JP2005314173A - Boron carbide nanobelt and manufacturing method thereof - Google Patents

Boron carbide nanobelt and manufacturing method thereof Download PDF

Info

Publication number
JP2005314173A
JP2005314173A JP2004134987A JP2004134987A JP2005314173A JP 2005314173 A JP2005314173 A JP 2005314173A JP 2004134987 A JP2004134987 A JP 2004134987A JP 2004134987 A JP2004134987 A JP 2004134987A JP 2005314173 A JP2005314173 A JP 2005314173A
Authority
JP
Japan
Prior art keywords
nanobelt
boron carbide
crucible
boron
heating furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004134987A
Other languages
Japanese (ja)
Other versions
JP4590599B2 (en
Inventor
Yoshio Bando
義雄 板東
Shuu Fanfan
ファンファン・シュー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2004134987A priority Critical patent/JP4590599B2/en
Publication of JP2005314173A publication Critical patent/JP2005314173A/en
Application granted granted Critical
Publication of JP4590599B2 publication Critical patent/JP4590599B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a boron carbide nanobelt with two dimensions of 50 μm-100 μm in length, 5 μm-10 μm in width, and 20 nm-100 nm in thickness, and to provide a manufacturing method of a boron carbide nanobelt. <P>SOLUTION: The boron carbide nanobelt with a size of 50 μm-100 μm in length, 5 μm-10 μm in width and 20 nm-100 nm in thickness, is obtained by charging a boron oxide powder 20 into a graphite crucible 10 and then arranging a graphite mesh 30 and a boron nitride plate 40 above the boron oxide powder 20 in this crucible 10, and thereafter by heating it at 1,900°C-2,000°C for 0.5-1.5 hours under a nitrogen gas atmosphere in a vertical-type high frequency induction heating furnace. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高温における熱安定性に優れ、高強度、高ヤング率を有し、耐磨耗性セラミック、原子力産業における中性子捕獲材などとして有用な炭化ホウ素ナノベルト及びその製造方法に関する。   The present invention relates to a boron carbide nanobelt that is excellent in thermal stability at high temperatures, has high strength and high Young's modulus, and is useful as an abrasion-resistant ceramic, a neutron capture material in the nuclear power industry, and the like, and a method for producing the same.

炭化ホウ素は、ダイヤモンド、窒化ホウ素に続いて、第三番目に硬い物質であり、耐火性、高温における熱安定性、高ヤング率など優れた性質を有している。
そして、ナノワイヤ、ナノネックレス、ナノスプリング、ナノファイバーなどの一次元の炭化ホウ素のナノ構造物はすでに知られている(たとえば、非特許文献1〜3参照)。これらのナノサイズの微小な構造体は、その表面積が大きいため、化学的に活性になり特性がバルク材料に比べて強調される。
Boron carbide is the third hardest substance after diamond and boron nitride, and has excellent properties such as fire resistance, thermal stability at high temperatures, and high Young's modulus.
One-dimensional boron carbide nanostructures such as nanowires, nanonecklaces, nanosprings, and nanofibers are already known (see, for example, Non-Patent Documents 1 to 3). These nano-sized microstructures have a large surface area and are therefore chemically active, and their characteristics are emphasized compared to bulk materials.

D. N. Mclloy, 他、2001, Appl. Phys. Lett., vol.79, pp.1540-1542D. N. Mclloy, et al., 2001, Appl. Phys. Lett., Vol. 79, pp. 1540-1542 M. J. Pender、 2000, Chem. Mater.,vol.12, pp.280-283M. J. Pender, 2000, Chem. Mater., Vol. 12, pp. 280-283 R. Ma,他、 2002, Chem .Mater., vol14, pp.4403-4407R. Ma, et al., 2002, Chem. Mater., Vol14, pp.4403-4407

このように、一次元の炭化ホウ素のナノ構造物は知られているのに対して、二次元の炭化ホウ素のナノ構造、例えば、ナノベルト、ナノシートは知られていない。
そこで、本発明は、熱安定性、機械的強度、耐摩耗性等に優れ、セラミック、原子力産業等の分野に応用されることが期待されている、新規な二次元の長さ50μm(マイクロメートル)〜100μm、幅5μm〜10μm、厚さ20nm(ナノメートル)〜100nmの炭化ホウ素ナノベルトを提供すると共に、併せて、炭化ホウ素ナノベルトの製造方法を提供することを目的とするものである。
Thus, one-dimensional boron carbide nanostructures are known, while two-dimensional boron carbide nanostructures such as nanobelts and nanosheets are not known.
Therefore, the present invention has a novel two-dimensional length of 50 μm (micrometer), which is excellent in thermal stability, mechanical strength, wear resistance, etc. and is expected to be applied to fields such as ceramics and nuclear power industries. ) To 100 μm, width 5 μm to 10 μm, thickness 20 nm (nanometers) to 100 nm, and a method for producing a boron carbide nanobelt.

本発明の第一の構成による二次元の炭化ホウ素のナノ構造は、長さ50μm〜100μm、幅5μm〜10μm、厚さ20nm〜100nmからなることを特徴とする。この二次元の炭化ホウ素は、本発明の第二の構成により製造することができる。   The two-dimensional boron carbide nanostructure according to the first configuration of the present invention is characterized by having a length of 50 μm to 100 μm, a width of 5 μm to 10 μm, and a thickness of 20 nm to 100 nm. This two-dimensional boron carbide can be produced by the second configuration of the present invention.

すなわち、本発明の第二の構成は、るつぼ内に酸化ホウ素粉末を入れ、このるつぼ内で酸化ホウ素粉末の上方に、グラファイトメッシュと窒化ホウ素板とを配置した後に、上記るつぼを加熱炉内にセットし、不活性ガス雰囲気中で、1900℃以上に加熱して、炭化ホウ素ナノベルトを得ることを特徴とする。
前記不活性ガスとして窒素ガスを、前記るつぼとしてグラファイトるつぼを、また、前記加熱炉として高周波誘導加熱炉を、使用するのが好ましい。
前記るつぼの加熱温度は、好ましくは、1900℃〜2000℃であり、また、るつぼの加熱時間は、好ましくは、0.5時間以上1.5時間以下の時間である。
この構成により、二次元の炭化ホウ素を得ることができる。
That is, in the second configuration of the present invention, boron oxide powder is placed in a crucible, and after placing a graphite mesh and a boron nitride plate above the boron oxide powder in the crucible, the crucible is placed in a heating furnace. It is set and heated to 1900 ° C. or higher in an inert gas atmosphere to obtain a boron carbide nanobelt.
It is preferable to use nitrogen gas as the inert gas, a graphite crucible as the crucible, and a high frequency induction heating furnace as the heating furnace.
The heating temperature of the crucible is preferably 1900 ° C. to 2000 ° C., and the heating time of the crucible is preferably 0.5 hours to 1.5 hours.
With this configuration, two-dimensional boron carbide can be obtained.

本発明により、二次元の長さ50μm〜100μm、幅5μm〜10μm、厚さ20nm〜100nmを有する新規な炭化ホウ素ナノベルトを製造することができる。これにより、熱安定性、高強度、高ヤング率、耐摩耗性に優れた、新規な二次元のナノベルトが得
られる。
According to the present invention, a novel boron carbide nanobelt having a two-dimensional length of 50 μm to 100 μm, a width of 5 μm to 10 μm, and a thickness of 20 nm to 100 nm can be produced. Thereby, a novel two-dimensional nanobelt excellent in thermal stability, high strength, high Young's modulus, and wear resistance can be obtained.

以下、本発明を実施するための最良の形態を説明する。
図1は、本発明の炭化ホウ素ナノベルトを製造する際に用いるるつぼの模式図である。るつぼ10に酸化ホウ素(B2 3 )粉末20を入れて、るつぼ10内で酸化ホウ素粉末20の上方、すなわち、るつぼ10の内周に設けられた段差上にグラファイトメッシュ30、窒化ホウ素(BN)板40を順に配置する。ここで、るつぼ10には、グラファイト製のるつぼを用いるのが好ましい。
そして、このるつぼ10を加熱炉内に配置して、サセプターに取り付ける。ここで、加熱炉には、高周波誘導加熱法を利用した高周波誘導加熱炉を用いるのが好ましいが、この場合、炉は縦型でも横型でもよい。
次に、加熱炉内を窒素ガスで置換した後、るつぼ10の内容物である酸化ホウ素粉末20を加熱する。
加熱終了後、加熱炉を室温に冷却すると、窒化ホウ素板40上に銀色の金属光沢を有する生成物が堆積する。
Hereinafter, the best mode for carrying out the present invention will be described.
FIG. 1 is a schematic view of a crucible used in producing the boron carbide nanobelt of the present invention. Boron oxide (B 2 O 3 ) powder 20 is put in the crucible 10, and the graphite mesh 30 and boron nitride (BN) are placed on the step provided in the crucible 10 above the boron oxide powder 20, that is, on the inner periphery of the crucible 10. ) Arrange the plates 40 in order. Here, the crucible 10 is preferably a graphite crucible.
And this crucible 10 is arrange | positioned in a heating furnace, and it attaches to a susceptor. Here, a high-frequency induction heating furnace using a high-frequency induction heating method is preferably used as the heating furnace, but in this case, the furnace may be a vertical type or a horizontal type.
Next, after replacing the inside of the heating furnace with nitrogen gas, the boron oxide powder 20 which is the contents of the crucible 10 is heated.
When the heating furnace is cooled to room temperature after the heating, a product having a silver metallic luster is deposited on the boron nitride plate 40.

ここで、加熱温度は、約1900℃以上、特に、1900℃〜2000℃の範囲が好ましく、最適加熱温度としては約1950℃である。1900℃以下では二次元のナノベルトは得られない。また、2000℃で反応が十分に進行することから、2000℃より高温で加熱する必要はない。
一方、加熱時間は、約0.5時間以上、特に、0.5時間〜1.5時間の範囲が好ましい。0.5時間よりも短いと反応が十分進行せず、また、1.5時間で反応が十分進行するので、これ以上時間を長くかける必要がない。
Here, the heating temperature is preferably about 1900 ° C. or more, particularly preferably in the range of 1900 ° C. to 2000 ° C., and the optimum heating temperature is about 1950 ° C. Below 1900 ° C., a two-dimensional nanobelt cannot be obtained. Further, since the reaction proceeds sufficiently at 2000 ° C., it is not necessary to heat at a temperature higher than 2000 ° C.
On the other hand, the heating time is preferably about 0.5 hours or more, particularly preferably in the range of 0.5 hours to 1.5 hours. If the time is shorter than 0.5 hours, the reaction does not proceed sufficiently, and the reaction proceeds sufficiently in 1.5 hours. Therefore, it is not necessary to take a longer time.

上記の方法で得られた銀色の金属光沢を有する堆積物は、長さ50μm〜100μm、幅5μm〜10μm、厚さ20nm〜100nmの炭化ホウ素(B4 C)ナノベルトである。 The silver metal glossy deposit obtained by the above method is a boron carbide (B 4 C) nanobelt having a length of 50 μm to 100 μm, a width of 5 μm to 10 μm, and a thickness of 20 nm to 100 nm.

この炭化ホウ素ナノベルトは次のように形成されると考えられる。
図2は、二次元の炭化ホウ素のナノベルトの成長の模式図である。
先ず、堆積物である炭化ホウ素の粒子の多くにはロッド状の結晶が含まれており、このロッド状の結晶の両端は五角形のピラミッド形状になっている。ロッド状の結晶の側表面はB4 C菱面体晶の<12−1>方向と見積もられる軸に平行である。側表面は、{012}面である。{012}面の結合構造は、<12−1>方向に沿って一次元のB12のチェーンである。よって、<12−1>方向に沿ってロッド形状が成長するといえる。そして、{1−1−1}面が最も成長を支配している面である。
この{1−1−1}面の連続した側面成長により、二次元のナノベルトが形成される。このナノベルトの板の厚さtは、結晶成長の最終の段階で達成される。このとき、ベルト状の炭化ホウ素は、{1−1−1}面、側面の{012}面、トップ面の(001)面の各面と境界をもつと考えられる。ベルトの各端は、<12−1>, <110>, <100>の各方向に向かっており、[12−1]軸と[110]軸とのなす角は58.3°である。
This boron carbide nanobelt is considered to be formed as follows.
FIG. 2 is a schematic diagram of the growth of a two-dimensional boron carbide nanobelt.
First, most of the particles of boron carbide as a deposit contain rod-like crystals, and both ends of the rod-like crystals have a pentagonal pyramid shape. The side surface of the rod-like crystal is parallel to the axis estimated as the <12-1> direction of the B 4 C rhombohedral crystal. The side surface is a {012} plane. The {012} plane connection structure is a one-dimensional B 12 chain along the <12-1> direction. Therefore, it can be said that the rod shape grows along the <12-1> direction. The {1-1-1} plane is the plane that dominates the growth.
A two-dimensional nanobelt is formed by continuous side growth of the {1-1-1} plane. This nanobelt plate thickness t is achieved in the final stage of crystal growth. At this time, the belt-like boron carbide is considered to have a boundary with each of the {1-1-1} plane, the side {012} plane, and the top (001) plane. Each end of the belt faces each direction <12-1>, <110>, <100>, and an angle formed by the [12-1] axis and the [110] axis is 58.3 °.

次に、実施例を示して本発明をさらに具体的に説明する。
関東化学(株)製の酸化ホウ素粉末20(純度99.99%)0.7gを円筒型のグラファイトのるつぼ10に入れ、るつぼ10内の酸化ホウ素粉末20の上方に、グラファイトメッシュ30を配置し、さらにその上面に窒化ホウ素板40を配置した。そして、このるつぼ10を縦型高周波誘導加熱炉(日本電子製、JHF−VFX 110QZ)の中の
サセプターに取り付けた。
そして、るつぼ10を取り付けた加熱炉内の反応系を窒素ガスで置換した後、るつぼ10内の酸化ホウ素粉末20を加熱し、15分で1950℃まで昇温し、最適温度である1950℃で1時間保った。加熱終了後、縦型高周波誘導加熱炉を室温に冷却した。
Next, the present invention will be described more specifically with reference to examples.
0.7 g of boron oxide powder 20 (purity 99.99%) manufactured by Kanto Chemical Co., Inc. is placed in a cylindrical graphite crucible 10, and a graphite mesh 30 is placed above the boron oxide powder 20 in the crucible 10. Further, a boron nitride plate 40 was disposed on the upper surface. And this crucible 10 was attached to the susceptor in a vertical type high frequency induction heating furnace (the JEOL make, JHF-VFX 110QZ).
After replacing the reaction system in the heating furnace to which the crucible 10 is attached with nitrogen gas, the boron oxide powder 20 in the crucible 10 is heated, and the temperature is raised to 1950 ° C. in 15 minutes. Kept for 1 hour. After the heating, the vertical high frequency induction heating furnace was cooled to room temperature.

以上により、窒化ホウ素板40の下面に、銀色の金属光沢を有する生成物が0.1g堆積したことを確認した。   From the above, it was confirmed that 0.1 g of a product having a silver metallic luster was deposited on the lower surface of the boron nitride plate 40.

生成物を走査型電子顕微鏡で観察した。
図3は、生成物の走査型電子顕微鏡像を示す図である。なお、図の左下にあるバーの幅は10μmに相当する。図3から、生成物は長さが50μm〜100μm、幅が5μm〜10μmであることが分かった。なお、長さと幅の比は、20以上であった。
また、その厚さは透過型電子顕微鏡を用いた測定により、20nm〜100nmであることが分かった。
The product was observed with a scanning electron microscope.
FIG. 3 is a diagram showing a scanning electron microscope image of the product. Note that the width of the bar in the lower left of the figure corresponds to 10 μm. From FIG. 3, it was found that the product had a length of 50 μm to 100 μm and a width of 5 μm to 10 μm. The ratio of length to width was 20 or more.
The thickness was found to be 20 nm to 100 nm by measurement using a transmission electron microscope.

生成物の化学成分を分析するために、電子エネルギー損失スペクトルを測定した。
図4は、生成物の電子エネルギー損失スペクトルを示す図である。図の縦軸はX線強度を示し、横軸はX線エネルギー(eV)を示している。図4のスペクトルには、188eVのホウ素のK端、284eVの炭素のK端のスペクトルが現れており、炭化ホウ素からなる組成であることが分かった。
次に、生成物の電子エネルギー損失を広範囲のX線エネルギーで測定し、そのスペクトルを解析して、生成物の中に混入された窒素や酸素の影響を除いた。この電子エネルギー損失スペクトルから、ホウ素と炭素の比、すなわち、B/Cは、5〜8の範囲であった。成分中の炭素は、グラファイト製のるつぼ10によると考えられる。
以上により、得られた生成物が、長さ50μm〜100μm、幅5μm〜10μm、厚さ20nm〜100nmの二次元の炭化ホウ素ナノベルトであることを確認できた。
In order to analyze the chemical composition of the product, an electron energy loss spectrum was measured.
FIG. 4 is a diagram showing an electron energy loss spectrum of the product. In the figure, the vertical axis indicates the X-ray intensity, and the horizontal axis indicates the X-ray energy (eV). In the spectrum of FIG. 4, the spectrum of the K-edge of 188 eV boron and the K-edge of 284 eV carbon appears, indicating that the composition is composed of boron carbide.
Next, the electron energy loss of the product was measured with a wide range of X-ray energy, and the spectrum was analyzed to eliminate the influence of nitrogen and oxygen mixed in the product. From this electron energy loss spectrum, the ratio of boron to carbon, ie, B / C, was in the range of 5-8. The carbon in the component is thought to be due to the crucible 10 made of graphite.
From the above, it was confirmed that the obtained product was a two-dimensional boron carbide nanobelt having a length of 50 μm to 100 μm, a width of 5 μm to 10 μm, and a thickness of 20 nm to 100 nm.

これにより、二次元の炭化ホウ素のナノベルト、すなわち、二次元の長さ50μm〜100μm、幅5μm〜10μm、厚さ20nm〜100nmを有する炭化ホウ素ナノベルトを製造できる。これにより、熱安定性、高強度、高ヤング率、耐摩耗性に優れた二次元のナノベルトを得ることができる。   Thus, a two-dimensional boron carbide nanobelt, that is, a boron carbide nanobelt having a two-dimensional length of 50 μm to 100 μm, a width of 5 μm to 10 μm, and a thickness of 20 nm to 100 nm can be manufactured. Thereby, a two-dimensional nanobelt excellent in thermal stability, high strength, high Young's modulus, and wear resistance can be obtained.

本発明は、上記実施の形態に限定されることなく、特許請求の範囲に記載した発明の範囲内で種々の変形が可能であり、それらも本発明の範囲内に含まれることはいうまでもない。   The present invention is not limited to the above-described embodiment, and various modifications are possible within the scope of the invention described in the claims, and it goes without saying that these are also included in the scope of the present invention. Absent.

本発明により、二次元の炭化ホウ素ナノベルトが製造可能となったので、耐摩耗性のセラミックを提供することが可能となり、原子力産業での中性子捕獲材などとして利用することができる。   According to the present invention, since a two-dimensional boron carbide nanobelt can be manufactured, it becomes possible to provide a wear-resistant ceramic, which can be used as a neutron capture material in the nuclear power industry.

