JP2005313316A - Double-side polishing method and device - Google Patents

Double-side polishing method and device Download PDF

Info

Publication number
JP2005313316A
JP2005313316A JP2005100987A JP2005100987A JP2005313316A JP 2005313316 A JP2005313316 A JP 2005313316A JP 2005100987 A JP2005100987 A JP 2005100987A JP 2005100987 A JP2005100987 A JP 2005100987A JP 2005313316 A JP2005313316 A JP 2005313316A
Authority
JP
Japan
Prior art keywords
surface plate
workpiece
polishing
polisher
double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005100987A
Other languages
Japanese (ja)
Other versions
JP4198693B2 (en
Inventor
Heiji Yasui
平司 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2005100987A priority Critical patent/JP4198693B2/en
Publication of JP2005313316A publication Critical patent/JP2005313316A/en
Application granted granted Critical
Publication of JP4198693B2 publication Critical patent/JP4198693B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high pressure and high speed double-side polishing method without a gear transmission mechanism. <P>SOLUTION: In this double-side polishing method, a workpiece 3 nipped between upper and lower platens of a rotary polishing platen using an upper platen 1 and a lower platen 2 rotating in opposite directions or in the same direction, and held by a carrier 13 is rotated using difference between contact friction forces in radial directions of the workpiece 3 and the platens 1, 2 without rotating the carrier 13, so as to polish the workpiece. A step projecting toward an opposite platen in a radial direction of the platen is formed, and an actual contact area of the workpiece 3 and the platens 1, 2 is changed in a radial direction of the platen, so as to create the difference of the friction forces of the platens 1, 2. The creation of the difference of the friction forces may be produced by changing, in the radial direction of the platen, the actual contact area between the workpiece and the platen. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、金属(鉄鋼・非鉄金属)や非金属(セラミック・ガラス・プラスチック)等の研磨加工に関するものである。   The present invention relates to a polishing process for metals (steel, non-ferrous metals), non-metals (ceramics, glass, plastics) and the like.

遊離砥粒を分散させた研磨剤を介して工作物とラップ(lap)を擦り合わせて研磨するラッピングや金属よりも軟らかいポリシャ(polisher)と呼ばれる工具を用いて研磨するポリシング等の研磨加工は、機械加工の最終仕上げ工程に用いる加工法であり、近年の機器の高品位化に伴い、重要性を増している加工法である。この加工法では、微小に工作物表面を除去していくため、加工能率が悪く、加工コストが高くなるため、加工能率の向上が強く求められている。   Polishing such as lapping that polishes the workpiece and lap by rubbing each other through a polishing agent in which loose abrasive grains are dispersed, and polishing that uses a tool called a polisher that is softer than metal, It is a processing method used in the final finishing process of machining, and is a processing method that is becoming increasingly important as the quality of equipment in recent years has increased. In this machining method, since the surface of the workpiece is removed minutely, the machining efficiency is low and the machining cost is high, so that improvement of the machining efficiency is strongly demanded.

研磨加工には、片面、両面、曲面等多くの加工作業があるが、基本的に、図10に示すように、研磨定盤(surface plate)10上(ポリシングの場合は、定盤上に貼付したポリシャ11上)に、キャリア13等で保持されてnの速度で回転するホルダ14内に収容された工作物3を圧力Pで押しつけ、研磨定盤10上(ポリシングの場合はポリシャ11上)に遊離砥粒12を含む研磨液15を滴下しながら研磨定盤10をNの速度で回転し、その回転と工作物3の回転との相対運動により、工作物3の表面を遊離砥粒12で除去し、表面を高平滑にしていく加工法である。ポリシャとしては、不織布やスエ−ドタイプ(suede-type)のプラスチックが用いられることが多い。この研磨加工における現状の最高研磨速度は2m/s程度であると考えられる。   There are many processing operations such as single-sided, double-sided, and curved surfaces in the polishing process. Basically, as shown in FIG. 10, on the polishing plate (surface plate) 10 (in the case of polishing, it is affixed on the surface plate). The workpiece 3 held in the holder 14 held by the carrier 13 or the like and rotated at the speed of n is pressed against the polishing platen 11 with a pressure P to the polishing surface plate 10 (on the polishing platen 11 in the case of polishing). The polishing platen 10 is rotated at a speed of N while dripping the polishing liquid 15 containing the free abrasive grains 12 on the surface, and the surface of the workpiece 3 is moved to the free abrasive grains 12 by the relative movement between the rotation and the rotation of the work piece 3. This is a processing method in which the surface is removed to make the surface highly smooth. As the polisher, a nonwoven fabric or a suede-type plastic is often used. The current maximum polishing speed in this polishing process is considered to be about 2 m / s.

これに対して、近年、本発明者は、磁気ディスク基板の片面ポリシング加工の研究で、現在、一般に行われている最高ポリシング速度の2m/sよりも数倍以上も高速のポリシングを行い、研磨除去速度は格段に向上するが、研磨平滑度はほとんど変わらないという、非常に有用な結果を見いだしている(非特許文献1)。また、高圧力ポリシングの方が、除去速度が大きく、高能率に加工が行えることも示している。このような高速化・高圧化は、他のポリシング作業やラッピング作業等の研磨加工でも有効であると考えられる。   On the other hand, in recent years, the present inventor has conducted polishing at a speed several times higher than 2 m / s, which is the highest polishing speed currently generally performed, in research on single-side polishing processing of a magnetic disk substrate. Although the removal speed is remarkably improved, a very useful result has been found that the polishing smoothness is hardly changed (Non-patent Document 1). Also, it is shown that high pressure polishing has a higher removal rate and can be processed with high efficiency. Such high speed and high pressure are considered to be effective in polishing processing such as other polishing operations and lapping operations.

この高速・高圧力研磨加工法は、図11に例を示すように、上定盤1と下定盤2との間に太陽ギヤ16及びインターナルギヤ17からなる歯車を用いた現在の両面研磨加工法では、工作物3の回転用キャリア13が高圧力や高速回転で生じる高負荷力に耐え得ないために、適用出来ない。すなわち、現在行われている両面研磨加工の多くは、平行回転定盤(ポリシングの場合は、定盤上に貼付したポリシャ)間に、工作物3を保持する歯車刃を外周に持つキャリア13内に置き、そのキャリア13を歯車で自転と公転させることにより、工作物3を研磨している。キャリア13を回転する歯車は、研磨定盤の中心にある太陽ギア16と研磨定盤の外周側にあるインタ−ナルギア17により行われる。研磨定盤の回転速度と研磨圧力の最大条件は、そのキャリア13の強度も加味して決められるが、キャリア13が薄く、強度も高くないため、太陽ギア16、インタ−ナルギア17、キャリア13等で構成される歯車伝達機構に許容回転速度が生じ、研磨定盤の回転速度には、限界がある。そして、実用的には、現在行われている2m/s程度が両面研磨速度の限界となっている。また、研磨圧力も大きくできなくなっている。   This high-speed and high-pressure polishing method uses a current double-side polishing method using a gear made up of a sun gear 16 and an internal gear 17 between an upper surface plate 1 and a lower surface plate 2 as shown in FIG. The method cannot be applied because the rotation carrier 13 of the workpiece 3 cannot withstand a high load force generated by high pressure or high-speed rotation. That is, many of the double-side polishing processes currently being performed are carried out in a carrier 13 having a gear blade for holding the workpiece 3 on the outer periphery between parallel rotating surface plates (in the case of polishing, a polisher affixed on the surface plate). The workpiece 3 is polished by rotating and revolving the carrier 13 with a gear. The gear that rotates the carrier 13 is performed by a sun gear 16 at the center of the polishing surface plate and an internal gear 17 at the outer peripheral side of the polishing surface plate. The maximum conditions for the rotation speed and polishing pressure of the polishing platen are determined in consideration of the strength of the carrier 13, but since the carrier 13 is thin and not strong, the sun gear 16, the internal gear 17, the carrier 13, etc. An allowable rotational speed is generated in the gear transmission mechanism constituted by the above, and the rotational speed of the polishing surface plate is limited. In practice, the current double-side polishing speed is limited to about 2 m / s. Also, the polishing pressure cannot be increased.

このように、通常の両面研磨加工では、2m/sを研磨速度限界として、その研磨速度範囲内で研磨圧力もそれほど大きくしないで、加工が行われていると言える。このため、より高能率研磨加工が出来る高速・高圧両面研磨加工法の開発が期待されている。   Thus, in normal double-side polishing processing, it can be said that the processing is performed with 2 m / s as the polishing speed limit and without increasing the polishing pressure within the polishing speed range. For this reason, development of a high-speed and high-pressure double-side polishing method capable of performing highly efficient polishing is expected.

H.YASUI, T.FUKAMACHI, S.SAKAMOTO, S.TAKAKURA: High Removal Rate Ultra-Smoothness Polishing of NiP Plated Aluminum Magnetic Disk Substrate by Means of High Polishing Speed with High Polishing Pressure,Proc. ASPE 17th Annual Meeting, pp.689-692, Oct. 20-25, 2002, St. Louis, USA(2002.10)H.YASUI, T.FUKAMACHI, S.SAKAMOTO, S.TAKAKURA: High Removal Rate Ultra-Smoothness Polishing of NiP Plated Aluminum Magnetic Disk Substrate by Means of High Polishing Speed with High Polishing Pressure, Proc.ASPE 17th Annual Meeting, pp. 689-692, Oct. 20-25, 2002, St. Louis, USA (2002.10)

既存の歯車を用いた両面研磨盤では、工作物を歯車機構で回転させるキャリアの耐負荷力に問題があり、現状で行われている研磨圧力・速度を相当上回る高速・高圧研磨加工が出来ない。このため、近年、本発明者によって見出された高速・高圧研磨加工法による研磨加工の高能率化が出来なくなっており、新たな概念の高速両面研磨加工法とその実施のための研磨装置を製作することが課題になっている。また、研磨装置の低価格化も大きな解決課題の一つである。   The existing double-side polishing machine using gears has a problem with the load resistance of the carrier that rotates the workpiece with the gear mechanism, and cannot perform high-speed and high-pressure polishing that significantly exceeds the polishing pressure and speed currently used. . For this reason, in recent years, it has become impossible to improve the efficiency of polishing by the high-speed and high-pressure polishing method found by the present inventor, and a new concept high-speed double-side polishing method and polishing apparatus for its implementation have been developed. Production is a challenge. In addition, cost reduction of the polishing apparatus is one of the major problems to be solved.

本発明は、(1)互いに逆方向又は同方向に回転する上定盤及び下定盤を用いる回転型研磨定盤の上下定盤間に挟まれ、キャリアで保持された工作物を、キャリアの回転を行わないで、定盤半径方向の工作物と定盤又は定盤表面に貼付したポリシャとの定盤半径方向の接触摩擦力の差異を用いて工作物を回転運動させ、上下の研磨定盤と工作物との相対運動で、工作物を研摩加工する両面研磨法、である。   The present invention is (1) rotating a carrier between workpieces held by a carrier, sandwiched between upper and lower surface plates of a rotary type polishing surface plate using an upper surface plate and a lower surface plate rotating in opposite directions or the same direction. Without rotating, the workpiece is rotated using the difference in the contact frictional force between the surface plate in the radial direction of the surface plate and the surface plate or the polisher affixed to the surface of the surface plate. This is a double-sided polishing method in which the workpiece is polished by relative movement between the workpiece and the workpiece.

本発明は、(2)定盤又は定盤表面に貼付したポリシャの定盤半径方向の表面構造の違いによって、工作物と定盤又はポリシャの定盤半径方向の実接触面積を異ならせることによって接触摩擦力の差異を創出することを特徴とする上記(1)の両面研磨法、である。   The present invention is (2) by making the actual contact area of the workpiece and the surface plate or polisher different in the surface plate radial direction due to the difference in the surface structure in the surface plate radial direction of the surface plate or the surface plate. The double-side polishing method of (1) above, which creates a difference in contact frictional force.

さらに、本発明は、(3)上記(1)又は(2)の方法を実施するために用いる装置であって、上定盤と下定盤のどちらかの一方の表面、又は該表面に貼付したポリシャが、外周側から定盤の回転中心方向へ一定の距離の位置まで円周状に相手定盤側への突出段差が形成され、この段差の縁の位置は、工作物の中心より一定距離だけ定盤の回転中心寄りであり、他の一方の表面、又は該表面に貼付したポリシャは、定盤の回転中心から外周方向へ一定の距離の位置まで円周状の相手定盤側への突出段差が形成されており、この段差の縁の位置は、工作物の中心より一定距離だけ定盤の外周側寄りであり、上下両定盤が工作物の上下面と重なって接触する定盤半径幅は、工作物の回転を許容する幅としたことを特徴とする両面研摩装置、である。   Furthermore, the present invention is (3) an apparatus used for carrying out the above method (1) or (2), which is attached to one surface of the upper surface plate or the lower surface plate, or to the surface. The polisher forms a step that protrudes from the outer circumference side to the surface of the mating surface in a circumferential direction from the center of the surface plate to the position of the center of rotation of the surface plate. It is only near the center of rotation of the surface plate, and the other surface, or the polisher affixed to the surface, moves from the center of rotation of the surface plate to the position of a constant distance from the center of rotation of the surface plate to the outer surface. A protruding step is formed, and the position of the edge of this step is closer to the outer peripheral side of the surface plate by a certain distance from the center of the workpiece, and the surface plate where the upper and lower surface plates overlap and contact the upper and lower surfaces of the workpiece Radial width is a double-side polishing device, characterized in that the width allows the rotation of the workpiece

また、本発明は、(4)前記定盤半径幅は、工作物の中心(中心に環状穴を持つ工作物では、穴の壁面)を起点として工作物の直径の10%以内であることを特徴とする上記(3)の両面研摩装置、である。   According to the present invention, (4) the surface plate radius width is within 10% of the diameter of the workpiece starting from the center of the workpiece (in the case of a workpiece having an annular hole in the center). The double-side polishing apparatus according to (3) above, which is characterized.

また、本発明は、(5)上記(1)又は(2)の方法を実施するために用いる装置であって、円形ポリシャの内周側又は外周側に溝や穴等を持ち、定盤半径方向で工作物とポリシャとの実接触面積を異ならせて、定盤半径方向の工作物とポリシャとの接触摩擦力の差異を創出するポリシャを定盤表面に貼付した両面研摩装置、である。   The present invention is also (5) an apparatus used for carrying out the above method (1) or (2), having a groove or a hole on the inner peripheral side or outer peripheral side of a circular polisher, This is a double-side polishing device in which the actual contact area between the workpiece and the polisher is changed depending on the direction to create a difference in the contact friction force between the workpiece and the polisher in the radial direction of the surface plate, and the polisher is pasted on the surface of the surface plate.

以上、本発明の方法では、従来の歯車を使用した研磨法では実現困難であった、高速・高能率両面研磨が可能であり、従来の方法に対して、次のような特徴の効果がある。
(1)本発明の概念を用いて製作される研磨装置での両面研磨速度は、従来の歯車機構を使用した両面研磨加工機における常用最高研磨速度の2m/sに比較して、理論的には、10倍以上の高速化が可能である。
(2)高速・高圧両面研磨にすると、研磨除去速度は、現在の常用速度の研磨加工の場合に比較して、格段の高能率研磨加工が可能である。
(3)研磨速度は、平滑度には大きな影響を及ぼさないため、本研磨法によって高除去速度で形成される平滑度は、従来の両面研磨加工機によって形成される平滑度と大きな変化がない。
(4)本発明の研磨方法では、キャリアを駆動せず、歯車を使用しないため、低価格で装置を製作することが出来る
As described above, the method of the present invention enables high-speed and high-efficiency double-side polishing, which was difficult to achieve with the conventional polishing method using gears, and has the following characteristics and advantages over the conventional method. .
(1) The double-side polishing speed in a polishing apparatus manufactured using the concept of the present invention is theoretically higher than the usual maximum polishing speed of 2 m / s in a double-side polishing machine using a conventional gear mechanism. Can be increased by 10 times or more.
(2) When high-speed and high-pressure double-sided polishing is used, the polishing removal rate can be remarkably high-efficiency polishing compared to the case of polishing at the current normal speed.
(3) Since the polishing rate does not significantly affect the smoothness, the smoothness formed at a high removal rate by this polishing method is not significantly different from the smoothness formed by the conventional double-side polishing machine. .
(4) In the polishing method of the present invention, since the carrier is not driven and no gear is used, the apparatus can be manufactured at a low cost.

図1は、キャリアを回転させるための歯車機構を使用しない本発明の両面研磨法の概念斜視図である。図2は、本発明の回転型両面研磨装置の上下両定盤の部分断面図及び上下両定盤と工作物の接触状態を示す一部拡大図である。本発明の方法では、図1に示すように、歯車を使用せず、上定盤1と下定盤2の平行回転型両面研磨定盤を回転させるだけで、工作物3を両面研磨する。   FIG. 1 is a conceptual perspective view of the double-side polishing method of the present invention that does not use a gear mechanism for rotating a carrier. FIG. 2 is a partial sectional view of the upper and lower surface plates of the rotary double-side polishing apparatus of the present invention and a partially enlarged view showing the contact state between the upper and lower surface plates and the workpiece. In the method of the present invention, as shown in FIG. 1, the work piece 3 is polished on both sides only by rotating the parallel rotating double-side polishing surface plate of the upper surface plate 1 and the lower surface plate 2 without using a gear.

互いに逆方向又は同方向に回転する上定盤1及び下定盤2の間にキャリア13の穴内に保持された工作物3を挟む。図1及び図2において、工作物3は中心部に環状穴をもつ円盤状基板である。キャリア13の穴は工作物3が定盤の外周寄りに位置するように少なくとも1個設ける。キャリア13の回転は行わない。工作物3と上下の定盤1、2(ポリシングの場合はポリシャ)との接触摩擦力を、定盤の半径方向に異ならせることにより工作物3を回転運動させる。そして、上下の研磨定盤1、2と回転する工作物3との相対運動で、工作物3を研摩加工する。なお、図2に示すように、砥粒を含む研磨液15は、上定盤1に設けた穴を介して、研磨面に供給される。研磨液は下定盤2又は上下両定盤に設けた穴を介して、研磨面に供給してもよい。   The workpiece 3 held in the hole of the carrier 13 is sandwiched between the upper surface plate 1 and the lower surface plate 2 rotating in the opposite direction or the same direction. 1 and 2, the workpiece 3 is a disk-shaped substrate having an annular hole at the center. At least one hole of the carrier 13 is provided so that the workpiece 3 is positioned near the outer periphery of the surface plate. The carrier 13 is not rotated. The workpiece 3 is rotationally moved by making the contact frictional force between the workpiece 3 and the upper and lower surface plates 1 and 2 (a polisher in the case of polishing) differ in the radial direction of the surface plate. Then, the workpiece 3 is polished by relative movement between the upper and lower polishing surface plates 1 and 2 and the rotating workpiece 3. As shown in FIG. 2, the polishing liquid 15 containing abrasive grains is supplied to the polishing surface through a hole provided in the upper surface plate 1. The polishing liquid may be supplied to the polishing surface through holes provided in the lower surface plate 2 or the upper and lower surface plates.

図3に、接触摩擦力を異ならせる具体例を模式的に示す。図3(A)は、上下両定盤表面を加工して円周状に段差を設けた例を示す。また、図3(B)は、環状のポリシャを上下両定盤表面上に貼り付けて段差を設けた例を示す。上下両定盤表面に円周状に段差を設ける場合は、図3(A)に示すように、下定盤2は、外周側から定盤の回転中心方向へ一定の距離の位置まで円周状に相手定盤側への突出段差が形成されている。この円周状に形成した段差の縁の位置は、工作物3の中心より一定距離(X1)だけ下定盤2の回転中心寄りとする。この一定距離(X1)は、工作物3の直径の10%程度以下が好ましい。図に示すように、中心に環状穴を持つ工作物3では、工作物3の直径の10%程度以下、工作物の穴の壁面より下定盤2の回転中心寄り(図中X2で示す幅)とする。段差により低くなった領域は定盤表面又は定盤表面に貼付したポリシャと接触っしないことになる。   FIG. 3 schematically shows a specific example in which the contact friction force is varied. FIG. 3A shows an example in which the upper and lower surface plates are machined to provide circumferential steps. FIG. 3B shows an example in which a step is provided by attaching an annular polisher on both upper and lower surface plates. In the case of providing circumferential steps on the upper and lower surface plates, as shown in FIG. 3 (A), the lower surface plate 2 is circular from the outer peripheral side to the position of a certain distance in the direction of the center of rotation of the surface plate. Is formed with a protruding step toward the mating surface. The position of the edge of the step formed in the circumferential shape is closer to the center of rotation of the lower surface plate 2 by a certain distance (X1) than the center of the workpiece 3. This constant distance (X1) is preferably about 10% or less of the diameter of the workpiece 3. As shown in the figure, in the workpiece 3 having an annular hole in the center, it is about 10% or less of the diameter of the workpiece 3, and is closer to the rotation center of the lower surface plate 2 than the wall surface of the hole of the workpiece (width indicated by X2 in the figure). And The region lowered by the step does not come into contact with the surface of the surface plate or the polisher attached to the surface of the surface plate.

上定盤1は、下定盤2とは逆に、上定盤1の回転中心から外周方向へ一定の距離の位置まで円周状に相手定盤側への突出段差が形成されている。この段差の縁の位置は、工作物の中心より一定距離(X1)だけ定盤の外周側寄りである。上定盤1の円周状に形成した段差は、工作物3の中心を挟んで下定盤2の場合と対称的な位置にある。   Contrary to the lower surface plate 2, the upper surface plate 1 is formed with a step projecting circumferentially from the center of rotation of the upper surface plate 1 to a position at a constant distance in the outer circumferential direction. The position of the edge of the step is closer to the outer peripheral side of the surface plate by a fixed distance (X1) than the center of the workpiece. The step formed in the circumferential shape of the upper surface plate 1 is in a position symmetrical to the case of the lower surface plate 2 across the center of the workpiece 3.

このような形状を持つ上定盤1と下定盤2とを、両定盤1、2間に配置されたキャリア13で保持された工作物3に押し付ける。すなわち、工作物3の中心付近を境にして、定盤の外周側寄りに円周状に段差をつけた上定盤1と、回転中心寄りに円周状に段差をつけた下定盤2を、逆方向に回転させながら、両定盤1、2を工作物3に押し付けることになる。これにより、定盤半径方向の工作物と定盤又は定盤表面に貼付したポリシャとの定盤半径方向の接触摩擦力の差異が創出される。   The upper surface plate 1 and the lower surface plate 2 having such a shape are pressed against the workpiece 3 held by the carrier 13 disposed between both surface plates 1 and 2. That is, an upper surface plate 1 having a circumferential step near the outer peripheral side of the surface plate and a lower surface plate 2 having a circumferential step near the rotation center with the vicinity of the center of the workpiece 3 as a boundary. The two surface plates 1 and 2 are pressed against the workpiece 3 while rotating in the opposite direction. Thereby, the difference of the contact frictional force of the surface plate radial direction of the workpiece of a surface plate radial direction and the polisher stuck on the surface plate or the surface of a surface plate is created.

そして、上定盤1と下定盤2を、互いに逆方向に回転すると、上定盤1と工作物3の摩擦力と下定盤2と工作物の摩擦力が逆方向になるため、工作物3に偶力が生じ、工作物3
が容易に回転運動するようになる。この工作物3の回転運動とモーターにより回転する上定盤1と下定盤2との相対運動で研磨加工を行う。
When the upper surface plate 1 and the lower surface plate 2 are rotated in opposite directions, the frictional force between the upper surface plate 1 and the workpiece 3 and the frictional force between the lower surface plate 2 and the workpiece are reversed. A couple of people are born and work piece 3
Can easily rotate. Polishing is performed by the rotational movement of the workpiece 3 and the relative movement between the upper surface plate 1 and the lower surface plate 2 rotated by a motor.

この場合、図示のように、工作物3の下面は、工作物3の中心を起点として、工作物3の直径の10%程度以下、下定盤2の回転中心寄りの部分まで下定盤2の表面に接触する。また、工作物3の上面は、工作物3の中心を起点として、工作物3の直径の10%程度以下、上定盤2の外周側寄りの部分まで上定盤2の表面に接触する。工作物3の中心から一定の幅が上下両定盤により重なるように支持されるために、両定盤の工作物3への押し付けによる、工作物3の垂直方向曲げ変形が生じず、工作物3の平面度が保たれる。   In this case, as shown in the drawing, the lower surface of the work plate 3 starts from the center of the work piece 3 to the surface of the lower platen 2 up to about 10% of the diameter of the work piece 3 and close to the rotation center of the lower platen 2. To touch. Further, the upper surface of the workpiece 3 starts from the center of the workpiece 3 and contacts the surface of the upper surface plate 2 up to about 10% of the diameter of the workpiece 3 and a portion closer to the outer peripheral side of the upper surface plate 2. Since a fixed width is supported from the center of the workpiece 3 by the upper and lower surface plates, the vertical bending deformation of the workpiece 3 due to the pressing of the surface plates against the workpiece 3 does not occur, and the workpiece A flatness of 3 is maintained.

なお、上下両定盤が工作物の上下面が重なって接触(「重複接触」という)する領域の定盤半径幅(重複接触半径幅)は、工作物の回転を許容する幅であればよいが、工作物3の中心(中心に環状穴を持つ工作物では、穴の壁面)を起点として工作物3の直径の10%程度以内が好ましい。その理由は、上下定盤の重複接触している面積では、反対側定盤の回転摩擦力と逆方向の摩擦力が働き、工作物の回転が妨げられるので、重複半径幅を出来るだけ小さくし、その影響を無くすためである。   The surface plate radius width (overlapping contact radius width) of the region where the upper and lower surface plates contact with each other by overlapping the upper and lower surfaces of the workpiece (referred to as “overlapping contact”) may be any width that allows rotation of the workpiece. However, it is preferably within about 10% of the diameter of the workpiece 3 starting from the center of the workpiece 3 (in the case of a workpiece having an annular hole in the center, the wall surface of the hole). The reason is that in the overlapping contact area of the upper and lower surface plates, the frictional force in the direction opposite to the rotational friction force of the opposite surface plate acts and hinders the rotation of the workpiece, so the overlapping radius width is made as small as possible. This is to eliminate the influence.

なお、本研磨装置は、モ−タ回転数を変えることにより高速化できるが、汎用の3600rpmのモ−タを使用することにより、定盤直径300mmの場合で、通常のポリシング速度の10倍の約20m/sのポリシング速度が理論的には可能となる。   This polishing apparatus can be increased in speed by changing the motor rotation speed, but by using a general-purpose 3600 rpm motor, it is 10 times the normal polishing speed in the case of a platen diameter of 300 mm. A polishing speed of about 20 m / s is theoretically possible.

ポリシングの場合は、図3(A)に示す定盤の段差の代わりに、図3(B)に示すように、ポリシャ11を工作物3と重複接触するように上下両定盤表面上に貼付する。これにより、上記の図3(A)に示す定盤形状を用いた場合と同様に工作物3を回転させて研磨できる。また、図3(A)に示す定盤形状の全面にポリシャを貼付して定盤の段差をポリシャに反映させてもよい。   In the case of polishing, instead of the level difference of the surface plate shown in FIG. 3 (A), the polisher 11 is stuck on the upper and lower surface plates so as to overlap the workpiece 3 as shown in FIG. 3 (B). To do. Thereby, the workpiece 3 can be rotated and polished in the same manner as in the case of using the surface plate shape shown in FIG. Moreover, a polisher may be affixed to the entire surface of the surface plate shape shown in FIG. 3A to reflect the level difference of the surface plate on the polisher.

具体的な実施方法の他の例として、図4に示すように、定盤に貼付する円形ポリシャの内周側又は外周側に溝や孔等を持たせたポリシャを使用し、定盤半径方向で工作物とポリシャとの実際の接触面積(「実接触面積」という)に差を設けることによって、定盤半径方向の表面構造の違いを創出し、上述の定盤形状を変えた場合と同様に、定盤半径方向で工作物とポリシャとの接触摩擦力を変え、工作物の回転力を増加する方法も採用できる。   As another example of a specific implementation method, as shown in FIG. 4, a polisher having grooves or holes on the inner peripheral side or outer peripheral side of a circular polisher attached to the surface plate is used, and the surface plate radial direction is used. By creating a difference in the actual contact area between the workpiece and the polisher (referred to as “actual contact area”), a difference in the surface structure in the surface plate radial direction is created, and this is the same as when changing the surface plate shape described above. In addition, it is possible to adopt a method of increasing the rotational force of the workpiece by changing the contact friction force between the workpiece and the polisher in the radial direction of the surface plate.

図4の(A)に示す例は、上定盤のポリシャ11であり、定盤外周部側に丸孔21が環状に多数空けられており、一方、定盤内周部側は丸孔は空けられていない。丸孔21の面積分はポリシャは基板と接触しないことになる。このため、定盤の回転中心から半径方向の線上で一定の幅について見た場合、内周部側の方が、基板3とポリシャ11との実接触面積が大きくなる。一方、図4の(B)に示す下定盤側に貼付するポリシャの表面構造は、上定盤とは、逆になっており、内周部側の方が、基板とポリシャとの実接触面積が小さくなる。   The example shown in FIG. 4A is a polisher 11 of an upper surface plate, and a large number of circular holes 21 are formed in an annular shape on the outer surface side of the surface plate, while the round holes are formed on the inner surface of the surface plate. It is not vacant. The polisher does not contact the substrate for the area of the round hole 21. For this reason, when it sees about a fixed width | variety on the line of a radial direction from the rotation center of a surface plate, the actual contact area of the board | substrate 3 and the polisher 11 becomes larger in the inner peripheral part side. On the other hand, the surface structure of the polisher affixed to the lower surface plate side shown in FIG. 4B is opposite to that of the upper surface plate, and the actual contact area between the substrate and the polisher is on the inner peripheral side. Becomes smaller.

図5は、本発明の回転型両面研磨装置の定盤に貼付するポリシャ表面構造を定盤半径方向に変化させた場合のポリシャと工作物の接触状態を示す模式図である。図5に示すように、工作物とポリシャとは実接触面積が異なることになり、上定盤1と下定盤2を、互いに逆方向に回転すると工作物3に偶力が生じ、工作物3が容易に回転運動するようになる。   FIG. 5 is a schematic diagram showing the contact state between the polisher and the workpiece when the polisher surface structure applied to the surface plate of the rotary double-side polishing apparatus of the present invention is changed in the surface plate radial direction. As shown in FIG. 5, the actual contact area is different between the workpiece and the polisher. When the upper surface plate 1 and the lower surface plate 2 are rotated in opposite directions, a couple is generated in the workpiece 3, and the workpiece 3 Can easily rotate.

この定盤に貼付する円形ポリシャの表面構造を変えて、内周側又は外周側に溝や丸孔等を持たせたポリシャを使用する方法は、上述の定盤形状を定盤半径位置によって変え、接触面積を変える場合よりも容易である。ポリシャを使用する方法の利点は、上述で示した
定盤形状で段差を付ける方法では、高精度機械加工が必要で、各種のポリシング作業に対応して、定盤を加工するのは、多大の時間と労力を要するが、ポリシャの表面構造を変えることは、ポリシャが柔らかく、刃物などによる加工が容易である。また、ポリシャが決まった構造の場合は、型によって、大量に生産することが出来る。
By changing the surface structure of the circular polisher to be attached to this surface plate and using a polisher having grooves or round holes on the inner or outer peripheral side, the above-mentioned surface plate shape is changed depending on the position of the surface plate radius. It is easier than changing the contact area. The advantage of using a polisher is that the method of making a step with the surface plate shape shown above requires high-precision machining, and processing the surface plate in response to various polishing operations Although time and labor are required, changing the surface structure of the polisher makes the polisher soft and easy to process with a blade or the like. In addition, in the case of a structure with a fixed polisher, it can be produced in large quantities depending on the mold.

以上の方法では、上定盤と下定盤は逆回転する方法の例であるが、上下定盤と工作物との接触摩擦力を、共に外周側を大きくするような定盤やポリシャの表面構造にすることにより、上定盤と下定盤を同方向に回転させても両面研磨することが可能である。   In the above method, the upper surface plate and the lower surface plate are examples of reverse rotation, but the surface structure of the surface plate and polisher that both increase the contact friction force between the upper and lower surface plates and the workpiece on the outer peripheral side. Thus, both surfaces can be polished even if the upper surface plate and the lower surface plate are rotated in the same direction.

本発明の方法及び実施例を、図を参照して以下に示す。図6に示すように、キャリア13の穴内に収容した工作物(磁気ディスク基板)3の穴の壁面より下定盤2の回転中心寄り5mm程度先の段差の縁の位置まで円周状に上定盤側へ突き出た段差形状をもつ下定盤2と工作物3の穴の壁面より上定盤1の外周側寄り5mm程度先の段差の縁の位置までが円周状に下定盤側へ突き出た段差形状をもつ上定盤1とを、工作物3に押し付ける型の両面研磨装置を用いて、ポリシャ11,11に挟んだ磁気ディスク基板3のポリシング加工を行った。   The method and embodiments of the present invention are described below with reference to the figures. As shown in FIG. 6, the upper surface of the workpiece (magnetic disk substrate) 3 accommodated in the hole of the carrier 13 is circumferentially raised from the wall surface of the hole to the edge of the step about 5 mm ahead of the rotation center of the lower surface plate 2. From the wall surface of the lower surface plate 2 and workpiece 3 with the step shape protruding toward the platen to the edge of the step 5mm ahead of the outer surface of the upper surface plate 1 from the wall surface of the workpiece 3 protrudes circumferentially toward the lower platen side Polishing of the magnetic disk substrate 3 sandwiched between the polishers 11 and 11 was performed using a double-side polishing apparatus of a type that presses the upper surface plate 1 having a step shape against the workpiece 3.

図7は、従来使用されている最大ポリシング圧力約10kPaの約2倍強の24kPaで、従来の使用最高ポリシング速度1.5m/sの約4倍以上の6m/sまでのポリシング条件で、磁気ディスク基板をポリシングした場合のポリシング時間と基板除去厚さの関係を示すものである。本ポリシング加工法により、ポリシングを行うことが出来ることがわかる。   FIG. 7 shows a magnetic disk under a polishing condition up to 6 m / s, which is about 4 times higher than the conventional maximum polishing speed of 1.5 m / s, at 24 kPa, which is about twice the maximum polishing pressure of about 10 kPa used conventionally. It shows the relationship between the polishing time and the substrate removal thickness when the substrate is polished. It can be seen that polishing can be performed by this polishing method.

なお、従来の最大ポリシング圧力付近の12kPaと従来の最高ポリシング速度付近の1.5m/sの実験条件において同じ実験を行ったところ、ポリッシング時間10分で得られる除去厚さは、約0.5μmであったので、実験で使用したポリシング圧力24kPaと最高ポリシング速度の6m/sの実験条件でで得られる除去厚さを、ポリシング時間10分で比較すると、除去速度は、約5倍となっており、本発明加工法の有用性がわかる。このことから、さらに、ポリシング速度を高速化すれば、片面ポリシングの場合と同様、さらに、高除去速度が得られよう。   In addition, when the same experiment was conducted under the experimental conditions of 12 kPa near the conventional maximum polishing pressure and 1.5 m / s near the conventional maximum polishing speed, the removal thickness obtained in 10 minutes of polishing time was about 0.5 μm. Therefore, when the removal thickness obtained under the experimental conditions of polishing pressure of 24kPa and the maximum polishing speed of 6m / s was compared with the polishing time of 10 minutes, the removal speed was about 5 times. Thus, the usefulness of the processing method of the present invention is understood. Therefore, if the polishing rate is further increased, a higher removal rate will be obtained as in the case of single-side polishing.

図8は、従来使用されている最大ポリシング圧力約10kPaの約2倍強の24kPaで、従来の使用最高ポリシング速度1.5m/sの約4倍以上の6m/sまでのポリシング条件で、磁気ディスク基板をポリシングした場合のポリシング時間と基板平滑度の関係を示すものである。基板平滑度は、ポリシング時間とともに、平滑化されていく。そして、いずれのポリシング条件の場合とも、表面粗さHraは、最終的に0.3nmに近づきつつある。これは、従来片面ポリシングで得られていた表面粗さと同じ程度になっており、ポリシング圧力と速度を増加したことは、大きな影響を示さないことがわかる。   FIG. 8 shows a magnetic disk under a polishing condition up to 6 m / s, which is about 4 times higher than the conventional maximum polishing speed of 1.5 m / s, at 24 kPa, which is about twice the maximum polishing pressure of about 10 kPa used conventionally. It shows the relationship between the polishing time and the substrate smoothness when the substrate is polished. The substrate smoothness is smoothed with the polishing time. In any polishing condition, the surface roughness Hra is finally approaching 0.3 nm. This is almost the same as the surface roughness conventionally obtained by single-side polishing, and it can be seen that increasing the polishing pressure and speed has no significant effect.

図9は、図8の結果を示す一例で、従来の使用最高ポリシング速度1.5m/sの約4倍以上の6m/sで、10分間ポリシングした場合の基板表面粗さの測定例である。図9(a)のポリシング圧力6kPaと図9(b)の24kPaの場合とも2次元的に測定した基板表面粗さHraは約0.25nmで、超平滑面になっており、本加工法は、従来の方法と平滑度は同じあることを示す。   FIG. 9 is an example showing the result of FIG. 8, and is an example of measuring the surface roughness of the substrate when polished for 10 minutes at 6 m / s, which is about 4 times or more the conventional maximum polishing speed of 1.5 m / s. In both cases of the polishing pressure of 6 kPa in FIG. 9A and 24 kPa in FIG. 9B, the substrate surface roughness Hra measured two-dimensionally is about 0.25 nm, which is an ultra-smooth surface. It shows that the smoothness is the same as the conventional method.

本発明の方法及び装置は、キャリアの回転を行わないので、キャリアの回転のための歯車が必要ではないので、摩擦力により工作物が回転し得る速度及び圧力範囲まで、定盤を高圧で高速回転することが出来、高速・高圧研磨が可能となる。また、歯車を使用しないので、研磨装置を低価格で製作することが出来る。   Since the method and apparatus of the present invention do not rotate the carrier, a gear for rotating the carrier is not necessary. Therefore, the surface plate is moved at a high speed to a speed and pressure range in which the workpiece can be rotated by a frictional force. It can rotate, enabling high speed and high pressure polishing. Further, since no gear is used, the polishing apparatus can be manufactured at a low cost.

キャリアを回転させるための歯車機構を使用しない本発明の両面研磨法の概念斜視図である。It is a conceptual perspective view of the double-sided grinding | polishing method of this invention which does not use the gear mechanism for rotating a carrier. 本発明の回転型両面研磨装置の上下両定盤の部分断面図及び上下両定盤と工作物の接触状態を示す一部拡大図である。It is the partial cross section figure of the upper and lower both surface plates of the rotary type double-side polish apparatus of this invention, and the one part enlarged view which shows the contact state of the upper and lower surface plates and a workpiece. 本発明の回転型両面研磨装置の定盤の形状(A)及びポリシャの形状(B)を示す模式図である。It is a schematic diagram which shows the shape (A) of the surface plate of the rotary type double-side polish apparatus of this invention, and the shape (B) of a polisher. 本発明の回転型両面研磨装置の上定盤に貼付したポリシャ表面構造例(A)と下定盤に貼付したポリシャ表面構造例(B)を示す模式図である。It is a schematic diagram which shows the polisher surface structure example (A) affixed on the upper surface plate of the rotary type double-side polish apparatus of this invention, and the polisher surface structure example (B) affixed on the lower surface plate. 本発明の回転型両面研磨装置の定盤に貼付するポリシャ表面構造を定盤半径方向に変化させた場合のポリシャと工作物の接触状態を示す模式図である。It is a schematic diagram which shows the contact state of a polisher and a workpiece | work when the polisher surface structure stuck on the surface plate of the rotary type double-side polish apparatus of this invention is changed to the surface plate radial direction. 実施例で用いた、両面研磨装置の定盤及びポリシャの形状を示す模式図である。It is a schematic diagram which shows the shape of the surface plate and polisher of the double-side polish apparatus used in the Example. 実施例で得られた、24kPaの高圧ポリシングで、ポリシング速度6m/sまでのポリシング条件でポリシングした場合のポリシング時間とポリシング除去厚さの関係を示すグラフである。It is a graph which shows the relationship between the polishing time and polishing removal thickness at the time of polishing by polishing conditions up to a polishing speed of 6 m / s with high pressure polishing of 24 kPa, obtained in an example. 実施例で得られた、24kPaの高圧ポリシングで、ポリシング速度6m/sまでのポリシング条件でポリシングした場合のポリシング時間と工作物表面粗さの関係を示すグラフである。It is a graph which shows the relationship between the polishing time and workpiece surface roughness at the time of polishing by the high pressure polishing of 24 kPa and polishing conditions up to a polishing speed of 6 m / s, obtained in an example. 実施例で得られた、6m/sの高速ポリシングを用い、ポリシング圧力6kPaと24kPaの条件で、10分間ポリシングした場合の工作物表面粗さHraを光干渉式高精度表面測定器(WYKO)で測定した結果を示す図面代用写真である。Using the high-speed polishing of 6m / s obtained in the example, the surface roughness Hra of the workpiece when polishing for 10 minutes under the conditions of polishing pressure of 6kPa and 24kPa is measured with an optical interference type high precision surface measuring instrument (WYKO). It is a drawing substitute photograph which shows the measurement result. 通常の研磨加工の原理を示す(ポリシング加工の例)模式図であるIt is a schematic diagram showing the principle of normal polishing (example of polishing) 従来の歯車機構を用いた両面研磨法の例を示す模式図である。It is a schematic diagram which shows the example of the double-side polishing method using the conventional gear mechanism.

Claims (5)

互いに逆方向又は同方向に回転する上定盤及び下定盤を用いる回転型研磨定盤の上下定盤間に挟まれ、キャリアで保持された工作物を、キャリアの回転を行わないで、定盤半径方向の工作物と定盤又は定盤表面に貼付したポリシャとの定盤半径方向の接触摩擦力の差異を用いて工作物を回転運動させ、上下の研磨定盤と工作物との相対運動で、工作物を研摩加工する両面研磨法。 A workpiece that is sandwiched between the upper and lower surface plates of a rotary type polishing surface plate that uses an upper surface plate and a lower surface plate that rotate in opposite directions or in the same direction and that is held by the carrier without rotating the carrier. Relative motion between upper and lower polishing surface plate and workpiece by rotating the workpiece using the difference in contact friction force between the radial workpiece and the surface plate or the polisher affixed to the surface of the surface plate. And double-side polishing method to polish the workpiece. 定盤又は定盤表面に貼付したポリシャの定盤半径方向の表面構造の違いによって、工作物と定盤又はポリシャの定盤半径方向の実接触面積を異ならせることによって接触摩擦力の差異を創出することを特徴とする請求項1記載の両面研磨法。 Creates a difference in contact friction force by making the actual contact area in the radial direction of the surface plate between the workpiece and the surface plate or polisher different depending on the surface structure in the radial direction of the surface plate of the surface plate or the surface plate of the polisher. The double-side polishing method according to claim 1, wherein: 請求項1又は2記載の方法を実施するために用いる装置であって、
上定盤と下定盤のどちらかの一方の表面、又は該表面に貼付したポリシャが、外周側から定盤の回転中心方向へ一定の距離の位置まで円周状に相手定盤側への突出段差が形成され、この段差の縁の位置は、工作物の中心より一定距離だけ定盤の回転中心寄りであり、
他の一方の表面、又は該表面に貼付したポリシャは、定盤の回転中心から外周方向へ一定の距離の位置まで円周状の相手定盤側への突出段差が形成されており、この段差の縁の位置は、工作物の中心より一定距離だけ定盤の外周側寄りであり、
上下両定盤が工作物の上下面と重なって接触する定盤半径幅は、工作物の回転を許容する幅としたことを特徴とする両面研摩装置。
An apparatus used to carry out the method according to claim 1 or 2, comprising:
One surface of the upper surface plate or the lower surface plate, or the polisher affixed to the surface protrudes circumferentially from the outer periphery side to the position of the fixed surface in the direction of the center of rotation of the surface plate. A step is formed, and the position of the edge of this step is closer to the center of rotation of the surface plate by a certain distance from the center of the workpiece,
The other one surface, or the polisher affixed to the surface, has a protruding step toward the opposite mating surface from the rotation center of the surface plate to a position at a constant distance in the outer circumferential direction. The position of the edge of the plate is closer to the outer periphery of the surface plate by a certain distance from the center of the workpiece,
A double-side polishing apparatus characterized in that the surface plate radius width where the upper and lower surface plates are in contact with the upper and lower surfaces of the work piece is set to a width allowing rotation of the work piece.
前記定盤半径幅は、工作物の中心(中心に環状穴を持つ工作物では、穴の壁面)を起点として工作物の直径の10%以内であることを特徴とする請求項3記載の両面研摩装置。 4. The double-sided surface according to claim 3, wherein the surface plate radius width is within 10% of the diameter of the workpiece starting from the center of the workpiece (or the wall surface of the hole in the case of a workpiece having an annular hole in the center). Polishing equipment. 請求項1又は2記載の方法を実施するために用いる装置であって、円形ポリシャの内周側又は外周側に溝や穴等を持ち、定盤半径方向で工作物とポリシャとの実接触面積を異ならせて、定盤半径方向の工作物とポリシャとの接触摩擦力の差異を創出するポリシャを定盤表面に貼付した両面研摩装置。 An apparatus used for carrying out the method according to claim 1 or 2, wherein a groove or a hole is provided on an inner peripheral side or an outer peripheral side of a circular polisher, and an actual contact area between a workpiece and a polisher in a surface plate radial direction. This is a double-side polishing machine in which a polisher is applied to the surface of the surface plate to create a difference in contact friction force between the workpiece and the polisher in the radial direction of the surface plate.
JP2005100987A 2004-03-31 2005-03-31 Double-side polishing method and apparatus Expired - Fee Related JP4198693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005100987A JP4198693B2 (en) 2004-03-31 2005-03-31 Double-side polishing method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004105565 2004-03-31
JP2005100987A JP4198693B2 (en) 2004-03-31 2005-03-31 Double-side polishing method and apparatus

Publications (2)

Publication Number Publication Date
JP2005313316A true JP2005313316A (en) 2005-11-10
JP4198693B2 JP4198693B2 (en) 2008-12-17

Family

ID=35441261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005100987A Expired - Fee Related JP4198693B2 (en) 2004-03-31 2005-03-31 Double-side polishing method and apparatus

Country Status (1)

Country Link
JP (1) JP4198693B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009088027A (en) * 2007-09-27 2009-04-23 Sumco Techxiv株式会社 Double-sided polishing method of semiconductor wafer
KR20170089867A (en) * 2014-12-16 2017-08-04 톈진 유니버시티 Cylindrical-component grinding device, and workpiece advancing apparatus and grinding method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009088027A (en) * 2007-09-27 2009-04-23 Sumco Techxiv株式会社 Double-sided polishing method of semiconductor wafer
KR20170089867A (en) * 2014-12-16 2017-08-04 톈진 유니버시티 Cylindrical-component grinding device, and workpiece advancing apparatus and grinding method thereof
KR101925122B1 (en) 2014-12-16 2019-02-27 톈진 유니버시티 Cylindrical-component grinding device, and workpiece advancing apparatus and grinding method thereof

Also Published As

Publication number Publication date
JP4198693B2 (en) 2008-12-17

Similar Documents

Publication Publication Date Title
JP5208087B2 (en) Apparatus for processing both sides of a flat workpiece and method for simultaneously cutting a plurality of semiconductor wafers on both sides
TWI289094B (en) Wafer clamping device for a double side grinder
CN103991033B (en) The method of the finishing polishing pad of twin polishing semiconductor wafer simultaneously
JP5170716B2 (en) Semiconductor wafer polishing method and polishing pad shaping jig
JP2007075949A (en) Polishing platen and polishing device
JP2008110407A (en) Polishing head and polishing device
JP2008173715A (en) Grinding method of disk-shaped substrate and grinding device
US20090311945A1 (en) Planarization System
CN110871385A (en) Double-side polishing machine and polishing method
JP2010257561A (en) Method for manufacturing substrate for magnetic disk
JP2015035245A (en) Glass substrate carrier, polishing method of glass substrate for magnetic recording medium, and manufacturing method of glass substrate for magnetic recording medium
JP2003048148A (en) Square substrate grinding method
JP4198693B2 (en) Double-side polishing method and apparatus
JP3493208B2 (en) Method of manufacturing plate having flat main surface and method of manufacturing plate having two parallel main surfaces
WO2009157306A1 (en) Apparatus for polishing both sides of glass substrate for magnetic disk, polishing method, and production process
JP2014104522A (en) Single-side processing method of wafer and production method of wafer
US6752687B2 (en) Method of polishing disks
JP4472694B2 (en) Straight type polishing method
JP5613723B2 (en) Carrier plate and disk-shaped substrate manufacturing method, disk-shaped substrate double-sided processing apparatus
JP2005224892A (en) Polishing method
JP2014168846A (en) Carrier plate used for double-side processing device
JP2010005777A (en) Retainer ring for grinding machine and grinding method using same
JP3671649B2 (en) Polishing method and polishing apparatus
JP5404107B2 (en) Polishing tool
WO2021193970A1 (en) Carrier and method for manufacturing substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080417

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081001

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4198693

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees