial effects that:
the invention provides a modified natural graphite anode material, a preparation method and application thereof.
(1) Firstly, exhausting air in the natural graphite under vacuum, then coating the asphalt solution with low viscosity on the surface of the natural graphite at high temperature and high pressure, immersing the asphalt solution in the asphalt solution to the surfaces of all the spiral flake graphite layers in the natural graphite, converting the asphalt with low softening point into mesophase asphalt through high-temperature heating polymerization reaction, and finally compacting the mesophase asphalt and all the spiral flake graphite layers in the natural graphite by adopting an isostatic pressing technology, so that gaps are not formed in the natural graphite; the mesophase pitch belongs to graphitizable carbon, and can ensure that artificial graphite is coated on each spiral flake graphite layer in the natural graphite in the graphitization process, and finally, the artificial graphite is mixed with pitch to realize the coating of amorphous carbon. The method can realize synchronous modification integration of each spiral flake graphite layer inside the natural graphite and the outer surface of the natural graphite.
(2) Compared with the existing negative electrode material, the modified natural graphite negative electrode material prepared by the method has the discharge capacity of more than or equal to 360mAh/g, the first coulomb efficiency of more than or equal to 93.8%, the PC resistance and the cycle life are obviously improved, and the modified natural graphite negative electrode material can replace artificial graphite to prepare the negative electrode material of the lithium battery, so that the cost is greatly reduced.
Detailed Description
The preparation method of the present invention will be described in further detail with reference to specific examples. It is to be understood that the following examples are illustrative only and are not to be construed as limiting the scope of the invention. All techniques implemented based on the above description of the invention are intended to be included within the scope of the invention.
The experimental methods used in the following examples are all conventional methods unless otherwise specified; the reagents, materials, etc. used in the examples described below are commercially available unless otherwise specified.
Example 1
(1) Adding 20g of asphalt into 150g of wash oil, stirring at high speed (20 r/min) to fully dissolve the asphalt, and obtaining an asphalt solution (the kinematic viscosity at 100 ℃ is 90 mPa.S);
(2) Placing 100g of natural graphite into a reaction kettle, vacuumizing for 60min, opening an asphalt solution suction valve when the vacuum degree of the reaction kettle reaches 0.07MPa, completely sucking the asphalt solution prepared in the step (1) into the reaction kettle, closing the suction valve after liquid feeding is finished, stopping vacuumizing, simultaneously stirring the mixed solution at a high speed (20 r/min) for 40min, pressurizing (12 MPa), immersing, depressurizing to ensure that the internal pressure and the external pressure of the reaction kettle are the same, introducing nitrogen gas, and heating to 230 ℃ to remove wash oil;
(3) After all the wash oil in the reaction kettle in the step (2) is discharged, heating the reaction kettle to 410 ℃ according to the heating rate of 5 ℃/min under the condition of the pressure of 1.5MPa for thermal polymerization reaction for 10 hours, and cooling to room temperature for discharging;
(4) Maintaining the pressure of the material in the step (3) for 30 minutes under isostatic pressure (10 MPa), performing graphitization high-temperature (2800 ℃) treatment for 4 hours, cooling to room temperature, and then crushing;
(5) Uniformly mixing the crushed material in the step (4) with asphalt according to a ratio of 100:5, carbonizing at 1000 ℃ for 5 hours under the protection of nitrogen, and cooling to room temperature to obtain the modified natural graphite anode material.
The mass fraction of the artificial graphite in the modified natural graphite anode material is 10.6%, and the mass fraction of the amorphous carbon in the anode material is 3.2%.
Example 2
(1) 25g of asphalt was added to 200g of naphthalene oil, and stirred at a high speed (30 r/min) to sufficiently dissolve the asphalt, thereby obtaining an asphalt solution (kinematic viscosity at 100 ℃ C. 100 mPa.S);
(2) Placing 100g of natural graphite into a reaction kettle, vacuumizing for 50min, opening an asphalt solution suction valve when the vacuum degree of the reaction kettle reaches 0.07MPa, completely sucking the asphalt solution prepared in the step (1) into the reaction kettle, closing the suction valve after liquid feeding is finished, stopping vacuumizing, simultaneously stirring the mixed solution at a high speed (30 r/min) for 40min, pressurizing (15 MPa), immersing, depressurizing to ensure that the internal pressure and the external pressure of the reaction kettle are the same, and introducing nitrogen gas to heat to 250 ℃ to remove the naphthalene oil;
(3) After all the naphthalene oil in the reaction kettle in the step (2) is discharged, heating the reaction kettle to 420 ℃ according to the heating rate of 5 ℃/min under the condition of the pressure of 2.0MPa, performing thermal polymerization reaction for 8 hours, and cooling to room temperature and discharging;
(4) Maintaining the pressure of the material in the step (3) for 30 minutes under isostatic pressure (15 MPa), performing graphitization high-temperature (2900 ℃) treatment for 4 hours, cooling to room temperature, and then crushing;
(5) Uniformly mixing the crushed material in the step (4) with asphalt according to a ratio of 100:6, carbonizing at 1100 ℃ for 4 hours under the protection of nitrogen, and cooling to room temperature to obtain the modified natural graphite anode material.
The mass fraction of the artificial graphite in the modified natural graphite anode material is 12.1%, and the mass fraction of the amorphous carbon in the anode material is 4.1%.
Example 3
(1) Adding 30g of asphalt into 300g of wash oil, stirring at high speed (40 r/min) to fully dissolve the asphalt, and obtaining an asphalt solution (the kinematic viscosity at 100 ℃ is 80 mPa.S);
(2) Placing 100g of natural graphite into a reaction kettle, vacuumizing for 60min, opening an asphalt solution suction valve when the vacuum degree of the reaction kettle reaches 0.07MPa, completely sucking the asphalt solution prepared in the step (1) into the reaction kettle, closing the suction valve after liquid feeding is finished, stopping vacuumizing, simultaneously stirring the mixed solution at a high speed (50 r/min) for 60min, pressurizing (20 MPa), immersing, depressurizing to ensure that the internal pressure and the external pressure of the reaction kettle are the same, introducing nitrogen, and heating to 260 ℃ to remove wash oil;
(3) After all the wash oil in the reaction kettle in the step (2) is discharged, heating the reaction kettle to 430 ℃ according to the heating rate of 3 ℃/min under the condition of 3.0MPa, performing thermal polymerization reaction for 7 hours, and cooling to room temperature and discharging;
(4) Maintaining the pressure of the material in the step (3) for 10 minutes under isostatic pressure (30 MPa), performing graphitization high-temperature (3000 ℃) treatment for 3 hours, cooling to room temperature, and then crushing;
(5) Uniformly mixing the crushed material in the step (4) with asphalt according to a ratio of 100:8, carbonizing at 1100 ℃ for 4 hours under the protection of nitrogen, and cooling to room temperature to obtain the modified natural graphite anode material.
The mass fraction of the artificial graphite in the modified natural graphite anode material is 13.8%, and the mass fraction of the amorphous carbon in the anode material is 4.8%.
Comparative example 1
(1) Adding 20g of asphalt into 150g of wash oil, stirring at high speed (20 r/min) to fully dissolve the asphalt, and obtaining an asphalt solution (the kinematic viscosity at 100 ℃ is 90 mPa.S);
(2) Placing 100g of natural graphite into a reaction kettle, vacuumizing for 60min, when the vacuum degree of the reaction kettle reaches 0.07MPa, opening an asphalt solution suction valve, completely sucking the asphalt solution prepared in the step (1) into the reaction kettle, closing the suction valve after liquid feeding is finished, stopping vacuumizing, simultaneously stirring the mixed solution at a high speed (20 r/min) for 40min, pressurizing (12 MPa), immersing, decompressing to enable the internal pressure and the external pressure of the reaction kettle to be the same, introducing nitrogen gas, heating to 230 ℃, removing wash oil, cooling to room temperature, and discharging;
(3) Maintaining the pressure of the material in the step (2) for 30 minutes under isostatic pressure (10 MPa), performing graphitization high-temperature (2800 ℃) treatment for 4 hours, cooling to room temperature, and then crushing;
(4) Uniformly mixing the crushed material in the step (3) with asphalt according to a ratio of 100:5, carbonizing at 1000 ℃ for 5 hours under the protection of nitrogen, and cooling to room temperature to obtain the modified natural graphite anode material.
The mass fraction of the artificial graphite in the modified natural graphite anode material is 7.8%, and the mass fraction of the amorphous carbon in the anode material is 3.2%.
Comparative example 2
(1) Uniformly mixing 20g of asphalt and 100g of natural graphite, maintaining the pressure for 30 minutes under isostatic pressure (10 MPa), performing graphitization high-temperature (2800 ℃) treatment for 4 hours, cooling to room temperature, and then crushing;
(2) Uniformly mixing the crushed material in the step (1) with asphalt according to a ratio of 100:5, carbonizing at 1000 ℃ for 5 hours under the protection of nitrogen, and cooling to room temperature to obtain the modified natural graphite anode material.
The mass fraction of the artificial graphite in the modified natural graphite anode material is 7.6%, and the mass fraction of the amorphous carbon in the anode material is 3.2%.
Performance testing
The modified natural graphite anode materials prepared in examples 1-3 and comparative examples 1-2 were taken respectively, and the modified natural graphite anode materials were prepared as follows: polyvinylidene fluoride (PVDF): conductive graphite = 93:5:2, after mixing the materials in mass ratio, placing the materials in a high-speed dispersing machine for stirring to prepare active slurry, and coating the active slurry on a copper foil to obtain the negative electrode plate.
The anode pole piece is adopted as an anode, lithium is adopted as a positive stage, a diaphragm is a microporous polypropylene film, and 1mol/L LiPF is adopted 6 ++ (ethylene carbonate EC: dimethyl carbonate dmc=1:1, volume ratio) (noted electrolyte a) or 1mol/L LiPF 6 The solution + (PC: EC: dmc=0.5:0.5:1, volume ratio) (noted as electrolyte B) was used as electrolyte, and assembled to obtain a lithium ion battery.
The first reversible capacity, first coulombic efficiency and cyclic capacity retention rate of the battery containing the electrolyte a, and the discharge capacity retention rate of the battery containing the electrolyte B were respectively tested, and the specific results are shown in table 1
TABLE 1 electrochemical Performance test results
The embodiments of the present invention have been described above. However, the present invention is not limited to the above embodiment. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention should be included in the protection scope of the present invention.

Claims (10)

1. A preparation method of a modified natural graphite anode material, which comprises the following steps:
(1) Respectively weighing natural graphite, asphalt and an organic solvent for standby;
(2) Adding asphalt into an organic solvent, and stirring to fully dissolve the asphalt to obtain an asphalt solution;
(3) Placing natural graphite into a reaction kettle, vacuumizing the reaction kettle, adding the asphalt solution obtained in the step (2), stirring, pressurizing and impregnating, depressurizing to make the internal pressure and the external pressure of the reaction kettle the same after the pressurizing and impregnating are finished, introducing nitrogen, and heating to remove the organic solvent;
(4) After the organic solvent in the reaction kettle in the step (3) is completely discharged, pressurizing and heating the reaction kettle to 390-450 ℃, maintaining the pressure and heat for a period of time to thermally polymerize the asphalt into mesophase asphalt, and cooling to room temperature and discharging;
(5) Carrying out isostatic compaction on the material obtained in the step (4), and then carrying out graphitization treatment and crushing;
(6) Mixing the crushed material in the step (5) with asphalt, and carbonizing to obtain the modified natural graphite anode material;
in the step (1), the shape of the natural graphite is at least one of sphere, approximate sphere, oval shape and potato shape, and the surface of the natural graphite is provided with an open gap;
in the step (2), the asphalt: organic solvent: the mass ratio of the natural graphite is (15-35): (100-300): 100;
in the step (3), the vacuum degree of the reaction kettle is 0.07-0.09 MPa; the pressure of the pressurized impregnation is 10-30 MPa, the time of the pressurized impregnation is 1-5 hours, and the heating temperature is 200-300 ℃.
2. The preparation method of claim 1, wherein in the step (1), the asphalt is any one or a mixture of two of petroleum asphalt, coal tar asphalt and natural asphalt, the softening point of the asphalt is 60-90 ℃, and the quinoline insoluble content is less than or equal to 1%;
and/or, in the step (1), D of the natural graphite 50 5-17 mu m, and the carbon content is more than or equal to 80.0 percent;
and/or in the step (1), the organic solvent is hydrocarbon solvent, and is any one or a mixture of two of wash oil, naphthalene oil and phenol oil.
3. The method according to claim 1, wherein in the step (2), the kinematic viscosity of the asphalt solution at 100 ℃ is 10 to 150 mpa-S.
4. The method of claim 1, wherein in step (3), the method of adding the asphalt solution of step (2) is: opening an asphalt solution suction valve, sucking the asphalt solution in the step (2) into the reaction kettle, closing the suction valve after liquid feeding is finished, and stopping vacuumizing.
5. The preparation method according to claim 1, wherein in the step (4), the time of heat preservation is 1 to 10 hours;
and/or in the step (4), the pressurizing pressure is 1-3 MPa.
6. The method according to claim 1, wherein in the step (5), the isostatic pressing pressure is 10-40 mpa, and the isostatic pressing time is 10-40 minutes;
and/or, in the step (5), the graphitization treatment temperature is 2800-3000 ℃;
and/or, in the step (5), D of the crushed material 50 7 to 19 μm.
7. The preparation method of claim 1, wherein in the step (6), the mass ratio of the crushed material to the asphalt is 100 (4-12);
and/or in the step (6), the carbonization temperature is 800-1200 ℃, and the carbonization time is 4-10 hours;
and/or, in the step (6), the carbonization is performed under a protective atmosphere.
8. A modified natural graphite anode material prepared by the method of any one of claims 1-7.
9. The modified natural graphite anode material according to claim 8, which has a core-shell structure, wherein the core is natural graphite with artificial graphite coated on the surface of each layer inside, and the shell is amorphous carbon;
and/or D of the modified natural graphite anode material 50 8-20 μm;
and/or the mass of the artificial graphite in the modified natural graphite anode material accounts for 10-15% of the total mass of the modified natural graphite anode material; the mass of the amorphous carbon in the modified natural graphite anode material accounts for 2-8% of the total mass of the modified natural graphite anode material.
10. A negative electrode for a lithium ion battery comprising the modified natural graphite negative electrode material of claim 8 or 9.
CN202210475079.8A 2022-04-29 2022-04-29 Modified natural graphite negative electrode material and preparation method and application thereof Active CN114751407B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210475079.8A CN114751407B (en) 2022-04-29 2022-04-29 Modified natural graphite negative electrode material and preparation method and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210475079.8A CN114751407B (en) 2022-04-29 2022-04-29 Modified natural graphite negative electrode material and preparation method and application thereof

Publications (2)

Publication Number Publication Date
CN114751407A CN114751407A (en) 2022-07-15
CN114751407B true CN114751407B (en) 2024-01-26

Family

ID=82333020

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210475079.8A Active CN114751407B (en) 2022-04-29 2022-04-29 Modified natural graphite negative electrode material and preparation method and application thereof

Country Status (1)

Country Link
CN (1) CN114751407B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1691373A (en) * 2004-04-29 2005-11-02 宁波杉杉新材料科技有限公司 Method for preparing natural graphite cathode material of lithium ion battery
CN111463416A (en) * 2020-04-14 2020-07-28 广东东岛新能源股份有限公司 Low-cost low-expansion-rate long-circulation natural graphite-based composite material and preparation method and application thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1691373A (en) * 2004-04-29 2005-11-02 宁波杉杉新材料科技有限公司 Method for preparing natural graphite cathode material of lithium ion battery
CN111463416A (en) * 2020-04-14 2020-07-28 广东东岛新能源股份有限公司 Low-cost low-expansion-rate long-circulation natural graphite-based composite material and preparation method and application thereof

Also Published As

Publication number Publication date
CN114751407A (en) 2022-07-15

Similar Documents

Publication Publication Date Title
CN111333064B (en) High-performance lithium ion battery graphite negative electrode material and preparation method thereof
CN112645300B (en) Hard carbon negative electrode material, lithium ion battery, and preparation method and application of hard carbon negative electrode material
CN111029578B (en) Modified hard carbon negative electrode material and preparation method thereof
CN109704323A (en) Electrode material and secondary battery
CN113889593B (en) Preparation method of hard carbon-coated soft carbon composite material
CN112408359B (en) Method for preparing battery negative electrode material by using enzymatic hydrolysis lignin-based epoxy resin
CN102110813B (en) Graphite material at negative pole of lithium ion battery and preparation method thereof
CN112110448A (en) Nitrogen-doped carbon and nano-silicon composite anode material and preparation method thereof
CN108615888B (en) Biomass carbon fiber negative electrode material for lithium ion battery and preparation method and application thereof
CN114620707A (en) Preparation method of long-cycle lithium ion battery cathode material
CN115347176A (en) Graphite-based composite negative electrode material and preparation method and application thereof
CN104300148A (en) A graphite anode material of lithium-ion battery and the preparation method
CN113161521B (en) Natural graphite-based silicon-carbon composite negative electrode material and preparation method and application thereof
CN114702022A (en) Preparation method and application of hard carbon negative electrode material
CN114873591B (en) Low-temperature long-life natural graphite anode material and preparation method and application thereof
CN114400307A (en) Tin-carbon composite material and preparation method and application thereof
CN114050243A (en) Nitrogen-doped synergetic conductive polymer modified silicon-carbon composite negative electrode material and preparation method thereof
CN108075110A (en) Negative electrode for lithium ion battery composite material and lithium ion battery
CN114751407B (en) Modified natural graphite negative electrode material and preparation method and application thereof
CN110723721A (en) Method for preparing silicon-carbon negative electrode material of lithium battery, negative electrode material and lithium battery
CN109256547A (en) A kind of preparation method of porous graphene-lithium iron phosphate positive material
CN115249799A (en) Rosin-based nitrogen-doped coated hard carbon negative electrode material of sodium ion battery and preparation method of rosin-based nitrogen-doped coated hard carbon negative electrode material
CN111900386B (en) Mesocarbon microbeads, preparation method and application thereof
CN114314580A (en) Composite graphite negative electrode material and preparation method and application thereof
CN114162814A (en) Modification method of graphite

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant