JP2005314769A - Alloy material of high melting-point metal having high strength and high toughness due to carbonization, and production method therefor - Google Patents

Alloy material of high melting-point metal having high strength and high toughness due to carbonization, and production method therefor Download PDF

Info

Publication number
JP2005314769A
JP2005314769A JP2004135773A JP2004135773A JP2005314769A JP 2005314769 A JP2005314769 A JP 2005314769A JP 2004135773 A JP2004135773 A JP 2004135773A JP 2004135773 A JP2004135773 A JP 2004135773A JP 2005314769 A JP2005314769 A JP 2005314769A
Authority
JP
Japan
Prior art keywords
carbonization
temperature
alloy material
alloy
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004135773A
Other languages
Japanese (ja)
Other versions
JP4481075B2 (en
Inventor
Masahiro Nagae
正寛 長江
Tetsuo Yoshio
哲夫 吉尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2004135773A priority Critical patent/JP4481075B2/en
Publication of JP2005314769A publication Critical patent/JP2005314769A/en
Application granted granted Critical
Publication of JP4481075B2 publication Critical patent/JP4481075B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem that a Mo-based material obtained by a reported carbonization method is still insufficient in high temperature strength and toughness. <P>SOLUTION: The alloy material of a high melting-point metal having high strength and high toughness is produced by carbonizing a workpiece of the alloy material comprising one element among Mo, W and Cr as a parent phase, and at least one element among Ti, Zr, Hf, V, Nb and Ta as a dissolved metal; and includes carbon segregated in a grain boundary and carbide particles of a dissolved metal dispersedly precipitated in the matrix, by the carbonization treatment with the use of a carbon source containing oxygen gas. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高温耐熱材料、特に、高融点金属であるMo,W,Crの1種を母相とする
炭化物粒子分散強化型の高強度・高靭性の高融点金属系合金材料とその製造方法に関する
The present invention relates to a high-temperature heat-resistant material, in particular, a carbide particle dispersion strengthened high-strength and high-toughness refractory metal-based alloy material having one of Mo, W and Cr as high-melting-point metals as a parent phase, and a method for producing the same About.

現在、高融点金属系耐熱合金として、MoにTi,Zr,及びCを添加したプランゼー
社のTZM合金(最高使用温度1400℃)がほぼ独占的に使用されているが、該合金は
難加工性である。
Currently, as a refractory metal-based heat-resistant alloy, Plansee TZM alloy (maximum operating temperature 1400 ° C) in which Ti, Zr, and C are added to Mo is used almost exclusively, but this alloy is difficult to process. It is.

Mo合金は、一旦、その再結晶温度(1000〜1300℃)以上に加熱されると、再結晶が起こ
る結果、低温脆性を示すことや、高温での強度が低下することが大きな問題点である。本
発明者らは、Mo系材料の結晶粒界を強化する方法として、微量の炭素を蒸着した後、真
空加熱により炭素を粒界拡散させる炭化処理方法についての研究を報告した(非特許文献
1)。また、本発明者らは、希薄COガスを用いたTZM合金の炭化処理による材料組織
の制御と強靭化方法についての研究を報告した(非特許文献2)。また、本発明者らは、
再結晶化したMo−Ti系合金をCOガス熱処理した場合の材料組織についての研究を報
告した(非特許文献3)。
Mo alloys, once heated above their recrystallization temperature (1000-1300 ° C.), are reproducible, resulting in low temperature brittleness and reduced strength at high temperatures. . As a method for strengthening the crystal grain boundary of the Mo-based material, the present inventors have reported a study on a carbonization treatment method in which a small amount of carbon is deposited and then carbon is diffused by vacuum heating (Non-Patent Document 1). ). In addition, the present inventors have reported a research on a material structure control and a toughening method by carbonizing a TZM alloy using dilute CO gas (Non-patent Document 2). In addition, the inventors
A study on the material structure when the recrystallized Mo-Ti alloy was subjected to CO gas heat treatment was reported (Non-patent Document 3).

星加哲志他「粉体および粉末冶金」49(2002)32-36Satoshi Hoshika et al. "Powder and Powder Metallurgy" 49 (2002) 32-36 野村直紀他「粉体粉末冶金協会平成14年秋季大会講演概要集」(2002)201Naoki Nomura et al. “Abstracts of the 2002 Fall Meeting of the Powder and Powder Metallurgy Association” (2002) 201 野村直紀他「粉体粉末冶金協会平成15年秋季大会講演概要集」(2003)31Naoki Nomura et al. “Abstracts of the 2003 Fall Meeting” (2003) 31

本発明者らが報告した上記の炭化処理方法で得られるMo系材料は、高温強度や靭性の
面でいまだ不十分である。
The Mo-based material obtained by the carbonization method reported by the present inventors is still insufficient in terms of high temperature strength and toughness.

本発明者らは、長年、Mo系材料の炭化処理による組織制御と強靭化についての研究を
行ってきたが、少なくとも−100℃までの低温下において、静的な曲げ加工に耐え得る
延性を示し、市販の純Mo材料に比べて少なくとも2倍以上の高温強度を有する高融点金
属系合金材料の開発に成功した。
For many years, the present inventors have conducted research on microstructure control and toughening by carbonization treatment of Mo-based materials, and show ductility that can withstand static bending at a low temperature of at least −100 ° C. The inventors have succeeded in developing a refractory metal alloy material having a high temperature strength at least twice as high as that of a commercially available pure Mo material.

すなわち、本発明は、(1)Mo,W,Crのうちの1種を母相とし、Ti,Zr,H
f,V,Nb,Taのうちの少なくとも1種を固溶金属とする合金加工材の炭化処理材で
あって、酸素が共存する炭素源を用いた炭化処理によって粒界偏析した炭素と、分散析出
した固溶金属の炭化物粒子を含有すること特徴とする高強度・高靭性の高融点金属系合金
材料、である。
That is, in the present invention, (1) one of Mo, W, and Cr is used as a parent phase, and Ti, Zr, H
A carbonized material of an alloy processed material in which at least one of f, V, Nb, and Ta is a solute metal, carbon segregated at grain boundaries by carbonization using a carbon source in which oxygen coexists, and dispersion A high-strength, high-toughness refractory metal-based alloy material characterized by containing precipitated solid solution metal carbide particles.

また、本発明は、(2)合金材料の表面部は加工組織が維持され、内部は再結晶組織で
あること特徴とする上記(1)の高強度・高靭性の高融点金属系合金材料、である。
The present invention also provides (2) a high-strength, high-toughness refractory metal alloy material according to the above (1), wherein the surface portion of the alloy material maintains a processed structure and the inside is a recrystallized structure. It is.

また、本発明は、(3)Moを母相とし、Tiを固溶金属とし、DBTT(延性−脆性
遷移温度)が−110℃であることを特徴とする上記(1)又は(2)の高融点金属系合
金材料、である。
The present invention is also characterized in that (3) Mo is a parent phase, Ti is a solute metal, and DBTT (ductility-brittle transition temperature) is −110 ° C. Refractory metal-based alloy material.

さらに、本発明は、(4)Mo,W,Crのうちの1種を母相とし、Ti,Zr,Hf
,V,Nb,Taのうちの少なくとも1種を固溶金属とする合金加工材に酸素が共存する
炭素源を用いた炭化処理を多段階に行うことを特徴とする上記(1)又は(2)の高融点
金属系合金材料の製造方法、である。
Furthermore, the present invention provides (4) one of Mo, W, and Cr as a parent phase, and Ti, Zr, Hf
(1) or (2), wherein carbonization using a carbon source in which oxygen coexists is performed in a multi-stage on an alloy processed material in which at least one of V, N, and Ta is a solid solution metal. ) For producing a refractory metal alloy material.

また、本発明は、(5)第1段炭化処理を、該合金加工材の再結晶上限温度以下で、か
つ再結晶下限温度−(マイナス)200℃以上の温度で行い、固溶金属の炭化物粒子を分
散形成させ、次いで、第2段炭化処理を、第1段炭化処理で得られた該合金加工材の再結
晶下限温度以上の温度で行い、第1段炭化処理により分散形成された炭化物粒子を粒成長
させ安定化させることを特徴とする上記(4)の高融点金属系合金材料の製造方法、であ
る。
In the present invention, (5) the first stage carbonization treatment is performed at a temperature lower than the recrystallization upper limit temperature of the alloy processed material and at a temperature lower than the recrystallization lower limit temperature − (minus) 200 ° C. Particles are dispersedly formed, and then the second stage carbonization treatment is performed at a temperature equal to or higher than the recrystallization lower limit temperature of the alloy processed material obtained by the first stage carbonization treatment, and the carbide formed by dispersion formation by the first stage carbonization treatment (4) The method for producing a refractory metal-based alloy material according to (4), wherein the particles are grown and stabilized.

また、本発明は、(6)COを0.1〜5容積%含有する不活性ガスを用いて炭化処理
を行うことを特徴とする上記(4)又は(5)の高融点金属系合金材料の製造方法、であ
る。
The present invention also provides (6) the refractory metal alloy material according to (4) or (5) above, wherein carbonization is performed using an inert gas containing 0.1 to 5% by volume of CO. Manufacturing method.

本発明者は、母相中に金属元素を固溶させた高融点金属加工材を酸素が共存する炭素源
を用いて炭化処理を行うことによって、浸炭により炭素の粒界偏析による粒界強化現象が
起こることのみならず、炭素の粒内拡散によって固溶金属の炭化物粒子の分散析出現象(
内部炭化)が起こることを見出した。
The present inventor conducted a carbonization treatment using a carbon source in which oxygen coexists with a refractory metal processed material in which a metal element is dissolved in a matrix phase, thereby causing grain boundary strengthening due to grain boundary segregation of carbon by carburization. As well as the phenomenon of dispersion and precipitation of solid solution metal carbide particles due to intragranular diffusion of carbon (
We have found that internal carbonization occurs.

COガス熱処理を低温(例えば、1000℃)から段階的に温度を上げて行うと、内部炭化が
起こる。いきなり高温で熱処理を行った場合には、MoC皮膜が生成しにくいので酸素
の拡散が可能であるが、低温で行った場合、加工材の表面に非常に薄いMoC皮膜が生
成し、これによって酸素の加工材内部への拡散が阻害される結果、MoC皮膜と加工材
との界面からの炭素のみの拡散が可能になり内部炭化が起こると考えられる。例えば、C
ガスを2容積%含んだアルゴンガスで同様な熱処理を行うと、熱処理温度に関係なく
非常に厚いMoC皮膜が生成し、材料は脆くなる。酸素が共存することによってMoC
皮膜の生成(Moそのものの炭化反応)が抑制される。そのため、多段炭化の場合には、
MoC皮膜が生成するものの、その生成反応の速度がCHガス等を含む雰囲気に比べ
て著しく遅いため、炭素の粒界拡散ばかりでなく炭素の粒内拡散も可能になるものと考え
られる。このようにして生成した炭化物粒子は、高融点金属系合材料の高温変形に対する
抵抗力を高めるばかりでなく、結晶粒界の移動を阻止するピン止め効果をも有する。
When the CO gas heat treatment is performed by gradually increasing the temperature from a low temperature (for example, 1000 ° C.), internal carbonization occurs. When heat treatment is suddenly performed at a high temperature, the MoC 2 film is difficult to be formed and oxygen can be diffused. However, when it is performed at a low temperature, a very thin MoC 2 film is formed on the surface of the processed material. As a result, the diffusion of oxygen into the processed material is hindered. As a result, only carbon from the interface between the MoC 2 film and the processed material can be diffused, and internal carbonization is considered to occur. For example, C
When a similar heat treatment is performed with an argon gas containing 2% by volume of H 4 gas, a very thick MoC 2 film is formed regardless of the heat treatment temperature, and the material becomes brittle. Coexisting with MoC
2 Formation of film (carbonization reaction of Mo itself) is suppressed. Therefore, in the case of multi-stage carbonization,
Although the MoC 2 film is produced, the rate of the production reaction is significantly slower than that of the atmosphere containing CH 4 gas or the like, so that it is considered that not only the grain boundary diffusion of carbon but also the intragranular diffusion of carbon becomes possible. The carbide particles thus produced not only increase the resistance to high-temperature deformation of the refractory metal-based composite material, but also have a pinning effect to prevent the movement of crystal grain boundaries.

炭化処理により得られる該合金材料は、少なくとも表面には圧延などの加工組織が維持
され、かつ、表面から内層にかけて浸炭により固溶金属の炭化物粒子が分散析出している
構造である。このように、炭素の粒界偏析により強度が増大するとともに、炭化物粒子の
析出硬化により、再結晶温度が向上し、1500℃付近の高温域で従来の市販の純Mo材
料よりも2倍以上の強度特性を示す。また、低温延性が向上し、延性−脆性転移温度(DBT
T)は、例えば、Mo−1.0wt%Ti合金で、−110℃である。したがって、 少な
くとも−100℃までの低温下まで静的な曲げ加工に耐えられる。同じMo−Ti合金で
、高温再結晶したものは、−50℃であり、これを単に同じ条件で炭化処理したものは、
−70℃である。
The alloy material obtained by carbonization has a structure in which a processed structure such as rolling is maintained at least on the surface, and carbide particles of solid solution metal are dispersed and precipitated from the surface to the inner layer by carburization. Thus, the strength is increased by segregation of grain boundaries of carbon, and the recrystallization temperature is improved by precipitation hardening of carbide particles, which is more than twice as high as that of a conventional commercially available pure Mo material in a high temperature region around 1500 ° C. Shows strength characteristics. In addition, the low temperature ductility is improved and the ductile-brittle transition temperature (DBT
T) is, for example, a Mo-1.0 wt% Ti alloy and is −110 ° C. Therefore, it can withstand static bending at a low temperature of at least -100 ° C. The same Mo-Ti alloy recrystallized at a high temperature is -50 ° C, and this is simply carbonized under the same conditions.
-70 ° C.

通常、変形速度が速い衝撃3点曲げ試験を行うと、 DBTTは高温側にシフトし、場合に
よっては室温以上となるときもある。メンテナンス(二次加工)を室温で行うことを考える
と、 静的3点曲げ試験でのDBTTは低ければ低いほど良く、 室温付近での耐衝撃性を考慮
すると静的試験でのDBTTが−70℃では十分とはいえない。
Normally, when an impact three-point bending test with a high deformation speed is performed, the DBTT shifts to the high temperature side, and in some cases, it may become room temperature or higher. Considering that maintenance (secondary processing) is performed at room temperature, the lower the DBTT in the static three-point bending test, the better. The DBTT in the static test is -70 considering the impact resistance near room temperature. It cannot be said that ℃ is sufficient.

本発明は、高強度・高靭性の高融点金属系合金材料を提供する。合金材料の表面部に維
持された圧延などの加工組織がクラックの伝播を阻害する効果を有することにより耐衝撃
性にも優れる。さらに、合金材料を任意形状へ加工した後に酸素が共存する炭素源を用い
て加熱処理することによって、予め加工した複雑形状製品にも容易に対応できる。また、
加工前のインゴットなどを多段炭化することによって、インゴットなどの製品化加工工程
に組み込むことで、その後の鍛造などの熱間加工温度を著しく低下させることができるの
で、加工エネルギーの著しい低減が期待できる。.
The present invention provides a refractory metal alloy material having high strength and high toughness. Since the processed structure such as rolling maintained on the surface portion of the alloy material has an effect of inhibiting the propagation of cracks, the impact resistance is also excellent. Furthermore, by processing the alloy material into an arbitrary shape and then performing a heat treatment using a carbon source in which oxygen coexists, it is possible to easily cope with a complex shape product processed in advance. Also,
Multi-stage carbonization of ingots before processing, etc., and incorporation into product processing processes such as ingots can significantly reduce the hot processing temperature for subsequent forging, etc., so a significant reduction in processing energy can be expected . .

本発明の高融点金属系合金材料において、固溶金属としては、Ti,Zr,Hf,V,
Nb,Taが適する。これらの金属はいずれも容易に炭化物を形成することから、6A族
金属中での内部炭化用添加元素として適している。含有量としては約0.1〜5.0wt%
、より好ましくは約0.3〜2.0wt%である。0.1wt%未満では析出粒子が少なすぎて
再結晶を抑制できない。5.0wt%を超えると炭化処理後の材料が脆くなり、実用上使用
困難である。
In the refractory metal-based alloy material of the present invention, Ti, Zr, Hf, V,
Nb and Ta are suitable. Since these metals easily form carbides, they are suitable as additive elements for internal carbonization in Group 6A metals. The content is about 0.1 to 5.0 wt%
More preferably, it is about 0.3 to 2.0 wt%. If it is less than 0.1 wt%, there are too few precipitated particles and recrystallization cannot be suppressed. If it exceeds 5.0 wt%, the material after carbonization becomes brittle and practically difficult to use.

酸素が共存する炭素源としては、例えば、希薄COガスを用いることができる。この希
薄COガスは、COを約0.1〜5容積%含有する不活性ガスとすることが好ましい。C
O濃度が5容積%より高濃度になると高融点金属の炭化が起きるので望ましくない。希薄
COガスはカーボンポテンシャルの制御が容易であり、炭素濃度を調整することによって
合金材料表面に硬くて脆い炭化物層の生成を抑制できる。
As the carbon source in which oxygen coexists, for example, dilute CO gas can be used. The dilute CO gas is preferably an inert gas containing about 0.1 to 5% by volume of CO. C
If the O concentration is higher than 5% by volume, the refractory metal is carbonized, which is not desirable. The dilute CO gas can easily control the carbon potential, and the formation of a hard and brittle carbide layer on the alloy material surface can be suppressed by adjusting the carbon concentration.

希薄COガスに限らず、高融点金属系合金材料の周囲に固体炭素、炭化水素などの炭素
源をおいて酸素を共存させる方法でも炭化処理は可能である。例えば、加工材を炭素源と
を直接接触させずに、炭素粉末を加工材の近傍に置いた状態で、ロータリーポンプなどに
よる真空引きを行いながら熱処理を行うと希薄COガスを用いた場合と同様な反応が起こ
る。あまり真空度が良くない条件では、雰囲気中の微量酸素が炭素と反応する結果、CO
ガスが生成し、これが反応に関与することになる。炭素粉末とアルミナ粉末との混合粉末
中に加工材を埋め込んで低真空状態で反応させても同様な反応が起こる。しかしながら、
固体炭素源を用いた場合は、加熱温度が低い場合に、加工材料の表面に硬くて脆い高融点
金属の炭化物層が生成しやすいので、希薄COガスを用いる炭化処理法がより好ましい。
The carbonization treatment is possible not only with dilute CO gas, but also by a method in which a carbon source such as solid carbon or hydrocarbon is placed around the refractory metal alloy material and oxygen is allowed to coexist. For example, if the processed material is not directly in contact with the carbon source and the carbon powder is placed in the vicinity of the processed material and heat treatment is performed while evacuating with a rotary pump or the like, it is the same as when dilute CO gas is used. Reaction occurs. Under conditions where the degree of vacuum is not so good, a trace amount of oxygen in the atmosphere reacts with carbon, resulting in CO 2.
Gas is generated and will be involved in the reaction. A similar reaction occurs even if a processed material is embedded in a mixed powder of carbon powder and alumina powder and reacted in a low vacuum state. However,
When a solid carbon source is used, when the heating temperature is low, a hard and brittle refractory metal carbide layer is likely to be formed on the surface of the work material, and therefore a carbonization method using dilute CO gas is more preferable.

合金加工材の再結晶温度は主に加工度などの合金素材の作製条件に依存し、再結晶上限
値と下限値の一定の幅を有し、例えば、Mo−1.0wt%Ti合金加工材では950〜
1020℃位である。再結晶を起こす温度は加工度が大きいほど低くなる。
The recrystallization temperature of the alloy work material mainly depends on the preparation conditions of the alloy material such as the degree of work, and has a certain range of the recrystallization upper limit value and lower limit value. For example, Mo-1.0 wt% Ti alloy work material Then 950-
It is about 1020 ° C. The temperature at which recrystallization occurs decreases as the degree of processing increases.

炭化処理は上記合金加工材を第1段炭化処理として、該合金の再結晶上限温度以下で、
かつ再結晶下限温度−200℃以上の温度で加熱して、固溶金属元素の炭化物粒子を分散
形成させる。再結晶上限温度以下とするのは、それより高温で炭化処理すると材料が再結
晶化して脆くなるからであり、再結晶下限温度マイナス200℃以上の温度とするのは、
これよりもさらに低い温度では炭素の拡散速度が遅すぎて、実用上十分な深さまで内部炭
化するのが困難なためである。
The carbonization treatment is a first stage carbonization treatment of the alloy processed material, below the upper limit recrystallization temperature of the alloy,
And it heats at the temperature of recrystallization minimum temperature -200 degreeC or more, and disperse-forms the carbide particle of a solid solution metal element. The reason why the recrystallization upper limit temperature is not higher than that is that the material is recrystallized and brittle when carbonized at a temperature higher than that, and the recrystallization lower limit temperature minus 200 ° C. or higher is used.
This is because at a temperature lower than this, the diffusion rate of carbon is too slow and it is difficult to carbonize internally to a practically sufficient depth.

次いで、第2段炭化処理として、第1段炭化処理で得られた該合金加工材の再結晶下限
温度以上の温度で加熱して、第1段炭化処理により分散形成された炭化物粒子を粒成長さ
せ安定化させる。
Next, as the second stage carbonization treatment, heating is performed at a temperature equal to or higher than the recrystallization lower limit temperature of the alloy processed material obtained by the first stage carbonization treatment, and the carbide particles dispersed and formed by the first stage carbonization treatment are grown as grains. To stabilize.

多段階炭化処理の段階数は、少なくとも2段階であればよいが、第3段以降の炭化処理
として、前段の炭化処理で得られた該合金加工材の再結晶下限温度以上の温度で加熱して
、前段の炭化処理によって分散形成された炭化物粒子を更に粒成長させ安定化させる方法
も実施できる。
The number of stages of the multi-stage carbonization treatment may be at least two, but as the carbonization treatment after the third stage, heating is performed at a temperature equal to or higher than the recrystallization lower limit temperature of the alloy processed material obtained in the preceding stage carbonization treatment. Thus, a method of further growing and stabilizing the carbide particles dispersed and formed by the carbonization treatment in the previous stage can also be carried out.

例えば、第1段炭化を900℃で行うと、得られた内部炭化層内では表面から内部へ向
けて析出TiC粒子の分布密度に勾配(表面部は数が多く, 内部では少ない)が発生する。
その結果、第1段炭化で得られた内部炭化層の希薄COガス雰囲気中での再結晶温度は、
表面付近が最も高く(例えば、1300℃(再結晶上限温度))、 内部炭化層先端が最も低く(
例えば、950℃(再結晶下限温度))なる。
For example, when the first stage carbonization is performed at 900 ° C., the gradient of the distribution density of precipitated TiC particles from the surface to the inside occurs in the obtained internal carbonized layer (the number of surface portions is large and the number inside is small). .
As a result, the recrystallization temperature in the dilute CO gas atmosphere of the inner carbonized layer obtained by the first stage carbonization is
Near the surface is the highest (for example, 1300 ° C (recrystallization upper limit temperature)), and the tip of the inner carbonized layer is the lowest (
For example, 950 ° C. (recrystallization lower limit temperature).

第1段炭化で得られた内部炭化層の厚さが圧延などの加工組織を最終的にそのまま残す
ことが出来る理論上の最大厚さを規定するが、圧延などの加工組織を最大限に残すために
は、第2段階の炭化を再結晶下限温度の直上として第1段炭化で得られた内部炭化層先端
付近のTiC粒子の析出密度を上げて、なおかつTiC粒子のサイズを大きくする必要が
ある。これによって、第2段炭化後の再結晶下限温度(内部炭化層先端付近の再結晶温度)
が上昇する。もちろん、第1段炭化温度より高く、再結晶下限温度未満の温度で第2段炭
化を行えば、圧延などの加工組織を最も厚く残すことが可能であるが、炭化の工程数が多
くなり、時間も長くなりすぎる。第3段以降の炭化処理を行う場合にも全く同様な事が言
える。
The thickness of the internal carbonized layer obtained by the first stage carbonization defines the theoretical maximum thickness that can leave the processed structure such as rolling as it is, but leaves the processed structure such as rolled to the maximum extent. Therefore, it is necessary to increase the precipitation density of TiC particles near the tip of the inner carbonized layer obtained by the first stage carbonization by setting the second stage carbonization directly above the recrystallization lower limit temperature and to increase the size of the TiC particles. is there. As a result, the recrystallization lower limit temperature after the second stage carbonization (recrystallization temperature near the tip of the inner carbonized layer)
Rises. Of course, if the second stage carbonization is performed at a temperature higher than the first stage carbonization temperature and lower than the recrystallization lower limit temperature, it is possible to leave the thickest processed structure such as rolling, but the number of carbonization steps increases. The time will be too long. The same can be said for the third and subsequent carbonization processes.

上記の炭化処理の結果、材料表面部は圧延などの加工組織が維持され、内部は再結晶組
織である特徴的な二層構造となる。粒界偏析する炭素の量は30〜150ppm(wt%)程度で
あり、これより少ないと粒界強化の効果が期待できない。内部炭化層内では殆ど全て固溶
金属は炭化物として析出する。
As a result of the above carbonization treatment, the material surface portion has a characteristic structure such as rolling, and the inside has a characteristic two-layer structure having a recrystallized structure. The amount of carbon segregating at grain boundaries is about 30 to 150 ppm (wt%), and if it is less than this, the effect of strengthening grain boundaries cannot be expected. Almost all of the solid solution metal precipitates as carbides in the inner carbonized layer.

試験片として、Mo−1.0wt%Ti合金圧延材(厚さ1.0mm×幅2.5mm×長さ25mm)
を用いた。この合金圧延材の再結晶下限温度は900℃、上限温度は1020℃であった
。これに、第1段階を1000℃で16時間、第2段階を1200℃で16時間、第3段
階を1400℃で16時間、希薄COガス雰囲気を用いて炭化処理を行った。COガスの
濃度は、Ar/CO=49/1(CO濃度2容積%)とした。再結晶下限温度と上限温度
は、それぞれ、第1段階処理後1050℃と1300℃、第2段階処理後1250℃と1
500℃、第3段階処理後1450℃と1600℃であった。
As a test piece, rolled Mo-1.0wt% Ti alloy (1.0mm thickness x 2.5mm width x 25mm length)
Was used. This alloy rolled material had a recrystallization lower limit temperature of 900 ° C. and an upper limit temperature of 1020 ° C. This was carbonized using a dilute CO gas atmosphere in a first stage at 1000 ° C. for 16 hours, a second stage at 1200 ° C. for 16 hours, and a third stage at 1400 ° C. for 16 hours. The concentration of CO gas was Ar / CO = 49/1 (CO concentration 2% by volume). The recrystallization lower limit temperature and the upper limit temperature are 1050 ° C. and 1300 ° C. after the first stage treatment, and 1250 ° C. and 1 after the second stage treatment, respectively.
500 ° C., 1450 ° C. and 1600 ° C. after the third stage treatment.

図1に、処理後の試験片の光学顕微鏡組織を示す。表面から約75μm付近まで微細な
圧延組織が維持されていることが分かる。図2に、処理後の試験片のTEM組織を示す。
最終的な炭化物のサイズは長さ100nm程度の板状粒子になっていた。図3に、三点曲げ
試験の結果を示す。多段希薄COガスによる炭化処理材のDBTT(延性−脆性遷移温度
)は約−110℃であった。再結晶材を1400℃、16時間でCOガス炭化処理した場
合のDBTTは−70℃であり、これに比べて非常に低温延性が優れていることが分かる
In FIG. 1, the optical microscope structure of the test piece after a process is shown. It can be seen that a fine rolling structure is maintained from the surface to around 75 μm. In FIG. 2, the TEM structure | tissue of the test piece after a process is shown.
The final carbide size was plate-like particles having a length of about 100 nm. FIG. 3 shows the results of the three-point bending test. The DBTT (ductility-brittle transition temperature) of the carbonized material with multistage lean CO gas was about -110 ° C. When the recrystallized material is carbonized with CO gas at 1400 ° C. for 16 hours, the DBTT is −70 ° C., and it can be seen that the low temperature ductility is very excellent.

本発明の高融点金属系合金材料は、現在のTZM合金を凌ぐ耐熱性を有し、超高温環境
に対応した耐熱構造材料等に使用される。具体的には、例えば、超高温部材用ボルト及び
ナット、超高温炉用ヒーター、フィラメント、反射板、半導体部品の焼成用ボートやヒー
トシンク、熱間加工用金型及びダイス、航空宇宙用ガス噴射ノズル、溶融金属の急冷凝固
金型及び射出成型金型などが挙げられる。
The refractory metal-based alloy material of the present invention has heat resistance superior to that of the current TZM alloy, and is used as a heat-resistant structural material corresponding to an ultra-high temperature environment. Specifically, for example, bolts and nuts for ultra-high temperature members, heaters for ultra-high temperature furnaces, filaments, reflectors, boats and heat sinks for firing semiconductor components, hot working molds and dies, gas injection nozzles for aerospace Examples thereof include a rapid solidification mold of molten metal and an injection mold.

実施例1における処理後の試験片の光学顕微鏡組織を示す図面代用写真である。3 is a drawing-substituting photograph showing an optical microscope structure of a test piece after processing in Example 1. FIG. 実施例1における処理後の試験片のTEM組織を示す図面代用写真である。2 is a drawing-substituting photograph showing a TEM structure of a test piece after processing in Example 1. FIG. 実施例1における処理後の試験片の三点曲げ試験の結果を示すグラフである。3 is a graph showing the results of a three-point bending test of a test piece after treatment in Example 1. FIG.

Claims (6)

Mo,W,Crのうちの1種を母相とし、Ti,Zr,Hf,V,Nb,Taのうちの少
なくとも1種を固溶金属とする合金加工材の炭化処理材であって、酸素が共存する炭素源
を用いた炭化処理によって粒界偏析した炭素と、分散析出した固溶金属の炭化物粒子を含
有すること特徴とする高強度・高靭性の高融点金属系合金材料。
A carbonized material of an alloy processed material in which one of Mo, W, and Cr is a parent phase and at least one of Ti, Zr, Hf, V, Nb, and Ta is a solute metal, A high-strength, high-toughness, high-melting-point metal alloy material comprising carbon that has been segregated at grain boundaries by carbonization using a carbon source in which carbon coexists, and carbide particles of solute metal that has been dispersed and precipitated.
合金材料の表面部は加工組織が維持され、内部は再結晶組織であること特徴とする請求項
1記載の高強度・高靭性の高融点金属系合金材料。
The high-strength and high-toughness refractory metal alloy material according to claim 1, wherein the surface portion of the alloy material maintains a processed structure and the inside is a recrystallized structure.
Moを母相とし、Tiを固溶金属とし、DBTT(延性−脆性遷移温度)が−110℃で
あることを特徴とする請求項1又は2記載の高融点金属系合金材料。
The refractory metal-based alloy material according to claim 1 or 2, wherein Mo is a parent phase, Ti is a solute metal, and DBTT (ductility-brittle transition temperature) is -110 ° C.
Mo,W,Crのうちの1種を母相とし、Ti,Zr,Hf,V,Nb,Taのうちの少
なくとも1種を固溶金属とする合金加工材に酸素が共存する炭素源を用いて多段階で炭化
処理することを特徴とする請求項1又は2記載の高融点金属系合金材料の製造方法。
Using a carbon source in which oxygen coexists in an alloy processed material in which one of Mo, W, and Cr is a parent phase and at least one of Ti, Zr, Hf, V, Nb, and Ta is a solute metal. The method for producing a refractory metal-based alloy material according to claim 1 or 2, wherein the carbonization is performed in multiple stages.
第1段炭化処理を、該合金加工材の再結晶上限温度以下で、かつ再結晶下限温度−(マイ
ナス)200℃以上の温度で行い、固溶金属の炭化物粒子を分散形成させ、次いで、第2
段炭化処理を、第1段炭化処理で得られた該合金加工材の再結晶下限温度以上の温度で行
い、第1段炭化処理により分散形成された炭化物粒子を粒成長させ安定化させることを特
徴とする請求項4記載の高融点金属系合金材料の製造方法。
The first stage carbonization treatment is performed at a temperature lower than the recrystallization upper limit temperature of the alloy processed material and at a temperature lower than the recrystallization lower limit temperature − (minus) 200 ° C. to disperse and form solid solution metal carbide particles, 2
Performing the stage carbonization treatment at a temperature equal to or higher than the lower recrystallization lower limit temperature of the alloy processed material obtained by the first stage carbonization treatment, and growing and stabilizing the carbide particles dispersed and formed by the first stage carbonization treatment. The method for producing a refractory metal-based alloy material according to claim 4.
COを0.1〜5容積%含有する不活性ガスを用いて炭化処理を行うことを特徴とする請
求項4又は5記載の高融点金属系合金材料の製造方法。
6. The method for producing a refractory metal alloy material according to claim 4 or 5, wherein carbonization is performed using an inert gas containing 0.1 to 5% by volume of CO.
JP2004135773A 2004-04-30 2004-04-30 High-strength and high-toughness refractory metal alloy material by carbonization and its manufacturing method Expired - Fee Related JP4481075B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004135773A JP4481075B2 (en) 2004-04-30 2004-04-30 High-strength and high-toughness refractory metal alloy material by carbonization and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004135773A JP4481075B2 (en) 2004-04-30 2004-04-30 High-strength and high-toughness refractory metal alloy material by carbonization and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2005314769A true JP2005314769A (en) 2005-11-10
JP4481075B2 JP4481075B2 (en) 2010-06-16

Family

ID=35442492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004135773A Expired - Fee Related JP4481075B2 (en) 2004-04-30 2004-04-30 High-strength and high-toughness refractory metal alloy material by carbonization and its manufacturing method

Country Status (1)

Country Link
JP (1) JP4481075B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111118367A (en) * 2020-01-17 2020-05-08 江苏理工学院 Method for repairing silicide coating on surface of refractory metal molybdenum alloy

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0649619A (en) * 1991-12-04 1994-02-22 Leybold Durferrit Gmbh Method and apparatus for treating alloy steel and high-melting metal
JPH06248384A (en) * 1993-02-25 1994-09-06 Tokyo Tungsten Co Ltd Mo alloy single crystal and its production
JPH0885840A (en) * 1994-09-19 1996-04-02 Hiroaki Kurishita Molybdenum alloy and production thereof
JP2001073060A (en) * 1999-09-06 2001-03-21 Japan Science & Technology Corp High melting point metallic alloy material having high toughness and high strength

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0649619A (en) * 1991-12-04 1994-02-22 Leybold Durferrit Gmbh Method and apparatus for treating alloy steel and high-melting metal
JPH06248384A (en) * 1993-02-25 1994-09-06 Tokyo Tungsten Co Ltd Mo alloy single crystal and its production
JPH0885840A (en) * 1994-09-19 1996-04-02 Hiroaki Kurishita Molybdenum alloy and production thereof
JP2001073060A (en) * 1999-09-06 2001-03-21 Japan Science & Technology Corp High melting point metallic alloy material having high toughness and high strength

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111118367A (en) * 2020-01-17 2020-05-08 江苏理工学院 Method for repairing silicide coating on surface of refractory metal molybdenum alloy

Also Published As

Publication number Publication date
JP4481075B2 (en) 2010-06-16

Similar Documents

Publication Publication Date Title
Gao et al. Effect of δ phase on high temperature mechanical performances of Inconel 718 fabricated with SLM process
US5458705A (en) Thermal cycling titanium matrix composites
JP4467637B2 (en) Alloy based on titanium aluminum
JP4841931B2 (en) Method for improving oxidation resistance of heat-resistant metal material and method for producing heat-resistant metal member
El-Bagoury et al. Effect of various heat treatment conditions on microstructure of cast polycrystalline IN738LC alloy
JP2009299120A (en) MANUFACTURING METHOD OF Ni-Cr-Fe TERNARY SYSTEM ALLOY MATERIAL
Kim et al. Gamma Titanium Aluminide Alloys 2014: A Collection of Research on Innovation and Commercialization of Gamma Alloy Technology
WO2005106055A1 (en) High melting point metal based alloy material exhibiting high strength and high recrystallization temperature and method for production thereof
JP2003293070A (en) Mo-ALLOY WORK MATERIAL WITH HIGH STRENGTH AND HIGH TOUGHNESS, AND ITS MANUFACTURING METHOD
KR101802099B1 (en) Niobium silicide-based composite material, and high-temperature component and high-temperature heat engine using thereof
JP4307649B2 (en) High toughness / high strength refractory metal alloy material and method for producing the same
WO2015079558A1 (en) Niobium silicide-based composite material, and high-temperature part and high-temperature heat engine each manufactured using same
JP4481075B2 (en) High-strength and high-toughness refractory metal alloy material by carbonization and its manufacturing method
JP7139418B2 (en) Alloy turbine parts containing MAX phase
KR102446488B1 (en) High Entropy Alloy with Heterogenous Complex Microstructure and The Manufacturing Method Thereof
TWI540211B (en) Equiaxed grain nickel-base casting alloy for high stress application
JP2003293116A (en) HIGHLY CORROSION RESISTANT, HIGH STRENGTH, HIGH TOUGHNESS, NITRIDING-TREATED Mo ALLOY WORKED MATERIAL AND PRODUCTION METHOD THEREFOR
JP4558572B2 (en) High heat resistant molybdenum alloy and manufacturing method thereof
JP4276853B2 (en) Niobium-based composite material
JP6841441B2 (en) Manufacturing method of Mo-Si-B alloy, Mo-Si-B alloy and friction stir welding tool
KR950003051B1 (en) Heat-resistant nickel forging alloy
JPH05295501A (en) Method for controlling structure of nb-al-base intermetallic compound
JP2009209409A (en) Fe3al-based alloy having high specific strength and production method therefor
Li et al. Effect of metastable phase content controlled by heat-treatment on high temperature oxidation performance of directionally solidified Ni-Si hypereutectic composites
Kong et al. Effects of Secondary Recrystallization on the Mechanical Properties and Creep Behavior of Ni45co17al13cr11ti5w5mo2nb1ta1 High Entropy Superalloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100316

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100317

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees