JP2005316906A - 溶接ティーチング支援方法 - Google Patents

溶接ティーチング支援方法 Download PDF

Info

Publication number
JP2005316906A
JP2005316906A JP2004136702A JP2004136702A JP2005316906A JP 2005316906 A JP2005316906 A JP 2005316906A JP 2004136702 A JP2004136702 A JP 2004136702A JP 2004136702 A JP2004136702 A JP 2004136702A JP 2005316906 A JP2005316906 A JP 2005316906A
Authority
JP
Japan
Prior art keywords
welding
torch
teaching
weld line
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004136702A
Other languages
English (en)
Inventor
Naoto Taguchi
直人 田口
Tsuneo Hagino
常雄 萩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004136702A priority Critical patent/JP2005316906A/ja
Publication of JP2005316906A publication Critical patent/JP2005316906A/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

【課題】 ワークデータから溶接経路および作業条件を自動的に設定する。
【解決手段】 ワークに対する溶接線、溶接順序、各溶接線の溶接を担当する溶接ロボットを含む情報である溶接線パターンをデータベースから取得し(S1)、照合の対象となるワークの溶接線を当該溶接線パターンと照合させながら溶接経路を作成し(S2)、当該溶接経路に沿ってワークの溶接線に対する教示点を生成し(S3)、当該教示点におけるトーチの配置角度を設定し(S4)、当該トーチの配置角度とワークの物理的特性から溶接条件を設定する(S5)。
【選択図】 図2

Description

本発明は、ワークデータ(形状、板厚)から溶接経路および作業条件(トーチ角度、溶接条件)を自動的に設定できる溶接ティーチング支援方法に関する。
従来、ロボットの教示作業を効率的に行うため、設計部署においてCADデータからティーチングデータを作成し、作成したティーチングデータを現場のロボットに記憶させ、実際にロボットを動かしてそのティーチングデータを補正する、オフラインティーチングが行われている。
一般的なオフラインティーチングでは、作業者が、作業ポイントをCADデータ上のワークで一点一点指定し、それぞれの作業ポイントの使用ツールや作業条件を設定している。そのためオフラインティーチングも更なる効率化が求められている。
この効率化の要請により、下記特許文献1に記載されている発明は、ツールの仕様とワークの作業条件を参照し、自動的にそのツールの最適な作業条件の設定を可能にしている。この発明によれば、指定された作業ポイントにおける作業条件入力の作業工数が削減でき、その分オフラインティーチングが効率化される。
特開平11−85241号公報
ところが、上記引用文献1に記載されている発明をもってしても、ワークデータから溶接経路を自動的に作成したり、その溶接経路に基づいて自動的に作業条件を設定したりすることはできない。
本発明は、上記のような従来の要請に応えるために成されたものであり、ワークデータから溶接経路および作業条件を自動的に設定することができる溶接ティーチング支援方法の提供を目的とする。
上記の目的を達成するための本発明にかかる溶接ティーチング支援方法は、被溶接物に対する溶接線、溶接順序、各溶接線の溶接を担当するロボットを含む情報である溶接線パターンをデータベースから取得する段階と、照合の対象となる被溶接物の溶接線を当該溶接線パターンと照合させながら溶接経路を作成する段階と、当該溶接経路に沿って当該被溶接物の溶接線に対する教示点を生成する段階と、当該教示点におけるトーチの配置角度を設定する段階と、当該トーチの配置角度と前記被溶接物の物理的特性から溶接条件を設定する段階と、を含むことを特徴とする。
以上のような手順で溶接ティーチングの支援を行えば、ワークデータから溶接経路および作業条件を自動的に設定することができることができるようになる。
以下に、本発明にかかる溶接ティーチング支援方法を、図面を参照しながら詳細に説明する。
図1は、本発明に係る溶接ティーチング支援方法を実施するための装置の概略構成図である。この装置は、データベース10、ワークデータ入力部20、溶接経路作成部30、教示点生成部40、トーチ配置角度設定部50、溶接条件設定部60、ティーチングデータ作成部70を備えている。
データベース10は、被溶接物であるワークに対する溶接線、溶接順序、各溶接線の溶接を担当する溶接ロボットを含む情報である溶接線パターンを記憶している。溶接線パターンは、代表的なワークに対する溶接線の形、長さなどの情報と、各溶接線の溶接順序、それぞれの溶接線をどの溶接ロボットが担当するかのなどの情報から構成され、ワークの種類や溶接ロボットの配置状況毎に分類されて記憶されている。また、溶接電流、溶接電圧および溶接速度に関する溶接条件の情報もワークの板厚やトーチの種類毎に分類されて記憶されている。さらに溶接ロボットをどのように設置するのかを示した溶接ロボットの配置パターンも記憶されている。
ワークデータ入力部20は、たとえばキーボードなどの入力装置を含む端末であり、ここからはワークの形状、材質、板厚などが作業者によって入力される。なお、データベース10への溶接パターンの登録もこのワークデータ入力部20を介して行われる。
溶接経路作成部30は、照合の対象となるワークの溶接線をデータベース10に記憶されている溶接線パターンと照合させながら溶接経路を作成する。溶接経路の作成手法としては2つの手法が用意されている。1つは、作業者の指示で作成された任意の大きさの円柱を登録されている溶接線に沿って動かしたときに照合の対象となるワークの溶接線がその円柱と干渉するか否かを判断することによって溶接経路を作成して行くものであり、もう1つは溶接を行う溶接ロボットの配置パターン(配置状況)に基づいて溶接の対象となるワークの溶接線を溶接ロボット毎に割り当てて行き、割り当てられた溶接線を溶接する場合のサイクルタイムや作業者が指定した順番に基づいて溶接経路を作成して行くものである。1つ目の作成手法は、照合の対象となる溶接線が連続している場合(大型ワークを溶接する場合)に用いると有効な手法であり、2つ目の手法は、溶接の対象となる溶接線がランダムに存在し不連続な場合(大型ワークに部品を溶接する場合)に用いると有効な手法である。
教示点生成部40は、溶接経路作成部30によって作成された溶接経路に沿って、ワークの溶接線に対する教示点を生成する。教示点は一定の距離ごと(たとえば直線の場合には100mmごとに)に設定されるが、溶接線が曲がっている場合には、その曲がり具合に応じて距離を狭めて設定される(たとえば曲線の場合には15mmごとに、曲率の大きい円弧の場合にはその円弧内に最低3点教示点を設定するなど)。
トーチ配置角度設定部50は、教示点生成部40によって生成された各教示点におけるワークの面形状を認識して第1のトーチ角度(トーチ角度A)、第2のトーチ角度(トーチ角度B)およびトーチの回転方向を生成する。なお、トーチ角度Bは、ある教示点とその教示点の次の教示点との座標から求める。また、一連の溶接線において始点と終点の教示点に設定されたトーチ角度AまたはBの差が一定値以下であればその始点と終点との間のすべての教示点のトーチ角度を同一のトーチ角度に設定し、一連の溶接線において始点と終点の教示点の座標が溶接の順番方向(進行方向)に高くなる上り溶接の場合にはその溶接の順番を逆にして溶接方向を反転して下り溶接に変更する。
溶接条件設定部60は、トーチ配置角度設定部50によって設定されたトーチの配置角度と溶接の対象となるワークの物理的特性(たとえば板厚)およびトーチのタイプから溶接電流、溶接電圧および溶接速度に関する情報をデータベース10から取り出して溶接条件を教示点毎に設定する。
ティーチングデータ作成部70は、教示点生成部40で生成された教示点毎に溶接条件設定部60で設定された溶接条件を設定してティーチングデータを作成する。作成されたティーチングデータは現場に配置されている溶接ロボットにダウンロードされる。
図2は、本発明に係る溶接ティーチング支援方法の手順を示すフローチャートである。本発明にかかる溶接ティーチング支援方法は概略次のような手順で行われる。
まず、溶接経路作成部30は、データベース10からこれから照合を行なおうとするワークに対応する溶接線パターンを取り出す。すなわち、そのワークに設定されている溶接線、溶接順序、各溶接線の溶接を担当する溶接ロボットなどに関する情報を取得する(S1)。
次に、溶接経路作成部30は照合の対象となるワークの溶接線をデータベース10から取得した溶接線パターンと照合させながら溶接経路を作成する。なお、このステップの詳細な処理は後で詳細に説明する(S2)。
そして、教示点生成部40は、溶接経路作成部30によって作成された溶接経路に沿ってワークの溶接線に対する教示点を生成する。つまり溶接ロボットが把持しているトーチの移動経路や溶接経路内において溶接を行う場所を設定する(S3)。
次に、トーチ配置角度設定部50は、教示点生成部40で設定された各教示点におけるトーチの配置角度を設定する。なお、このステップの詳細な処理も後で詳細に説明する(S4)。
そして最後に、溶接条件設定部60はトーチの配置角度とワークの物理的特性から溶接条件を設定する。溶接条件はデータベース10に記憶されているので、溶接条件設定部60はワークの板厚に対応する溶接条件を取り出し、溶接電流、溶接電圧および溶接速度を教示点ごとに設定する(S5)。
本発明に係る溶接ティーチング支援方法の概略の手順は以上の通りであるが、次に、図3のサブルーチンフローチャートに基づいて上記S2の「溶接経路を作成」のステップの処理を詳細に説明する。
上記のように、溶接経路の作成手法としては2つの手法が用意されているが、このフローチャートに示す手法は、照合の対象となる溶接線が連続している場合に用いると有効な手法である。データベース10には、たとえば図4Aに示すような溶接パターンが登録されているものとし、照合の対象となるワークの溶接線は図4Bに示すようなものであったとする。溶接経路作成部30は、登録されている溶接パターンと照合の対象となるワークの溶接線とを照合するが、図4Cのように溶接線の位置やサイズがずれていたのでは溶接線同士の照合をすることができないので、図5Dのように、登録されている方の溶接線の縮尺を変更しその溶接線を移動させて図5Eのようにおおよそ合致させる。
溶接線同士を合致させた状態の一部を模式的に示した図が図6である。図6において、太い実線で示されている溶接線A、Bが登録されている溶接線パターンであり、細い実線で示されている溶接線a、b、cが照合の対象となるワークの溶接線である。図3のフローチャートではこのようにほぼ一致する位置に配置された溶接線の照合を次のようにして行う。
まず、溶接経路作成部30は、ワークデータ入力部20から入力された半径および高さの円柱を作成する。たとえば、半径50mm、高さ100mmの円柱を作成する(S11)。次に、図7Aに示すように、取得した溶接線パターンの溶接線に円柱の重心を重ね、その円柱を溶接線上で図7Aに示すように登録されている溶接順に(図示左側から右側に)移動させ、照合の対象となるワークの溶接線a、b、cと円柱との干渉の有無を認識する(S12)。
そして、円柱と干渉した照合の対象となるワークの溶接線に、溶接を担当する溶接ロボットを割り当てて順番を付ける。たとえば、図7Bに示すように、登録されている溶接線Aには3号機の溶接ロボット(R03)が1番目に溶接を行うこと(R03−01)が割り当てられており、登録されている溶接線Bには3号機の溶接ロボット(R03)が2番目に溶接を行うこと(R03−02)が割り当てられているとすれば、円柱を溶接線A、Bの始点から終点まで(図示左側から右側に)移動させ、円柱と最初に干渉することになる照合の対象となる溶接線aには3号機の溶接ロボットが1番目に溶接を行うこと(R03−01)が割り当てられ、次に干渉することとなる溶接線bには3号機の溶接ロボットが2番目に溶接を行うこと(R03−02)が割り当てられ、さらにその次に干渉することとなる溶接線cには3号機の溶接ロボットが3番目に溶接を行うこと(R03−03)が割り当てられる。なお、溶接線AとBとの間には実際には溶接経路は存在していないが、溶接線Aの終点と溶接線Bの始点との間には図示点線で示されるような経路を仮に生成し、円柱をこの仮の経路上に移動させて干渉状態のチェックが行われる(S13)。
以上までの処理が照合の対象となるすべての溶接線に対して行われ、それでも干渉しない溶接線が存在している場合には、作業者はワークデータ入力部20からこの溶接線に手動による溶接ロボットの割り当てを行う(S14)。そして、すべての溶接線に対して溶接ロボットの割り当てが終了するとすべての溶接線に対する溶接順序が更新される(S15)。
図8に示したサブルーチンフローチャートは、上記S2の「溶接経路を作成」のステップの処理の詳細を説明するためのフローチャートである。このフローチャートに示す手法は、図3のフローチャートで示した手法とは異なり、溶接の対象となる溶接線がランダムに存在し不連続な場合に用いると有効な手法である。
溶接経路作成部30は、データベース10から現場における溶接ロボットの配置状況と合致する溶接ロボットの配置パターンを取得する。溶接ロボットの配置パターンとは、たとえば図9A、Bに示すようなものである。図9Aに示す配置パターンは溶接ロボットR01とR02の2台の溶接ロボットが並んで配置されているパターンである。また、図9Bに示す配置パターンは、溶接ロボットR01からR04の4台の溶接ロボットが図に示すように配置されているパターンである。作業者はデータベース10に登録されている配置パターンの内、適切な配置パターンを呼び出して溶接経路作成部30に提供する(S21)。
次に、溶接経路作成部30は、配置パターンに含まれる溶接ロボットの台数にしたがって溶接の対象となるワークの溶接線を複数の領域に分割する。たとえば、図9Aに示すように溶接ロボットが2台配置されている場合には、溶接線が2つのパーテション(図において交差している太い実線)で4つの領域P1〜P4に分割される。また、図9Bに示すように溶接ロボットが3台以上配置されている場合には、溶接線が6つのパーテション(図において交差している太い実線)で16の領域P1〜P16に分割される。なお、これらのパーテションはワークデータ入力部20から作業者が自由に動かすことができる(S22)。
溶接経路作成部30は、パーテションによって分割された溶接の対象となるワークの溶接線を領域ごとに溶接ロボットに割り当てる。たとえば、P1領域とP3領域を溶接ロボットR01に割り当てたとすれば、P1領域とP3領域に存在するすべての溶接線が溶接ロボットR01に割り当てられる。なお、パーテションに跨る溶接線は作業者がいずれかの溶接ロボットに割り当てる(S23)。
そして、最後に溶接経路作成部30は、各溶接ロボットに割り当てられたすべての溶接線に対して溶接経路を決定する。つまり溶接経路は溶接ロボット毎に決定されることになる(S24)。
図10は、図8に示したフローチャートのS24のステップの「溶接経路を決定」する処理の詳細を示すフローチャートである。このフローチャートではサイクルタイムの短いものの中から溶接経路を選択している。
溶接経路作成部30は、割り当てられた溶接線を効率的に溶接するための溶接経路を複数生成し、移動距離が短い溶接経路から順番にリスト表示する(S31)。次に、作業者が、リスト表示された溶接経路の中から複数の溶接経路を選択する(S32)。そして、選択した溶接経路で溶接する場合のサイクルタイムをシミュレーションによって演算する(S33)。シミュレーションの結果、サイクルタイムの小さい順に溶接経路のリストが表示される(S34)。作業者はリストの中から最適(最小)と思われる1つの溶接経路を選択する。この溶接経路は溶接ロボット毎に選択されて決定される(S35)。
図11は、図8に示したフローチャートのS24のステップの「溶接経路を決定」する他の処理の詳細を示すフローチャートである。このフローチャートでは作業者が選択した2つの溶接線以外の溶接線の順番を自動的に決定している。
作業者は割り当てられた溶接線の内1番目に溶接するための溶接線を選択する。1番目の溶接線の始点は次のようにして決める。図12に示すように、溶接線が平行ビード(±5度未満の傾きを有するビード)の場合には溶接ロボットに近い位置を始点とし、溶接線が下りビードの場合には始点位置は高い位置とする(S41)。次に、2番目に溶接するための溶接線を選択する。2番目の溶接線の始点は、溶接線が平行ビードの場合には1番目の溶接線の終点に近い点を始点とし、溶接線が下りビードの場合には始点位置は高い位置とする(S42)。次に、残りの溶接線の順番を付ける。3番目以降の溶接線は、残りの溶接線の中で直前に決めた溶接線の終点に最も近い始点を持つものを選択する(S43)。なお、溶接ビードの始点と終点との距離は、図12に示すように、平行ビードであればカレントなビードの始点から平行ビードの両端までの距離を調べることによって、下りビードの場合にはカレントな溶接線の終点から下りビードの始点までの距離を調べることによって求める。
以上の処理が終了しすべての溶接線が溶接ロボットに割り当てられ溶接の順番が決まると、各教示点におけるトーチの配置角度の設定が行われる。このトーチの配置角度の設定は図13に示すフローチャートの手順で行われる。
図13に示したサブルーチンフローチャートは、図2に示したS4の「トーチの配置角度を設定」のステップの処理の詳細を説明するためのフローチャートである。
トーチ配置角度設定部50は、教示点生成部40で設定された教示点の面形状を認識し図14に示したようなトーチ角度Aを生成する。トーチ角度Aとは溶接時の部材とトーチとが成す角度をいう。たとえば、図14に示すように、溶接される部材同士の配置関係がA1、A3、A4に示すパターンである場合にはトーチ角度Aを45度に、A2に示すパターンである場合にはトーチ角度Aを90度に、A5に示すパターンである場合にはトーチ角度Aを80度に、A6に示すパターンである場合にはトーチ角度Aを部材同士の配置角度の半分の角度に、それぞれ設定する(S51)。次に、トーチ配置角度設定部50は、ある教示点と次の教示点との座標から図15に示したようなトーチ角度Bを作成する。トーチ角度Bとは溶接方向に対するトーチの角度をいう。たとえば、図15に示すように、溶接する部材とトーチとの関係がB1に示すパターンである場合にはトーチ角度Bを15度に、B2に示すパターンである場合にはトーチ角度Bを90度に、B3に示すパターンである場合にはトーチ角度Bを75度に、B4に示すパターンである場合にはトーチ角度Bを75度に、B5に示すパターンである場合にはトーチ角度Bを90度に、それぞれ設定する(S52)。
トーチ配置角度設定部50は、以上のステップで求めたトーチ角度AおよびBを実現するためには、溶接ロボットの位置からトーチをどちらの方向に何度回転すればよいのかを演算する(S53)。以上のS51からS53までのステップの処理はすべての教示点に対して行われる。
以上までの処理が終了し、すべての教示点に対してトーチ角度AとBが設定されると、溶接線の始点から終点までに設定されたトーチ角度AまたはBの差を演算し、その差が5度以内であれば、溶接線の始点から終点までの間で設定されたトーチ角度AまたはBをすべて同一のトーチ角度に設定しなおす(S54)。また、溶接の進行方向に溶接すると次第に高さを増す上り溶接となっているか否かを判断し、上り溶接となっている場合には溶接方向を反転して、下り溶接になるように溶接の順番を変更する(S55)。
以上までの処理で、教示点、溶接順序を含む溶接経路が生成される。溶接経路の生成が終了すると、溶接ポイントにおける溶接条件の設定が図16に示すフローチャートに示す手順で行われる。
溶接条件設定部60は、以上の処理で設定されたトーチ角度に基づいてトーチのタイプを判別する。たとえば、トーチ角度が90度に設定されている場合にはトーチタイプがA2であることがわかる。また、A1、A3、A4のタイプは部材同士の配置を勘案して判別する(S61)。次に、溶接条件設定部60は、溶接の対象となるワークの板厚を判別する(S62)。データベース10には、図17に示すように、ワークの板厚(1.2mm〜12mm)やトーチの種類(A1〜A6)毎に溶接電流、溶接電圧および溶接速度に関する溶接条件の情報が記憶されているが、溶接条件設定部60は、判別したトーチのタイプと板厚に基づいてデータベースを検索し、合致した溶接条件を取り出す。たとえば、トーチのタイプがA1で溶接の対象となる板厚が1.6mmであったときには、データベース10からトーチのタイプがA1で板厚が1.6mmの溶接条件、すなわち、溶接電流のMinが90A、Maxが120A、溶接電圧のMinが18V、Maxが20V、溶接速度のMinが50cm/min、Maxが60cm/minを取り出す。なお、板厚が1.6mm未満の場合には、板厚1.2mmの溶接条件を取り出し、板厚が1.6mm以上2.0mm未満の場合には板厚1.6mmの溶接条件を取り出す。また溶接電流の基準値としては(溶接電流のMax+溶接電流のMin)/2を、溶接電圧の基準値としては(溶接電圧のMax+溶接電圧のMin)/2を、溶接速度の基準値としては(溶接速度のMax+溶接速度のMin)/2をそれぞれ用いる(S63)。
以上のようにして、溶接経路および作業条件(トーチ角度、溶接条件)の設定が完了すると、次に、すべての溶接ロボットが一斉に動いている場合にトーチ同士が干渉するか否かを判断するための干渉確認を行う。干渉確認を行うに当たって溶接ロボットに優先順位を付しておく。
各溶接ロボットは与えられた溶接経路にしたがって動くが、万が一他の溶接ロボットと干渉した場合には、優先順位の低いほうのロボットを干渉位置から退避させる。退避の方法としては、干渉を回避するために干渉位置に入るタイミングを遅らせたり、溶接経路自体を変更したりすることが考えられる。溶接経路自体を変更する場合には、その溶接ロボットに既に設定されている溶接経路を再生成する必要ある。また、溶接経路が変更されたことによってトーチの配置角度と溶接条件の再設定も必要になる。
溶接経路などの設定が終了したら、仮付け(仮溶接)位置の設定が行われる。この仮付け位置の設定は概略次のような手順で行われる。溶接線の長さLを始点と終点の直線とみなし、その直線の長さLがあらかじめ設定されている距離Aよりも短ければ仮付け位置の設定はしない。つまり仮溶接をしない。その直線の長さLがあらかじめ設定されている距離の範囲内(A<L<B)にある場合にはその直線の中点を仮付け位置として設定する。またその直線の長さLがあらかじめ設定されている距離の範囲内(B<L<C)にある場合にはその直線の両端からたとえば10mm内側の2点を仮付け位置として設定する。さらにその直線の長さLがあらかじめ設定されている距離よりも(C<L)長ければ、その直線の中点とその直線の両端からたとえば10mm内側の2点の合計3点を仮付け位置として設定する。
以上のように、本発明の溶接ティーチング支援方法を用いると、ワークデータから溶接経路および作業条件を自動的に設定することができることができるようになり、溶接ティーチングを効率的に行うことができるようになる。
本発明は、ワークデータから溶接経路および作業条件を自動的に設定することができるので、溶接ティーチングを効率的に行うことができるようになり、溶接ロボットの分野において利用することができる。
本発明に係る溶接ティーチング支援方法を実施するための装置の概略構成図である。 本発明に係る溶接ティーチング支援方法の手順を示すフローチャートである。 図2に示したS2の「溶接経路を作成」のステップの処理のサブルーチンフローチャートである。 登録されている溶接線パターンと照合の対象となる溶接線との照合処理の説明に供する図である。 登録されている溶接線パターンと照合の対象となる溶接線との照合処理の説明に供する図である。 登録されている溶接線パターンと照合の対象となる溶接線との照合処理の説明に供する図である。 登録されている溶接線パターンと照合の対象となる溶接線との照合処理の説明に供する図である。 図2に示したS2の「溶接経路を作成」のステップの他の処理のサブルーチンフローチャートである。 各溶接ロボットに溶接線を割り当てる処理の説明に供する図である。 図8に示したS24の「溶接線の経路を決定する」処理のサブルーチンフローチャートである。 図8に示したS24の「溶接線の経路を決定する」他の処理のサブルーチンフローチャートである。 溶接ビードの始点と終点および距離を求める処理の説明に供する図である。 図2に示したS4の「トーチの配置角度を設定」のステップの処理のサブルーチンフローチャートである。 トーチの配置角度の説明に供する図である。 トーチの配置角度の説明に供する図である。 図2に示したS5の「溶接条件を設定」のステップの処理のサブルーチンフローチャートである。 溶接条件の一例を示す図である。
符号の説明
10 データベース、
20 ワークデータ入力部、
30 溶接経路作成部、
40 教示点生成部、
50 トーチ配置角度設定部、
60 溶接条件設定部、
70 ティーチングデータ作成部。

Claims (9)

  1. 被溶接物に対する溶接線、溶接順序、各溶接線の溶接を担当する溶接ロボットを含む情報である溶接線パターンをデータベースから取得する段階と、
    照合の対象となる被溶接物の溶接線を当該溶接線パターンと照合させながら溶接経路を作成する段階と、
    当該溶接経路に沿って当該被溶接物の溶接線に対する教示点を生成する段階と、
    当該教示点におけるトーチの配置角度を設定する段階と、
    当該トーチの配置角度と前記被溶接物の物理的特性から溶接条件を設定する段階と、
    を含むことを特徴とする溶接ティーチング支援方法。
  2. 前記溶接線パターンは、前記被溶接物の形状ごとに前記データベースに登録されていることを特徴とする請求項1に記載の溶接ティーチング支援方法。
  3. 前記溶接経路を作成する段階は、
    指定された半径および高さの円柱を作成する段階と、
    取得した溶接線パターンの溶接線に当該円柱の重心を重ね、前記円柱を当該溶接線上で前記溶接順序にしたがって移動させ、前記円柱と前記照合の対象となる被溶接物の溶接線との干渉の有無を認識する段階と、
    前記円柱と干渉した前記照合の対象となる被溶接物の溶接線に、その溶接を担当する溶接ロボットを割り当てるとともに、その干渉順に順番を付ける段階と、
    を含むことを特徴とする請求項1に記載の溶接ティーチング支援方法。
  4. 前記溶接経路を作成する段階は、
    データベースから溶接ロボットの配置パターンを取得する段階と、
    当該配置パターンに含まれる溶接ロボットの台数にしたがって溶接の対象となる被溶接物の溶接線を複数の領域に分割する段階と、
    各溶接ロボットにそれぞれの領域に存在する溶接の対象となる被溶接物の溶接線を割り当てる段階と、
    溶接ロボット毎に、割り当てられた溶接線に基づいて溶接経路を決定する段階と、
    を含むことを特徴とする請求項1に記載の溶接ティーチング支援方法。
  5. 前記溶接経路を決定する段階は、
    割り当てられた溶接線を溶接するために複数の溶接経路を生成する段階と、
    生成された溶接経路で溶接を行う場合のサイクルタイムを演算する段階と、
    サイクルタイムが最小の溶接経路を選択する段階と、
    を有することを特徴とする請求項4に記載の溶接ティーチング支援方法。
  6. 前記溶接経路を決定する段階は、
    割り当てられた溶接線のうち最初に溶接を行う溶接線を選択する段階と、
    2番目に溶接を行う溶接線を選択する段階と、
    3番目以降に溶接を行う溶接線を順番に選択する段階と、
    を有することを特徴とする請求項4に記載の溶接ティーチング支援方法。
  7. トーチの配置角度を設定する段階は、
    生成された教示点における被溶接物の面形状を認識して第1のトーチ角度を生成する段階と、
    当該教示点と次の教示点との座標から第2のトーチ角度を生成する段階と、
    前記溶接ロボットの位置からトーチの回転方向を生成する段階と、
    始点と終点の教示点に設定されたトーチ角度の差が一定値以下であれば始点と終点との間のすべての教示点のトーチ角度を同一のトーチ角度に設定する段階と、
    溶接の進行方向に高くなる上り溶接の場合には溶接方向を反転して下り溶接に変更する段階と、
    を含むことを特徴とする請求項1に記載の溶接ティーチング支援方法。
  8. 溶接条件を設定する段階は、
    トーチのタイプを判別する段階と、
    前記被溶接物の板厚を判別する段階と、
    トーチのタイプと板厚に基づいて溶接電流、溶接電圧および溶接速度に関する情報をデータベースから取り出す段階と、
    を含むことを特徴とする請求項1に記載の溶接ティーチング支援方法。
  9. さらに、トーチの干渉確認を行う段階と、
    干渉すると判断されたときに干渉を回避するための溶接経路を再生成する段階と
    再生成された溶接経路に基づいてトーチの配置角度と溶接条件を再設定する段階と、
    をさらに含むことを特徴とする請求項1に記載の溶接ティーチング支援方法。
JP2004136702A 2004-04-30 2004-04-30 溶接ティーチング支援方法 Withdrawn JP2005316906A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004136702A JP2005316906A (ja) 2004-04-30 2004-04-30 溶接ティーチング支援方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004136702A JP2005316906A (ja) 2004-04-30 2004-04-30 溶接ティーチング支援方法

Publications (1)

Publication Number Publication Date
JP2005316906A true JP2005316906A (ja) 2005-11-10

Family

ID=35444235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004136702A Withdrawn JP2005316906A (ja) 2004-04-30 2004-04-30 溶接ティーチング支援方法

Country Status (1)

Country Link
JP (1) JP2005316906A (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009291927A (ja) * 2008-06-09 2009-12-17 Fanuc Ltd ロボットオフラインプログラミング装置
JP2012115888A (ja) * 2010-12-02 2012-06-21 Honda Motor Co Ltd スポット溶接装置における溶接条件の設定方法
JP2012245535A (ja) * 2011-05-26 2012-12-13 Daihatsu Motor Co Ltd アーク溶接方法及びアーク溶接装置
KR101280883B1 (ko) * 2011-10-12 2013-07-02 삼성중공업 주식회사 티칭제어시스템 및 티칭제어방법
JP2014194658A (ja) * 2013-03-28 2014-10-09 Kobe Steel Ltd 作業経路情報設定装置、プログラム、および作業経路情報設定方法
CN110871433A (zh) * 2018-08-31 2020-03-10 发那科株式会社 示教装置、示教方法以及存储介质
US10710240B2 (en) 2017-09-12 2020-07-14 Fanuc Corporation Programming device for welding robot and programming method for welding robot
NL2022872B1 (en) * 2019-04-05 2020-10-08 Voortman Steel Machinery Holding B V A method for automatic welding of a structural steel assembly and an automatic welding system for welding of a structural steel assembly
CN110871433B (zh) * 2018-08-31 2024-05-14 发那科株式会社 示教装置、示教方法以及存储介质

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009291927A (ja) * 2008-06-09 2009-12-17 Fanuc Ltd ロボットオフラインプログラミング装置
JP2012115888A (ja) * 2010-12-02 2012-06-21 Honda Motor Co Ltd スポット溶接装置における溶接条件の設定方法
JP2012245535A (ja) * 2011-05-26 2012-12-13 Daihatsu Motor Co Ltd アーク溶接方法及びアーク溶接装置
KR101280883B1 (ko) * 2011-10-12 2013-07-02 삼성중공업 주식회사 티칭제어시스템 및 티칭제어방법
JP2014194658A (ja) * 2013-03-28 2014-10-09 Kobe Steel Ltd 作業経路情報設定装置、プログラム、および作業経路情報設定方法
US10710240B2 (en) 2017-09-12 2020-07-14 Fanuc Corporation Programming device for welding robot and programming method for welding robot
CN110871433A (zh) * 2018-08-31 2020-03-10 发那科株式会社 示教装置、示教方法以及存储介质
CN110871433B (zh) * 2018-08-31 2024-05-14 发那科株式会社 示教装置、示教方法以及存储介质
NL2022872B1 (en) * 2019-04-05 2020-10-08 Voortman Steel Machinery Holding B V A method for automatic welding of a structural steel assembly and an automatic welding system for welding of a structural steel assembly
WO2020204720A1 (en) 2019-04-05 2020-10-08 Voortman Steel Machinery Holding B.V. A method for automatic welding of a structural steel assembly and an automatic welding system for welding of a structural steel assembly

Similar Documents

Publication Publication Date Title
JP5980867B2 (ja) ロボットをオフラインで教示するロボット教示装置
JP4137927B2 (ja) ロボットプログラミング装置
CN108544495B (zh) 一种多焊接机器人的焊接路径规划方法、系统及设备
CN109227533A (zh) 移动规划装置、移动机器人和移动规划程序
US20160059413A1 (en) Teaching system, robot system, and teaching method
CN102203687A (zh) 自动排序的焊接机器人多目标路径规划
US20010013511A1 (en) Method for correcting teaching points for welding robot and welding robot system employing the same
US8872070B2 (en) Offline teaching method
US6064168A (en) Method of controlling robot movement
CN101659056B (zh) 机器人的干涉回避方法以及机器人系统
JP2005316906A (ja) 溶接ティーチング支援方法
JP4981513B2 (ja) 溶接方法、溶接装置
JP2020062690A (ja) 制御装置、作業ロボット、プログラム、及び、制御方法
JP6359847B2 (ja) 干渉回避装置
JP6926533B2 (ja) ロボットの動作プログラム生成装置
JP6560841B1 (ja) 制御装置、作業ロボット、プログラム、及び、制御方法
KR101333768B1 (ko) 가공 경로 생성 방법
US20230173676A1 (en) Machine learning logic-based adjustment techniques for robots
JP2001105137A (ja) 溶接用オフライン教示装置および同装置を用いた大型構造物の製造方法
JP2003094363A (ja) 多関節ロボットの姿勢決定方法および装置
KR101280883B1 (ko) 티칭제어시스템 및 티칭제어방법
JP2021164976A (ja) 経路生成装置および工作機械
JPH10211575A (ja) 金属製箱状構造体の自動溶接装置の自動教示方法及び自動教示方法による金属製箱状構造体の自動溶接方法
JP4626043B2 (ja) タスク割付方法およびこれを適用した制御装置
JP2008290223A (ja) ロボットの設置位置決定装置及びロボットの設置位置決定方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070402

Free format text: JAPANESE INTERMEDIATE CODE: A621

A761 Written withdrawal of application

Effective date: 20090904

Free format text: JAPANESE INTERMEDIATE CODE: A761