炭化ホウ素ナノベルトを製造する際の、加熱炉内でのるつぼの様子を示した図である。It is the figure which showed the mode of the crucible in a heating furnace at the time of manufacturing a boron carbide nanobelt. 炭化ホウ素ナノベルトの成長の模式図である。It is a schematic diagram of the growth of a boron carbide nanobelt. 炭化ホウ素ナノベルトの走査型電子顕微鏡像を示す図である。It is a figure which shows the scanning electron microscope image of a boron carbide nanobelt. 炭化ホウ素ナノベルトの電子エネルギー損失スペクトルの図である。It is a figure of the electron energy loss spectrum of a boron carbide nanobelt.

符号の説明Explanation of symbols

10 るつぼ
20 酸化ホウ素粉末
30 グラファイトメッシュ
40 窒化ホウ素板
10 crucible 20 boron oxide powder 30 graphite mesh 40 boron nitride plate

Claims (7)

長さ50μm〜100μm、幅5μm〜10μm、厚さ20nm〜100nmからなることを特徴とする、炭化ホウ素ナノベルト。   A boron carbide nanobelt comprising a length of 50 μm to 100 μm, a width of 5 μm to 10 μm, and a thickness of 20 nm to 100 nm. るつぼ内に酸化ホウ素粉末を入れ、
上記るつぼ内で酸化ホウ素粉末の上方に、グラファイトメッシュと窒化ホウ素板とを配置した後に、
上記るつぼを加熱炉内にセットし、不活性ガス雰囲気中で1900℃以上に加熱して、炭化ホウ素ナノベルトを得ることを特徴とする、炭化ホウ素ナノベルトの製造方法。
Put boron oxide powder in the crucible,
After placing the graphite mesh and the boron nitride plate above the boron oxide powder in the crucible,
A method for producing a boron carbide nanobelt, wherein the crucible is set in a heating furnace and heated to 1900 ° C. or higher in an inert gas atmosphere to obtain a boron carbide nanobelt.
前記不活性ガスとして、窒素ガスを使用することを特徴とする、請求項2記載の炭化ホウ素ナノベルトの製造方法。   The method for producing a boron carbide nanobelt according to claim 2, wherein nitrogen gas is used as the inert gas. 前記るつぼが、グラファイトるつぼであることを特徴とする、請求項2に記載の炭化ホウ素ナノベルトの製造方法。   The method for producing a boron carbide nanobelt according to claim 2, wherein the crucible is a graphite crucible. 前記加熱炉が、高周波誘導加熱炉であることを特徴とする、請求項2に記載の炭化ホウ素ナノベルトの製造方法。   The said heating furnace is a high frequency induction heating furnace, The manufacturing method of the boron carbide nanobelt of Claim 2 characterized by the above-mentioned. 前記るつぼの加熱温度は、1900℃〜2000℃であることを特徴とする、請求項2に記載の炭化ホウ素ナノベルトの製造方法。   The method for producing a boron carbide nanobelt according to claim 2, wherein the heating temperature of the crucible is 1900C to 2000C. 前記るつぼの加熱時間は、0.5時間以上1.5時間以下の時間であることを特徴とする、請求項2に記載の炭化ホウ素ナノベルトの製造方法。   The method for manufacturing a boron carbide nanobelt according to claim 2, wherein the heating time of the crucible is 0.5 hour or more and 1.5 hours or less.
JP2004134987A 2004-04-30 2004-04-30 Boron carbide nanobelt and manufacturing method thereof Expired - Fee Related JP4590599B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004134987A JP4590599B2 (en) 2004-04-30 2004-04-30 Boron carbide nanobelt and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004134987A JP4590599B2 (en) 2004-04-30 2004-04-30 Boron carbide nanobelt and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005314173A true JP2005314173A (en) 2005-11-10
JP4590599B2 JP4590599B2 (en) 2010-12-01

Family

ID=35441976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004134987A Expired - Fee Related JP4590599B2 (en) 2004-04-30 2004-04-30 Boron carbide nanobelt and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4590599B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100072826A (en) * 2008-12-22 2010-07-01 제일모직주식회사 Method of preparing metal carbide
CN110511748A (en) * 2019-08-07 2019-11-29 陕西师范大学 A kind of preparation method of fluorescence boron carbide nanobelt

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02212312A (en) * 1988-07-29 1990-08-23 Alcan Internatl Ltd Manufacture of carbide or nitride fiber
JPH0648867A (en) * 1992-07-28 1994-02-22 Mitsubishi Kasei Corp Production of boron carbide-coated carbon material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02212312A (en) * 1988-07-29 1990-08-23 Alcan Internatl Ltd Manufacture of carbide or nitride fiber
JPH0648867A (en) * 1992-07-28 1994-02-22 Mitsubishi Kasei Corp Production of boron carbide-coated carbon material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100072826A (en) * 2008-12-22 2010-07-01 제일모직주식회사 Method of preparing metal carbide
CN110511748A (en) * 2019-08-07 2019-11-29 陕西师范大学 A kind of preparation method of fluorescence boron carbide nanobelt

Also Published As

Publication number Publication date
JP4590599B2 (en) 2010-12-01

Similar Documents

Publication Publication Date Title
KR102145650B1 (en) Silicon carbide powder and method for producing silicon carbide single crystal
Wu et al. Tuning the morphologies of SiC nanowires via the control of growth temperature, and their photoluminescence properties
Yang et al. Ultra‐long single‐crystalline α‐Si3N4 nanowires: derived from a polymeric precursor
Yang et al. Synthesis of single‐crystalline silicon nitride nanobelts via catalyst‐assisted pyrolysis of a polysilazane
JP5170609B2 (en) Method for producing silicon carbide nanowire
Chen et al. Synthesis of blue-green photoluminescent β-SiC nanowires via a simple catalyst-free CVD technique
Nersisyan et al. Polymer assisted approach to two-dimensional (2D) nanosheets of B4C
Lv et al. Growth mechanism and synchronous synthesis of 1D β-sialon nanostructures and β-sialon-Si3N4 composite powders by a process of reduction nitridation
Cui et al. Template-and catalyst-free synthesis, growth mechanism and excellent field emission properties of large scale single-crystalline tubular β-SiC
Mas’udah et al. Synthesis and structural analysis of silicon carbide from silica rice husk and activated carbon using solid-state reaction
Qadri et al. Microwave-induced transformation of rice husks to SiC
Wang et al. Synthesis of photoluminescent polycrystalline SiC nanostructures via a modified molten salt shielded method
Tan et al. Low temperature synthesis of 2H-SiC powders via molten-salt-mediated magnesiothermic reduction
Qadri et al. Nanoparticles and nanorods of silicon carbide from the residues of corn
JP4590599B2 (en) Boron carbide nanobelt and manufacturing method thereof
Jianxin et al. A new method of fabrication of TiC by employing pyrolytic carbon black and titanium
JP5120797B2 (en) Silicon carbide nanostructure and manufacturing method thereof
Hu et al. Two-dimensional extremely thin single-crystalline α-Si3N4 microribbons
Zhang et al. Synthesis and Characterization of Several α‐Silicon Nitride Nanostructures
K Brantov Perspective methods for producing composite materials based on carbon, silicon and silicon carbide: Progress and challenges
Feng et al. Synthesis, densification, microstructure, and mechanical properties of samarium hexaboride ceramic
JP4025873B2 (en) Boron nitride nanowire and manufacturing method thereof
Yushin et al. Carbothermal Synthesis of α‐SiC Micro‐Ribbons
Zhang et al. Significantly enhanced mechanical properties in AlN helix
JP4706077B2 (en) Method for producing boron nitride nanohorn

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100824

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees