JP2005311261A - Heat radiating plate made of silicon carbide - Google Patents

Heat radiating plate made of silicon carbide Download PDF

Info

Publication number
JP2005311261A
JP2005311261A JP2004130053A JP2004130053A JP2005311261A JP 2005311261 A JP2005311261 A JP 2005311261A JP 2004130053 A JP2004130053 A JP 2004130053A JP 2004130053 A JP2004130053 A JP 2004130053A JP 2005311261 A JP2005311261 A JP 2005311261A
Authority
JP
Japan
Prior art keywords
sic
crystal
heat sink
silicon carbide
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004130053A
Other languages
Japanese (ja)
Inventor
Masakazu Katsuno
正和 勝野
Hiroshi Tsuge
弘志 柘植
Hirokatsu Yashiro
弘克 矢代
Noboru Otani
昇 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004130053A priority Critical patent/JP2005311261A/en
Publication of JP2005311261A publication Critical patent/JP2005311261A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat radiating plate with an excellent heat conductivity which can be suitably used as a substrate for modules for loading a semiconductor device having a higher releasing value. <P>SOLUTION: In the heat radiating plate made of silicon carbide obtained by processing silicon carbide monocrystal or silicon carbide polycrystal produced by a sublimation recrystallization method, the heat conductivity of the heat radiating plate at an ordinary temperature is 200 to 550 W/mK. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、発熱源から発生する熱エネルギーを放熱するためのヒートシンクとして好適に使用できる高熱伝導性放熱板に関する。   The present invention relates to a high thermal conductive heat dissipation plate that can be suitably used as a heat sink for dissipating heat energy generated from a heat source.

情報密度の巨大化とともに電子部品の処理能力は著しい向上を遂げている。そのため、各々の部品からは多量の熱が発生しているのが現状である。これらの電子部品を安定的に動作させるためには一定温度に保つことが好ましく、その冷却のために様々な工夫が成されている。通常、高温となる電子部品は、ヒートシンクと呼ばれる「熱を吸収できる材料、構成部品あるいはシステムを熱的に保護するためにそのような材料を使用している装置」上にマウントされ、用いられるのが一般的である。   With the increasing information density, the processing capacity of electronic components has improved remarkably. For this reason, a large amount of heat is generated from each component. In order to stably operate these electronic components, it is preferable to maintain a constant temperature, and various devices have been made for cooling the electronic components. Typically, high temperature electronic components are mounted and used on “heat sinks, materials that can absorb heat, components or devices that use such materials to thermally protect the system” Is common.

ヒートシンク材料として早くから実用化されている材料としては、Cu、Cu−W等の熱伝導性の良い金属、金属合金、或いは、炭化珪素(SiC)、窒化アルミニウム(AlN)等の半導体性或いは絶縁性の高熱伝導性セラミックス材料が挙げられるが、電子部品の性能の向上に伴う発熱をこのような材料のみからなるヒートシンクを用いて冷却するには限界があることが分かり、放熱特性向上のための新たなヒートシンク材料が必要とされている。ヒートシンク材料として、SiCは最も頻繁に使用される材料の一つである(例えば、特許文献1)。   Examples of materials that have been put into practical use as heat sink materials from early on are metals or metal alloys with good thermal conductivity such as Cu and Cu-W, or semiconductor or insulating properties such as silicon carbide (SiC) and aluminum nitride (AlN). However, it has been found that there is a limit to cooling the heat generated by improving the performance of electronic components using a heat sink made of only such materials. Heat sink material is needed. As a heat sink material, SiC is one of the most frequently used materials (for example, Patent Document 1).

しかしながら、通常使われているセラミックス焼結体のSiCでは、常温熱伝導率が100〜130W/mKと充分な値が得られていない。SiCそのものは、世の中に現存する物質中でダイヤモンドに次ぐ熱伝導率を有し、材料固有の熱伝導率としては、500W/mK程度の熱伝導率を示す。セラミックス放熱板で充分な熱伝導率が得られない原因は、セラミックス焼結体が微小な結晶粒の集合体であり、材料中に多くの粒界が存在するからである。さらに、セラミックス焼結体には、作製時焼結を助けるために焼結助剤を添加しているが、この助剤が粒界を形成して、熱伝導性を劣化させている場合もある。結晶粒界は熱伝導の担い手であるフォノン(結晶格子振動の量子)を散乱し、熱伝導率の大幅な低下をもたらす。
特開2003−100939号公報
However, the normally used SiC of ceramic sintered body has a room temperature thermal conductivity of 100 to 130 W / mK, which is not a sufficient value. SiC itself has a thermal conductivity next to diamond among substances existing in the world, and the thermal conductivity specific to the material exhibits a thermal conductivity of about 500 W / mK. The reason why sufficient heat conductivity cannot be obtained with the ceramic heat sink is that the ceramic sintered body is an aggregate of fine crystal grains, and there are many grain boundaries in the material. Furthermore, a sintering aid is added to the ceramic sintered body to assist sintering during production, but this aid may form a grain boundary and deteriorate thermal conductivity. . Grain boundaries scatter phonons (quantities of crystal lattice vibration), which are responsible for heat conduction, and cause a significant decrease in thermal conductivity.
Japanese Patent Laid-Open No. 2003-100939

上記したように、従来用いられていたセラミックス焼結体のSiCは、常温熱伝導率が100〜130W/mKと小さく、電子部品のヒートシンク材料として充分な役割を果たすことができない。この原因は、セラミックス焼結体が微小な結晶粒の集合体であり、材料中に多くの粒界が存在するからである。   As described above, SiC of a ceramic sintered body that has been conventionally used has a small room temperature thermal conductivity of 100 to 130 W / mK, and cannot play a sufficient role as a heat sink material for electronic components. This is because the ceramic sintered body is an aggregate of fine crystal grains, and there are many grain boundaries in the material.

そこで、本発明は、ヒートシンク材料として、セラミックス焼結体SiCに比べ、結晶粒界の少ないSiC高熱伝導率放熱板を提供することを目的とする。   Therefore, an object of the present invention is to provide a SiC high thermal conductivity heat dissipation plate having fewer crystal grain boundaries as a heat sink material than ceramic sintered body SiC.

本発明は、
(1) 昇華再結晶法により作製された炭化珪素単結晶又は炭化珪素多結晶から加工してなる放熱板であって、該放熱板の常温で熱伝導率が200〜550 W/mKであることを特徴とする炭化珪素製放熱板、
(2) 前記放熱板の抵抗率が10〜1022Ωcmである(1)記載の炭化珪素製放熱板、
(3) 前記放熱板に貫通中空欠陥が存在しない(1)記載の炭化珪素製放熱板、
である。
The present invention
(1) A heat sink processed from a silicon carbide single crystal or silicon carbide polycrystal produced by a sublimation recrystallization method, and the heat conductivity of the heat sink is 200 to 550 W / mK at room temperature. A heat sink made of silicon carbide,
(2) The silicon carbide heat sink according to (1), wherein the heat sink has a resistivity of 10 8 to 10 22 Ωcm.
(3) The heat sink made of silicon carbide according to (1), wherein no through-hole defect exists in the heat sink,
It is.

この発明によれば、種結晶を用いた改良型レーリー法により、高抵抗率で且つ良質のSiC単結晶又はSiC多結晶を再現性良く成長させることができる。このような結晶から切り出したSiC単結晶あるいは多結晶ウェハを用いれば、熱伝導特性の優れた放熱板を製作することができる。   According to the present invention, a high-resistivity, high-quality SiC single crystal or SiC polycrystal can be grown with good reproducibility by an improved Rayleigh method using a seed crystal. If a SiC single crystal or polycrystalline wafer cut out from such a crystal is used, a heat radiating plate having excellent heat conduction characteristics can be manufactured.

まず、本発明の炭化珪素単結晶あるいは多結晶からなる放熱板について説明する。本発明の放熱板を構成する炭化珪素単結晶あるいは多結晶は、昇華再結晶法によって製造され、そのため材料中に結晶粒界が皆無あるいは極めて少なく、常温熱伝導率が200〜550W/mKであると言うことを特徴とする。常温熱伝導率が200W/mK未満の場合、例えばIGBT素子を搭載したパワーモジュールを実際に作動させた時に、IGBT素子の温度が70℃とIGBT素子の動作温度の上限値に近い高温となり、素子の安定動作に支障をきたす場合があることが問題となる。なお、550W/mKはSiCの物性から得られる最大熱伝導率である。   First, the heat sink made of silicon carbide single crystal or polycrystal of the present invention will be described. The silicon carbide single crystal or polycrystal constituting the heat sink of the present invention is produced by a sublimation recrystallization method, and therefore has no or very few crystal grain boundaries in the material, and the room temperature thermal conductivity is 200 to 550 W / mK. It is characterized by saying. When the normal temperature thermal conductivity is less than 200 W / mK, for example, when a power module equipped with an IGBT element is actually operated, the temperature of the IGBT element is 70 ° C., which is close to the upper limit of the operating temperature of the IGBT element. The problem is that the stable operation of the system may be hindered. Note that 550 W / mK is the maximum thermal conductivity obtained from the physical properties of SiC.

次に、昇華再結晶法について説明する。昇華再結晶法は、2000℃を超える高温においてSiC粉末を昇華させ、その昇華ガスを低温部に再結晶化させることにより、SiC結晶を製造する方法である。この方法で、SiC単結晶からなる種結晶を用いて、SiC単結晶を製造する方法は、特に改良レーリー法と呼ばれ(Yu.M. Tairov and V.F. Tsvetkov, Journal of Crystal Growth, vol. 52 (1981) pp.146〜150)、バルク状のSiC単結晶の製造に利用されている。改良レーリー法では、種結晶を用いているため、結晶の核形成過程が制御でき、また、不活性ガスにより雰囲気圧力を100Paから15kPa程度に制御することにより、結晶の成長速度等を再現性良くコントロールできる。図1を用いて改良レーリー法の原理を説明する。種結晶となるSiC単結晶と原料となるSiC結晶粉末(通常、アチソン(Acheson)法で作製された研磨材を洗浄・前処理したものが使用される)は、坩堝(通常黒鉛製)の中に収納され、アルゴン等の不活性ガス雰囲気中(133Pa〜13.3kPa)、2000〜2400℃に加熱される。この際、原料粉末に比べ、種結晶がやや低温になるように温度勾配が設定される。原料は、昇華後、濃度勾配(温度勾配により形成される)により、種結晶方向へ拡散、輸送される。単結晶成長は、種結晶に到着した原料ガスが種結晶上で再結晶化することにより実現される。   Next, the sublimation recrystallization method will be described. The sublimation recrystallization method is a method for producing SiC crystals by sublimating SiC powder at a high temperature exceeding 2000 ° C. and recrystallizing the sublimation gas into a low temperature part. In this method, a method for producing an SiC single crystal using a seed crystal composed of an SiC single crystal is particularly called an improved Rayleigh method (Yu. M. Tailov and VF Tsvetkov, Journal of Crystal Growth, vol. 52 (1981) pp. 146-150), it is used for the production of bulk SiC single crystals. In the modified Rayleigh method, a seed crystal is used, so that the nucleation process of the crystal can be controlled, and the atmospheric pressure is controlled from about 100 Pa to about 15 kPa with an inert gas, so that the crystal growth rate and the like can be reproducible. I can control it. The principle of the improved Rayleigh method will be described with reference to FIG. The SiC single crystal used as a seed crystal and the SiC crystal powder used as a raw material (usually used after cleaning and pre-treatment of an abrasive prepared by the Acheson method) are used in a crucible (usually made of graphite). And heated to 2000 to 2400 ° C. in an inert gas atmosphere such as argon (133 Pa to 13.3 kPa). At this time, the temperature gradient is set so that the seed crystal has a slightly lower temperature than the raw material powder. After sublimation, the raw material is diffused and transported in the direction of the seed crystal by a concentration gradient (formed by a temperature gradient). Single crystal growth is realized by recrystallization of the source gas that has arrived at the seed crystal on the seed crystal.

従来のSiCセラミックス焼結体を用いた放熱板では、上記したように、材料中に多数の結晶粒界が存在し、熱伝導の担い手であるフォノン(結晶格子振動の量子)が散乱されるため、熱伝導率が大幅に低下する。これに対して、SiC単結晶では、結晶粒界が皆無あるいは極めて少ないために、熱伝導率の低下が無く、極めて優れた熱伝導性を保持できる。   In a conventional heat sink using a SiC ceramics sintered body, as described above, a large number of crystal grain boundaries exist in the material, and phonons (quantities of crystal lattice vibration), which are responsible for heat conduction, are scattered. The thermal conductivity is greatly reduced. In contrast, in SiC single crystals, there are no or very few crystal grain boundaries, so there is no decrease in thermal conductivity, and extremely excellent thermal conductivity can be maintained.

上記した昇華再結晶法には、通常SiC単結晶の{0001}面という結晶方位を有する種結晶が使用されるが、作製したSiC単結晶には、直径0.1〜10μm程度の貫通中空欠陥(通称マイクロパイプ欠陥)が存在する。この貫通中空欠陥は、結晶中に存在する大型の螺旋転位の一種であり、転位により生じる大きい歪みを緩和するために、転位の芯が空洞化して発生するものと考えられている。   In the above-described sublimation recrystallization method, a seed crystal having a crystal orientation of {0001} plane of a SiC single crystal is usually used, but the produced SiC single crystal has a through hollow defect having a diameter of about 0.1 to 10 μm. (Commonly known as micropipe defects). This penetrating hollow defect is a kind of large-sized screw dislocations existing in the crystal, and it is considered that the core of the dislocations is generated in a cavity in order to alleviate a large strain caused by the dislocations.

半導体素子の放熱板としての利用を考えるとき、放熱板に前記した貫通中空欠陥が存在すると、放熱板として好ましくない場合がある。一例を挙げると、素子モジュールに放熱板を金属系のロー材を用いて接合する際、ロー材が孔を貫通して導電性のパスを形成する等の不都合が生じる場合がある。   When considering use of a semiconductor element as a heat sink, the presence of the above-described through-hole defect in the heat sink may be undesirable as a heat sink. As an example, when joining the heat sink to the element module using a metallic brazing material, there may be a problem that the brazing material penetrates the hole to form a conductive path.

このような場合は、成長に用いるSiC種結晶の面方位として、特定の方位({11−20}面及び{1−100}面)の面を有するものを用いることにより得られる、貫通中空欠陥の全く無い結晶を使用することが好ましい。これらの面方位を用いた成長により貫通中空欠陥の発生が完全に防止できることは、特開平5−262599号公報に開示されている。貫通中空欠陥発生防止の機構としては、成長機構が従来の{0001}面成長における螺旋転位からのステップ供給によるものでは無いためであり、大型の螺旋転位の一種である貫通中空欠陥の発生は、完全に抑えられる。このようにして、全く孔の無いSiC単結晶放熱板が得られる。   In such a case, the through hollow defect obtained by using a SiC seed crystal having a specific orientation ({11-20} plane and {1-100} plane) as the plane orientation of the SiC seed crystal used for growth It is preferable to use a crystal free from any. It is disclosed in Japanese Patent Application Laid-Open No. 5-262599 that the growth using these plane orientations can completely prevent the occurrence of through hollow defects. As a mechanism for preventing the occurrence of through-hollow defects, the growth mechanism is not due to step supply from the screw dislocations in the conventional {0001} plane growth, and the occurrence of through-hole defects, which is a kind of large screw dislocations, It is completely suppressed. In this way, a SiC single crystal heat dissipation plate having no holes is obtained.

また、放熱板上に形成される半導体素子の種類によっては、放熱板の電気抵抗が十分高い必要がある場合も存在する。例えば、大電力用IGBT素子のチップを載せたリードフレームを放熱板に直付けするような場合は、放熱板自身が十分な絶縁性を有することが必須条件となる。この場合、半絶縁性を有する単結晶SiCから切り出したウェハを用いる方法が有効である。半絶縁性を有する単結晶SiCは、結晶成長に用いる炭化珪素原料に高純度のものを用いることで作製できる。高純度原料としては、例えばSi化合物ガス(例えばSiH)とC化合物ガス(例えばC)を用いた化学気相成長法(CVD法)により得られた粉末が使用できる。この原料を使用して作製したSiC単結晶から得られるウェハの抵抗率は10〜1022Ωcmである。抵抗率が10Ωcm未満の場合、素子間の絶縁性が不十分となり、素子の動作に支障をきたす場合がある。なお、抵抗率1022Ωcmは、SiCの物性から得られる最大抵抗率である。 Further, depending on the type of semiconductor element formed on the heat sink, there may be a case where the heat resistance of the heat sink needs to be sufficiently high. For example, when a lead frame on which a chip of a high-power IGBT element is mounted is directly attached to a heat sink, it is essential that the heat sink itself has sufficient insulation. In this case, a method using a wafer cut out from single crystal SiC having semi-insulating properties is effective. Single-crystal SiC having semi-insulating properties can be produced by using a high-purity silicon carbide raw material used for crystal growth. As the high purity raw material, for example, a powder obtained by a chemical vapor deposition method (CVD method) using a Si compound gas (for example, SiH 4 ) and a C compound gas (for example, C 3 H 8 ) can be used. The resistivity of the wafer obtained from the SiC single crystal produced using this raw material is 10 8 to 10 22 Ωcm. When the resistivity is less than 10 8 Ωcm, the insulation between the elements becomes insufficient, which may hinder the operation of the elements. The resistivity of 10 22 Ωcm is the maximum resistivity obtained from the physical properties of SiC.

一方、放熱板材料として前記した単結晶SiCに代って、多結晶SiCを用いることも可能である。一般に多結晶は、単結晶と比較して結晶粒界がより多く存在することから、熱伝導特性においては劣る。しかしながら、昇華再結晶法で製造したSiC多結晶は、粒サイズが大きく(0.5〜数mm径)、粒界密度が小さいという特徴を持つ。このため、SiCセラミックス焼結体と比べれば、十分大きい熱伝導率(200W/mK以上)を有するSiC多結晶が得られ、放熱板として十分利用可能となる。さらに、多結晶SiCは、単結晶SiCと比較して種結晶を準備する必要がないため、製造がより簡易であり、低コストで作製可能と言う利点を持つ。   On the other hand, it is also possible to use polycrystalline SiC instead of the above-described single crystal SiC as the heat sink material. In general, polycrystals are inferior in heat conduction characteristics because there are more grain boundaries as compared with single crystals. However, the SiC polycrystal produced by the sublimation recrystallization method has the characteristics that the grain size is large (0.5 to several mm diameter) and the grain boundary density is small. For this reason, SiC polycrystal having sufficiently large thermal conductivity (200 W / mK or more) can be obtained as compared with the SiC ceramic sintered body, and can be sufficiently used as a heat sink. Furthermore, since polycrystalline SiC does not need to prepare a seed crystal as compared with single-crystal SiC, it has the advantage that it is easier to manufacture and can be manufactured at a lower cost.

(実施例1)
以下に、本発明の実施例について述べる。まず、図2に示す単結晶成長装置について、簡単に説明する。結晶成長は、SiC結晶粉末2を昇華させ、種結晶として用いたSiC単結晶1上で再結晶化させることにより、行われる。種結晶のSiC単結晶1は、高純度黒鉛製坩堝3の蓋4の内面に取り付けられる。原料のSiC結晶粉末2は、高純度黒鉛製坩堝3の内部に充填されている。このような黒鉛製坩堝3は、二重石英管5の内部に、黒鉛の支持棒6により設置される。黒鉛製坩堝3の周囲には、熱シールドのための黒鉛製フェルト7が設置されている。二重石英管5は、真空排気装置により高真空排気(10−3Pa以下)することができ、かつ内部雰囲気をArガスにより圧力制御することができる。また、二重石英管5の外周には、ワークコイル8が設置されており、高周波電流を流すことにより黒鉛製坩堝3を加熱し、原料及び種結晶を所望の温度に加熱することができる。坩堝温度の計測は、坩堝上部及び下部を覆うフェルトの中央部に直径2〜4mmの光路を設け坩堝上部及び下部からの光を取りだし、二色温度計を用いて行う。坩堝下部の温度を原料温度、坩堝上部の温度を種温度とする。
(Example 1)
Examples of the present invention will be described below. First, the single crystal growth apparatus shown in FIG. 2 will be briefly described. Crystal growth is performed by sublimating the SiC crystal powder 2 and recrystallizing it on the SiC single crystal 1 used as a seed crystal. The seed crystal SiC single crystal 1 is attached to the inner surface of the lid 4 of the high-purity graphite crucible 3. The raw material SiC crystal powder 2 is filled in a high-purity graphite crucible 3. Such a graphite crucible 3 is installed inside a double quartz tube 5 by a support rod 6 made of graphite. Around the graphite crucible 3, a graphite felt 7 for heat shielding is installed. The double quartz tube 5 can be high vacuum evacuated (10 −3 Pa or less) by a vacuum evacuation device, and the internal atmosphere can be pressure controlled by Ar gas. In addition, a work coil 8 is provided on the outer periphery of the double quartz tube 5, and the graphite crucible 3 can be heated by flowing a high-frequency current to heat the raw material and the seed crystal to a desired temperature. The temperature of the crucible is measured using a two-color thermometer by providing an optical path having a diameter of 2 to 4 mm at the center of the felt covering the upper and lower parts of the crucible and extracting light from the upper and lower parts of the crucible. The temperature at the bottom of the crucible is the raw material temperature and the temperature at the top of the crucible is the seed temperature.

次に、この結晶成長装置を用いたSiC単結晶の製造について実施例を説明する。まず、種結晶1として、口径50mmの(0001)面を有した六方晶系のSiC単結晶ウェハを用意した。次に、種結晶1を黒鉛製坩堝3の蓋4の内面に取り付けた。黒鉛製坩堝3の内部には、アチソン法により作製したSiC結晶原料粉末2を充填した。次いで、SiC原料を充填した黒鉛製坩堝3を、蓋4で閉じ、黒鉛製フェルト7で被覆した後、黒鉛製支持棒6の上に乗せ、二重石英管5の内部に設置した。そして、石英管の内部を真空排気した後、ワークコイルに電流を流し、原料温度を2000℃まで上げた。その後、雰囲気ガスとして高純度Arガスを流入させ、石英管内圧力を約80kPaに保ちながら、原料温度を目標温度である2400℃まで上昇させた。成長圧力である1.3kPaには約30分かけて減圧し、その後約20時間成長を続けた。この際の坩堝内の温度勾配は15℃/cmで、成長速度は約0.8mm/時であった。得られた結晶の口径は51mmで、高さは16mm程度であった。   Next, an example of manufacturing a SiC single crystal using this crystal growth apparatus will be described. First, a hexagonal SiC single crystal wafer having a (0001) face with a diameter of 50 mm was prepared as a seed crystal 1. Next, the seed crystal 1 was attached to the inner surface of the lid 4 of the graphite crucible 3. The inside of the graphite crucible 3 was filled with SiC crystal raw material powder 2 produced by the Atchison method. Next, the graphite crucible 3 filled with the SiC raw material was closed with the lid 4 and covered with the graphite felt 7, and then placed on the graphite support rod 6 and installed inside the double quartz tube 5. And after evacuating the inside of a quartz tube, the electric current was sent through the work coil and the raw material temperature was raised to 2000 degreeC. Thereafter, high-purity Ar gas was introduced as the atmospheric gas, and the raw material temperature was raised to the target temperature of 2400 ° C. while maintaining the pressure in the quartz tube at about 80 kPa. The growth pressure was reduced to 1.3 kPa over about 30 minutes, and then the growth was continued for about 20 hours. At this time, the temperature gradient in the crucible was 15 ° C./cm, and the growth rate was about 0.8 mm / hour. The diameter of the obtained crystal was 51 mm, and the height was about 16 mm.

こうして得られた炭化珪素単結晶をX線回折及びラマン散乱により分析したところ、六方晶系のSiC単結晶が成長したことを確認できた。結晶の熱伝導率を測定する目的で、成長した単結晶インゴットから厚さ2.8mmのウェハを4枚切り出した。ウェハを直接光学顕微鏡にて観察したところ、貫通中空欠陥密度が10〜100個/cm程度存在することが確認できた。さらに確認するために、520℃に溶融した水酸化カリウム溶液中で5分間エッチングを施した。このエッチング処理を行うと、貫通中空欠陥は、六角状エッチピットとして観察できる。ウェハついてエッチピット数密度を調べたところ、目視観察と同様の数密度の貫通中空欠陥が検出された。 When the silicon carbide single crystal thus obtained was analyzed by X-ray diffraction and Raman scattering, it was confirmed that a hexagonal SiC single crystal was grown. For the purpose of measuring the thermal conductivity of the crystal, four wafers having a thickness of 2.8 mm were cut out from the grown single crystal ingot. When the wafer was directly observed with an optical microscope, it was confirmed that there were about 10 to 100 penetrating hollow defect densities / cm 2 . For further confirmation, etching was performed in a potassium hydroxide solution melted at 520 ° C. for 5 minutes. When this etching process is performed, the penetrating hollow defects can be observed as hexagonal etch pits. When the etch pit number density of the wafer was examined, through-hole defects having the same number density as in the visual observation were detected.

これらのウェハについてレーザーフラッシュ法(厚さ0.5〜3mmの試料にレーザー光を照射し、裏面の温度履歴曲線を解析することにより、熱拡散率、比熱を求め、計算式から熱伝導率を算出する測定法)により熱伝導率を測定したところ、いずれのウェハも450〜500W/mKという高い熱伝導率を示した。また、電気抵抗測定を実施したところ、0.2〜0.4Ωcmの抵抗率を示した。   For these wafers, the laser flash method (irradiating a sample with a thickness of 0.5 to 3 mm with laser light and analyzing the temperature history curve on the back surface determines the thermal diffusivity and specific heat, and calculates the thermal conductivity from the formula. When the thermal conductivity was measured by the calculation method), all the wafers showed a high thermal conductivity of 450 to 500 W / mK. Moreover, when electrical resistance measurement was implemented, the resistivity of 0.2-0.4 ohm-cm was shown.

次いで、従来公知の方法で上記SiC単結晶インゴットを切断したウェハに面出し加工を施した後、研磨加工等を施し、縦35mm、横30mm、厚さ2.5mm放熱板の作製を完了した。   Next, the wafer obtained by cutting the SiC single crystal ingot by a conventionally known method was subjected to a chamfering process, followed by polishing and the like, thereby completing the production of a heat radiation plate having a length of 35 mm, a width of 30 mm, and a thickness of 2.5 mm.

次に、導体回路等を有する絶縁性基板として、一面にアルミニウムからなる導体回路が、他の一面にアルミニウム板がそれぞれロー材を用いて接合された厚さ4mmの窒化アルミニウム製基板を用い、得られた放熱板と窒化アルミニウム基板とを、アルミニウム板を挟んで加熱、圧着することで接合し、パワーモジュール用基板の作製を完了した。   Next, as an insulating substrate having a conductor circuit or the like, an aluminum nitride substrate having a thickness of 4 mm in which a conductor circuit made of aluminum is bonded to one surface and an aluminum plate is bonded to the other surface using a brazing material is obtained. The heat radiation plate and the aluminum nitride substrate thus obtained were joined by heating and pressure bonding with the aluminum plate interposed therebetween, and the production of the power module substrate was completed.

次に、このモジュール用基板にIGBT素子を搭載し、放熱板をクーリングユニットに取り付けてパワーモジュールを作製して、実際に作動させ、IGBT素子の温度を測定した。その結果、動作開始後素子温度は45℃±5℃の範囲を保持しており、IGBT素子の安定動作上限値である70℃に対して十分な低温を保持していた。   Next, an IGBT element was mounted on this module substrate, and a heat module was attached to the cooling unit to produce a power module. The power module was actually operated, and the temperature of the IGBT element was measured. As a result, the element temperature after the start of operation was kept in the range of 45 ° C. ± 5 ° C., and was kept at a sufficiently low temperature with respect to 70 ° C. which is the stable operation upper limit value of the IGBT element.

(実施例2)
実施例1と同様にして、種結晶として、(0001)面を有した六方晶系のSiC単結晶インゴットから切り出した(11−20)及び(1−100)面を有する種結晶1を用意した。次に、種結晶1を黒鉛製坩堝3の蓋4の内面に取り付けた。黒鉛製坩堝3の内部には、CVD法により得られた高純度SiC結晶粉末2を充填した。次いで、SiC原料を充填した黒鉛製坩堝3を、蓋4で閉じ、黒鉛製フェルト7で被覆した後、黒鉛製支持棒6の上に乗せ、二重石英管5の内部に設置した。そして、石英管の内部を真空排気した後、ワークコイルに電流を流し、原料温度を2000℃まで上げた。その後、雰囲気ガスとして高純度Arガスを流入させ、石英管内圧力を約80kPaに保ちながら、原料温度を目標温度である2400℃まで上昇させた。成長圧力である1.3kPaには約30分かけて減圧し、その後約20時間成長を続けた。この際の坩堝内の温度勾配は15℃/cmで、成長速度は約0.75mm/時であった。得られたそれぞれの結晶の口径は51mmで、高さは15mm程度であった。
(Example 2)
In the same manner as in Example 1, a seed crystal 1 having (11-20) and (1-100) planes cut out from a hexagonal SiC single crystal ingot having a (0001) plane was prepared as a seed crystal. . Next, the seed crystal 1 was attached to the inner surface of the lid 4 of the graphite crucible 3. The graphite crucible 3 was filled with high-purity SiC crystal powder 2 obtained by the CVD method. Next, the graphite crucible 3 filled with the SiC raw material was closed with the lid 4 and covered with the graphite felt 7, and then placed on the graphite support rod 6 and installed inside the double quartz tube 5. And after evacuating the inside of a quartz tube, the electric current was sent through the work coil and the raw material temperature was raised to 2000 degreeC. Thereafter, high-purity Ar gas was introduced as the atmospheric gas, and the raw material temperature was raised to the target temperature of 2400 ° C. while maintaining the pressure in the quartz tube at about 80 kPa. The growth pressure was reduced to 1.3 kPa over about 30 minutes, and then the growth was continued for about 20 hours. At this time, the temperature gradient in the crucible was 15 ° C./cm, and the growth rate was about 0.75 mm / hour. The diameter of each crystal obtained was 51 mm and the height was about 15 mm.

こうして得られた炭化珪素単結晶をX線回折及びラマン散乱により分析したところ、いずれも六方晶系のSiC単結晶が成長したことを確認できた。結晶の熱伝導率を測定する目的で、それぞれの成長した単結晶インゴットから厚さ2.8mmのウェハを4枚切り出した。ウェハを直接光学顕微鏡にて観察したところ、いずれも貫通中空欠陥は全く確認されなかった。念のため、貫通中空欠陥の有無を確認するために、成長した結晶を{0001}面が出るように切断し、520℃に溶融した水酸化カリウム溶液中で5分間エッチングを施した。この表面を観察したところ、貫通中空欠陥に起因する六角形状エッチピットは全く観察されず、結晶中に貫通中空欠陥が存在しないことが確認できた。これらのウェハについてレーザーフラッシュ法により熱伝導率を測定したところ、いずれのウェハも450〜500W/mKと言う高い熱伝導率を示した。また、電気抵抗測定を実施したところ、いずれも1010Ωcmの抵抗率を示した。 When the silicon carbide single crystal thus obtained was analyzed by X-ray diffraction and Raman scattering, it was confirmed that both had grown a hexagonal SiC single crystal. For the purpose of measuring the thermal conductivity of the crystal, four wafers having a thickness of 2.8 mm were cut from each grown single crystal ingot. When the wafer was directly observed with an optical microscope, no through-hole defect was observed at all. As a precaution, in order to confirm the presence or absence of a penetrating hollow defect, the grown crystal was cut so that a {0001} plane appeared and etched in a potassium hydroxide solution melted at 520 ° C. for 5 minutes. As a result of observing this surface, no hexagonal etch pits due to through hollow defects were observed, and it was confirmed that there were no through hollow defects in the crystal. When the thermal conductivity of these wafers was measured by a laser flash method, all the wafers showed a high thermal conductivity of 450 to 500 W / mK. Moreover, when electrical resistance measurement was implemented, all showed a resistivity of 10 10 Ωcm.

次いで、従来公知の方法で上記SiC単結晶インゴットを切断したウェハに面出し加工を施した後、研磨加工等を施し、縦35mm、横30mm、厚さ2.5mm放熱板の作製を完了した。   Next, the wafer obtained by cutting the SiC single crystal ingot by a conventionally known method was subjected to a chamfering process, followed by polishing and the like, thereby completing the production of a heat radiation plate having a length of 35 mm, a width of 30 mm, and a thickness of 2.5 mm.

次に、この放熱板に、IGBT素子を配線したリードフレームを直にロー付けした後、放熱板をクーリングユニットに取り付けてパワーモジュールを作製して、実際に作動させた。素子の動作を確認したところ、電流リークによる動作不良も無く安定に動作した。この結果より、放熱板に貫通中空欠陥が無いために放熱板中に導電性のパスの発生が防止でき、放熱板上での直接配線が可能(モジュール作製工程の簡略化が可能)であることが確認できた。また、IGBT素子の温度を測定したところ、動作開始後素子温度は35℃±5℃の範囲を保持しており、IGBT素子の安定動作上限値の70℃に対して十分な低温を保持していた。   Next, after directly brazing the lead frame on which the IGBT elements were wired to this heat radiating plate, the heat radiating plate was attached to the cooling unit to produce a power module and actually operated. When the operation of the element was confirmed, it was stable without any malfunction due to current leakage. From this result, since there is no through-hole defect in the heat sink, the generation of conductive paths in the heat sink can be prevented, and direct wiring on the heat sink is possible (the module manufacturing process can be simplified). Was confirmed. Further, when the temperature of the IGBT element was measured, the element temperature after the start of operation was kept in a range of 35 ° C. ± 5 ° C., and was kept at a sufficiently low temperature with respect to the stable operation upper limit of 70 ° C. It was.

(実施例3)
種結晶を用いない以外は、実施例1と同様にした。黒鉛製坩堝3の内部には、アチソン法により作製したSiC結晶原料粉末2を充填した。次いで、SiC結晶原料を充填した黒鉛製坩堝3を、蓋4で閉じ、黒鉛製フェルト7で被覆した後、黒鉛製支持棒6の上に乗せ、二重石英管5の内部に設置した。そして、石英管の内部を真空排気した後、ワークコイルに電流を流し、原料温度を2000℃まで上げた。その後、雰囲気ガスとして高純度Arガスを流入させ、石英管内圧力を約80kPaに保ちながら、原料温度を目標温度である2400℃まで上昇させた。成長圧力である1.3kPaには約30分かけて減圧し、その後約20時間成長を続けた。この際の坩堝内の温度勾配は15℃/cmで、成長速度は約1.0mm/時であった。得られた多結晶の口径は51mmで、高さは20mm程度であった。
(Example 3)
The procedure was the same as Example 1 except that no seed crystal was used. The inside of the graphite crucible 3 was filled with SiC crystal raw material powder 2 produced by the Atchison method. Next, the graphite crucible 3 filled with the SiC crystal raw material was closed with the lid 4 and covered with the graphite felt 7, and then placed on the graphite support rod 6 and installed inside the double quartz tube 5. And after evacuating the inside of a quartz tube, the electric current was sent through the work coil and the raw material temperature was raised to 2000 degreeC. Thereafter, high-purity Ar gas was introduced as the atmospheric gas, and the raw material temperature was raised to the target temperature of 2400 ° C. while maintaining the pressure in the quartz tube at about 80 kPa. The growth pressure was reduced to 1.3 kPa over about 30 minutes, and then the growth was continued for about 20 hours. At this time, the temperature gradient in the crucible was 15 ° C./cm, and the growth rate was about 1.0 mm / hour. The obtained polycrystal had a diameter of 51 mm and a height of about 20 mm.

こうして得られた炭化珪素多結晶をX線回折及びラマン散乱により分析したところ、SiC多結晶が成長したことを確認できた。結晶の不純物濃度を測定する目的で、成長した単結晶インゴットから厚2.8mmのウェハを5枚切り出した。これらのウェハについてレーザーフラッシュ法により熱伝導率を測定したところ、いずれのウェハも200〜250W/mKと、単結晶SiCには劣るが、セラミックス焼結体と比較して、より高い熱伝導率を示した。また、電気抵抗測定により得られたウェハの抵抗率は0.8〜1Ωcmの抵抗率を示した。   When the silicon carbide polycrystal thus obtained was analyzed by X-ray diffraction and Raman scattering, it was confirmed that the SiC polycrystal was grown. For the purpose of measuring the impurity concentration of the crystal, five wafers having a thickness of 2.8 mm were cut out from the grown single crystal ingot. When these wafers were measured for thermal conductivity by the laser flash method, all wafers were inferior to single-crystal SiC at 200 to 250 W / mK, but higher thermal conductivity than ceramic sintered bodies. Indicated. Moreover, the resistivity of the wafer obtained by the electrical resistance measurement showed a resistivity of 0.8-1 Ωcm.

次に、実施例1と同様にして、放熱板作製、及び、IGBT素子を搭載したパワーモジュールを形成した。   Next, in the same manner as in Example 1, a heat module was manufactured and a power module on which an IGBT element was mounted was formed.

次に、パワーモジュールを実際に作動させ、IGBT素子の温度を測定した。その結果、動作開始後素子温度は上昇するが、55℃±5℃の範囲で安定していた。この温度は、実施例1で示した単結晶のそれと比較すると、約10℃高くなっていた(熱伝導率の差によるものと考えられる)が、IGBT素子の安定動作温度の上限値である70℃よりも十分低温を保持していた。   Next, the power module was actually operated, and the temperature of the IGBT element was measured. As a result, the element temperature increased after the start of operation, but was stable in the range of 55 ° C. ± 5 ° C. This temperature was about 10 ° C. higher than that of the single crystal shown in Example 1 (considered to be due to the difference in thermal conductivity), but this is the upper limit of the stable operating temperature of the IGBT element. The temperature was sufficiently lower than ° C.

(比較例)
市販されている高密度SiCセラミックスを放熱板状に加工したものについて、レーザーフラッシュ法により熱伝導率を測定したところ、常温熱伝導率は125W/mKを示した。この放熱板を用いて、実施例1と同様にしてモジュ−ル用基板を形成した。次に、このモジュール用基板に、IGBT素子を搭載し、放熱板をクーリングユニットに取り付けた後、パワーモジュールを実際に作動させ、IGBT素子の温度を測定した。その結果、動作開始後素子温度は70℃±5℃の範囲を保持していた。この温度は、上記した実施例1〜3のいずれの場合よりも高温であり、これより、SiCセラミックスによる放熱板に対し、SiC単結晶製放熱板又はSiC多結晶製放熱板が優れた放熱性を有することが確認できた。
(Comparative example)
When the thermal conductivity of a commercially available high-density SiC ceramic processed into a heat sink was measured by a laser flash method, the room temperature thermal conductivity was 125 W / mK. Using this heat radiating plate, a module substrate was formed in the same manner as in Example 1. Next, after mounting an IGBT element on this module substrate and attaching a heat sink to the cooling unit, the power module was actually operated, and the temperature of the IGBT element was measured. As a result, the device temperature kept in the range of 70 ° C. ± 5 ° C. after the operation started. This temperature is higher than in any of the above-described Examples 1 to 3. From this, the heat dissipation of the SiC single crystal heat sink or SiC polycrystalline heat sink is superior to the heat sink made of SiC ceramics. It was confirmed that the

改良レーリー法の原理を説明する図である。It is a figure explaining the principle of an improved Rayleigh method. 実施例で用いた結晶成長装置の概略図である。It is the schematic of the crystal growth apparatus used in the Example.

符号の説明Explanation of symbols

1 種結晶(SiC単結晶)、
2 SiC結晶粉末原料、
3 坩堝(黒鉛あるいはタンタル等の高融点金属)、
4 黒鉛製坩堝蓋、
5 二重石英管、
6 支持棒、
7 黒鉛製フェルト(断熱材)、
8 ワークコイル、
9 高純度Arガス配管、
10 高純度Arガス用マスフローコントローラ、
11 真空排気装置。
1 seed crystal (SiC single crystal),
2 SiC crystal powder raw material,
3 crucibles (refractory metals such as graphite or tantalum),
4 Graphite crucible lid,
5 Double quartz tube,
6 Support rod,
7 Graphite felt (heat insulation),
8 Work coil,
9 High purity Ar gas piping,
10 Mass flow controller for high purity Ar gas,
11 Vacuum exhaust device.

Claims (3)

昇華再結晶法により作製された炭化珪素単結晶又は炭化珪素多結晶から加工してなる放熱板であって、該放熱板の常温での熱伝導率が200〜550W/mKであることを特徴とする炭化珪素製放熱板。   A heat sink processed from a silicon carbide single crystal or silicon carbide polycrystal produced by a sublimation recrystallization method, wherein the heat conductivity of the heat sink at room temperature is 200 to 550 W / mK. A heat sink made of silicon carbide. 前記放熱板の抵抗率が10〜1022Ωcmである請求項1記載の炭化珪素製放熱板。 The silicon carbide heat sink according to claim 1, wherein the heat sink has a resistivity of 10 8 to 10 22 Ωcm. 前記放熱板に貫通中空欠陥が存在しない請求項1記載の炭化珪素製放熱板。   The silicon carbide heat sink according to claim 1, wherein no through-hole defect exists in the heat sink.
JP2004130053A 2004-04-26 2004-04-26 Heat radiating plate made of silicon carbide Pending JP2005311261A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004130053A JP2005311261A (en) 2004-04-26 2004-04-26 Heat radiating plate made of silicon carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004130053A JP2005311261A (en) 2004-04-26 2004-04-26 Heat radiating plate made of silicon carbide

Publications (1)

Publication Number Publication Date
JP2005311261A true JP2005311261A (en) 2005-11-04

Family

ID=35439635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004130053A Pending JP2005311261A (en) 2004-04-26 2004-04-26 Heat radiating plate made of silicon carbide

Country Status (1)

Country Link
JP (1) JP2005311261A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009054250A1 (en) * 2007-10-24 2009-04-30 Sumitomo Electric Industries, Ltd. Semiconductor substrate and method for inspecting semiconductor substrate
WO2022045291A1 (en) * 2020-08-28 2022-03-03 京セラ株式会社 Sic polycrystal manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009054250A1 (en) * 2007-10-24 2009-04-30 Sumitomo Electric Industries, Ltd. Semiconductor substrate and method for inspecting semiconductor substrate
WO2022045291A1 (en) * 2020-08-28 2022-03-03 京セラ株式会社 Sic polycrystal manufacturing method

Similar Documents

Publication Publication Date Title
US5944890A (en) Method of producing single crystals and a seed crystal used in the method
EP2733239B1 (en) Sic single crystal and manufacturing process therefor
JP4174847B2 (en) Single crystal manufacturing method
JP4514339B2 (en) Method and apparatus for growing silicon carbide single crystal
JP4585359B2 (en) Method for producing silicon carbide single crystal
JP2007308364A (en) Method and apparatus for aluminum nitride monocrystal boule growth
PL234396B1 (en) Process for the preparation of crystals, especially silicon carbide from the gas phase
JP4523733B2 (en) Method for producing silicon carbide single crystal ingot and method for mounting seed crystal for growing silicon carbide single crystal
WO2006070480A1 (en) Silicon carbide single crystal, silicon carbide single crystal wafer, and process for producing the same
JP2008013390A (en) MANUFACTURING METHOD OF AlN CRYSTAL SUBSTRATE, GROWING METHOD OF AlN CRYSTAL AND AlN CRYSTAL SUBSTRATE
JP3590485B2 (en) Single crystal silicon carbide ingot and method for producing the same
JP4052678B2 (en) Large silicon carbide single crystal growth equipment
JP5517123B2 (en) Aluminum nitride single crystal and method and apparatus for manufacturing the same
JP5143139B2 (en) Single crystal growth equipment
JP2011119412A (en) Method of manufacturing semiconductor wafer
US20140299048A1 (en) Method of manufacturing silicon carbide single crystal
JP2016150877A (en) Production method of sapphire single crystal
JP2005519837A (en) Single crystal group II-VI and group III-V compound growth apparatus
JP4833780B2 (en) Lid graphite crucible and silicon carbide single crystal growth apparatus
JP4304783B2 (en) SiC single crystal and growth method thereof
JP5418210B2 (en) Nitride semiconductor crystal manufacturing method, AlN crystal and nitride semiconductor crystal manufacturing apparatus
JP2005311261A (en) Heat radiating plate made of silicon carbide
JP5761264B2 (en) Method for manufacturing SiC substrate
JP2009102187A (en) Crucible for growth of silicon carbide single crystal, method of manufacturing silicon carbide single crystal using the same, and silicon carbide single crystal ingot
JP2004262709A (en) GROWTH METHOD FOR SiC SINGLE CRYSTAL

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081022

A02 Decision of refusal

Effective date: 20081118

Free format text: JAPANESE INTERMEDIATE CODE: A02