JP2005315056A - Excavation method of adit - Google Patents

Excavation method of adit Download PDF

Info

Publication number
JP2005315056A
JP2005315056A JP2005047843A JP2005047843A JP2005315056A JP 2005315056 A JP2005315056 A JP 2005315056A JP 2005047843 A JP2005047843 A JP 2005047843A JP 2005047843 A JP2005047843 A JP 2005047843A JP 2005315056 A JP2005315056 A JP 2005315056A
Authority
JP
Japan
Prior art keywords
discharge
excavation
hole
free surface
excavation target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005047843A
Other languages
Japanese (ja)
Other versions
JP4167235B2 (en
Inventor
Yukio Kakiuchi
幸雄 垣内
Shigeo Kitahara
成郎 北原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kumagai Gumi Co Ltd
Original Assignee
Kumagai Gumi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kumagai Gumi Co Ltd filed Critical Kumagai Gumi Co Ltd
Priority to JP2005047843A priority Critical patent/JP4167235B2/en
Priority to KR1020067019961A priority patent/KR20070029152A/en
Priority to PCT/JP2005/005772 priority patent/WO2005095758A1/en
Publication of JP2005315056A publication Critical patent/JP2005315056A/en
Application granted granted Critical
Publication of JP4167235B2 publication Critical patent/JP4167235B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)
  • Drilling And Exploitation, And Mining Machines And Methods (AREA)
  • Disintegrating Or Milling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method capable of efficiently excavating an adit and efficiently crushing a bedrock of an excavation object section every area partitioned with a groove by extending to the running direction of excavation in the adit and to the direction at a right angle to the running direction of excavation to form a free surface of the inside of the groove partitioning an excavation object section or a part of the excavation object and, at the same time, by electrically discharging in a discharging hole by providing the discharging hole in the area partitioned with the groove. <P>SOLUTION: The free surface 3 extending to the running direction of excavation in the adit and the direction at a right angle to the running direction of excavation is formed in the excavation object section 51 for the adit and, at the same time, the discharging hole 11 extending to the running direction X of excavation is formed, a discharging electrode 70 is provided in the discharging hole 11, an impulsive wave is generated by electrical discharge in a discharge section 79 of the discharging electrode 70, and the excavation object section 51 between the discharging hole 11 and the free surface 3 is crushed by the impulsive wave to excavate the adit. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は横坑の掘削を効率的に実現可能な横坑の掘削方法に関する。   The present invention relates to a method for excavating a horizontal shaft that can efficiently implement excavation of a horizontal shaft.

硬岩(圧縮強度が1000〜4000(kg/cm)の岩)で構成された地山に横坑を掘削する方法としては、従来、人力によるものの他、発破掘削、機械掘削などがある。しかしながら、人力による掘削は、作業効率が悪いため、大型の重機が入らない場所などでの特殊な横坑を掘削する場合しか行われていない。一方、発破による掘削は、山岳トンネルなどの大規模な掘削には適しているが、安全性や環境問題の点から、都市部やその近郊に構築される地下トンネルなどの一般的な横坑の掘削には、機械掘削が多く採用されている。
図4(a),(b)は、従来の機械掘削の一例を示す図で、横坑の掘削対象部51である切羽面51aの前方天井部52に支保工53を構築した後、切羽面51aから掘削進行方向に所定深さの多数の孔54を形成してこの孔54内に鋼管55を埋設する。そして、鋼管55に図外の油圧くさびを打込んで鋼管55の周囲の岩盤に亀裂を発生させた後、ブレーカ等の破砕機やコールピックハンマー(ピック)等の削岩機56を用いて切羽面51aの岩盤を破砕する。その後、この破砕により前進した新しい切羽面51bに吹付けコンクリートを打設するとともに、切羽面51bの前方天井部52Aに新たな支保工を構築するといった工程を繰り返して、横坑を形成する(例えば、特許文献1参照)。尚、掘削対象部51は図4(b)において点線Bで囲まれた地山1の内側領域であって、掘削対象部51の表面2Aは、掘削開始の際には地山1の地肌面に設定される面であり、掘削進行後は切羽面である。切羽とは横坑掘削の最先端箇所である。
As a method for excavating a horizontal shaft in a natural ground composed of hard rock (rock having a compressive strength of 1000 to 4000 (kg / cm 2 )), conventionally, there are blast excavation, mechanical excavation, and the like, in addition to the method using human power. However, excavation by human power is performed only when excavating a special horizontal shaft in a place where a large heavy machine does not enter because work efficiency is poor. On the other hand, excavation by blasting is suitable for large-scale excavation such as mountain tunnels, but from the viewpoint of safety and environmental problems, general horizontal shafts such as underground tunnels built in urban areas and the suburbs are used. Mechanical excavation is often used for excavation.
4 (a) and 4 (b) are diagrams showing an example of conventional mechanical excavation. After the support work 53 is constructed on the front ceiling portion 52 of the face surface 51a which is the excavation target part 51 of the horizontal shaft, the face surface is shown. A number of holes 54 having a predetermined depth are formed from 51 a in the direction of excavation, and steel pipes 55 are embedded in the holes 54. Then, a hydraulic wedge (not shown) is driven into the steel pipe 55 to cause cracks in the rock surrounding the steel pipe 55, and then the face is cut using a crusher such as a breaker or a rock drill 56 such as a call pick hammer (pick). The bedrock of the surface 51a is crushed. After that, the shot concrete is placed on the new face surface 51b advanced by this crushing, and a new support is constructed on the front ceiling portion 52A of the face face 51b to form a horizontal shaft (for example, , See Patent Document 1). The excavation target part 51 is an inner region of the natural ground 1 surrounded by the dotted line B in FIG. 4B, and the surface 2A of the excavation target part 51 is the ground surface of the natural ground 1 at the start of excavation. It is a surface set after the excavation progress, and it is the face. The face is the most advanced part of horizontal excavation.

一方、大きな岩石など破砕する方法として、図5に示すように、破壊対象物60に予め放電用孔61を形成し、この放電用孔61内に水などの電解液63を注入してこの電解液63中に放電破砕装置50Aの放電用電極70を挿入し、放電用電極70に8kV〜20kVの高電圧を印加して放電を行なわせる。この放電エネルギーにより衝撃波が発生し、この衝撃波で放電用孔61の周囲を破砕することで、破壊対象物60を破砕する。放電破砕装置50Aは、大容量(例えば約500kJ)のコンデンサ82及びスイッチ83,84を備えた回路で構成されたパルスパワー源80と、コンデンサ82の一方の極82aに接続されるとともにコンデンサ82の他方の極82bにスイッチ83を介して接続された発電機等の電源部81と、コンデンサ82の一方の極82aに接続された一方電極とコンデンサ82の他方の極82bにスイッチ84を介して接続された他方電極とこれら一方電極と他方電極とを絶縁する絶縁体とで形成された放電用電極70とを備える。図示しないが、パルスパワー源80の回路は接地(アース)されている。放電用電極70は、例えば、+電極のような一方電極としての棒状の内部導体73と、内部導体73の外周囲を被覆する筒状の絶縁体74と、絶縁体74の外周囲に設けられた−電極のような他方電極としての外部導体75とにより構成される。すなわち、放電用電極70は、内部導体73と絶縁体74と外部導体75とが同軸状に配置された構成の同軸電極である。外部導体75は、内部導体73の中心線に沿った方向に間隔を隔てて設けられた複数の浮遊電極76;76・・・を構成する。浮遊電極とは、電源側と電気的に絶縁された電極のことである。絶縁体74の先端部74tより突出して露出する内部導体73の先端部73tとこの先端部73tに最も近い浮遊電極76の先端部76tとで放電を生じさせる先端側放電ギャップ77が形成され、互いに対向する浮遊電極76同士の端部76sと端部76sとで放電を生じさせる中間側放電ギャップ78が形成される。中間側放電ギャップ78は複数形成される。先端側放電ギャップ77と複数の中間側放電ギャップ78とにより放電部79が形成される。スイッチ84及びスイッチ83の非導通の状態で、破壊対象物60の放電用孔61内の電解液63中に放電用電極70を挿入した後に、スイッチ83を導通してコンデンサ82に電源部81からの電荷を蓄積させる。そしてスイッチ84を導通して、コンデンサ82に蓄えられた電荷がケーブル71及びコネクタ72を介して放電用電極70に印加すると、先端側放電ギャップ77で放電を生じ、この放電エネルギーによって衝撃波を発生する。同様に、複数の中間側放電ギャップ78で放電を生じ、この放電エネルギーによって衝撃波を発生する。これら衝撃波により破壊対象物60が破砕する(例えば、特許文献2,3参照)。
特開2000−136693号公報 特開2003−311175号公報 特開2003−320268号公報
On the other hand, as a method of crushing large rocks or the like, as shown in FIG. 5, a discharge hole 61 is formed in advance in the object to be destroyed 60, and an electrolytic solution 63 such as water is injected into the discharge hole 61 to perform this electrolysis. The discharge electrode 70 of the discharge crushing apparatus 50A is inserted into the liquid 63, and a high voltage of 8 kV to 20 kV is applied to the discharge electrode 70 to cause discharge. A shock wave is generated by this discharge energy, and the destruction object 60 is crushed by crushing the periphery of the discharge hole 61 with this shock wave. The discharge crushing device 50A is connected to a pulse power source 80 composed of a circuit having a capacitor 82 and switches 83 and 84 having a large capacity (for example, about 500 kJ) and one pole 82a of the capacitor 82 and A power supply unit 81 such as a generator connected to the other pole 82b via a switch 83, one electrode connected to one pole 82a of the capacitor 82, and the other pole 82b of the capacitor 82 via a switch 84 And the discharge electrode 70 formed of an insulator that insulates the one electrode from the other electrode. Although not shown, the circuit of the pulse power source 80 is grounded. The discharge electrode 70 is provided on, for example, a rod-shaped inner conductor 73 as one electrode such as a + electrode, a cylindrical insulator 74 that covers the outer periphery of the inner conductor 73, and the outer periphery of the insulator 74. It is constituted by an outer conductor 75 as the other electrode such as an electrode. That is, the discharge electrode 70 is a coaxial electrode having a configuration in which the inner conductor 73, the insulator 74, and the outer conductor 75 are coaxially arranged. The outer conductor 75 constitutes a plurality of floating electrodes 76; 76... Spaced apart in the direction along the center line of the inner conductor 73. The floating electrode is an electrode that is electrically insulated from the power supply side. A tip-side discharge gap 77 that generates discharge is formed between the tip portion 73t of the inner conductor 73 that protrudes and is exposed from the tip portion 74t of the insulator 74 and the tip portion 76t of the floating electrode 76 that is closest to the tip portion 73t. An intermediate discharge gap 78 for generating discharge is formed between the end portions 76s and the end portions 76s of the opposing floating electrodes 76. A plurality of intermediate discharge gaps 78 are formed. A discharge portion 79 is formed by the front end side discharge gap 77 and the plurality of intermediate side discharge gaps 78. After the discharge electrode 70 is inserted into the electrolytic solution 63 in the discharge hole 61 of the object to be destroyed 60 in a non-conductive state of the switch 84 and the switch 83, the switch 83 is turned on to connect the capacitor 82 to the capacitor 82 from the power supply unit 81. Accumulate the charge. Then, when the switch 84 is turned on and the electric charge stored in the capacitor 82 is applied to the discharge electrode 70 via the cable 71 and the connector 72, a discharge occurs in the front end side discharge gap 77, and a shock wave is generated by this discharge energy. . Similarly, discharge occurs in the plurality of intermediate discharge gaps 78, and shock waves are generated by the discharge energy. The destruction target 60 is crushed by these shock waves (see, for example, Patent Documents 2 and 3).
Japanese Patent Laid-Open No. 2000-136693 JP 2003-31175 A JP 2003-320268 A

しかし、上記油圧くさびでは、岩盤に大きな亀裂を生じさせることができないため、ブレーカやピックによる掘削作業に時間がかかるだけでなく、破砕や掘削による衝撃や振動のため、大きな騒音が発生するといった問題点があった。
そこで、上記放電破砕方法を用いて横坑を掘削する方法が考えられる。すなわち、横坑の掘削対象部51に複数個の放電用孔61を設け、この放電用孔61内に放電用電極70を挿入して放電させ、この放電による衝撃波により横坑の掘削対象部51の岩盤を破砕することが考えられる。
しかしながら、横坑の掘削対象部51の岩盤は、出土した転石や現場から切り出された砂岩などの独立した塊状の岩石とは異なり、岩石が連続して岩盤を形成しているので、図6に示すように、掘削対象部51に複数の放電用孔61を形成して、この放電用孔61内に放電用電極70を挿入して放電させても、掘削対象部51の岩盤にひび割れ(亀裂)を生じさせることが困難であり、掘削対象部51の岩盤を破砕することが困難であった。放電用孔61の数を多くして放電用孔61間の間隔を小さくすることで掘削対象部51の岩盤に亀裂を生じさせやすくなると考えられるが、この場合、放電用孔61を多く設ける必要があるとともにこの多くの放電用孔61内に放電用電極70を設けて放電する作業を行わなくてはならず当該放電作業の回数が多くなることから、横坑の掘削を効率的に行えないという課題があった。
本発明は、従来の問題点に鑑みてなされたもので、横坑の掘削を効率的に行える方法を提供することを目的とする。
However, the above hydraulic wedge cannot cause large cracks in the rock, so it takes time for excavation work by breakers and picks, as well as problems such as large noise due to impact and vibration due to crushing and excavation. There was a point.
Then, the method of excavating a horizontal shaft using the said electric discharge crushing method can be considered. That is, a plurality of discharge holes 61 are provided in the excavation target portion 51 of the horizontal shaft, and the discharge electrode 70 is inserted into the discharge hole 61 for discharge. It is conceivable to crush the bedrock.
However, the rocks of the excavation target part 51 of the horizontal shaft are different from independent massive rocks such as excavated rocks and sandstones cut out from the site. As shown, even when a plurality of discharge holes 61 are formed in the excavation target part 51 and the discharge electrode 70 is inserted into the discharge hole 61 and discharged, the rock of the excavation target part 51 is cracked (cracked). ) Is difficult to generate, and it is difficult to crush the bedrock of the excavation target part 51. It is considered that the number of the discharge holes 61 is increased and the interval between the discharge holes 61 is reduced, so that the rock of the excavation target part 51 is likely to be cracked. In this case, it is necessary to provide a large number of discharge holes 61. In addition, the discharge work must be performed by providing the discharge electrodes 70 in the many discharge holes 61, and the number of discharge operations increases, so that the excavation of the horizontal shaft cannot be performed efficiently. There was a problem.
The present invention has been made in view of conventional problems, and an object of the present invention is to provide a method for efficiently excavating a horizontal shaft.

本発明による横坑の掘削方法は、横坑の掘削対象部に横坑の掘削進行方向と掘削進行方向と直交する方向とに延長する自由面を形成するとともに掘削進行方向に延長する放電用孔を形成し、放電用孔内に放電用電極を設け、この放電用電極の放電部での放電により衝撃波を発生させ、衝撃波で放電用孔と自由面との間の掘削対象部を破砕して横坑を掘削することを特徴とする。掘削対象部に掘削進行方向に延長する孔を形成してこの孔の内面で自由面を構成するとともに掘削対象部における当該自由面の外側に放電用孔を設けて放電用孔内で放電を行うことや、自由面を形成する孔を掘削対象部の下端側に形成したことや、掘削対象部において自由面を形成する孔の中心を中心とした円周の軌跡上に放電用孔を設けたことや、横坑の掘削対象部に横坑の掘削進行方向と掘削進行方向と直交する方向とに延長して掘削対象部あるいは掘削対象部の一部を区切る溝の内面により自由面を形成するとともに、この溝で区切られた領域内に放電用孔を設けて放電用孔内で放電を行うことや、自由面に近い位置にある放電用孔内での放電から行うことや、放電用孔の延長方向を斜め下方としたことも特徴とする。   The method of excavating a horizontal pit according to the present invention includes forming a free surface extending in the direction of excavation of the horizontal pit and a direction orthogonal to the direction of excavation in the excavation target portion of the horizontal pit, and discharging holes extending in the direction of excavation. Forming a discharge electrode in the discharge hole, generating a shock wave by discharge at the discharge part of the discharge electrode, and crushing the excavation target part between the discharge hole and the free surface with the shock wave It is characterized by excavating a horizontal shaft. A hole extending in the direction of excavation is formed in the excavation target part, and a free surface is formed by the inner surface of the hole, and a discharge hole is provided outside the free surface in the excavation target part to discharge in the discharge hole. In addition, a hole for forming a free surface was formed on the lower end side of the excavation target part, and a discharge hole was provided on a circular trajectory centering on the center of the hole forming the free surface in the excavation target part. In addition, the free surface is formed by the inner surface of the groove to divide the excavation target part or a part of the excavation target part by extending the excavation progress direction of the horizontal pit and the direction orthogonal to the excavation progress direction in the horizontal excavation target part. In addition, a discharge hole is provided in the region delimited by the groove to perform discharge in the discharge hole, or from discharge in the discharge hole located near the free surface, It is also characterized in that the extending direction is diagonally downward.

本発明によれば、横坑の掘削対象部に自由面を形成し、放電用孔内での放電により発生させた衝撃波で放電用孔と自由面との間の掘削対象部にひび割れを発生しやすくでき、従って、放電用孔の数及び放電作業を少なくできて、横坑の掘削を効率的に行える。自由面を形成する孔(芯抜き孔)の内面で自由面を形成すれば、孔の径を大きくすることで自由面を大きくできて、自由面を有効に活用できるようになるので、横坑掘削を効率的に行える。自由面を形成する孔を掘削対象部の下端側に形成したので、掘削対象部の下端側から横坑を効率的に掘削できる。掘削対象部における孔の中心を中心とした円周の軌跡上に複数の放電用孔を所定の間隔を隔てて配置したことにより、孔の外周側の掘削対象部の岩盤を効率的に破砕できる。自由面に近い位置にある放電用孔での放電から行うようにしたので、自由面と放電用孔との間の掘削対象部の岩盤にひび割れを多く生じさせることができて、自由面と放電用孔との間の掘削対象部の岩盤を容易に破砕できる。横坑の掘削進行方向と掘削進行方向と直交する方向とに延長して掘削対象部あるいは掘削対象部の一部を区切る溝の内面により自由面を形成するとともに、この溝で区切られた領域内に放電用孔を設けて放電用孔内で放電を行うことで、溝で区切られた領域毎に掘削対象部の岩盤を効率的に破砕でき、横坑を効率的に掘削できる。放電用孔の延長方向を斜め下方としたので、放電用孔の入口から電解液が流れ出ないように放電用孔の入口周りを封止する作業を省略できるので作業手間を少なくできる。   According to the present invention, the free surface is formed in the excavation target portion of the horizontal shaft, and the excavation target portion between the discharge hole and the free surface is cracked by the shock wave generated by the discharge in the discharge hole. Therefore, the number of discharge holes and the discharge work can be reduced, and the excavation of the horizontal shaft can be performed efficiently. If the free surface is formed on the inner surface of the hole that forms the free surface (core hole), the free surface can be enlarged by increasing the diameter of the hole, and the free surface can be used effectively. Drilling can be done efficiently. Since the hole forming the free surface is formed on the lower end side of the excavation target portion, the horizontal shaft can be efficiently excavated from the lower end side of the excavation target portion. By disposing a plurality of discharge holes at a predetermined interval on a circular trajectory centered on the center of the hole in the excavation target part, the rock in the excavation target part on the outer peripheral side of the hole can be efficiently crushed. . Since the discharge is performed from the discharge hole located near the free surface, it is possible to cause many cracks in the rock in the excavation area between the free surface and the discharge hole. The rock in the excavation area between the drill holes can be easily crushed. A free surface is formed by the inner surface of the groove that divides the excavation target part or part of the excavation target part in a direction that is perpendicular to the excavation progress direction of the horizontal shaft and in the region delimited by the groove. By providing a discharge hole in the discharge hole and performing discharge in the discharge hole, the rock mass of the excavation target portion can be efficiently crushed in each region divided by the groove, and the horizontal shaft can be efficiently excavated. Since the direction of extension of the discharge hole is set obliquely downward, the work of sealing the periphery of the discharge hole so that the electrolyte does not flow out of the discharge hole can be omitted.

以下、本発明の最良の形態について、図1〜図3に基づき説明する。なお、各図において、図4〜6の従来例と同一または相当部分は同一符号を付して詳細な説明を省略する。
最良の形態1.
図1(a),(b)は、本最良の形態1に係る横坑の掘削方法を示す図で、本形態では、まず、横坑の掘削対象部51の下端側を掘削して芯抜き孔10を形成する。芯抜き孔10は地山1における横坑の掘削対象部51の表面2Aから横坑の掘削進行方向Xに延長するよう形成される。芯抜き孔10の内面が、横坑の掘削対象部51に掘削対象部51の表面2Aから横坑の掘削進行方向X及びこの掘削進行方向Xと直交する方向に延長して自由面3を形成する。すなわち、芯抜き孔10は、掘削対象部51において掘削対象部51の表面2Aから掘削進行方向Xに延長して内面で自由面3を構成する孔である。芯抜き孔10は、図外の穿孔機掘削対象部51の表面2Aから掘削進行方向Xに延長して形成される放電用孔11は、掘削対象部51における芯抜き孔10による自由面3の外側において、芯抜き孔10の中心を中心とした円周の軌跡(図1,2において1点鎖線で示す)上に所定の間隔を隔てて複数設けられる。また、放電用孔11を、掘削対象部51の表面2A側から掘削進行方向X側にかけて斜め下方に傾斜させて形成した。即ち、放電用孔11の延長方向を斜め下方とした。これにより、放電用孔11の入口から電解液63が流れ出ないように放電用孔11の入口周りを封止する作業を省略できるので、作業の簡単化が図れ、作業手間を少なくできる。芯抜き孔10や放電用孔11は、図外の穿孔機で切削する。芯抜き孔10の形成には、放電用孔11の形成に用いるドリルより径の大きなドラムドリルなどを用いる。また、横坑の掘削対象部51の表面2Aから掘削進行方向に延長する小径の孔を複数本密集させて形成した後に、これら孔内で放電用電極を用いた放電を予め行って芯抜き孔10を形成してもよい。なお、図1,2では、掘削対象部51において芯抜き孔10の中心を中心とした円周の軌跡上に所定の間隔を隔てて配置された複数の放電用孔11で構成される孔列の数を第1の孔列11A〜第3の孔列11Cの三列とした場合を示している。孔列の数T、孔列間の距離L、1つの孔列において隣り合う放電用孔11,11間の距離M、自由面3とこの自由面3に近い第1の孔列を構成する放電用孔11との間の最短距離Nなどは、横坑の断面の大きさや掘削対象部51の岩盤の硬さなどに応じて実験などの経験則で得た値を設定する。例えば、孔列間の距離Lを0.4m〜0.5mとし、1つの孔列において隣り合う放電用孔11,11間の距離Mを0.3m〜0.8mとする。
Hereinafter, the best mode of the present invention will be described with reference to FIGS. In addition, in each figure, the same or equivalent part as the prior art example of FIGS. 4-6 attaches | subjects the same code | symbol, and abbreviate | omits detailed description.
Best Mode
1 (a) and 1 (b) are diagrams showing a method for excavating a horizontal shaft according to the best mode 1. In this embodiment, first, the lower end side of the excavation target portion 51 of the horizontal shaft is excavated to perform centering. Hole 10 is formed. The centering hole 10 is formed so as to extend from the surface 2A of the horizontal excavation target portion 51 in the natural ground 1 in the horizontal excavation progressing direction X. The inner surface of the core hole 10 extends from the surface 2A of the excavation target portion 51 to the excavation target portion 51 of the horizontal shaft in the direction of the excavation progress X of the horizontal excavation and the direction perpendicular to the excavation progress direction X to form the free surface 3. To do. That is, the centering hole 10 is a hole that extends from the surface 2A of the excavation target portion 51 in the excavation progress direction X in the excavation target portion 51 and forms the free surface 3 on the inner surface. The discharge hole 11 formed by extending the core drilling hole 10 from the surface 2A of the drilling machine excavation target part 51 (not shown) in the excavation progress direction X is formed on the free surface 3 of the excavation target part 51 by the core drilling hole 10. On the outside, a plurality are provided at predetermined intervals on a circumferential locus (indicated by a one-dot chain line in FIGS. 1 and 2) centering on the center of the core hole 10. Further, the discharge hole 11 is formed to be inclined obliquely downward from the surface 2A side of the excavation target part 51 to the excavation progress direction X side. That is, the extending direction of the discharge hole 11 is set obliquely downward. Thus, the work of sealing the periphery of the entrance of the discharge hole 11 so that the electrolyte 63 does not flow out of the entrance of the discharge hole 11 can be omitted, so that the work can be simplified and the labor can be reduced. The core hole 10 and the discharge hole 11 are cut by a drilling machine not shown. For forming the centering hole 10, a drum drill having a diameter larger than that of the drill used for forming the discharge hole 11 is used. Further, after a plurality of small-diameter holes extending in the direction of excavation from the surface 2A of the excavation target portion 51 of the horizontal shaft are formed densely, discharge using the discharge electrode is performed in advance in these holes. 10 may be formed. 1 and 2, in the excavation target portion 51, a hole array composed of a plurality of discharge holes 11 arranged at a predetermined interval on a circumferential trajectory centered on the center of the core hole 10. Is shown as three rows of the first hole row 11A to the third hole row 11C. The number T of the hole rows, the distance L between the hole rows, the distance M between the discharge holes 11 and 11 adjacent to each other in one hole row, the discharge constituting the free surface 3 and the first hole row close to the free surface 3 For the shortest distance N between the working hole 11 and the like, a value obtained by an empirical rule such as an experiment is set according to the size of the cross section of the horizontal shaft and the hardness of the rock in the excavation target part 51. For example, the distance L between the hole arrays is 0.4 m to 0.5 m, and the distance M between the discharge holes 11 and 11 adjacent to each other in one hole array is 0.3 m to 0.8 m.

放電作業は、芯抜き孔10の内面により形成された自由面3に近い位置にある放電用孔11から行う。例えば、芯抜き孔10に最も近い放電用孔11から成る第1の孔列11Aのうちの最下部の放電用孔11a内に水などの電解液63及び放電用電極70を設ける。即ち、放電用孔11a内に電解液63を注入した後に放電用電極70の放電部79を挿入して電解液63中に放電部79を浸した状態で、放電用電極70にパルスパワー源80からの8kV〜20kVの高電圧を印加する。放電用孔11a内に放電用電極70の放電部79を挿入した後に放電用孔11a内に電解液63を注入して電解液63で放電部79が浸された状態で、放電用電極70にパルスパワー源80からの8kV〜20kVの高電圧を印加してもよい。これにより、放電用電極70の放電部79で放電を生じ、この放電エネルギーによって衝撃波を発生し、衝撃波で掘削対象部51を破壊する。この際、放電用電極70のコネクタ72の外周にホルダー21を取付け、このホルダー21を小型の専用把持装置22で支持しておくことが好ましい。また、放電用電極70の同軸ケーブルが接続されるパルスパワー源80を小型の専用把持装置22の荷台後部に搭載しておけば、ケーブル線を延長する必要がないので便利である。   The discharge operation is performed from the discharge hole 11 located near the free surface 3 formed by the inner surface of the core hole 10. For example, the electrolytic solution 63 such as water and the discharge electrode 70 are provided in the lowermost discharge hole 11 a in the first hole row 11 A composed of the discharge holes 11 closest to the core hole 10. That is, after the electrolytic solution 63 is injected into the discharge hole 11a, the discharge portion 79 of the discharge electrode 70 is inserted and the discharge portion 79 is immersed in the electrolytic solution 63, and the pulse power source 80 is applied to the discharge electrode 70. A high voltage of 8 kV to 20 kV is applied. After the discharge portion 79 of the discharge electrode 70 is inserted into the discharge hole 11a, the electrolytic solution 63 is injected into the discharge hole 11a, and the discharge portion 79 is immersed in the electrolytic solution 63. A high voltage of 8 kV to 20 kV from the pulse power source 80 may be applied. As a result, a discharge is generated in the discharge part 79 of the discharge electrode 70, a shock wave is generated by this discharge energy, and the excavation target part 51 is destroyed by the shock wave. At this time, it is preferable that the holder 21 is attached to the outer periphery of the connector 72 of the discharge electrode 70 and the holder 21 is supported by the small dedicated gripping device 22. If the pulse power source 80 to which the coaxial cable of the discharge electrode 70 is connected is mounted on the rear part of the loading platform of the small dedicated gripping device 22, it is convenient because the cable line does not need to be extended.

本形態では、自由面3は芯抜き孔10内の空間と接している芯抜き孔10の内面により形成され、この自由面3を形成する孔としての芯抜き孔10により掘削対象部51の岩盤が縁切りされる。よって、放電用孔11aと自由面3との間の岩盤が岩盤によって拘束されていない芯抜き孔10のある側に動きやすくなるので、衝撃波によって放電用孔11aと自由面3との間の岩盤にひび割れ(亀裂)が生じやすくなり、さらには、衝撃波が自由面3で反射されて戻ることに伴う引張力によっても放電用孔11aと自由面3との間の岩盤にひび割れが生じやすくなることから、放電用孔11aと自由面3との間の岩盤がひび割れにより破砕したり、あるいは、ひび割れた部分を小型のブレーカなどの削岩機を用いて破砕することで、横坑を効率的に掘削できる。一方、自由面3を形成しない場合には、衝撃波は放電用孔11の周りから外側に広がって行く過程で徐々に減衰するので、衝撃波によって岩盤を効率的に破砕できない。   In this embodiment, the free surface 3 is formed by the inner surface of the core hole 10 that is in contact with the space in the core hole 10, and the bedrock of the excavation target portion 51 is formed by the core hole 10 as a hole forming the free surface 3. Is cut off. Therefore, since the rock between the discharge hole 11a and the free surface 3 is easily moved to the side where the core hole 10 is not constrained by the rock, the rock between the discharge hole 11a and the free surface 3 is caused by the shock wave. Cracks (cracks) are likely to occur, and further, cracks are likely to occur in the rock between the discharge hole 11a and the free surface 3 due to the tensile force associated with the shock wave being reflected by the free surface 3 and returning. From the above, the bedrock between the discharge hole 11a and the free surface 3 is crushed by cracking, or the cracked portion is crushed using a rock drill such as a small breaker, so that the horizontal shaft can be efficiently Can drill. On the other hand, when the free surface 3 is not formed, the shock wave gradually attenuates in the process of spreading from the periphery of the discharge hole 11 to the outside, so that the rock cannot be efficiently crushed by the shock wave.

放電用孔11a内での放電が終了すると、放電用孔11aに隣接する第1の孔列11Aの放電用孔11b内に上述したように電解液63及び放電用電極70を設け、パルスパワー源80の大容量(例えば約500kJ)のコンデンサ82が充填された時点で、放電用孔11b内での放電を行う。このように、円周の軌跡上に配置された第1の孔列11Aを構成する放電用孔11での放電を、放電用孔11aから順番に円周の軌跡上に配置された放電用孔11をたどって行っていき、最後に放電用孔11mで放電を行うことにより、図2(a)に示すように、芯抜き孔10と第1の孔列11Aとの間の岩盤が破砕されるとともに、第1の孔列11Aの外周側の岩盤にもひび割れ(亀裂)が発生するので、同図の丸1で示す第1の孔列11Aと第2の孔列11Bとの間の岩盤を、小型のブレーカなどの削岩機を用いて掘削することで、図2(b)に示すように、芯抜き孔10の周縁部を拡大した形の横孔10Aを掘削することができる。次に、横孔10Aの外周部に位置する第2の孔列11Bの各放電用孔11を用いて、上記第1の孔列11Aの場合と同様に、最下段の放電用孔11nから順に放電を行わせていく。この場合も、横孔10Aの内面が自由面3となるので、放電用孔11の横孔10A側の岩盤を効率よく破砕することができるとともに、上記第2の孔列11B周囲の岩盤に大きな亀裂を発生させることができる。したがって、図2(b)の丸2で示す横孔10Aと第3の孔列11Cとの間の岩盤を破砕でき、横孔10Aの周縁部を拡大した形の横孔10Bを容易に掘削することができる。
最後に、横孔10Bの外周部に位置する第3の孔列11Cについても、上記第1及び第2の孔列11A,11Bの場合と同様にして放電用孔11内で放電を行い、図2(b)の丸3で示す横孔10Bと図2(b)の点線Bで示す横坑の周縁との間の岩盤を掘削できる。
When the discharge in the discharge hole 11a is completed, the electrolytic solution 63 and the discharge electrode 70 are provided in the discharge hole 11b of the first hole row 11A adjacent to the discharge hole 11a as described above, and the pulse power source When 80 capacitors 82 (for example, about 500 kJ) are filled, discharge in the discharge hole 11b is performed. As described above, the discharge holes 11 constituting the first hole array 11A arranged on the circumferential trajectory are discharged from the discharge holes 11a in order from the discharge hole 11a. 11 and finally discharging by the discharge holes 11m, the rock between the core hole 10 and the first hole row 11A is crushed as shown in FIG. 2 (a). At the same time, cracks (cracks) also occur in the rock on the outer peripheral side of the first hole row 11A, so that the bedrock between the first hole row 11A and the second hole row 11B indicated by circle 1 in FIG. Can be excavated by using a rock drill such as a small breaker to excavate a lateral hole 10A having an enlarged peripheral edge of the cored hole 10, as shown in FIG. Next, similarly to the case of the first hole row 11A, the discharge holes 11 of the second hole row 11B located on the outer peripheral portion of the lateral hole 10A are used in order from the lowermost discharge hole 11n. Let the discharge occur. Also in this case, since the inner surface of the horizontal hole 10A becomes the free surface 3, the rock on the side of the horizontal hole 10A of the discharge hole 11 can be efficiently crushed and the rock around the second hole row 11B is large. Cracks can be generated. Therefore, the rock mass between the horizontal hole 10A and the third hole row 11C indicated by the circle 2 in FIG. 2B can be crushed, and the horizontal hole 10B having an enlarged peripheral edge of the horizontal hole 10A is easily excavated. be able to.
Finally, the third hole row 11C located on the outer peripheral portion of the horizontal hole 10B is also discharged in the discharge hole 11 in the same manner as the first and second hole rows 11A and 11B. The rock can be excavated between the horizontal hole 10B indicated by the circle 3 in 2 (b) and the peripheral edge of the horizontal shaft indicated by the dotted line B in FIG. 2 (b).

以後、掘削進行後の掘削対象部51の表面2Aとなる切羽面に上述と同様に自由面3を形成する芯抜き孔10及び放電用孔11を形成して衝撃波による破砕作業を行っていくことで、横坑の掘削を効率的に行える。   Thereafter, the core hole 10 and the discharge hole 11 that form the free surface 3 are formed on the face surface that becomes the surface 2A of the excavation target portion 51 after the excavation progresses, and the crushing operation by the shock wave is performed. Thus, excavation of the horizontal shaft can be performed efficiently.

本形態によれば、掘削対象部51に掘削進行方向Xに延長する孔である芯抜き孔10を形成してこの芯抜き孔10の内面で自由面3を構成するとともに掘削対象部51における当該自由面3の外側に放電用孔11を設けて放電用孔11内で放電を行うことにより、自由面3を設けない場合に比べて、放電用孔11の数を少なくでき、放電作業の回数を少なくできて、横坑掘削を効率的に行える。芯抜き孔10の内面で自由面3を形成したことで、芯抜き孔の径を大きくすることで自由面3を大きくできて、自由面3を有効に活用できるようになるので、横坑掘削を効率的に行える。また、芯抜き孔10を掘削対象部51の下端側に形成したので、内面で自由面3を形成する孔の径を、横孔10A、10Bのように掘削対象部51の下端側から大きくしていくことができて、掘削対象部51の下端側から横坑を効率的に掘削できる。また、掘削対象部51における芯抜き孔10の中心を中心とした円周の軌跡上に複数の放電用孔11を所定の間隔を隔てて配置したことにより、芯抜き孔10の外周側の掘削対象部51の岩盤を効率的に破砕できる。さらに、自由面3に近い位置にある放電用孔11での放電から行うようにしたので、自由面3と放電用孔11との間の掘削対象部51の岩盤にひび割れを多く生じさせることができて、自由面3と放電用孔11との間の掘削対象部51の岩盤を容易に破砕できる。また、芯抜き孔10を掘削対象部51の下端側に形成したので、内面で自由面3を形成する孔の径を、横孔10A、10Bのように掘削対象部51の下端側から大きくしていくことができて、掘削対象部51の下端側から横坑を効率的に掘削できる。また、掘削対象部51における芯抜き孔10の中心を中心とした円周の軌跡上に複数の放電用孔11を所定の間隔を隔てて配置したことにより、芯抜き孔10の外周側の掘削対象部51の岩盤を効率的に破砕できる。さらに、自由面3に近い位置にある放電用孔11での放電から行うようにしたので、自由面3と放電用孔11との間の掘削対象部51の岩盤にひび割れを多く生じさせることができて、自由面3と放電用孔11との間の掘削対象部51の岩盤を容易に破砕できる。また、放電用孔11内に電解液63及び放電用電極70を設置して放電を行うことで、電解液63が一部気化することによる圧力によって破壊力が増し、さらに、電解液63により掘削対象部51への衝撃波の伝播効率を高めることができる。   According to the present embodiment, the cored hole 10 that is a hole extending in the excavation traveling direction X is formed in the excavation target part 51, and the free surface 3 is configured by the inner surface of the cored hole 10 and the excavation target part 51 By providing discharge holes 11 outside the free surface 3 and performing discharge in the discharge holes 11, the number of discharge holes 11 can be reduced compared to the case where the free surface 3 is not provided, and the number of discharge operations can be reduced. Can be reduced, and the horizontal excavation can be performed efficiently. Since the free surface 3 is formed on the inner surface of the centering hole 10, the free surface 3 can be enlarged by increasing the diameter of the centering hole, and the free surface 3 can be used effectively. Can be done efficiently. Further, since the centering hole 10 is formed on the lower end side of the excavation target portion 51, the diameter of the hole forming the free surface 3 on the inner surface is increased from the lower end side of the excavation target portion 51 like the horizontal holes 10A and 10B. Therefore, the horizontal shaft can be efficiently excavated from the lower end side of the excavation target portion 51. Further, by arranging a plurality of discharge holes 11 at a predetermined interval on a circumferential locus centering on the center of the core hole 10 in the excavation target portion 51, excavation on the outer peripheral side of the core hole 10 is performed. The bedrock of the target part 51 can be efficiently crushed. Further, since the discharge is performed from the discharge hole 11 located near the free surface 3, many cracks are generated in the rock of the excavation target part 51 between the free surface 3 and the discharge hole 11. Thus, the bedrock of the excavation target portion 51 between the free surface 3 and the discharge hole 11 can be easily crushed. Further, since the centering hole 10 is formed on the lower end side of the excavation target portion 51, the diameter of the hole forming the free surface 3 on the inner surface is increased from the lower end side of the excavation target portion 51 like the horizontal holes 10A and 10B. Therefore, the horizontal shaft can be efficiently excavated from the lower end side of the excavation target portion 51. Further, by arranging a plurality of discharge holes 11 at a predetermined interval on a circumferential locus centering on the center of the core hole 10 in the excavation target portion 51, excavation on the outer peripheral side of the core hole 10 is performed. The bedrock of the target part 51 can be efficiently crushed. Further, since the discharge is performed from the discharge hole 11 located near the free surface 3, many cracks are generated in the rock of the excavation target part 51 between the free surface 3 and the discharge hole 11. Thus, the bedrock of the excavation target portion 51 between the free surface 3 and the discharge hole 11 can be easily crushed. Further, by disposing the electrolytic solution 63 and the discharge electrode 70 in the discharge hole 11 and performing discharge, the destructive force is increased by the pressure due to partial evaporation of the electrolytic solution 63, and further, excavation by the electrolytic solution 63 is performed. The propagation efficiency of the shock wave to the target part 51 can be increased.

尚、芯抜き孔10の形成箇所は、掘削対象部51の下端側に限定されるものではなく、掘削対象部51の中央部など他の箇所に設けてもよい。また、掘削対象部51の岩盤に強度分布がある場合には、比較的強度が低い部分を掘削して芯抜き孔10を形成し、強度が高い部分を放電破砕によって破砕するようにすれば、横坑を効率よく掘削することができる。
また、上記では、芯抜き孔10の断面形状を円形とし、放電用孔11を芯抜き孔10の中心を中心とした円周の軌跡上に配置したが、芯抜き孔10の断面形状や、2つの放電用孔11,11の間隔を含む放電用孔11の配置方法、及び、放電順序等については、横坑の形状や掘削対象部51の岩盤の強度分布などを知徳することで経験則により適宜決定する。
また、放電用電極70の支持方法やパルスパワー源80の設置位置についても、上記例に限定されるものではなく、現場の状況に応じて適宜工夫するようにすればよい。
なお、実際の作業においては、破砕作業を効率的に行うため、放電用孔になりうる複数個の穴を予め削孔しておき、破砕の状況に応じて、上記穴のうちの、次の破砕を行うのに適当な穴に放電用電極70を挿入して放電破砕するようにしている。
In addition, the formation location of the core hole 10 is not limited to the lower end side of the excavation target portion 51, and may be provided in other locations such as the central portion of the excavation target portion 51. In addition, when the rock mass of the excavation target portion 51 has a strength distribution, if a portion having a relatively low strength is excavated to form the core hole 10, and a portion having a high strength is crushed by electric discharge crushing, A horizontal pit can be excavated efficiently.
Moreover, in the above, the cross-sectional shape of the core hole 10 is circular, and the discharge hole 11 is arranged on a circumferential trajectory centered on the center of the core hole 10. As for the arrangement method of the discharge holes 11 including the interval between the two discharge holes 11, 11, and the discharge order, etc., an empirical rule is to know the shape of the horizontal shaft and the strength distribution of the rock in the excavation target part 51. As appropriate.
Further, the method for supporting the discharge electrode 70 and the installation position of the pulse power source 80 are not limited to the above example, and may be appropriately devised according to the situation at the site.
In actual work, in order to efficiently perform the crushing work, a plurality of holes that can become discharge holes are drilled in advance, and the following of the above holes are selected according to the crushing situation. The discharge electrode 70 is inserted into a hole suitable for crushing so as to crush the discharge.

最良の形態2.
上記最良の形態1では、芯抜き孔10を形成し、この芯抜き孔10の内面により自由面3を形成したが、図3に示すように、横坑の掘削進行方向Xと掘削進行方向Xと直交する方向とに延長して掘削対象部51あるいは掘削対象部51の一部を区切る溝30の内面により自由面3を形成するとともに、この溝30で区切られた複数の領域R1〜R8内に放電用孔11を設けて放電用孔11内で放電を行うことで、各領域R1〜R8毎に岩盤を破砕して横坑を掘削してもよい。溝30は、例えば、横坑掘削対象部51に表面2Aから掘削進行方向Xに延長する複数の孔が掘削進行方向Xと直交する方向に互いに繋がれた連続孔により形成すればよい。掘削対象部51を区切る溝30とは、図3のBで示す掘削対象部51における横坑の周縁に沿って形成されて掘削進行方向Xに延長し、掘削対象部51全体を区切る溝である。掘削対象部51の一部を区切る溝30とは、掘削対象部51において掘削進行方向Xに延長してかつ掘削進行方向Xと直交する方向に延長して図3の各領域R1〜R8を区切る溝である。
本形態では、溝30により掘削対象部51の複数の領域R1〜R8相互間で岩盤が縁切りされる。よって、放電用孔11と自由面3との間の岩盤が岩盤によって拘束されていない溝30のある側に動きやすくなるので、衝撃波によって放電用孔11と自由面3との間の岩盤にひび割れ(亀裂)が生じやすくなり、さらには、衝撃波が自由面3で反射されて戻ることに伴う引張力によっても放電用孔11と自由面3との間の岩盤にひび割れが生じやすくなることから、放電用孔11と自由面3との間の岩盤を効率的に破砕できるので、掘削対象部51の複数の領域R1〜R8を領域毎に効率的に破砕でき、横坑を効率的に掘削できる。
なお、溝30による掘削対象部51の領域の区切り方や、溝30で区切られた各領域内に設ける放電用孔11の配置方法については、上記図3に示したものに限るものではなく、横坑の形状や掘削対象部51の岩盤の強度分布などにより適宜決定すればよい。
Best Mode 2
In the best mode 1, the centering hole 10 is formed, and the free surface 3 is formed by the inner surface of the centering hole 10. However, as shown in FIG. The free surface 3 is formed by the inner surface of the groove 30 that extends in a direction orthogonal to the digging target portion 51 or a part of the digging target portion 51, and in a plurality of regions R1 to R8 that are partitioned by the groove 30 By disposing the discharge hole 11 in the discharge hole 11 and performing discharge in the discharge hole 11, the rock mass may be crushed for each region R1 to R8 to dig a horizontal shaft. The groove 30 may be formed by, for example, a continuous hole in which a plurality of holes extending from the surface 2 </ b> A to the excavation progress direction X are connected to each other in a direction orthogonal to the excavation progress direction X in the horizontal excavation target portion 51. The groove 30 that divides the excavation target part 51 is a groove that is formed along the peripheral edge of the horizontal shaft in the excavation target part 51 shown by B in FIG. 3 and extends in the excavation progress direction X to divide the entire excavation target part 51. . The grooves 30 that delimit a part of the excavation target part 51 extend in the excavation progress direction X in the excavation target part 51 and extend in a direction orthogonal to the excavation progress direction X to delimit each region R1 to R8 in FIG. It is a groove.
In the present embodiment, the rock is cut between the plurality of regions R1 to R8 of the excavation target part 51 by the groove 30. Therefore, since the rock between the discharge hole 11 and the free surface 3 is easily moved to the side where the groove 30 is not constrained by the rock, the rock between the discharge hole 11 and the free surface 3 is cracked by the shock wave. (Cracks) are likely to occur, and further, cracks are likely to occur in the rock between the discharge hole 11 and the free surface 3 due to the tensile force associated with the shock wave being reflected and returned by the free surface 3. Since the rock between the discharge hole 11 and the free surface 3 can be efficiently crushed, the plurality of regions R1 to R8 of the excavation target part 51 can be efficiently crushed for each region, and the horizontal shaft can be efficiently excavated. .
In addition, about the division method of the area | region of the excavation object part 51 by the groove | channel 30, and the arrangement | positioning method of the discharge hole 11 provided in each area | region divided by the groove | channel 30, it is not restricted to what was shown in the said FIG. What is necessary is just to determine suitably with the shape of a horizontal shaft, the strength distribution of the rock of the excavation object part 51, etc.

掘削対象部51に、横坑の掘削進行方向に延長して内面で自由面を形成する芯抜き孔10のような孔を複数設け、これら複数の孔を掘削進行方向Xと直交する方向において所定の間隔を隔てて設ければ、自由面を多くできるので、横抗を効率的に掘削できる。また、放電用電極は、放電部としての放電ギャップの形成された放電用電極であればよく、例えば、線(ワイヤ)を切断して放電用ギャップを形成した放電用電極、その他の形態の放電用電極を使用できる。また、放電用電極の放電部を取り囲むカートリッジを設け、カートリッジ内に電解液を充填して放電部を電解液中に浸した状態に封止できる構成の放電用電極を用いれば、放電用孔11からの電解液の漏れを防止できる。芯抜き孔10と掘削対象部51を区切る溝30の両方、孔10と掘削対象部51の一部を区切る溝30の両方、芯抜き孔10と掘削対象部51を区切る溝30と掘削対象部51の一部を区切る溝30の全てを設けるようにしてもよく、このようにすれば、自由面3を多くできて、より効率的に岩盤を破砕できる。   A plurality of holes such as a cored hole 10 extending in the excavation progress direction of the horizontal shaft and forming a free surface on the inner surface are provided in the excavation target portion 51, and the plural holes are predetermined in a direction orthogonal to the excavation progress direction X. Since the free surface can be increased if the distance is provided, the lateral resistance can be excavated efficiently. The discharge electrode may be a discharge electrode in which a discharge gap is formed as a discharge portion. For example, a discharge electrode in which a discharge gap is formed by cutting a wire (wire), or other forms of discharge An electrode can be used. In addition, if a discharge electrode having a configuration in which a cartridge surrounding the discharge portion of the discharge electrode is provided and the cartridge is filled with the electrolyte and the discharge portion is immersed in the electrolyte can be used, the discharge hole 11 can be used. It is possible to prevent leakage of the electrolyte from the battery. Both the groove 30 separating the cored hole 10 and the excavation target part 51, both the groove 30 separating part of the hole 10 and the excavation target part 51, and the groove 30 and excavation target part separating the cored hole 10 and the excavation target part 51 from each other. You may make it provide all the grooves 30 which divide a part of 51, If it does in this way, the free surface 3 can be increased and a rock mass can be crushed more efficiently.

本発明の最良の形態1に係る横坑の掘削方法を示す図である。It is a figure which shows the excavation method of the horizontal shaft which concerns on the best form 1 of this invention. 本最良の形態1に係る切羽の岩盤の破砕方法の一例を示す図である。It is a figure which shows an example of the crushing method of the face rock according to this best form 1. 本最良の形態2に係る横坑の掘削方法を示す図である。It is a figure which shows the excavation method of the horizontal shaft which concerns on this best form 2. 従来の横坑の掘削方法を示す図である。It is a figure which shows the conventional excavation method of a horizontal shaft. 放電用電極を用いた破砕装置による岩石の破砕方法を示す図である。It is a figure which shows the crushing method of the rock by the crushing apparatus using the electrode for discharge. 放電用電極を用いた破砕装置による岩盤の破砕状態を示す図である。It is a figure which shows the crushing state of the rock mass by the crushing apparatus using the electrode for discharge.

符号の説明Explanation of symbols

3 自由面、10 芯抜き孔(孔)、11 放電用孔、30 溝、51 掘削対象部、
70 放電用電極、79 放電部、X 掘削進行方向。
3 free surface, 10 centering hole (hole), 11 discharge hole, 30 groove, 51 excavation target part,
70 Electrode for discharge, 79 Discharge part, X Excavation direction.

Claims (7)

横坑の掘削対象部に横坑の掘削進行方向と掘削進行方向と直交する方向とに延長する自由面を形成するとともに掘削進行方向に延長する放電用孔を形成し、放電用孔内に放電用電極を設け、この放電用電極の放電部での放電により衝撃波を発生させ、衝撃波で放電用孔と自由面との間の掘削対象部を破砕して横坑を掘削することを特徴とする横坑の掘削方法。   A free surface extending in the direction of the horizontal digging and in a direction perpendicular to the direction of the digging is formed in the excavation target portion of the horizontal pit and a discharge hole extending in the direction of the digging is formed, and the discharge is discharged in the discharge hole. A shock wave is generated by the discharge at the discharge portion of the discharge electrode, and the excavation target portion between the discharge hole and the free surface is crushed by the shock wave to excavate the horizontal shaft. Excavation method of horizontal shaft. 掘削対象部に掘削進行方向に延長する孔を形成してこの孔の内面で自由面を構成するとともに掘削対象部における当該自由面の外側に放電用孔を設けて放電用孔内で放電を行うことを特徴とする請求項1に記載の横坑の掘削方法。   A hole extending in the direction of excavation is formed in the excavation target part, and a free surface is formed by the inner surface of the hole, and a discharge hole is provided outside the free surface in the excavation target part to discharge in the discharge hole. The method for excavating a horizontal shaft according to claim 1. 自由面を形成する孔を掘削対象部の下端側に形成したことを特徴とする請求項2に記載の横坑の掘削方法。   The method for excavating a horizontal shaft according to claim 2, wherein a hole forming a free surface is formed on a lower end side of the excavation target portion. 掘削対象部において自由面を形成する孔の中心を中心とした円周の軌跡上に放電用孔を設けたことを特徴とする請求項2または請求項3のいずれかに記載の横坑の掘削方法。   4. The excavation of a horizontal pit according to claim 2, wherein a discharge hole is provided on a circumferential locus centering on the center of the hole forming the free surface in the excavation target portion. Method. 横坑の掘削対象部に横坑の掘削進行方向と掘削進行方向と直交する方向とに延長して掘削対象部あるいは掘削対象部の一部を区切る溝の内面により自由面を形成するとともに、この溝で区切られた領域内に放電用孔を設けて放電用孔内で放電を行うことを特徴とする請求項1に記載の横坑の掘削方法。   In the excavation target portion of the horizontal shaft, a free surface is formed by the inner surface of the groove that divides the excavation target portion or a part of the excavation target portion by extending in the direction of the horizontal excavation and the direction perpendicular to the excavation progress direction. 2. The method for excavating a horizontal shaft according to claim 1, wherein a discharge hole is provided in a region divided by the groove and discharge is performed in the discharge hole. 自由面に近い位置にある放電用孔内での放電から行うことを特徴とする請求項1ないし請求項5のいずれかに記載の横坑の掘削方法。   The method for excavating a horizontal shaft according to any one of claims 1 to 5, wherein the excavation is performed from a discharge in a discharge hole located at a position close to a free surface. 放電用孔の延長方向を斜め下方としたことを特徴とする請求項1ないし請求項6のいずれかに記載の横坑の掘削方法。   The method for excavating a horizontal shaft according to any one of claims 1 to 6, wherein an extending direction of the discharge hole is obliquely downward.
JP2005047843A 2004-03-31 2005-02-23 Excavation method of horizontal shaft Expired - Fee Related JP4167235B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005047843A JP4167235B2 (en) 2004-03-31 2005-02-23 Excavation method of horizontal shaft
KR1020067019961A KR20070029152A (en) 2004-03-31 2005-03-28 Discharge crushing method for crushing object to be crushed, method of excavating horizontal tunnel using discharge crushing method, and method of excavating vertical shaft
PCT/JP2005/005772 WO2005095758A1 (en) 2004-03-31 2005-03-28 Discharge crushing method for crushing object to be crushed, method of excavating horizontal tunnel using discharge crushing method, and method of excavating vertical shaft

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004106550 2004-03-31
JP2005047843A JP4167235B2 (en) 2004-03-31 2005-02-23 Excavation method of horizontal shaft

Publications (2)

Publication Number Publication Date
JP2005315056A true JP2005315056A (en) 2005-11-10
JP4167235B2 JP4167235B2 (en) 2008-10-15

Family

ID=35442765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005047843A Expired - Fee Related JP4167235B2 (en) 2004-03-31 2005-02-23 Excavation method of horizontal shaft

Country Status (1)

Country Link
JP (1) JP4167235B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007154514A (en) * 2005-12-05 2007-06-21 Kumagai Gumi Co Ltd Method of excavating tunnel peripheral edge part
JP2007154510A (en) * 2005-12-05 2007-06-21 Kumagai Gumi Co Ltd Insulating structure for tunnel excavating device
JP2008238139A (en) * 2007-03-29 2008-10-09 Kumagai Gumi Co Ltd Discharge crushing device and discharge crushing method using it
WO2015108098A1 (en) * 2014-01-20 2015-07-23 鹿島建設株式会社 Dismantling method
JP2015137454A (en) * 2014-01-20 2015-07-30 鹿島建設株式会社 Demolition method
CN109458188A (en) * 2018-11-12 2019-03-12 中铁工程装备集团有限公司 High pressure pulse discharge-mechanically combining broken rock rock tunnel(ling) machine cutterhead
CN116658178A (en) * 2023-07-31 2023-08-29 中铁十七局集团第五工程有限公司 Ultra-small clear distance tunnel subsection differential blasting vibration reduction and isolation construction method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007154514A (en) * 2005-12-05 2007-06-21 Kumagai Gumi Co Ltd Method of excavating tunnel peripheral edge part
JP2007154510A (en) * 2005-12-05 2007-06-21 Kumagai Gumi Co Ltd Insulating structure for tunnel excavating device
JP2008238139A (en) * 2007-03-29 2008-10-09 Kumagai Gumi Co Ltd Discharge crushing device and discharge crushing method using it
WO2015108098A1 (en) * 2014-01-20 2015-07-23 鹿島建設株式会社 Dismantling method
JP2015137454A (en) * 2014-01-20 2015-07-30 鹿島建設株式会社 Demolition method
CN109458188A (en) * 2018-11-12 2019-03-12 中铁工程装备集团有限公司 High pressure pulse discharge-mechanically combining broken rock rock tunnel(ling) machine cutterhead
CN116658178A (en) * 2023-07-31 2023-08-29 中铁十七局集团第五工程有限公司 Ultra-small clear distance tunnel subsection differential blasting vibration reduction and isolation construction method
CN116658178B (en) * 2023-07-31 2023-10-13 中铁十七局集团第五工程有限公司 Ultra-small clear distance tunnel subsection differential blasting vibration reduction and isolation construction method

Also Published As

Publication number Publication date
JP4167235B2 (en) 2008-10-15

Similar Documents

Publication Publication Date Title
JP4167235B2 (en) Excavation method of horizontal shaft
AU2007264977B2 (en) Portable and directional electrocrushing drill
US5896938A (en) Portable electrohydraulic mining drill
US7527108B2 (en) Portable electrocrushing drill
US8567522B2 (en) Apparatus and method for supplying electrical power to an electrocrushing drill
EP3656970B1 (en) Apparatuses and methods for supplying electrical power to an electrocrushing drill
US8186454B2 (en) Apparatus and method for electrocrushing rock
JP4727256B2 (en) Electric discharge crushing method
CN110924972A (en) Construction method of hard rock tunnel
KR20070029152A (en) Discharge crushing method for crushing object to be crushed, method of excavating horizontal tunnel using discharge crushing method, and method of excavating vertical shaft
JP4167236B2 (en) Drilling method of shaft
US4069760A (en) Method for driving a shaft with shaped charges
CN111457802A (en) Method for breaking rock stratum of strip mine
JP4202331B2 (en) Excavation method of horizontal shaft
JP2007154514A (en) Method of excavating tunnel peripheral edge part
JP4549877B2 (en) Crushing method for reinforced concrete structures
JP4780473B2 (en) Tunnel construction method
JPH05247939A (en) Demolition method of obstruction in deep ground
KR20140100877A (en) Method for excavating rock tunnel
CN219262282U (en) Drilling tool, working system and working machine
CN112044569B (en) Combined multi-electrode high-voltage pulse discharge hard rock breaking device and breaking method
CN116537781A (en) Mining device and mining method for rock special-shaped area based on combined discharging module
KR100243952B1 (en) Method of construction using plasma rock fragmentaion apparatus
CA2844571C (en) Portable electrocrushing drill
CN112432567A (en) Energy-gathering electric blasting boulder method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080731

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees