JP2013053494A - Electric-discharge fracturing method - Google Patents

Electric-discharge fracturing method Download PDF

Info

Publication number
JP2013053494A
JP2013053494A JP2011194132A JP2011194132A JP2013053494A JP 2013053494 A JP2013053494 A JP 2013053494A JP 2011194132 A JP2011194132 A JP 2011194132A JP 2011194132 A JP2011194132 A JP 2011194132A JP 2013053494 A JP2013053494 A JP 2013053494A
Authority
JP
Japan
Prior art keywords
electrode
electrode insertion
insertion hole
crushed
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011194132A
Other languages
Japanese (ja)
Other versions
JP5860641B2 (en
Inventor
Isamu Ebisawa
勇 海老沢
Takeshi Yamamoto
毅 山本
Shigeo Kitahara
成郎 北原
Takahito Sakanishi
孝仁 坂西
Shuji Matsumura
修治 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Power Co Ltd
Kumagai Gumi Co Ltd
Original Assignee
Japan Atomic Power Co Ltd
Kumagai Gumi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Power Co Ltd, Kumagai Gumi Co Ltd filed Critical Japan Atomic Power Co Ltd
Priority to JP2011194132A priority Critical patent/JP5860641B2/en
Publication of JP2013053494A publication Critical patent/JP2013053494A/en
Application granted granted Critical
Publication of JP5860641B2 publication Critical patent/JP5860641B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Working Measures On Existing Buildindgs (AREA)
  • Disintegrating Or Milling (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method to unfailingly create wide-gap cracks continuously extending in specific directions in a to-be-crushed object like a base concrete of an architectural structure by use of electric discharge so that the to-be-crushed object can be easily fractured.SOLUTION: A plurality of electrode-insertion holes 11 are drilled into a to-be-crushed object 10, and coaxial electrodes arranged with insulators are inserted into the electrode-insertion holes for electric discharge. Before fracturing the to-be-crushed object 10 by shock waves produced by the electric discharge, the plurality of electrode-insertion holes 11 are linearly positioned, and at least two vertical grooves 13 are formed on the side face of an upper face 10a on which the electrode-insertion holes 11 have been drilled, in such a way that the grooves' cutting depths are less than the distance L between a side face 10b and the electrode-insertion hole 11, and that the vertical grooves 13 are perpendicular to both the side face and the upper face 10a, in order to induce cracks along the vertical grooves 13 so that the to-be-crushed object 10 is fractured.

Description

本発明は、放電による衝撃波により例えば、建造物の基礎コンクリートなどの破砕対象物を破砕する方法に関するもので、特に、破砕対象物に特定方向に連続して延長するひび割れを誘発させて破砕対象物を破砕する方法に関する。   The present invention relates to a method of crushing an object to be crushed, such as foundation concrete of a building, by a shock wave due to electric discharge, and in particular, to induce a crack continuously extending in a specific direction on the object to be crushed. It is related with the method of crushing.

従来、建造物の基礎コンクリートや橋脚などのコンクリート構造体を解体する方法として、放電破砕装置を用いた放電破砕方法が知られている(例えば、特許文献1参照)。
放電破砕装置は、図10(a)に示すように、棒状の中心電極21aと中心電極21aの外周を被覆する筒状の絶縁体21kと絶縁体21kの外周に設けられた外周電極21bとを備えた同軸電極21と、電源22aと大容量コンデンサ22bとを備え同軸電極21に大電流を供給するパルスパワー源22と、同軸電極21とパルスパワー源22とを接続する同軸ケーブル23及びコネクタ24とを備える。放電破砕装置20の同軸電極21の中心電極21aと外周電極21bとは、大容量コンデンサ22bの一方の極板と他方の極板にそれぞれスイッチ22pを介して接続され、スイッチ22pにより大容量コンデンサ22bと同軸電極21とを電気的に接続することによりスイッチ22qを閉じた状態で大容量コンデンサ22bに充電された電荷を同軸電極21の中心電極21a及び外周電極21b間にて放電させ、同軸電極21近傍に衝撃波を発生させて、同軸電極21の周囲のコンクリートにひび割れを発生させる。
Conventionally, a discharge crushing method using a discharge crushing device is known as a method for dismantling a concrete structure such as a foundation concrete or a pier of a building (see, for example, Patent Document 1).
As shown in FIG. 10 (a), the electric discharge crusher includes a rod-shaped center electrode 21a, a cylindrical insulator 21k covering the outer periphery of the center electrode 21a, and an outer peripheral electrode 21b provided on the outer periphery of the insulator 21k. The provided coaxial electrode 21, a power source 22a and a large-capacitance capacitor 22b, a pulse power source 22 that supplies a large current to the coaxial electrode 21, a coaxial cable 23 that connects the coaxial electrode 21 and the pulse power source 22, and a connector 24 With. The central electrode 21a and the outer peripheral electrode 21b of the coaxial electrode 21 of the discharge crushing device 20 are connected to one electrode plate and the other electrode plate of the large-capacitance capacitor 22b via the switch 22p, respectively, and the large-capacitance capacitor 22b is connected by the switch 22p. And the coaxial electrode 21 are electrically connected to discharge the charge charged in the large-capacitance capacitor 22b between the center electrode 21a and the outer peripheral electrode 21b of the coaxial electrode 21 with the switch 22q closed. A shock wave is generated in the vicinity, and a crack is generated in the concrete around the coaxial electrode 21.

次に、図10(a)〜(c)を用いて建造物の基礎コンクリートのような破砕対象物50を破砕する方法について説明する。
まず、破砕対象物50の上面50aにワイヤーソーなどを用いて深溝51を形成し、破砕対象物50を同図のR1,R2,R3,……に示すような複数の領域に分割するとともに、各領域に複数の電極挿入孔52を削孔し、この電極挿入孔52に水などの電解液53をした後、電極挿入孔52に絶縁体を介して配置された同軸電極21を挿入し、同軸電極21に大電流を投入して放電させて、前記電極挿入孔52と深溝51の溝面との間のコンクリートにひび割れを発生させた後、ひび割れた部分を小型のブレーカなどの削岩機を用いて破砕する。これにより、従来のブレーカ等の破砕機やコールピックハンマー(ピック)等の削岩機を用いて破砕する場合に比べて、破砕対象物50を効率よく破砕することができる。なお、電極挿入孔52近傍のコンクリートや深溝51近傍のコンクリートなどの一部のコンクリートは衝撃により直接破砕される(例えば、特許文献2参照)。
また、破砕対象物が鉄筋コンクリート構造物である場合には、外周面の鉄筋が配置されている位置よりも深い切り込み溝を形成とともに、深溝と切り込み溝とで囲まれた領域に電極挿入孔を設けて同軸電極を挿入して放電させるようにしている。このように、鉄筋を切り込み溝により分断することで、鉄筋も振動して鉄筋の一部が衝撃波で破断されるので、破砕対象物が鉄筋コンクリート構造物であっても容易に破砕することができる(例えば、特許文献3参照)。
また、破砕対象物を所定の大きさに切り出す方法としては、ボーリング装置などにより形成したワイヤー挿入孔にワイヤーソーを挿通させて配置しこのワイヤーソーを駆動させて破砕対象物を切断する方法が知られている(例えば、特許文献4参照)。
Next, a method for crushing a crushing object 50 such as a foundation concrete of a building will be described with reference to FIGS.
First, a deep groove 51 is formed on the upper surface 50a of the crushing object 50 using a wire saw or the like, and the crushing object 50 is divided into a plurality of regions as indicated by R1, R2, R3,. A plurality of electrode insertion holes 52 are drilled in each region, an electrolytic solution 53 such as water is poured into the electrode insertion holes 52, and then the coaxial electrode 21 disposed through an insulator is inserted into the electrode insertion holes 52. A large current is applied to the coaxial electrode 21 to discharge it, and the concrete between the electrode insertion hole 52 and the groove surface of the deep groove 51 is cracked, and then the cracked portion is removed from a rock drill such as a small breaker. Crush using Thereby, compared with the case where it crushes using crushers, such as the conventional breakers, and rock drills, such as a call pick hammer (pick), the crushing object 50 can be crushed efficiently. Note that some concrete such as concrete near the electrode insertion hole 52 and concrete near the deep groove 51 is directly crushed by impact (for example, see Patent Document 2).
In addition, when the object to be crushed is a reinforced concrete structure, an incision groove deeper than the position where the reinforcing bar on the outer peripheral surface is arranged is formed, and an electrode insertion hole is provided in a region surrounded by the deep groove and the incision groove. A coaxial electrode is inserted for discharge. In this way, by dividing the reinforcing bar with the cut groove, the reinforcing bar also vibrates and a part of the reinforcing bar is broken by the shock wave, so that even if the object to be crushed is a reinforced concrete structure, it can be easily crushed ( For example, see Patent Document 3).
In addition, as a method of cutting the object to be crushed into a predetermined size, a method is known in which a wire saw is inserted through a wire insertion hole formed by a boring device or the like and the wire saw is driven to cut the object to be crushed. (For example, see Patent Document 4).

特開2003−320268号公報JP 2003-320268 A 特許第4727256号公報Japanese Patent No. 4727256 特開2006−207322号公報JP 2006-207322 A 特開平5−196797号公報Japanese Patent Laid-Open No. 5-19697

しかしながら、前記従来の放電破砕法では、破砕対象物50を細かく破砕することを目的としているため、電極挿入孔52の数を多くしなければならず、その結果、深溝51の形成や電極挿入孔52の削孔に時間がかかっていた。
また、破砕物の大きさが細かい場合には、発生する粉塵が多くなり破砕物の収納率が低くなるだけでなく、破砕物を集めて収納したり運搬したりするのが大変であった。
そこで、電極挿入孔52の数を減らすことで破砕物の大きさを大きくすることも考えられるが、電極挿入孔52の数を減らした場合には、放電によるひび割れの発生が少なくなるので、破砕対象物50を十分に破砕することが困難であった。
一方、ワイヤーソーを用いる方法では、予め多数のワイヤー挿入孔を削孔する必要があるだけでなく、切断時の廃液やスラッジなどの二次廃棄物が多いといった問題点がある。
However, since the conventional electric discharge crushing method aims to crush the crushing object 50 finely, the number of electrode insertion holes 52 must be increased. As a result, formation of deep grooves 51 and electrode insertion holes It took time to drill 52 holes.
In addition, when the size of the crushed material is small, not only is the generated dust increased and the storage rate of the crushed material is lowered, but it is also difficult to collect and store or transport the crushed material.
Therefore, it is conceivable to increase the size of the crushed material by reducing the number of the electrode insertion holes 52. However, if the number of the electrode insertion holes 52 is reduced, the occurrence of cracks due to discharge is reduced. It was difficult to sufficiently crush the object 50.
On the other hand, the method using a wire saw not only requires a number of wire insertion holes to be drilled in advance, but also has a problem that there are many secondary wastes such as waste liquid and sludge during cutting.

本発明は、従来の問題点に鑑みてなされたもので、建築物の基礎コンクリートなどのような破砕対象物に、放電により、特定方向に連続して延長する隙間の大きなひび割れを確実に発生させることで、破砕対象物を容易に破砕する方法を提供することを目的とする。   The present invention has been made in view of conventional problems, and reliably generates a large crack in a crushing object such as a foundation concrete of a building, which is continuously extended in a specific direction by electric discharge. It aims at providing the method of crushing a crushing object easily.

本発明は、破砕対象物に複数の電極挿入孔を削孔し、前記電極挿入孔内に、絶縁体を介して配置された同軸電極、もしくは、一対の電極を互いに対向するように配置したワイヤー電極を挿入して放電させ、前記放電による衝撃波により前記破砕対象物を破砕する放電破砕方法であって、前記複数の電極挿入孔を線状に配置するとともに、前記電極挿入孔が削孔された破砕対象物の面の側面に、前記側面及び電極挿入孔が削孔された面に直交し、切り込み深さが前記側面から前記電極挿入孔までの距離よりも短い少なくとも2本の縦溝を形成して前記縦溝に沿ったひび割れを誘発するようにしたことを特徴とする。
このように、電極挿入孔が削孔された破砕対象物の面の側面に側面から電極挿入孔の配列方向に垂直な方向に延長する縦溝を設けるとともに、線状に配列された電極挿入孔に同軸電極を挿入して放電させるようにしたので、前記縦溝に沿った隙間の大きな線状のひび割れを生じさせることができる。したがって、従来の自由面を形成するための深溝を形成する場合に比較して、溝形成の作業が少なくかつ短期間で電極挿入孔と縦溝とで囲まれた領域を確実に破砕できるので、作業効率を大幅に向上させることができる。また、本方法では、ひび割れの方向を制御できることから、大きな塊状の破砕物を得ることができるので、破砕物の運搬が容易となる。また、形成する溝が浅くかつ幅が狭いので、粉じんの発生量が少なく作業環境が向上するだけでなく、破砕物の塊の大きさを自由に決められるので、従来に比較して大きい塊を得ることも可能となり、破砕物の回収作業も容易となる。
また、本発明は、前記各縦溝の深さ方向の延長線上に前記電極挿入孔が位置させたことを特徴とする。
これにより、電極挿入孔の配列方向に垂直な方向のひび割れを確実に誘発できるので、ほぼ直方体状の破砕物を確実に得ることができる。したがって、破砕物の回収作業や運搬作業が更に容易になる。
The present invention provides a wire in which a plurality of electrode insertion holes are drilled in an object to be crushed, and a coaxial electrode disposed via an insulator or a pair of electrodes are disposed to face each other in the electrode insertion hole. An electric discharge crushing method for inserting and discharging an electrode and crushing the object to be crushed by a shock wave generated by the discharge, wherein the plurality of electrode insertion holes are linearly arranged and the electrode insertion holes are drilled At least two vertical grooves are formed on the side surface of the object to be crushed perpendicular to the side surface and the surface where the electrode insertion hole is cut, and the depth of cut is shorter than the distance from the side surface to the electrode insertion hole. Thus, cracks along the longitudinal groove are induced.
In this manner, the side surface of the surface of the object to be crushed with the electrode insertion hole is provided with a vertical groove extending from the side surface in a direction perpendicular to the arrangement direction of the electrode insertion hole, and the electrode insertion holes arranged linearly Since the coaxial electrode is inserted and discharged, a linear crack with a large gap along the longitudinal groove can be generated. Therefore, compared with the case of forming a deep groove for forming a conventional free surface, the work of forming the groove is less and the region surrounded by the electrode insertion hole and the vertical groove can be reliably crushed in a short period of time. Work efficiency can be greatly improved. Moreover, in this method, since the direction of cracking can be controlled, a large lump of crushed material can be obtained, so that the crushed material can be easily transported. In addition, since the grooves to be formed are shallow and narrow, not only the amount of dust generated is small and the working environment is improved, but the size of the crushed material can be freely determined, so a larger mass than in the past can be formed. It is also possible to obtain the crushed material.
Further, the present invention is characterized in that the electrode insertion hole is positioned on an extension line in the depth direction of each longitudinal groove.
Thereby, since the crack of the direction perpendicular | vertical to the arrangement direction of an electrode insertion hole can be induced reliably, the substantially rectangular parallelepiped crushed material can be obtained reliably. Therefore, the collection | recovery operation | work and conveyance operation | work of a crushed material become still easier.

また、本発明は、前記電極挿入孔の開口部を結ぶ前記電極挿入孔の深さの1/3以下である浅溝を形成して前記浅溝に沿ったひび割れを誘発させるようにしたことを特徴とする。
このように、開口部が浅溝で結ばれた複数の電極挿入孔に同軸電極を挿入して放電させることにより、前記縦溝の深さ方向のひび割れに加えて電極挿入孔の配列方向にも前記浅溝に沿った隙間の大きな直線状のひび割れを生じさせることができるので、大きさの揃ったブロック状の破砕物を容易に得ることができ、破砕物の収納や運搬を更に容易に行うことができる。
In the present invention, a shallow groove that is 1/3 or less of the depth of the electrode insertion hole connecting the opening of the electrode insertion hole is formed to induce cracks along the shallow groove. Features.
In this way, by inserting a coaxial electrode into a plurality of electrode insertion holes whose openings are connected by shallow grooves and discharging them, in addition to cracks in the depth direction of the vertical grooves, the arrangement direction of the electrode insertion holes is also increased. Since it is possible to generate a linear crack with a large gap along the shallow groove, it is possible to easily obtain a block-shaped crushed material having a uniform size, and to more easily store and transport the crushed material. be able to.

また、本発明は、前記電極挿入孔が削孔された破砕対象物の面の側面の前記電極挿入孔の孔底よりも下方に、前記電極挿入孔が削孔された面と平行で、かつ、切り込み深さが前記電極挿入孔の孔底の直下まで達する横溝を形成したことを特徴とする。
このような横溝を設けることで、厚さ(破砕対象物の電極挿入孔が削孔された面とその反対側の面との距離)の厚い破砕対象物を効率よく破砕できるとともに、ほぼ直方体状の破砕物を得ることができるので、破砕物の収納や運搬が更に容易になる
Further, the present invention is parallel to the surface where the electrode insertion hole is drilled, below the hole bottom of the electrode insertion hole on the side surface of the surface of the object to be crushed in which the electrode insertion hole is drilled, and A lateral groove is formed in which the cutting depth reaches just below the bottom of the electrode insertion hole.
By providing such a lateral groove, it is possible to efficiently crush a thick crushing object with a thickness (distance between the surface where the electrode insertion hole of the crushing object is drilled and the opposite surface) and a substantially rectangular parallelepiped shape. Since it is possible to obtain a crushed material, it becomes easier to store and transport the crushed material.

なお、前記発明の概要は、本発明の必要な全ての特徴を列挙したものではなく、これらの特徴群のサブコンビネーションもまた、発明となり得る。   The summary of the invention does not list all necessary features of the present invention, and sub-combinations of these feature groups can also be the invention.

本実施の形態1に係る放電破砕方法を示す斜視図である。It is a perspective view which shows the electric discharge crushing method which concerns on this Embodiment 1. FIG. 本実施の形態1に係る放電破砕方法を示す平面図である。It is a top view which shows the electric discharge crushing method which concerns on this Embodiment 1. FIG. 同軸電極による放電状態を示す図である。It is a figure which shows the discharge state by a coaxial electrode. ひび割れの発生状況の概要を示す図である。It is a figure which shows the outline | summary of the generation | occurrence | production state of a crack. 破砕物の剥ぎ取り方法の一例を示す図である。It is a figure which shows an example of the peeling method of a crushed material. 本実施の形態2に係る放電破砕方法を示す図である。It is a figure which shows the electric discharge crushing method which concerns on this Embodiment 2. FIG. ひび割れの発生状況の概要を示す図である。It is a figure which shows the outline | summary of the generation | occurrence | production state of a crack. 原子力発電所の生体遮蔽壁の一例と、従来の生体遮蔽壁の解体方法を示す図である。It is a figure which shows an example of the biological body shielding wall of a nuclear power station, and the conventional dismantling method of the biological body shielding wall. 本発明による生体遮蔽壁の解体方法を示す図である。It is a figure which shows the dismantling method of the biological shielding wall by this invention. 従来の放電破砕方法を示す図である。It is a figure which shows the conventional electric discharge crushing method.

以下、実施の形態を通じて本発明を詳説するが、以下の実施の形態は特許請求の範囲に係る発明を限定するものでなく、また、実施の形態の中で説明される特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。   Hereinafter, the present invention will be described in detail through embodiments, but the following embodiments do not limit the invention according to the claims, and all combinations of features described in the embodiments are included. It is not necessarily essential for the solution of the invention.

実施の形態1.
図1は、本実施の形態1に係る放電破砕方法を示す斜視図で、図2は平面図である。
本例では、長さaが5500mm、幅bが2000mm、厚さcが1500mmである直方体状のコンクリート体(以下、破砕対象物という)10を、図10(a)に示した同軸電極21を備えた放電破砕装置20を用いて破砕する方法について説明する。
まず、破砕対象物10の上面10aの一方側の側面10b側からL=500mm離れた位置に、放電破砕装置の同軸電極を挿入するための複数の電極挿入孔11を400mmピッチで削孔する。これにより、電極挿入孔11を、上面10aの側面10bから一定の距離を隔てた位置に、上面10aと側面10bとの作る稜線に沿って配置することができる。
本例では、外径が50mmφの同軸電極21を用いて放電を行う関係上、各電極挿入孔11の径を約75mmφ、深さDを約1000mmとした。なお、電極挿入孔11の削孔は、例えば、周知のコアドリルなどを用いて行うことができる。
次に、側面10bに横溝12を形成する。
横溝12は、破砕対象物10の上面10aに平行な溝で、本例では、ウォールソーを用い、上面10aからの距離が電極挿入孔11の深さDよりも長い位置(例えば、上面10aからh=1200mmの位置)に、幅が5mm、深さがL=500mmのスリット状の横溝12を形成した。なお、ウォールソーは円盤状の回転刃を回転させながら対象物を切削することでスリットを形成するもので、ワイヤーソーを用いた場合に比較して溝幅の狭い横溝12を形成することができる。
横溝12は破砕物の厚さを規定するとともに、破砕対象物10が鉄筋コンクリート構造物である場合には、横溝12により縦筋が切断されるので、破砕対象物10の破砕と後述する破砕物の剥ぎ取りとを容易に行うことができる。
Embodiment 1 FIG.
FIG. 1 is a perspective view showing a discharge crushing method according to Embodiment 1, and FIG. 2 is a plan view.
In this example, a rectangular parallelepiped concrete body (hereinafter referred to as a crushing object) 10 having a length a of 5500 mm, a width b of 2000 mm, and a thickness c of 1500 mm is used as the coaxial electrode 21 shown in FIG. A method for crushing using the provided electric discharge crushing apparatus 20 will be described.
First, a plurality of electrode insertion holes 11 for inserting coaxial electrodes of a discharge crushing device are drilled at a pitch of 400 mm at a position L = 500 mm away from the side surface 10b on one side of the upper surface 10a of the crushing object 10. Thereby, the electrode insertion hole 11 can be arrange | positioned along the ridgeline which the upper surface 10a and the side surface 10b make in the position spaced apart from the side surface 10b of the upper surface 10a.
In this example, because the discharge is performed using the coaxial electrode 21 having an outer diameter of 50 mmφ, the diameter of each electrode insertion hole 11 is about 75 mmφ and the depth D is about 1000 mm. The electrode insertion hole 11 can be drilled using, for example, a well-known core drill.
Next, the lateral groove 12 is formed in the side surface 10b.
The lateral groove 12 is a groove parallel to the upper surface 10a of the object 10 to be crushed. In this example, a wall saw is used, and the distance from the upper surface 10a is longer than the depth D of the electrode insertion hole 11 (for example, from the upper surface 10a). A slit-like lateral groove 12 having a width of 5 mm and a depth of L = 500 mm was formed at a position (h = 1200 mm). The wall saw forms a slit by cutting an object while rotating a disk-shaped rotary blade, and can form a lateral groove 12 having a narrow groove width compared to the case of using a wire saw. .
The horizontal groove 12 regulates the thickness of the crushed object, and when the object 10 to be crushed is a reinforced concrete structure, the vertical groove is cut by the horizontal groove 12, so Stripping can be easily performed.

一方、縦溝13は、横溝12が形成された側面10bに横溝12と垂直な方向に延長するように設けられた幅が5mm、深さが150mmのスリット状の溝で、一端が上面10aに開口し他端が横溝12に開口する。縦溝13も、横溝12と同様にウォールソーを用いて形成される。なお、縦溝13の深さはk=150mmなので、破砕対象物10の上面から見たときの縦溝13の端部(溝底)は電極挿入孔11まで達していない。
本例では、各縦溝13の深さ方向の延長線上に電極挿入孔11が位置するように、各縦溝13を形成した。したがって、縦溝同士の間隔Pは電極挿入孔11のピッチの整数倍(ここでは、3倍)となる。
なお、本例では、縦溝13は横溝12を形成する工程の後に形成した。
以下、上面10aと、側面10bに平行な面で電極挿入孔11の配列方向を含む面と、側面10b(自由面)とに囲まれた領域を破砕予定領域Rという。
電極挿入孔11の削孔と横溝12及び縦溝13の形成が終了した後には、図3に示すように、各電極挿入孔11に水などの電解液14を注入した後、電極挿入孔11に同軸電極21を挿入して放電させ、破砕対象物10にひび割れを生じさせる。
なお、放電は電極挿入孔11毎に順次行ってもよいし、同時に行ってもよい。
また、放電の回数は1回でもよいし複数回行ってもよい。また、放電を複数回行う場合には、2回目以降の放電については、電極挿入孔11の孔底で行ってもよいし、図3の破線で示すように、孔底よりも高い位置で行ってもよい。
On the other hand, the vertical groove 13 is a slit-shaped groove having a width of 5 mm and a depth of 150 mm provided on the side surface 10b in which the horizontal groove 12 is formed so as to extend in a direction perpendicular to the horizontal groove 12, and one end is formed on the upper surface 10a. Open and the other end opens into the lateral groove 12. The vertical groove 13 is also formed by using a wall saw similarly to the horizontal groove 12. Since the depth of the vertical groove 13 is k = 150 mm, the end (groove bottom) of the vertical groove 13 does not reach the electrode insertion hole 11 when viewed from the upper surface of the object 10 to be crushed.
In this example, each vertical groove 13 is formed so that the electrode insertion hole 11 is positioned on an extension line in the depth direction of each vertical groove 13. Therefore, the interval P between the longitudinal grooves is an integral multiple (here, 3 times) the pitch of the electrode insertion holes 11.
In this example, the vertical groove 13 is formed after the step of forming the horizontal groove 12.
Hereinafter, a region surrounded by the upper surface 10a, a surface parallel to the side surface 10b and including the arrangement direction of the electrode insertion holes 11, and the side surface 10b (free surface) is referred to as a crushing scheduled region R.
After the formation of the drill holes of the electrode insertion holes 11 and the horizontal grooves 12 and the vertical grooves 13 is finished, an electrolyte solution 14 such as water is injected into each electrode insertion hole 11 as shown in FIG. The coaxial electrode 21 is inserted and discharged, and the object 10 to be crushed is cracked.
The discharge may be performed sequentially for each electrode insertion hole 11 or simultaneously.
Further, the number of discharges may be one or more. In addition, when the discharge is performed a plurality of times, the second and subsequent discharges may be performed at the bottom of the electrode insertion hole 11 or at a position higher than the bottom of the hole as shown by the broken line in FIG. May be.

本例のように、縦溝13の深さ方向の延長線上に電極挿入孔11があるように縦溝13を形成すると、図4(a)に示すように、電極挿入孔11間を結ぶように発生した折れ線状のひび割れCkに加えて、縦溝13と電極挿入孔11とを結ぶ隙間の大きな直線状のひび割れCmが発生するので、破砕物の形状をほぼ直方体状に揃え易くなるので、大きさの揃ったブロック状の破砕物を確実に得ることができる。
また、破砕対象物10が鉄筋コンクリート構造物である場合には、縦溝13により横筋が切断されるので、破砕対象物10の破砕と破砕物の剥ぎ取りとが容易となる。
なお、縦溝13の延長線上に電極挿入孔11がない場合でも、図4(b)に示すように、縦溝13は電極挿入孔11の延長方向に直交する方向に延長する直線状のひび割れCjを誘発することは可能である。縦溝13がない場合には、このひび割れCjは電極挿入孔11に達しない場合が多いが、放電により、ひび割れCjの端部と電極挿入孔11との間にも折れ線状のひび割れCkが発生するので、縦溝13の延長線上に電極挿入孔11がなくても縦溝13と電極挿入孔11とを結ぶひび割れを誘発することができる。但し、ひび割れCjの隙間もひび割れCkの隙間も、本例の縦溝13と電極挿入孔11とを結ぶ直線状のひび割れの隙間よりも小さいので、破砕物を容易に剥ぎ取るためには、本例のように、各縦溝13の深さ方向の延長線上に電極挿入孔11が位置するように、各縦溝13を形成することが好ましい。
なお、説明を簡単にするため、図4(a),(b)のびび割れCk,C,Cj、及び、後述する図7のびび割れCm,Cの形態については、実際のものを模式化して示した。
When the vertical groove 13 is formed such that the electrode insertion hole 11 is on the extension line in the depth direction of the vertical groove 13 as in this example, the electrode insertion holes 11 are connected to each other as shown in FIG. In addition to the broken line-shaped crack C k generated in FIG. 2, a linear crack C m having a large gap connecting the longitudinal groove 13 and the electrode insertion hole 11 is generated, so that the shape of the crushed material can be easily aligned in a substantially rectangular parallelepiped shape. Therefore, a block-shaped crushed material having a uniform size can be obtained with certainty.
In addition, when the object 10 to be crushed is a reinforced concrete structure, the horizontal bars are cut by the vertical groove 13, so that the object 10 to be crushed and the crushed object can be peeled off easily.
Even if the electrode insertion hole 11 is not on the extension line of the vertical groove 13, the vertical groove 13 is a linear crack extending in a direction perpendicular to the extension direction of the electrode insertion hole 11, as shown in FIG. It is possible to induce C j . When there is no vertical groove 13, this crack C j often does not reach the electrode insertion hole 11, but a broken line crack C C is also formed between the end of the crack C j and the electrode insertion hole 11 due to discharge. Since k is generated, a crack connecting the vertical groove 13 and the electrode insertion hole 11 can be induced without the electrode insertion hole 11 on the extension line of the vertical groove 13. However, the gap between the crack C j and the crack C k is smaller than the straight crack gap connecting the vertical groove 13 and the electrode insertion hole 11 in this example, so that the crushed material can be easily peeled off. As in this example, each vertical groove 13 is preferably formed so that the electrode insertion hole 11 is positioned on the extension line in the depth direction of each vertical groove 13.
In order to simplify the description, the cracks C k , C n , and C j in FIGS. 4A and 4B and the forms of the cracks C m and C n in FIG. This is shown schematically.

破砕対象物10にひび割れCk,Cを生じさせた後には、図5に示すように、ブレーカやハンマー式の油圧破砕機などの重機29を用い、破砕予定領域Rのうちのひび割れCk,Cで囲まれた部分を側面10b側に倒すようにして破砕された破砕物Gを剥ぎ取る。
放電後の破砕予定領域Rでは、電極挿入孔11間を結ぶように発生した折れ線状のひび割れCkと縦溝13と電極挿入孔11とを結ぶ隙間の大きな直線状のひび割れCmとに囲まれたコンクリートは、周りのコンクリートとの結合が極めて弱いので、前記ひび割れCk,Cmで囲まれたコンクリートのブロックから成る破砕物Gを破砕対象物10から容易に剥ぎ取ることができる。
前記剥ぎ取られた破砕物Gは、厚さが横溝12の深さhに等しく、長さが縦溝13の間隔Pに等しく、幅が側面10bから電極挿入孔11までの距離Lにほぼ等しい、大きさのほぼ揃った大きなブロックなので、例えば、剥ぎ取った破砕物Gを吊り上げてこれを矩形容器に収納して運搬するなどすれば、破砕物の回収作業や運搬作業を容易に行うことができる。
破砕予定領域Rの破砕物Gを全て剥ぎ取った後には、この剥ぎ取られた面を新たな側面10b’(図5を参照)とし、電極挿入孔を削孔する工程から破砕物Gを剥ぎ取る工程までの作業を繰り返すことで、新たに掘削した複数の電極挿入孔11と新たな側面10b’との間のコンクリートを破砕する作業を繰り返す。なお、破砕予定領域R以外の部分の電極挿入孔11については、予め工程の最初に設けておいてもよい。
After the cracks C k and C n are generated in the object 10 to be crushed, as shown in FIG. 5, a crack C k in the crushed area R is used by using a heavy machine 29 such as a breaker or a hammer type hydraulic crusher. , strip the crushed material G to a portion surrounded by C n is crushed to beat on the side surface 10b side.
In the planned crushing region R after the discharge, it is surrounded by a broken line crack C k generated so as to connect the electrode insertion holes 11 and a linear crack C m having a large gap connecting the vertical groove 13 and the electrode insertion hole 11. Since the bonded concrete is extremely weakly bonded to the surrounding concrete, the crushed material G made of concrete blocks surrounded by the cracks C k and C m can be easily peeled off from the object 10 to be crushed.
The stripped crushed material G has a thickness equal to the depth h of the lateral groove 12, a length equal to the distance P between the vertical grooves 13, and a width substantially equal to the distance L from the side surface 10 b to the electrode insertion hole 11. Because it is a large block of almost the same size, for example, if the crushed crushed material G is lifted and stored in a rectangular container and transported, the crushed material can be collected and transported easily. it can.
After all the crushed material G in the planned crushing region R has been peeled off, the peeled surface is defined as a new side surface 10b ′ (see FIG. 5), and the crushed material G is removed from the step of drilling the electrode insertion hole. By repeating the operations up to the step of taking, the operation of crushing the concrete between the newly excavated electrode insertion holes 11 and the new side surface 10b ′ is repeated. In addition, you may provide the electrode insertion hole 11 of parts other than the crushing plan area | region R previously at the beginning of a process.

なお、前記実施の形態1では、破砕対象物10を直方体状のコンクリート体としたが、破砕対象物10の形状はこれに限るものではなく、上面視L字状のコンクリート体など他の形状であってもよい。この場合、電極挿入孔11の配列方向を破砕して剥ぎ取る側面の方向と同方向にすることが好ましい。
また、前記例では、破砕対象物10の側面10b側から500mm離れた位置に、径が約72mmφ、深さが約100mmの電極挿入孔11を400mmピッチで削孔したが、電極挿入孔11の寸法や位置、ピッチなどはこれに限るものではなく、挿入する同軸電極21の種類、解体する破砕対象物10の強度や厚さ等に応じて適宜設定すればよい。
また、前記例では、電極挿入孔11を直線状に配列したが、折れ線状もしくは曲線状に配置してもよい。
また、横溝12については、破砕対象物10の厚さが薄い場合には省略してもよいが、横溝12により破砕対象物10の下端面のコンクリートが周囲のコンクリートと縁切りされ破砕物の剥ぎ取りが容易となるので、横溝12を設けた方が好ましい。
なお、横溝12や縦溝13の幅を大きくすると粉じんの発生量が多くなるので、15mm以下にすることが好ましく、10mm以下にすると更に好ましい。
また、前記例では、縦溝13の間隔を隣接する電極挿入孔11間の距離よりも大きくしたが、電極挿入孔11間の距離よりも小さくして多数設けてもよい。但し、縦溝13のピッチを小さくすると歪みが分散してひび割れを縦溝13に効率よく誘導できないので、縦溝13のピッチとしては隣接する電極挿入孔11間の距離の1/2以上とすることが好ましい。
また、前記例では、同軸電極21を備えた放電破砕装置20を用いたが、放電電極として、一対の電極を互いに対向するように配置したワイヤー電極を備えた放電破砕装置を用いてもよい。
In the first embodiment, the crushed object 10 is a rectangular parallelepiped concrete body. However, the shape of the crushed object 10 is not limited to this, and other shapes such as an L-shaped concrete body in a top view are used. There may be. In this case, it is preferable that the arrangement direction of the electrode insertion holes 11 is the same as the direction of the side surface to be crushed and peeled off.
In the above example, the electrode insertion holes 11 having a diameter of about 72 mmφ and a depth of about 100 mm are drilled at a pitch of 400 mm at a position 500 mm away from the side surface 10 b side of the crushing object 10. The dimensions, position, pitch, and the like are not limited thereto, and may be set as appropriate according to the type of the coaxial electrode 21 to be inserted, the strength and thickness of the crushing object 10 to be disassembled, and the like.
In the above example, the electrode insertion holes 11 are arranged in a straight line, but may be arranged in a polygonal line or a curved line.
Further, the lateral groove 12 may be omitted when the object 10 to be crushed is thin, but the concrete on the lower end surface of the object 10 to be crushed is edged with the surrounding concrete by the lateral groove 12 and the crushed object is peeled off. Therefore, it is preferable to provide the lateral groove 12.
In addition, since the generation amount of dust increases when the width of the horizontal groove 12 or the vertical groove 13 is increased, it is preferably 15 mm or less, and more preferably 10 mm or less.
In the above example, the interval between the vertical grooves 13 is larger than the distance between the adjacent electrode insertion holes 11, but a larger number may be provided smaller than the distance between the electrode insertion holes 11. However, if the pitch of the vertical grooves 13 is reduced, the strain is dispersed and cracks cannot be efficiently guided to the vertical grooves 13. Therefore, the pitch of the vertical grooves 13 is set to 1/2 or more of the distance between the adjacent electrode insertion holes 11. It is preferable.
Moreover, in the said example, although the discharge crushing apparatus 20 provided with the coaxial electrode 21 was used, you may use the discharge crushing apparatus provided with the wire electrode which has arrange | positioned so that a pair of electrode may mutually oppose as a discharge electrode.

実施の形態2.
図6は本実施の形態2を示す図である。
本例の放電破砕方法は、破砕対象物10に、実施の形態1の横溝12と縦溝13に加えて、各電極挿入孔11の開口部を結ぶ浅溝15を形成することにより、電極挿入孔11の配列方向にも隙間の大きなひび割れを発生させるようにしたもので、これにより、ほぼ直方体状の大きさの揃ったブロック状の破砕物を得ることができる。
浅溝15は、幅が電極挿入孔11の径の1/4以下で、深さが電極挿入孔の深さの1/3以下であるスリット状の溝で、ウォールソーを用いて形成される。
本例では、浅溝15の幅を5mmとし、深さを150mmとした。浅溝15は上面10a内で終端してもよいし、側面10bと直交する側の側面10cに開口させてもよい。
本例では、電極挿入孔11の開口部を結ぶ浅溝15が形成されているので、放電後の破砕対象物10には、図4(a),(b)に示すような、電極挿入孔11から横溝12が設けられている側面10bに向かう複数の折れ線状のひび割れCkと、浅溝15に沿ったひび割れCkよりも大きな隙間を有する直線状のひび割れCとが発生する。
ところで、浅溝15に代えて、隣接する電極挿入孔11,11の間に電極挿入孔11と同じ形状の誘導孔を設けてひび割れを誘発させることも考えられるが、実際に誘導孔を設けて放電しても図4(a),(b)と同様の折れ線状のひび割れCkは発生するが、本例のような、大きな隙間の直線状のひび割れを誘発することができなかった。
したがって、電極挿入孔11の配列方向に沿った大きな隙間のひび割れを発生させるためには、本例にように、電極挿入孔11の開口部を結ぶ浅溝15を形成する必要があることが分かる。
Embodiment 2. FIG.
FIG. 6 is a diagram showing the second embodiment.
In the electric discharge crushing method of this example, in addition to the horizontal groove 12 and the vertical groove 13 of the first embodiment, a shallow groove 15 that connects the openings of the electrode insertion holes 11 is formed in the crushing object 10, thereby inserting an electrode. A crack having a large gap is also generated in the arrangement direction of the holes 11, and thereby, a block-like crushed material having a substantially rectangular parallelepiped shape can be obtained.
The shallow groove 15 is a slit-like groove whose width is 1/4 or less of the diameter of the electrode insertion hole 11 and whose depth is 1/3 or less of the depth of the electrode insertion hole, and is formed using a wall saw. .
In this example, the shallow groove 15 has a width of 5 mm and a depth of 150 mm. The shallow groove 15 may be terminated in the upper surface 10a, or may be opened in the side surface 10c on the side orthogonal to the side surface 10b.
In this example, since the shallow groove 15 that connects the opening of the electrode insertion hole 11 is formed, the crushing object 10 after discharge has an electrode insertion hole as shown in FIGS. 4 (a) and 4 (b). A plurality of broken line cracks C k from 11 to the side surface 10 b where the lateral groove 12 is provided, and a linear crack C n having a gap larger than the crack C k along the shallow groove 15 are generated.
By the way, in place of the shallow groove 15, it may be possible to induce a crack by providing a guide hole having the same shape as the electrode insert hole 11 between the adjacent electrode insert holes 11, 11. Even if it is discharged, a broken line-shaped crack C k similar to that shown in FIGS. 4A and 4B is generated, but a linear crack with a large gap as in this example could not be induced.
Therefore, it can be seen that in order to generate cracks in a large gap along the arrangement direction of the electrode insertion holes 11, it is necessary to form the shallow grooves 15 that connect the openings of the electrode insertion holes 11 as in this example. .

また、本発明の放電破砕方法では、破砕の境界を、電極挿入孔11の削孔位置や縦溝13の形成位置にて規制できるので、原子力発電所の生体遮蔽壁の解体などに好適に用いることができる。
従来、生体遮蔽壁の解体は、図8に示すように、生体遮蔽壁の側壁部30の放射化されているとされる部分と放射化されていないとされる部分との境界Kに沿って、ボーリング装置などに縦穴31を形成し、この縦穴31を利用して図示しないワイヤーソーにより切断面Zを形成して、放射化されている部分30Aを所定の大きさのブロックに切断する、いわゆるワイヤーソー工法が用いられていた。
ところで、生体遮蔽壁の解体は、例えば、外径が25000mm、内径が21000mmと極めて大きいので、図9(a)に示すように、生体遮蔽壁の側壁部30の放射化されているとされる部分30Aを、例えば、円周方向を12分割するなど、分割された領域が上面視ほぼ台形状の角柱となるような複数の領域30Nに分割し、この分割した各領域30Nについて、本発明の放電時破砕方法を適用すれば、前記実施の形態1,2と同様に、各領域30Nを容易に破砕することができる。
具体的には、図9(b)に示すように、上面視ほぼ台形状に分割された放射化されているとされる領域30Nとその外周部分である放射化されていないとされる部分30Bとの境界Kに沿って複数の電極挿入孔11を配列するとともに、これらの電極挿入孔11の開口部を結ぶ浅溝15を形成し、更に、横溝12と縦溝13とを形成して破砕領域を決定する。なお、縦溝13は互いに隣接する放射化されているとされる領域30Nの境界に沿って設けられる。
そして、削孔された電極挿入孔11に同軸電極21を挿入して浅溝15及び縦溝13に沿ったひび割れを発生させるようにすれば、放射化されているとされる領域30Nを前記境界Kにて確実に分離して破砕できるとともに、放射化されているとされる領域30Nをほぼ同じ大きさのブロック状に破砕して回収することができる。
このように、本発明の放電破砕方法を生体遮蔽壁の解体に適用すれば、ワイヤーソー工法に比較して早期に解体を行うことができるとともに、ワイヤーソー工法の欠点であった切断時の廃液やスラッジなどの二次廃棄物を大幅に減少させることができる。
Moreover, in the electric discharge crushing method of the present invention, the crushing boundary can be regulated by the drilling position of the electrode insertion hole 11 or the formation position of the vertical groove 13, so that it is suitably used for dismantling the biological shielding wall of a nuclear power plant. be able to.
Conventionally, as shown in FIG. 8, the dismantling of the biological shielding wall is performed along a boundary K between the portion considered to be activated and the portion assumed not to be activated of the side wall portion 30 of the biological shielding wall. A vertical hole 31 is formed in a boring device or the like, a cut surface Z is formed by a wire saw (not shown) using the vertical hole 31, and the activated portion 30A is cut into blocks of a predetermined size. The wire saw method was used.
By the way, the dismantling of the biological shielding wall, for example, has an extremely large outer diameter of 25000 mm and an inner diameter of 21000 mm. Therefore, as shown in FIG. The portion 30A is divided into a plurality of regions 30N such that the divided region becomes a substantially trapezoidal prism as viewed from above, for example, the circumferential direction is divided into 12 parts. If the crushing method at the time of discharge is applied, each region 30N can be easily crushed as in the first and second embodiments.
Specifically, as shown in FIG. 9 (b), a region 30N that is supposed to be activated divided into a substantially trapezoidal shape when viewed from above, and a portion 30B that is not activated that is the outer peripheral portion thereof. A plurality of electrode insertion holes 11 are arranged along a boundary K between the electrode insertion holes 11, shallow grooves 15 connecting the openings of the electrode insertion holes 11 are formed, and further, lateral grooves 12 and vertical grooves 13 are formed to be crushed. Determine the area. Note that the vertical groove 13 is provided along the boundary of the adjacent region 30N that is supposed to be activated.
Then, if the coaxial electrode 21 is inserted into the drilled electrode insertion hole 11 to generate cracks along the shallow groove 15 and the longitudinal groove 13, the region 30N that is supposed to be activated is defined as the boundary 30N. K can be reliably separated and crushed by K, and the activated region 30N can be crushed into blocks of substantially the same size and recovered.
As described above, when the electric discharge crushing method of the present invention is applied to the dismantling of the biological shielding wall, it can be disassembled earlier than the wire saw method, and the waste liquid at the time of cutting, which was a drawback of the wire saw method. And secondary waste such as sludge can be greatly reduced.

以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は前記実施の形態に記載の範囲には限定されない。前記実施の形態に、多様な変更または改良を加えることが可能であることが当業者にも明らかである。そのような変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲から明らかである。   As mentioned above, although this invention was demonstrated using embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. It will be apparent to those skilled in the art that various modifications or improvements can be added to the embodiment. It is apparent from the claims that the embodiments added with such changes or improvements can be included in the technical scope of the present invention.

本発明によれば、建築物の基礎コンクリートなどのような破砕対象物に大きなひび割れを確実に発生させることができるので、建造物の基礎コンクリートやなどの解体を容易に行うことができる。また、大きな塊状の破砕物を得ることができるので、破砕物の回収作業や運搬作業を容易に行うことができる。   According to the present invention, since large cracks can be reliably generated in an object to be crushed such as foundation concrete of a building, it is possible to easily dismantle the foundation concrete or the like of a building. In addition, since a large crushed crushed material can be obtained, the crushed material can be collected and transported easily.

10 破砕対象物、11 電極挿入孔、12 横溝、13 縦溝、14 電解液、
15 浅溝、20 放電破砕装置、21 同軸電極、22 パルスパワー源、
23 同軸ケーブル、24 コネクタ、29 重機。
10 object to be crushed, 11 electrode insertion hole, 12 transverse groove, 13 longitudinal groove, 14 electrolyte,
15 shallow groove, 20 discharge crushing device, 21 coaxial electrode, 22 pulse power source,
23 Coaxial cable, 24 connectors, 29 heavy machinery.

Claims (4)

破砕対象物に複数の電極挿入孔を削孔し、前記電極挿入孔内に、絶縁体を介して配置された同軸電極、もしくは、一対の電極を互いに対向するように配置したワイヤー電極を挿入して放電させ、前記放電による衝撃波により前記破砕対象物を破砕する放電破砕方法であって、
前記複数の電極挿入孔を線状に配置するとともに、前記電極挿入孔が削孔された破砕対象物の面の側面に、前記側面及び電極挿入孔が削孔された面に直交し、切り込み深さが前記側面から前記電極挿入孔までの距離よりも短い少なくとも2本の縦溝を形成して前記縦溝に沿ったひび割れを誘発するようにしたことを特徴とする放電破砕方法。
A plurality of electrode insertion holes are drilled in the object to be crushed, and a coaxial electrode arranged via an insulator or a wire electrode arranged with a pair of electrodes facing each other is inserted into the electrode insertion hole. A discharge crushing method of crushing the crushing object by a shock wave caused by the discharge,
The plurality of electrode insertion holes are arranged in a line, and the side surface of the object to be crushed in which the electrode insertion holes are drilled are orthogonal to the side in which the side surfaces and the electrode insertion holes are drilled. A discharge crushing method, wherein at least two vertical grooves shorter than the distance from the side surface to the electrode insertion hole are formed to induce cracks along the vertical grooves.
前記各縦溝の深さ方向の延長線上に前記電極挿入孔が位置していることを特徴とする請求項1に記載の放電破砕方法。   The discharge crushing method according to claim 1, wherein the electrode insertion hole is located on an extension line in a depth direction of each vertical groove. 前記電極挿入孔の開口部を結ぶ前記電極挿入孔の深さの1/3以下である浅溝を形成して前記浅溝に沿ったひび割れを誘発させるようにしたことを特徴とする請求項1または請求項2に記載の放電破砕方法。   The shallow groove which is 1/3 or less of the depth of the said electrode insertion hole which connects the opening part of the said electrode insertion hole was formed, and the crack along the said shallow groove was induced. Or the electric discharge crushing method of Claim 2. 前記電極挿入孔が削孔された破砕対象物の面の側面の前記電極挿入孔の孔底よりも下方に、前記電極挿入孔が削孔された面と平行で、かつ、切り込み深さが前記電極挿入孔の孔底の直下まで達する横溝を形成したことを特徴とする請求項1〜請求項3のいずれかに記載の放電破砕方法。
Below the hole bottom of the electrode insertion hole on the side of the surface of the object to be crushed in which the electrode insertion hole has been drilled, parallel to the surface in which the electrode insertion hole has been drilled, and the depth of cut is The discharge crushing method according to any one of claims 1 to 3, wherein a lateral groove reaching just below the bottom of the electrode insertion hole is formed.
JP2011194132A 2011-09-06 2011-09-06 Electric discharge crushing method Active JP5860641B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011194132A JP5860641B2 (en) 2011-09-06 2011-09-06 Electric discharge crushing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011194132A JP5860641B2 (en) 2011-09-06 2011-09-06 Electric discharge crushing method

Publications (2)

Publication Number Publication Date
JP2013053494A true JP2013053494A (en) 2013-03-21
JP5860641B2 JP5860641B2 (en) 2016-02-16

Family

ID=48130732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011194132A Active JP5860641B2 (en) 2011-09-06 2011-09-06 Electric discharge crushing method

Country Status (1)

Country Link
JP (1) JP5860641B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017180000A (en) * 2016-03-31 2017-10-05 株式会社大林組 Demolition method by section of structure
CN110904867A (en) * 2019-12-12 2020-03-24 中铁二十局集团第四工程有限公司 Construction method for dismantling upper-span existing line arch bridge

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7336673B1 (en) 2023-04-24 2023-09-01 株式会社神島組 Crushing method
JP7400175B1 (en) 2023-07-28 2023-12-19 株式会社神島組 Rock-splitting device and method of supplying lubricant to the rock-splitting device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61559B2 (en) * 1980-11-27 1986-01-09 Shimizu Construction Co Ltd
JPS61130568A (en) * 1984-11-28 1986-06-18 株式会社日本水中作業 Disassembling of concrete structure in liquid
JPH08155943A (en) * 1994-11-30 1996-06-18 Hitachi Zosen Corp Destruction of article to be destructed
US5810098A (en) * 1997-01-10 1998-09-22 Wathen; Boyd J. Method of breaking slabs and blocks of rock from rock formations and explosive shock transmitting and moderating composition for use therein
JP2006207322A (en) * 2005-01-31 2006-08-10 Kumagai Gumi Co Ltd Crushing method for reinforced concrete building
JP2007083177A (en) * 2005-09-22 2007-04-05 High Frequency Heattreat Co Ltd Crushing method and crushing tool

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61559B2 (en) * 1980-11-27 1986-01-09 Shimizu Construction Co Ltd
JPS61130568A (en) * 1984-11-28 1986-06-18 株式会社日本水中作業 Disassembling of concrete structure in liquid
JPH08155943A (en) * 1994-11-30 1996-06-18 Hitachi Zosen Corp Destruction of article to be destructed
US5810098A (en) * 1997-01-10 1998-09-22 Wathen; Boyd J. Method of breaking slabs and blocks of rock from rock formations and explosive shock transmitting and moderating composition for use therein
JP2006207322A (en) * 2005-01-31 2006-08-10 Kumagai Gumi Co Ltd Crushing method for reinforced concrete building
JP2007083177A (en) * 2005-09-22 2007-04-05 High Frequency Heattreat Co Ltd Crushing method and crushing tool

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017180000A (en) * 2016-03-31 2017-10-05 株式会社大林組 Demolition method by section of structure
CN110904867A (en) * 2019-12-12 2020-03-24 中铁二十局集团第四工程有限公司 Construction method for dismantling upper-span existing line arch bridge
CN110904867B (en) * 2019-12-12 2021-09-03 中铁二十局集团第四工程有限公司 Construction method for dismantling upper-span existing line arch bridge

Also Published As

Publication number Publication date
JP5860641B2 (en) 2016-02-16

Similar Documents

Publication Publication Date Title
JP5860641B2 (en) Electric discharge crushing method
US9700893B2 (en) Virtual electrode mineral particle disintegrator
US7384009B2 (en) Virtual electrode mineral particle disintegrator
CA2873152C (en) Virtual electrode mineral particle disintegrator
JP6423690B2 (en) Dismantling method
CN109026028A (en) A kind of rock roadway in coal mine mechanical rock breaking method
JP4167235B2 (en) Excavation method of horizontal shaft
EP3234297B1 (en) Device and method for crushing rock by means of pulsed electric energy
JP4727256B2 (en) Electric discharge crushing method
JP5843528B2 (en) Electric discharge crushing method
JP5795232B2 (en) Dismantling method
KR20070029152A (en) Discharge crushing method for crushing object to be crushed, method of excavating horizontal tunnel using discharge crushing method, and method of excavating vertical shaft
JP7295610B2 (en) Method for removing concrete from the surface of a reinforced concrete building
KR20000025044A (en) Method of blasting bench using 4 free faces in blasting rock of 2 free faces
JP4549877B2 (en) Crushing method for reinforced concrete structures
RU2613678C1 (en) Electrical discharge method for rock destruction
JP4202331B2 (en) Excavation method of horizontal shaft
JP4167236B2 (en) Drilling method of shaft
KR20080003282A (en) Bridge joint area replacement method using plasma cell
CN112044569B (en) Combined multi-electrode high-voltage pulse discharge hard rock breaking device and breaking method
JP6585930B2 (en) Caisson applied method
CN114352191B (en) Stratum weakening pretreatment method and pore-forming method
RU17192U1 (en) PUNCH DRILL
JP2008231677A (en) Pit mouth forming method
JP5089164B2 (en) Wellhead formation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151221

R150 Certificate of patent or registration of utility model

Ref document number: 5860641

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350