JP2005315309A - Refrigerant flow control valve - Google Patents

Refrigerant flow control valve Download PDF

Info

Publication number
JP2005315309A
JP2005315309A JP2004132377A JP2004132377A JP2005315309A JP 2005315309 A JP2005315309 A JP 2005315309A JP 2004132377 A JP2004132377 A JP 2004132377A JP 2004132377 A JP2004132377 A JP 2004132377A JP 2005315309 A JP2005315309 A JP 2005315309A
Authority
JP
Japan
Prior art keywords
refrigerant
flow control
control valve
valve
valve body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004132377A
Other languages
Japanese (ja)
Inventor
Shoji Takaku
昭二 高久
Ryoichi Takato
亮一 高藤
Hisashi Daisaka
恒 台坂
Ichiro Fujibayashi
一朗 藤林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Home and Life Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Home and Life Solutions Inc filed Critical Hitachi Home and Life Solutions Inc
Priority to JP2004132377A priority Critical patent/JP2005315309A/en
Publication of JP2005315309A publication Critical patent/JP2005315309A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2507Flow-diverting valves

Landscapes

  • Electrically Driven Valve-Operating Means (AREA)
  • Multiple-Way Valves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerant flow control valve, reducing the space for installation while uniforming the divided flow of a refrigerant in a heat exchanger for cooling during cooling operation. <P>SOLUTION: This refrigerant flow control valve is composed of a valve element for controlling the rotating angle and a valve chest part having one refrigerant inflow port and two outlets. The lower part of the valve element is formed obliquely to the axial sections of two refrigerant outflow ports, and a clearance gap is provided to perform throttle action at the rotating angle to minimize both sectional areas between two refrigerant outflow ports and the inlet. In a refrigerant flow control valve composed of a valve element vertically moved in the axial direction by rotation, the valve element is formed asymmetrical to the axial section of a refrigerant inflow port. In a refrigerant flow control valve composed of a vertically movable valve element, the lower part of the valve element is formed asymmetrical to the axial section of a refrigerant inflow port so that the flow rates of a refrigerant flowing out of two refrigerant outflow ports have a predetermined flow rate ratio. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、空気調和機に用いられる冷媒流量制御弁に係り、1つの弁で分流と流量の制御が可能な弁に関するものである。   The present invention relates to a refrigerant flow rate control valve used in an air conditioner, and relates to a valve capable of controlling the diversion and flow rate with a single valve.

従来の空気調和機では、湿度を下げるための除湿運転として、熱的に分割された冷却用熱交換器と再熱用熱交換器で構成された室内熱交換器の間に絞り作用を有する冷媒流量制御弁を設け、冷却用熱交換器により冷却・除湿された空気流を再熱用熱交換器の凝縮熱により再加熱する方式のものが知られている。この方式を用いることで温度低下のない快適な再熱除湿運転が可能となる。   In a conventional air conditioner, as a dehumidifying operation for lowering humidity, a refrigerant having a throttling action between an indoor heat exchanger composed of a thermally divided cooling heat exchanger and a reheat heat exchanger There is known a system in which a flow rate control valve is provided, and an air flow cooled and dehumidified by a cooling heat exchanger is reheated by the condensation heat of the reheating heat exchanger. By using this method, a comfortable reheat dehumidification operation without a temperature drop is possible.

一方、冷房運転時のサイクルの成績係数(COP=能力/入力)を向上させるため冷却用熱交換器に複数の冷媒流路を設け、冷媒流の圧力損失の低減を図っている。このとき、分割された室内熱交換器の間に設けられた冷媒流量制御弁は全開で絞り作用を行わない。冷媒流量制御弁を通過した冷媒は、冷却用熱交換器の分岐部で複数の冷媒流路に分流される。その際、分岐部形状のバラツキによる各流路の圧力損失の違いや、流路下流の熱交換器を通過する空気流の風速分布による熱交換量の差により分流のバランスが崩れ、最適に熱交換することができず冷却用熱交換器の熱交換能力が低下してしまう問題があった。   On the other hand, in order to improve the coefficient of performance (COP = capability / input) of the cycle during the cooling operation, a plurality of refrigerant flow paths are provided in the cooling heat exchanger to reduce the pressure loss of the refrigerant flow. At this time, the refrigerant flow control valve provided between the divided indoor heat exchangers is fully opened and does not throttle. The refrigerant that has passed through the refrigerant flow control valve is divided into a plurality of refrigerant flow paths at the branch portion of the cooling heat exchanger. At that time, the balance of the shunt flow is lost due to the difference in pressure loss of each flow path due to the variation in the shape of the branching section, and the difference in heat exchange due to the wind speed distribution of the air flow passing through the heat exchanger downstream of the flow path. There was a problem that the heat exchange ability of the heat exchanger for cooling could not be exchanged, and the heat exchange ability was lowered.

この改善策として、分岐部を直交して接続された1つの流入管と2方向の流出管からなるT字型とし、流出管の流入口に対抗する壁面に管軸に略直交するように突起部を設けることで冷媒の分流を均一化する方法がある。しかしながらこの方法では、冷房運転時のある特定条件下で分流を均一にできるが、幅広い条件で分流を均一に保つことはできず、条件によっては分流にアンバランスが生じ、冷却用熱交換器の熱交換能力が大幅に低下してしまう。さらに、分岐部の形状に自由度がないため、除湿運転用の冷媒流量制御弁と併用すると設置のための空間を大きく取る必要がある。   As a measure to improve this, the branching part has a T-shape consisting of one inflow pipe connected perpendicularly and an outflow pipe in two directions, and the wall faces the inlet of the outflow pipe so as to be substantially perpendicular to the pipe axis. There is a method of making the refrigerant flow uniform by providing a portion. However, with this method, the diversion can be made uniform under certain conditions during cooling operation, but the diversion cannot be kept uniform over a wide range of conditions. The heat exchange capacity will be greatly reduced. Furthermore, since there is no degree of freedom in the shape of the branch part, it is necessary to take a large space for installation when used together with the refrigerant flow control valve for dehumidifying operation.

特開平6−194003号公報JP-A-6-194003

解決しようとする課題は、冷房運転時において冷却用熱交換器の冷媒分流の均一化を図りながら、設置するための空間を少なくできる冷媒流量制御弁を提供することにある。   The problem to be solved is to provide a refrigerant flow rate control valve capable of reducing the space for installation while making the refrigerant distribution of the cooling heat exchanger uniform during cooling operation.

本発明は上記課題を実現するため、以下に説明する構成としたことを特徴とする。   In order to achieve the above-mentioned object, the present invention is characterized in that it is configured as described below.

ステッピングモータ等により回転角を任意に制御可能な弁体と1つの冷媒流入口と2つの冷媒流出口を有する弁室部から成る冷媒流量制御弁において、弁体の下部形状を2つの冷媒流出口の軸方向断面に対して斜めに形成するとともに、2つの冷媒流出口と入口の間の断面積が共に最小になる回転角度において、流路に絞り作用を行う隙間を設けた。または、前記冷媒流量制御弁において弁体が回転することで軸線方向に上下移動可能とし、前記弁体の形状を冷媒流入口の軸方向断面に対して非対称に形成した。あるいは、前記冷媒流量制御弁において弁体がソレノイドコイル等により上下移動可能とし、弁体下部を2つの冷媒流出口から流出する冷媒の流量があらかじめ定められた流量比になるよう冷媒流入口の軸方向断面に対して非対称に形成した。   In a refrigerant flow control valve comprising a valve body having a valve body whose rotational angle can be arbitrarily controlled by a stepping motor or the like, one refrigerant inlet, and two refrigerant outlets, the lower shape of the valve body is divided into two refrigerant outlets. In addition, the gap is formed in the flow path at a rotation angle at which the cross-sectional areas between the two refrigerant outlets and the inlets are both minimized. Alternatively, in the refrigerant flow control valve, the valve body can be moved up and down in the axial direction by rotating, and the shape of the valve body is asymmetric with respect to the axial cross section of the refrigerant inlet. Alternatively, in the refrigerant flow control valve, the valve body can be moved up and down by a solenoid coil or the like, and the refrigerant inlet shaft is arranged so that the flow rate of the refrigerant flowing out from the two refrigerant outlets at the lower part of the valve body becomes a predetermined flow ratio. It was formed asymmetric with respect to the cross section.

本発明は、前記のような構成にした冷媒流量制御弁を用いることで、温度低下のない快適な再熱除湿運転が可能で、さらに冷房運転時に幅広い条件で分流を均一に保つことができ、冷房運転時のサイクルの成績係数が向上し、分岐部と冷媒流量制御弁を一体とするため設置のための空間が少なくできる。   By using the refrigerant flow rate control valve configured as described above, the present invention enables a comfortable reheat dehumidification operation without a temperature drop, and can maintain a uniform diversion under a wide range of conditions during cooling operation. The coefficient of performance of the cycle during cooling operation is improved, and the space for installation can be reduced because the branch portion and the refrigerant flow rate control valve are integrated.

再熱除湿運転を行うための冷媒流量制御弁を備え、さらに冷房運転時に幅広い条件で分流を均一に保つための分岐部を設置するための空間を少なくするという目的を、分流比を任意に決められる分岐部と冷媒流量制御弁を一体とすることで実現した。   Equipped with a refrigerant flow control valve for reheat dehumidification operation, and the purpose of reducing the space for installing a branching section to keep the diversion uniform over a wide range of conditions during cooling operation, the diversion ratio is arbitrarily determined This is realized by integrating the branching section and the refrigerant flow control valve.

本発明における第1の実施例について説明する。図1は、本発明を適用した空気調和機の冷媒回路図である。図1において1は圧縮機、2は冷房サイクルと暖房サイクルを切換える四方弁、3は室外熱交換器、4は冷房運転及び暖房運転の時に絞り作用を行う電動膨張弁等の第1の冷媒流量制御弁、5、6は二分割された室内熱交換器であり、6は2つの冷媒流路を有する。7は除湿運転時に絞り作用を行う第2の冷媒流量制御弁である。   A first embodiment of the present invention will be described. FIG. 1 is a refrigerant circuit diagram of an air conditioner to which the present invention is applied. In FIG. 1, 1 is a compressor, 2 is a four-way valve that switches between a cooling cycle and a heating cycle, 3 is an outdoor heat exchanger, and 4 is a first refrigerant flow rate such as an electric expansion valve that performs a throttling action during cooling and heating operations. Control valves 5, 6 are indoor heat exchangers divided into two, and 6 has two refrigerant flow paths. Reference numeral 7 denotes a second refrigerant flow control valve that performs a throttling operation during the dehumidifying operation.

また、圧縮機1、四方弁2、室外熱交換器3、第1の冷媒流量制御弁4、室内熱交換器5、第2の冷媒流量制御弁7、室内熱交換器6は、冷媒配管により順次接続されて冷凍サイクルを構成する。   Further, the compressor 1, the four-way valve 2, the outdoor heat exchanger 3, the first refrigerant flow control valve 4, the indoor heat exchanger 5, the second refrigerant flow control valve 7, and the indoor heat exchanger 6 are connected by refrigerant piping. The refrigeration cycle is configured by sequentially connecting.

冷房運転時は、圧縮機1で圧縮された冷媒が室外熱交換器3で凝縮し、第1の冷媒流量制御弁4での絞り作用により膨張して室内熱交換器5、6で蒸発し圧縮機1へ戻る。第2の冷媒流量制御弁7は絞り作用を行わず、室内熱交換器6の2つの冷媒流路に冷媒を分流する分流器となる。   During the cooling operation, the refrigerant compressed by the compressor 1 condenses in the outdoor heat exchanger 3, expands due to the throttling action of the first refrigerant flow control valve 4, and evaporates and compresses in the indoor heat exchangers 5 and 6. Return to Machine 1. The second refrigerant flow control valve 7 does not perform a throttling function and serves as a flow divider that diverts the refrigerant to the two refrigerant flow paths of the indoor heat exchanger 6.

再熱除湿運転時は、冷房運転時と冷媒の流れる方向は同じで、第1の冷媒流量制御弁4を全開にし、第2の冷媒流量制御弁7で絞り作用を行う。室内熱交換器の第1の部分5は冷媒が凝縮する加熱器となり、第2の部分6は冷媒が蒸発する冷却器となる。   In the reheat dehumidifying operation, the refrigerant flows in the same direction as in the cooling operation, the first refrigerant flow control valve 4 is fully opened, and the second refrigerant flow control valve 7 performs the throttling action. The first part 5 of the indoor heat exchanger is a heater that condenses the refrigerant, and the second part 6 is a cooler that evaporates the refrigerant.

図2は、本実施例で二分割された室内熱交換器5、6の間に接続される第2の冷媒流量制御弁7を示す断面図である。前記冷媒流量制御弁は弁室部8と弁体9から成る。弁室部8は1つの冷媒流入口10と2つの冷媒流出口11、12を有する。また、弁体9はステッピングモータ等により軸方向に回転角を任意に制御可能である。前記弁体9下部の弁座形状は、2つの冷媒流出口11、12の軸方向断面に対して斜めに形成される。また、2つの冷媒流出口11、12と入口10の間の断面積が共に最小になる回転角度において流路で絞り作用が行われるよう、弁室部8の冷媒流入口側の壁面を弁体9の形状に沿って一定の間隔が開くように形成し、2つの冷媒流出口11、12と入口10の間に隙間が開くよう構成されている。   FIG. 2 is a cross-sectional view showing the second refrigerant flow control valve 7 connected between the indoor heat exchangers 5 and 6 divided into two in this embodiment. The refrigerant flow control valve includes a valve chamber 8 and a valve body 9. The valve chamber 8 has one refrigerant inlet 10 and two refrigerant outlets 11 and 12. Further, the rotation angle of the valve body 9 can be arbitrarily controlled in the axial direction by a stepping motor or the like. The valve seat shape in the lower part of the valve body 9 is formed obliquely with respect to the axial section of the two refrigerant outlets 11 and 12. In addition, the wall on the refrigerant inlet side of the valve chamber 8 is used as a valve body so that the throttle action is performed in the flow path at a rotation angle at which the cross-sectional areas between the two refrigerant outlets 11 and 12 and the inlet 10 are both minimized. 9 is formed so that a constant interval is opened along the shape of the hole 9, and a gap is formed between the two refrigerant outlets 11, 12 and the inlet 10.

図3に前記弁体9の回転角を変化させたときの冷媒流入口10と出口11、12の断面積変化をグラフで示す。図3の(a)の領域では2つの冷媒流出口11、12への分流比を任意に決められる。この領域での弁体9の回転角度の一例を図2のA−A面の断面図として図4に示す。   FIG. 3 is a graph showing changes in the cross-sectional areas of the refrigerant inlet 10 and the outlets 11 and 12 when the rotation angle of the valve body 9 is changed. In the area of FIG. 3A, the diversion ratio to the two refrigerant outlets 11 and 12 can be arbitrarily determined. An example of the rotation angle of the valve body 9 in this region is shown in FIG. 4 as a cross-sectional view of the AA plane of FIG.

例えば、冷房運転時に室内熱交換器6出口の2つの冷媒流路の温度T1、T2を測定し、T1>T2であればT1とT2の差に対応した角度だけT1の流路方向へ弁を回転させる。これによりT1とT2を同じ温度に維持し、室内熱交換器6を最適な状態で利用することができ、サイクルの成績係数を向上させることができる。   For example, during cooling operation, the temperatures T1 and T2 of the two refrigerant channels at the outlet of the indoor heat exchanger 6 are measured. If T1> T2, the valve is moved in the direction of the channel T1 by an angle corresponding to the difference between T1 and T2. Rotate. Thereby, T1 and T2 can be maintained at the same temperature, the indoor heat exchanger 6 can be utilized in an optimum state, and the coefficient of performance of the cycle can be improved.

図3の(b)は片側の流量が固定されるため、冷房運転から再熱除湿運転への切換え等で過渡的に回転させる。この領域での弁体9の回転角度の一例を図2のA−A面の断面図として図5に示す。   In FIG. 3B, since the flow rate on one side is fixed, it is rotated transiently by switching from the cooling operation to the reheat dehumidification operation. An example of the rotation angle of the valve body 9 in this region is shown in FIG. 5 as a cross-sectional view of the AA plane of FIG.

図3の(c)は2つの冷媒流出口11、12と入口10の間の断面積が共に最小になる再熱除湿運転時に絞り作用を行う領域であり、温度の下がらない快適な除湿運転ができる開度に隙間が調整されている。この領域での弁体9の回転角度の一例を図2のA−A面の断面図として図6に示す。   FIG. 3 (c) is a region where the squeezing action is performed during the reheat dehumidification operation in which the cross-sectional areas between the two refrigerant outlets 11 and 12 and the inlet 10 are both minimized, and a comfortable dehumidification operation without lowering the temperature is performed. The gap is adjusted to the opening that can be. An example of the rotation angle of the valve body 9 in this region is shown in FIG. 6 as a cross-sectional view of the AA plane in FIG.

本実施例では弁室部8を弁体9の形状に沿って一定の間隔が開くように形成したが、図7のように弁室部8と弁体9を接触させ、弁体9の弁座部に細径の流路13を設けて再熱除湿運転時の絞り作用を行わせてもよい。   In the present embodiment, the valve chamber portion 8 is formed so as to open a certain interval along the shape of the valve body 9, but the valve chamber portion 8 and the valve body 9 are brought into contact as shown in FIG. A narrow-diameter channel 13 may be provided in the seat portion to perform the throttling action during the reheat dehumidifying operation.

本発明における第2の実施例について説明する。空気調和機の動作は第1の実施例に記載した動作と同じなので省略する。図8は、本実施例で二分割された室内熱交換器5、6の間に接続される第2の冷媒流量制御弁7を示す断面図である。前記流量制御弁7は弁室部14と弁体15から成る。弁室部14は1つの冷媒流入口10と2つの冷媒流出口11、12を有する。また弁体15は、ステッピングモータのロータ軸の雄ネジ部とそのハウジングの雌ネジ部により軸が回転することで軸線方向に上下移動しながら回転角を任意に設定可能である。前記弁体15の弁座形状は冷媒流入口の軸方向断面に対して非対称に形成される。   A second embodiment of the present invention will be described. Since the operation of the air conditioner is the same as that described in the first embodiment, a description thereof will be omitted. FIG. 8 is a cross-sectional view showing the second refrigerant flow control valve 7 connected between the indoor heat exchangers 5 and 6 divided into two in this embodiment. The flow control valve 7 includes a valve chamber 14 and a valve body 15. The valve chamber portion 14 has one refrigerant inlet 10 and two refrigerant outlets 11 and 12. Further, the rotation angle of the valve body 15 can be arbitrarily set while moving up and down in the axial direction by rotating the shaft by the male screw portion of the rotor shaft of the stepping motor and the female screw portion of the housing. The valve seat shape of the valve body 15 is asymmetric with respect to the axial cross section of the refrigerant inlet.

図9に前記弁体15の回転角を変化させたときの冷媒流入口10と出口11、12の断面積変化をグラフで示す。図9の(a)の領域では2つの冷媒流出口11、12への分流比を任意に決められる。冷房運転時、弁体15の回転角度は、第1の実施例と同様に室内熱交換器6出口の2つの冷媒流路の温度が等しくなるように決める。これにより室内熱交換器6を最適な状態で利用することができ、サイクルの成績係数を向上させることができる。   FIG. 9 is a graph showing changes in the cross-sectional areas of the refrigerant inlet 10 and the outlets 11 and 12 when the rotation angle of the valve body 15 is changed. In the region of FIG. 9A, the diversion ratio to the two refrigerant outlets 11 and 12 can be arbitrarily determined. During the cooling operation, the rotation angle of the valve body 15 is determined so that the temperatures of the two refrigerant flow paths at the outlet of the indoor heat exchanger 6 are equal as in the first embodiment. Thereby, the indoor heat exchanger 6 can be utilized in an optimal state, and the coefficient of performance of the cycle can be improved.

再熱除湿運転時は図9の(b)の角度まで弁を回転させ、絞り作用を行うことで温度の下がらない快適な除湿運転ができる。   During the reheat dehumidifying operation, a comfortable dehumidifying operation in which the temperature does not drop can be performed by rotating the valve to the angle shown in FIG.

本発明における第3の実施例について説明する。空気調和機の動作は第1の実施例に記載した動作と同じなので省略する。図10は、本実施例で二分割された室内熱交換器5、6の間に接続される第2の冷媒流量制御弁7を示す断面図である。前記流量制御弁7は弁室部16と弁体17から成る。弁室部16は1つの冷媒流入口10と2つの冷媒流出口11、12を有する。また弁体17はソレノイドコイルの電磁力とばねの弾性により上下移動可能である。さらに、弁体17下部の弁座は冷媒流入口の軸方向断面に対して非対称の形状とする。図11に弁座形状に対する出口流量の変化をグラフに示す。弁座形状は図11のaが長いほど冷媒流出口11の方への流量が多くなり冷媒流出口12の方への流量は少なくなる。この関係を用いて、室内熱交換器6の2つの冷媒流路出口の温度が等しくなる流量比に形成する。   A third embodiment of the present invention will be described. Since the operation of the air conditioner is the same as that described in the first embodiment, a description thereof will be omitted. FIG. 10 is a cross-sectional view showing the second refrigerant flow control valve 7 connected between the indoor heat exchangers 5 and 6 divided into two in this embodiment. The flow control valve 7 includes a valve chamber 16 and a valve body 17. The valve chamber 16 has one refrigerant inlet 10 and two refrigerant outlets 11 and 12. The valve body 17 can move up and down by the electromagnetic force of the solenoid coil and the elasticity of the spring. Further, the valve seat below the valve body 17 has an asymmetric shape with respect to the axial cross section of the refrigerant inlet. FIG. 11 is a graph showing changes in the outlet flow rate with respect to the valve seat shape. As the valve seat shape is longer in FIG. 11, the flow rate toward the refrigerant outlet 11 increases and the flow rate toward the refrigerant outlet 12 decreases. Using this relationship, the flow rate ratio is set so that the temperatures of the two refrigerant flow path outlets of the indoor heat exchanger 6 are equal.

冷房運転時は、弁体17が図10のように弁室の上部に固定されており、弁座の突出部により冷媒が最適に分流され、室内熱交換器6は2つの冷媒流路出口の温度が等しくなるため最適な状態で利用することができ成績係数が向上する。再熱除湿運転時は、弁体17は図12のように弁室部16の下部に固定され、弁体17と弁室部16の間の隙間により絞り作用が生じ、温度の下がらない快適な除湿運転ができる。   During the cooling operation, the valve body 17 is fixed to the upper portion of the valve chamber as shown in FIG. 10, and the refrigerant is optimally divided by the protruding portion of the valve seat, and the indoor heat exchanger 6 has two refrigerant flow path outlets. Since the temperature becomes equal, it can be used in an optimal state, and the coefficient of performance is improved. During the reheat dehumidifying operation, the valve body 17 is fixed to the lower portion of the valve chamber portion 16 as shown in FIG. 12, and a squeezing action is generated by the gap between the valve body 17 and the valve chamber portion 16 so that the temperature does not decrease. Dehumidification operation is possible.

本発明における冷媒回路図。The refrigerant circuit figure in this invention. 本発明の第1の実施例における冷媒流量制御弁断面図。1 is a sectional view of a refrigerant flow control valve in a first embodiment of the present invention. 本発明の第1の実施例における回転角度に対する流路面積の変化を示すグラフ。The graph which shows the change of the flow-path area with respect to the rotation angle in 1st Example of this invention. 本発明の第1の実施例における冷媒流量制御弁動作図(冷房運転時)。The refrigerant | coolant flow control valve operation | movement figure in the 1st Example of this invention (at the time of air_conditionaing | cooling operation). 本発明の第1の実施例における冷媒流量制御弁動作図(運転切替時)。The refrigerant | coolant flow control valve operation | movement figure in the 1st Example of this invention (at the time of operation switching). 本発明の第1の実施例における冷媒流量制御弁動作図(再熱除湿運転時)。The refrigerant | coolant flow control valve operation | movement figure in the 1st Example of this invention (at the time of a reheat dehumidification driving | operation). 本発明の第1の実施例における他の冷媒流量制御弁断面図。The other refrigerant | coolant flow control valve sectional drawing in the 1st Example of this invention. 本発明の第2の実施例における冷媒流量制御弁断面図。The refrigerant | coolant flow control valve sectional drawing in the 2nd Example of this invention. 本発明の第2の実施例における回転角度に対する流路面積の変化を示すグラフ。The graph which shows the change of the flow-path area with respect to the rotation angle in the 2nd Example of this invention. 本発明の第3の実施例における冷媒流量制御弁断面図。The refrigerant | coolant flow control valve sectional drawing in the 3rd Example of this invention. 本発明の第3の実施例における弁座形状に対する出口流量の変化を示すグラフ。The graph which shows the change of the exit flow volume with respect to the valve seat shape in the 3rd Example of this invention. 本発明の第3の実施例における再熱除湿運転時の冷媒流量制御弁断面図。The refrigerant | coolant flow control valve sectional drawing at the time of the reheat dehumidification driving | operation in the 3rd Example of this invention.

符号の説明Explanation of symbols

1…圧縮機、2…四方弁、3…室外熱交換器、4…第1の冷媒流量制御弁、5、6…室内熱交換器、7…第2の冷媒流量制御弁、8…第1実施例の弁室部、9…第1実施例の弁体、10…冷媒流入口、11、12…冷媒流出口、13…第1実施例の他の形態での細径流路、14…第2実施例の弁室部、15…第2実施例の弁体、16…第3実施例の弁室部、17…第3実施例の弁体。
DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... Four-way valve, 3 ... Outdoor heat exchanger, 4 ... 1st refrigerant | coolant flow control valve, 5, 6 ... Indoor heat exchanger, 7 ... 2nd refrigerant | coolant flow control valve, 8 ... 1st Valve chamber portion of embodiment, 9 ... Valve body of first embodiment, 10 ... Refrigerant inlet, 11, 12 ... Refrigerant outlet, 13 ... Narrow passage in other form of first embodiment, 14 ... First The valve chamber part of 2nd Example, 15 ... The valve body of 2nd Example, 16 ... The valve chamber part of 3rd Example, 17 ... The valve body of 3rd Example.

Claims (3)

ステッピングモータ等により回転角を任意に制御可能な弁体と、1つの冷媒流入口と2つの冷媒流出口を有する弁室部から成る冷媒流量制御弁において、弁体の下部形状を2つの冷媒流出口の軸方向断面に対して斜めに形成するとともに、2つの冷媒流出口と入口の間の断面積が共に最小になる回転角度において流路に絞り作用を行う隙間を設けたことを特徴とする冷媒流量制御弁。   In a refrigerant flow control valve comprising a valve body whose rotation angle can be arbitrarily controlled by a stepping motor or the like, and a valve chamber portion having one refrigerant inlet and two refrigerant outlets, the lower shape of the valve body is divided into two refrigerant flows. The gap is formed obliquely with respect to the axial cross section of the outlet and provided with a gap for performing a throttling action in the flow path at a rotation angle at which the cross sectional areas between the two refrigerant outlets and the inlet are both minimized. Refrigerant flow control valve. ステッピングモータ等により回転角を任意に制御可能で、回転することで軸線方向に上下移動可能な弁体と、1つの冷媒流入口と2つの冷媒流出口を有する弁室部から成る冷媒流量制御弁において、弁体の下部形状を冷媒流入口の軸方向断面に対して非対称に形成したことを特徴とする冷媒流量制御弁。   Refrigerant flow control valve comprising a valve body that can be arbitrarily controlled by a stepping motor or the like and can be moved up and down in the axial direction by rotating, and a valve chamber portion having one refrigerant inlet and two refrigerant outlets The refrigerant flow control valve according to claim 1, wherein the lower shape of the valve body is formed asymmetrically with respect to the axial cross section of the refrigerant inlet. ソレノイドコイル等により上下移動可能な弁体と、1つの冷媒流入口と2つの冷媒流出口を有する弁室部から成る冷媒流量制御弁において、2つの冷媒流出口から流出する冷媒の流量があらかじめ定められた流量比になるよう弁体の下部形状を冷媒流入口の軸方向断面に対して非対称に形成したことを特徴とする冷媒流量制御弁。
In a refrigerant flow control valve comprising a valve body movable up and down by a solenoid coil or the like, and a valve chamber portion having one refrigerant inlet and two refrigerant outlets, the flow rate of the refrigerant flowing out from the two refrigerant outlets is determined in advance. A refrigerant flow control valve characterized in that the lower shape of the valve body is formed asymmetrically with respect to the axial cross section of the refrigerant inflow port so that the flow rate ratio is obtained.
JP2004132377A 2004-04-28 2004-04-28 Refrigerant flow control valve Pending JP2005315309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004132377A JP2005315309A (en) 2004-04-28 2004-04-28 Refrigerant flow control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004132377A JP2005315309A (en) 2004-04-28 2004-04-28 Refrigerant flow control valve

Publications (1)

Publication Number Publication Date
JP2005315309A true JP2005315309A (en) 2005-11-10

Family

ID=35442952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004132377A Pending JP2005315309A (en) 2004-04-28 2004-04-28 Refrigerant flow control valve

Country Status (1)

Country Link
JP (1) JP2005315309A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007102556A1 (en) * 2006-03-08 2007-09-13 Daikin Industries, Ltd. Freezer heat exchanger coolant flow divider
EP1975525A1 (en) * 2006-01-16 2008-10-01 Daikin Industries, Ltd. Air conditioner
JP2010038455A (en) * 2008-08-05 2010-02-18 Denso Corp Expansion valve and vapor compression refrigerating cycle equipped with the same
CN110094903A (en) * 2019-06-06 2019-08-06 珠海格力电器股份有限公司 Air conditioner and flow divider

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1975525A1 (en) * 2006-01-16 2008-10-01 Daikin Industries, Ltd. Air conditioner
EP1975525A4 (en) * 2006-01-16 2014-07-23 Daikin Ind Ltd Air conditioner
WO2007102556A1 (en) * 2006-03-08 2007-09-13 Daikin Industries, Ltd. Freezer heat exchanger coolant flow divider
JP2007240059A (en) * 2006-03-08 2007-09-20 Daikin Ind Ltd Refrigerant flow distributor of heat exchanger for refrigerating device
AU2007223216B2 (en) * 2006-03-08 2010-12-16 Daikin Industries, Ltd. Freezer heat exchanger coolant flow divider
US8015832B2 (en) 2006-03-08 2011-09-13 Daikin Industries, Ltd. Refrigerant flow divider of heat exchanger for refrigerating apparatus
JP2010038455A (en) * 2008-08-05 2010-02-18 Denso Corp Expansion valve and vapor compression refrigerating cycle equipped with the same
CN110094903A (en) * 2019-06-06 2019-08-06 珠海格力电器股份有限公司 Air conditioner and flow divider
CN110094903B (en) * 2019-06-06 2024-05-21 珠海格力电器股份有限公司 Air conditioner and flow divider

Similar Documents

Publication Publication Date Title
WO2018002983A1 (en) Refrigeration cycle device
JP2007240059A (en) Refrigerant flow distributor of heat exchanger for refrigerating device
WO2006025397A1 (en) Freezing apparatus
JP6062172B2 (en) Environmental test equipment
JP6339945B2 (en) Air conditioner
JP4103363B2 (en) Flow control device, refrigeration cycle device, and air conditioner
JP5921425B2 (en) air conditioner
JP7154035B2 (en) air conditioner
JP2006317063A (en) Air conditioner
JP2005315309A (en) Refrigerant flow control valve
JP2007032857A (en) Refrigerating device
JP2001050616A (en) Refrigeration cycle device and air conditioner
KR950012148B1 (en) Airconditioner
TWI724302B (en) Air-conditioning device
JP6660873B2 (en) Heat pump type temperature controller
JP3976561B2 (en) Air conditioner
WO2023084658A1 (en) Air conditioner
JP3446792B2 (en) Air conditioner
KR100318680B1 (en) Air-conditioning and combined air conditioning
JP2001066019A (en) Pressure-reducing flow divider, heat exchanger and air conditioner
JP2001194027A (en) Air conditioner and multi-type air conditioner
JPH1062032A (en) Air conditioner
JPWO2022145004A5 (en) air conditioner
JP2002243244A (en) Air conditioner
JP2003294339A (en) Orifice device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060509

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060630

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091013