JP2005315663A - 漏水検出装置、電子装置及び漏水検出方法 - Google Patents

漏水検出装置、電子装置及び漏水検出方法 Download PDF

Info

Publication number
JP2005315663A
JP2005315663A JP2004132267A JP2004132267A JP2005315663A JP 2005315663 A JP2005315663 A JP 2005315663A JP 2004132267 A JP2004132267 A JP 2004132267A JP 2004132267 A JP2004132267 A JP 2004132267A JP 2005315663 A JP2005315663 A JP 2005315663A
Authority
JP
Japan
Prior art keywords
sealed container
dew condensation
water leakage
water
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004132267A
Other languages
English (en)
Inventor
Takahiro Kobayashi
隆宏 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004132267A priority Critical patent/JP2005315663A/ja
Publication of JP2005315663A publication Critical patent/JP2005315663A/ja
Pending legal-status Critical Current

Links

Images

Abstract


【課題】 密閉容器の漏水をより正確に検出すること。
【解決手段】 密閉容器1の漏水を検出するための漏水検出装置であって、前記密閉容器1内部の水分を吸収する乾燥剤2と、前記密閉容器内部の結露が検知され、前記密閉容器1内部の所定時間内における温度変化量が所定範囲内である場合に、前記密閉容器1が漏水していると判断する検出回路3、を含むことを特徴とする。
【選択図】 図1

Description

本発明は漏水検出装置、電子装置及び漏水検出方法に関する。
従来、移動体通信システムの基地局装置に代表される電子装置、特に通信装置等に使用される密閉容器の漏水を検出するためには、漏水センサを設置し、直接水を検出することにより行っていた。例えば特許文献1には、筐体の各面に窪みを設け、該窪みに漏水センサを設置することにより、筐体が任意の姿勢を取った場合にも漏水を検出することを可能とする発明が開示されている。
特開平11−135955号公報
しかしながら、上記従来の方式では、密閉容器内部の漏水する箇所すべてに漏水センサを設置する必要があった。また、結露も漏水として検出してしまっていた。
本発明は上記課題に鑑みてなされたものであって、その目的は、密閉容器の漏水をより正確に検出することのできる漏水検出装置、電子装置及び漏水検出方法を提供することにある。
上記従来例の問題点を解決するための本発明に係る漏水検出装置は、密閉容器の漏水を検出するための漏水検出装置であって、前記密閉容器内部の水分を吸収する乾燥手段と、所定時間内における前記密閉容器内部の温度変化量を測定する温度変化量測定手段と、前記密閉容器内部の結露を検知する結露検知手段と、前記結露検知手段により結露が検知され、前記温度変化量測定手段により測定される前記所定時間内における前記密閉容器内部の温度変化量が所定範囲内である場合に、前記密閉容器が漏水していると判断する漏水判断手段、を含むことを特徴とする。
また、本発明に係る漏水検出方法は、乾燥手段を備えた密閉容器の漏水を検出するための漏水検出方法であって、所定時間内における前記密閉容器内部の温度変化量を測定する温度変化量測定ステップと、前記密閉容器内部の結露を検知する結露検知ステップと、前記結露検知ステップにおいて結露が検知され、前記温度変化量測定ステップにおいて測定される前記所定時間内における前記密閉容器内部の温度変化量が所定範囲内である場合に、前記密閉容器が漏水していると判断する漏水判断ステップ、を含むことを特徴とする。
このようにすることにより、密閉容器の漏水をより正確に検出することができる。すなわち、温度変化により凝縮すべき水分量が乾燥手段により吸収されるべき量より少ないにも関わらず結露していることを検知することにより、漏水の有無を判断することができる。
また、上記漏水検出装置において、前記乾燥手段は乾燥剤であることとしてもよいし、前記結露検知手段は結露センサであることとしてもよい。
また、本発明に係る電子装置は、上記漏水検出装置を備えることを特徴とする。
本発明の実施の形態について、図面を参照しながら説明する。
本実施の形態に係る密閉容器1は、図1に示すように、乾燥剤2、検出回路3、通信回路4を含んで構成されている。そして、該密閉容器1はここでは電子装置である通信装置8の防水シールドとして使用される。
密閉容器1は水密構造であり、水密構造が破壊されて漏水しない限り外部の水が内部に浸入することはない。乾燥剤2は、密閉容器1の内部の任意の位置に設置することができる。また、乾燥剤2は密閉容器1に対して固定されている必要はないが、より高速な吸湿速度を得るために密閉容器1の結露や漏水が集まる該密閉容器1の底部に設置することが望ましい。或いは密閉容器1底部の水分を乾燥剤2に導くことにより該底部の水を速やかに吸収させることとしてもよい。また、漏水時の水溜とならない場所に設置することにより、水溜のための部位の容量を確保することとしてもよい。こうすれば、密閉容器1に存在する通信回路4を浸水しにくくすることができる。なお、水分は、液状の水であってもよいし、水蒸気であってもよい。
また、乾燥剤2としては除湿器のように機械的に乾燥させるものを使用してもよいが、従来公知のシリカゲル等のように吸収できる水分量に限界がある除湿剤若しくは乾燥剤を使用することが望ましい。シリカゲル等の除湿剤若しくは乾燥剤を用いれば、一旦漏水になった場合には確実に該漏水を検知することができる。これは、通信回路4が一旦水に浸かると壊れてしまうような場合に特に有効である。
検出回路3は、図2に示すように、CPU5、温度計6及び結露センサ7を含んで構成されている。CPU5は、温度計6が測定する温度及び結露センサ7が判断する結露状態を取得する。そして、該温度及び結露状態から漏水状態を判断し、図示しない通信手段等を使用して例えば監視センターに漏水を通知する。この漏水状態の判断については、後に詳述する。
温度計6としては従来公知のサーミスタ等の温度センサと温度測定回路(図示しない)から構成された温度計を使用することができ、該温度計6は密閉容器1内部の温度を測定する。そして該温度計6は、CPU5に対して測定結果を出力する。
結露センサ7としては従来公知の結露センサを使用することができる。ここでは、結露センサ7は通信回路4に固着され通信回路4の結露を検知する。なお、結露センサ7は通信回路4の回路基板上に一体に形成されていても構わない。もちろん密閉容器1内の任意の場所の結露を検知することとしてもよい。すなわち、密閉容器1の内部に水滴が発生している場合に、結露を検知する。該結露センサ7は、湿度変化により生じる電気抵抗の変化を測定し、測定結果が所定湿度(例えば90%)を超える場合に該密閉容器1は結露状態であると判断する一般的なもので構わない。また、直接的に水滴により生じる電気抵抗の変化を測定することにより、直接的に結露を検知する結露センサを使用してもよい。なお、結露センサ7は結露しているか否かを判断できれば足りる。また、結露センサ7は密閉容器1が漏水した場合の水溜とならない場所に設置することが望ましい。そして該結露センサ7は、CPU5に対して判断結果を出力する。
次に、CPU5における漏水状態の判断の原理について、図3を参照しながら説明する。
図3は横軸を密閉容器1内の温度、縦軸を密閉容器1内の水蒸気量とし、各温度における飽和水蒸気量をプロットして飽和水蒸気量曲線としたグラフである。例えば初期温度Tで飽和している場合に、温度T’(T’<T)に変化すると、Tにおける飽和水蒸気量とT’における飽和水蒸気量の差が水分となり、結露する。初期温度Tで飽和していない場合でも、同様にTにおける水蒸気量がT’における飽和水蒸気量を上回っている場合には、該差に相当する量の水蒸気が液体の水となり、結露する。しかし、密閉容器1には乾燥剤2が備えられており、該乾燥剤2の吸湿速度をCとすると、該乾燥剤2は時間tの間にCtの水分を吸収する。このため、ある程度までの温度変化の場合には、例え飽和水蒸気量を超える水蒸気量となったとしても、乾燥剤2が水分を吸収するため結露はしない。逆に言えば、乾燥剤2が水分を吸収するため結露はしない程度の温度変化であった場合に結露するということは、何らかの理由で水分が多くなってしまっているということを意味する。そこでCPU5は、この状態を判断することにより密閉容器1が漏水状態であると判断することができる。
なおここでは、吸湿速度Cを一定と見なすこととしている。これは、吸湿速度を一定としても漏水検出にはほとんど影響がないためである。もちろん、乾燥剤2の吸湿速度Cは実際には密閉容器1内の温度若しくは湿度によって変化するので、Cを例えば温度Tに応じて決定される量であるとしてもよい。
次に、CPU5における漏水状態の判断の具体的な処理について、フロー図を参照しながら説明する。
図4は、CPU5における漏水状態の判断の処理の一例を示すフロー図である。まず、CPU5は温度計6の温度を取得し、変数Tに代入する(S100)。そして、時間tにわたり処理をウエイトする(S102)。すなわち、図示しないタイマにより前段階の処理の終了と同時に計時を開始し、時間tが経過した場合に次段階の処理に移る。次に、CPU5は再度温度計6の温度を取得し、変数Tに代入する(S104)。そして、結露センサ7の検知状態を取得する(S106)。結露センサ7が結露であることを検知している場合、すなわち湿度が所定湿度以上である場合には、温度TがT−aより高いか否かを判断する(S108)。ここでaは所定の温度変化量であり、乾燥剤2を備える密閉容器1が所定の湿度である場合に、aの温度変化によって結露することがないように決定される。そして温度TがT−aより高い場合に、漏水していると判断する(S112)。一方、結露センサ7が結露していない状態であると判断する場合や温度TがT−aより低い場合には、TをTに代入し、S102の処理に戻る(S110)。以降この処理を繰り返すことにより、CPU5は漏水があるか否かを監視することができる。
ここで、時間tは乾燥剤2が所定の水分量を吸収することのできる時間とすることが好適である。具体的には、例えば密閉容器1内部が温度Tmaxの場合であって、かつ湿度x%のときの密閉容器1内部の水蒸気量Wmaxと、密閉容器1内部が温度Tminの場合であって、かつ湿度x%のときの密閉容器1内部の水蒸気量Wminと、の差をW=Wmax−Wminとすると、t=W/Cとすることができる。すなわち、ここでは時間tを一定と見なしているが、吸湿速度Cと同様、密閉容器1の温度や湿度に応じて決定することとしてもよい。ただし、密閉容器1の周囲の最高気温をTmaxとし、密閉容器1の周囲の最高気温をTminとする。
なお、湿度x%としては、例えば乾燥剤2を密閉容器1に入れた状態での、通常の使用状態での湿度を使用することができる。後述する実験結果の場合では、通常の使用状態においては、湿度は高々30%であるので、x=30とすることが好適である。つまり、密閉容器1の内部は漏水のない状態では通常30%に湿度が保たれるので、時間tの間に温度変化があっても、乾燥剤2がWの水分量を吸収することができれば、結露はしないと仮定できるからである。換言すれば、密閉容器1の内部の湿度が温度変化によって時間tの間にW以上の水分量変化があるということは、通常の状態ではあり得ないということを利用している。
またここでは、温度変化量aは温度Tによらず一定として取り扱うこととしているが、もちろん温度変化量aを温度Tに応じて決定される量であるとしてもよい。
なお実際には、時間tと温度変化量aは実際に密閉容器1が使用される環境における実験結果に基づき、実際の使用環境において最も適切に漏水を判断できるように決定されるべきである。
以上のようにすることにより、密閉容器の漏水をより正確に検出することができる。また、漏水をセンサにより直接検出するのではなく、温度測定と結露検出により漏水を判断できるので、結露センサ7は密閉容器1内部のいずれの位置にも設置することができる。また、乾燥剤2の吸湿速度が追いつかないような周囲温度の急激な変化によって密閉容器1内の湿度が一時的に高くなり結露している状態と、漏水状態を明確に区別することができる。
なお、本発明は上記実施の形態に限定されるものではない。
例えば、密閉容器1は通信装置8の防水シールドとして使用される他にも、防水を要する様々な用途で使用することができる。
本実施の形態の実施例を図5から図8に示す。これらの図は、乾燥剤(シリカゲルA型30g)を備えた装置体積50cm×30cm×20cmの通信装置において、本発明の上記実施の形態についての実験を実施したものである。
まず図5は、漏水がない状態での密閉容器1内部の温度と湿度の変化を示す図である。内部温度24℃、湿度50%であった状態から周囲を0℃まで急激に冷却した場合であるが、乾燥剤2の水分吸収により温度が下がっても湿度は下がり続けている。すなわち、本実施例の乾燥剤2を使用することにより漏水がない場合には湿度は十分低く保たれるということを示している。
次に図6も、漏水がない状態での密閉容器1内部の温度と湿度の変化を示す図である。内部温度26℃、湿度48%であった状態から周囲を75℃まで急激に温め、さらにその後0℃まで急激に冷却した場合である。この場合、冷却により湿度は約10%上昇するが、最大16%である。すなわちこの結果も、本実施例の乾燥剤2を使用することにより漏水がない場合には湿度は十分低く保たれるということを示している。
次に図7は、漏水を発生させた状態での密閉容器1内部の温度と湿度の変化を示す図である。図5,6に示すように、通常湿度は30%以下に保たれるので、初期状態を内部温度28℃、湿度45%とし、周囲気温を25℃に保った状態から約75分後に水200ccを注入することにより漏水状態を作り出している。この場合、水を入れた段階で湿度は急激に上昇している。そして湿度は100%となってはいないが、実際には結露している状態となっている。そして、時間が経過しても湿度は下がらず、結露したままの状態が保たれている。これは、乾燥剤2の水分吸収が限界に達していることを意味する。そして、一定時間tが経過しても温度は一定で、かつ結露している状態となり、このような場合、上記実施の形態に示した処理により、検出回路3は漏水状態を判断することができる。
また図8も、漏水を発生させた状態での密閉容器1内部の温度と湿度の変化を示す図である。図8では、初期状態を内部温度28℃、湿度40%とし、周囲気温を75℃に保った状態から約85分後に水200ccを注入することにより漏水状態を作り出している。この場合にも、水を入れた段階で湿度は急激に上昇している。そして湿度は100%となってはいないが、実際には結露している状態となっている。そして、時間が経過しても湿度は下がらず、結露したままの状態が保たれている。すなわち、一定時間tが経過しても温度は一定で、かつ結露している状態であるので、このような場合、上記実施の形態に示した処理により、検出回路3は漏水状態を判断することができる。
以上述べたように、上記実施例に示される実験結果は、上記実施の形態による処理によって密閉容器1内部の漏水状態が検出できることを示している。また実験では、内部湿度がある程度(例えば20%)以上である場合には乾燥剤の吸湿速度Cはほぼ一定となっている。このことは、漏水検出においては密閉容器内部の水蒸気量が飽和水蒸気量に近い状態での吸湿速度Cが問題となることを考慮すると、上述の通り吸湿速度Cを一定と見なしても漏水検出には影響がほとんどないということを示している。
本発明の実施の形態に係る密閉容器、乾燥剤及び検出回路の構成図である。 本発明の実施の形態に係る検出回路の構成ブロック図である。 本発明の実施の形態に係る温度/水蒸気量対応図である。 本発明の実施の形態に係る検出回路の処理フロー図である。 本発明の実施例に係る実験結果である。 本発明の実施例に係る実験結果である。 本発明の実施例に係る実験結果である。 本発明の実施例に係る実験結果である。
符号の説明
1 密閉容器、2 乾燥剤、3 検出回路、4 通信回路、5 CPU、6 温度計、7 結露センサ、8 通信装置。

Claims (5)

  1. 密閉容器の漏水を検出するための漏水検出装置であって、
    前記密閉容器内部の水分を吸収する乾燥手段と、
    所定時間内における前記密閉容器内部の温度変化量を測定する温度変化量測定手段と、
    前記密閉容器内部の結露を検知する結露検知手段と、
    前記結露検知手段により結露が検知され、前記温度変化量測定手段により測定される前記所定時間内における前記密閉容器内部の温度変化量が所定範囲内である場合に、前記密閉容器が漏水していると判断する漏水判断手段、
    を含むことを特徴とする漏水検出装置。
  2. 請求項1に記載の漏水検出装置であって、
    前記乾燥手段は、乾燥剤である、
    ことを特徴とする漏水検出装置。
  3. 請求項1又は2のいずれか1項に記載の漏水検出装置であって、
    前記結露検知手段は、結露センサである、
    ことを特徴とする漏水検出装置。
  4. 請求項1乃至3のいずれか1項に記載の漏水検出装置を備えることを特徴とする電子装置。
  5. 乾燥手段を備えた密閉容器の漏水を検出するための漏水検出方法であって、
    所定時間内における前記密閉容器内部の温度変化量を測定する温度変化量測定ステップと、
    前記密閉容器内部の結露を検知する結露検知ステップと、
    前記結露検知ステップにおいて結露が検知され、前記温度変化量測定ステップにおいて測定される前記所定時間内における前記密閉容器内部の温度変化量が所定範囲内である場合に、前記密閉容器が漏水していると判断する漏水判断ステップ、
    を含むことを特徴とする漏水検出方法。
JP2004132267A 2004-04-27 2004-04-27 漏水検出装置、電子装置及び漏水検出方法 Pending JP2005315663A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004132267A JP2005315663A (ja) 2004-04-27 2004-04-27 漏水検出装置、電子装置及び漏水検出方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004132267A JP2005315663A (ja) 2004-04-27 2004-04-27 漏水検出装置、電子装置及び漏水検出方法

Publications (1)

Publication Number Publication Date
JP2005315663A true JP2005315663A (ja) 2005-11-10

Family

ID=35443257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004132267A Pending JP2005315663A (ja) 2004-04-27 2004-04-27 漏水検出装置、電子装置及び漏水検出方法

Country Status (1)

Country Link
JP (1) JP2005315663A (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007248416A (ja) * 2006-03-20 2007-09-27 Musashino Kiki Kk 液面計
JP2010217106A (ja) * 2009-03-18 2010-09-30 Chugoku Electric Power Co Inc:The 開閉器浸水量推定方法及び開閉器浸水量推定装置
JP2011038886A (ja) * 2009-08-10 2011-02-24 Chugoku Electric Power Co Inc:The 気密判定装置及び気密判定方法
JP2015052270A (ja) * 2010-06-16 2015-03-19 ミューラー インターナショナル エルエルシーMueller International,Llc 漏れ検知アセンブリ、およびシステム
US9202362B2 (en) 2008-10-27 2015-12-01 Mueller International, Llc Infrastructure monitoring system and method
US9494249B2 (en) 2014-05-09 2016-11-15 Mueller International, Llc Mechanical stop for actuator and orifice
US9565620B2 (en) 2014-09-02 2017-02-07 Mueller International, Llc Dynamic routing in a mesh network
US9593999B2 (en) 2011-08-12 2017-03-14 Mueller International, Llc Enclosure for leak detector
US9799204B2 (en) 2009-05-22 2017-10-24 Mueller International, Llc Infrastructure monitoring system and method and particularly as related to fire hydrants and water distribution
US10039018B2 (en) 2011-10-27 2018-07-31 Mueller International, Llc Systems and methods for recovering an out-of-service node in a hierarchical network
US10283857B2 (en) 2016-02-12 2019-05-07 Mueller International, Llc Nozzle cap multi-band antenna assembly
US10305178B2 (en) 2016-02-12 2019-05-28 Mueller International, Llc Nozzle cap multi-band antenna assembly
US10859462B2 (en) 2018-09-04 2020-12-08 Mueller International, Llc Hydrant cap leak detector with oriented sensor
US11342656B2 (en) 2018-12-28 2022-05-24 Mueller International, Llc Nozzle cap encapsulated antenna system
CN114719896A (zh) * 2022-02-25 2022-07-08 中国电子科技集团公司第二十九研究所 一种海上密闭空间环境监测装置、方法及系统
US11473993B2 (en) 2019-05-31 2022-10-18 Mueller International, Llc Hydrant nozzle cap
US11542690B2 (en) 2020-05-14 2023-01-03 Mueller International, Llc Hydrant nozzle cap adapter

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007248416A (ja) * 2006-03-20 2007-09-27 Musashino Kiki Kk 液面計
US9934670B2 (en) 2008-10-27 2018-04-03 Mueller International, Llc Infrastructure monitoring system and method
US9202362B2 (en) 2008-10-27 2015-12-01 Mueller International, Llc Infrastructure monitoring system and method
JP2010217106A (ja) * 2009-03-18 2010-09-30 Chugoku Electric Power Co Inc:The 開閉器浸水量推定方法及び開閉器浸水量推定装置
US9799204B2 (en) 2009-05-22 2017-10-24 Mueller International, Llc Infrastructure monitoring system and method and particularly as related to fire hydrants and water distribution
JP2011038886A (ja) * 2009-08-10 2011-02-24 Chugoku Electric Power Co Inc:The 気密判定装置及び気密判定方法
JP2015052270A (ja) * 2010-06-16 2015-03-19 ミューラー インターナショナル エルエルシーMueller International,Llc 漏れ検知アセンブリ、およびシステム
US10881888B2 (en) 2010-06-16 2021-01-05 Mueller International, Llc Infrastructure monitoring devices, systems, and methods
US10857403B2 (en) 2010-06-16 2020-12-08 Mueller International, Llc Infrastructure monitoring devices, systems, and methods
US11590376B2 (en) 2010-06-16 2023-02-28 Mueller International, Llc Infrastructure monitoring devices, systems, and methods
US9849322B2 (en) 2010-06-16 2017-12-26 Mueller International, Llc Infrastructure monitoring devices, systems, and methods
US9861848B2 (en) 2010-06-16 2018-01-09 Mueller International, Llc Infrastructure monitoring devices, systems, and methods
US11680865B2 (en) 2011-08-12 2023-06-20 Mueller International, Llc Leak detection in water distribution systems using acoustic signals
US10175135B2 (en) 2011-08-12 2019-01-08 Mueller International, Llc Leak detector
US9772250B2 (en) 2011-08-12 2017-09-26 Mueller International, Llc Leak detector and sensor
US11630021B2 (en) 2011-08-12 2023-04-18 Mueller International, Llc Enclosure for leak detector
US10386257B2 (en) 2011-08-12 2019-08-20 Mueller International, Llc Enclosure for leak detector
US9593999B2 (en) 2011-08-12 2017-03-14 Mueller International, Llc Enclosure for leak detector
US10039018B2 (en) 2011-10-27 2018-07-31 Mueller International, Llc Systems and methods for recovering an out-of-service node in a hierarchical network
US9494249B2 (en) 2014-05-09 2016-11-15 Mueller International, Llc Mechanical stop for actuator and orifice
US9565620B2 (en) 2014-09-02 2017-02-07 Mueller International, Llc Dynamic routing in a mesh network
US11527821B2 (en) 2016-02-12 2022-12-13 Mueller International, Llc Nozzle cap assembly
US10305178B2 (en) 2016-02-12 2019-05-28 Mueller International, Llc Nozzle cap multi-band antenna assembly
US11837782B2 (en) 2016-02-12 2023-12-05 Mueller International, Llc Nozzle cap assembly
US10283857B2 (en) 2016-02-12 2019-05-07 Mueller International, Llc Nozzle cap multi-band antenna assembly
US11469494B2 (en) 2016-02-12 2022-10-11 Mueller International, Llc Nozzle cap multi-band antenna assembly
US11652284B2 (en) 2016-02-12 2023-05-16 Mueller International, Llc Nozzle cap assembly
US11336004B2 (en) 2016-02-12 2022-05-17 Mueller International, Llc Nozzle cap multi-band antenna assembly
US10859462B2 (en) 2018-09-04 2020-12-08 Mueller International, Llc Hydrant cap leak detector with oriented sensor
US11422054B2 (en) 2018-09-04 2022-08-23 Mueller International, Llc Hydrant cap leak detector with oriented sensor
US11692901B2 (en) 2018-09-04 2023-07-04 Mueller International, Llc Hydrant cap leak detector with oriented sensor
US11342656B2 (en) 2018-12-28 2022-05-24 Mueller International, Llc Nozzle cap encapsulated antenna system
US11624674B2 (en) 2019-05-31 2023-04-11 Mueller International, Llc Hydrant nozzle cap with antenna
US11473993B2 (en) 2019-05-31 2022-10-18 Mueller International, Llc Hydrant nozzle cap
US11542690B2 (en) 2020-05-14 2023-01-03 Mueller International, Llc Hydrant nozzle cap adapter
CN114719896A (zh) * 2022-02-25 2022-07-08 中国电子科技集团公司第二十九研究所 一种海上密闭空间环境监测装置、方法及系统

Similar Documents

Publication Publication Date Title
JP2005315663A (ja) 漏水検出装置、電子装置及び漏水検出方法
ES2356103T3 (es) Método y dispositivo para determinar la humedad relativa de un aparato eléctrico lleno de líquido aislante.
Jacobsen et al. Climate-protective packaging: Using basic physics to solve climatic challenges for electronics in demanding applications
CN110186146B (zh) 空调器的水满预警方法、控制装置及空调器
JP3466503B2 (ja) 環境水中の揮発性物質検知装置
KR101691799B1 (ko) 제습기의 제어방법 및 그에 따른 제습기
CN112368558A (zh) 用于易燃气体检测的方法和系统
WO2021215526A1 (en) Refrigerant leakage detection sensor for a heat pump and air conditioning apparatus including same
US5165793A (en) Dew point measuring method and apparatus
WO1999066300A1 (fr) Procede et appareil permettant de tester l'etancheite a l'air d'un espace clos equipe d'un dispositif de commande du mouvement de la vapeur
CN209905499U (zh) 一种食品检验用恒温干燥装置
JPH1013044A (ja) 電子部品ケース
JP2009294049A (ja) 気密判定装置及び気密判定方法
Conseil et al. Experimental study of humidity distribution inside electronic enclosure and effect of internal heating
JP2006114532A (ja) 冷却装置
JP3212236B2 (ja) 吸着剤の吸水状態検知装置
JP4377194B2 (ja) 油漏れセンサー及び油分検出方法
CN215814204U (zh) 数据采集终端
US20040083792A1 (en) System and method for detecting hydride gases at low concentrations and in the presence of varying humidity levels
CN212340557U (zh) 漏液检测装置
Joshy et al. Effect of interior geometry on local climate inside an electronic device enclosure
CN215269127U (zh) 一种漏电保护器测试仪的防潮壳体
TWI751804B (zh) 伺服器的冷卻系統
JP6983051B2 (ja) 電子部品
CN206584481U (zh) 一种智能感温报警探测器