JP2005310473A - Manufacturing method of organic el element - Google Patents

Manufacturing method of organic el element Download PDF

Info

Publication number
JP2005310473A
JP2005310473A JP2004124089A JP2004124089A JP2005310473A JP 2005310473 A JP2005310473 A JP 2005310473A JP 2004124089 A JP2004124089 A JP 2004124089A JP 2004124089 A JP2004124089 A JP 2004124089A JP 2005310473 A JP2005310473 A JP 2005310473A
Authority
JP
Japan
Prior art keywords
organic
cathode
anode
electrode
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004124089A
Other languages
Japanese (ja)
Inventor
Yuzo Tokunaga
雄三 徳永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004124089A priority Critical patent/JP2005310473A/en
Publication of JP2005310473A publication Critical patent/JP2005310473A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve positive hole-injection characteristics by carrying out oxidation treatment of a metal reflecting electrode in a manufacturing method of an organic EL element wherein the reflecting electrode is provided on a plate board, and light is taken out from the opposed transparent electrode side. <P>SOLUTION: In the manufacturing method of the organic EL element wherein a pair of the electrodes composed of the opposing anode and cathode, and a light-emitting layer composed of at least an organic compound in the pair of the electrodes are installed, and after the anode composed of the metal reflecting electrode has been formed on the plate board, this is reverse sputtering-treated, and succeedingly after the oxidation treatment of the surface is carried out, the light-emitting layer and the cathode are formed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、基板上に反射金属電極をもち、対向する透明陰極側より光取りだしをおこなう有機EL素子の製造方法に関する。   The present invention relates to a method for manufacturing an organic EL element having a reflective metal electrode on a substrate and extracting light from the opposite transparent cathode side.

現在主に開発が進められている有機EL素子は、陽極/発光層/陰極の積層を基本とし、ガラス板などを用いた基板上に透明陽極を形成し、発光を基板側から取り出す構成を基本としている。一方、近年発光画素ごとに駆動用トランジスタを設けた方式(アクティブマトリックス方式)のパネルの検討が進んでいる。ところが基板側より光を取り出す場合、これらの駆動回路、配線部が光を遮るため、画素の開口率(素子内で実際に発光する部分の面積比)が小さくなるという問題がある。   The organic EL device, which is currently under development, is basically composed of an anode / light emitting layer / cathode laminate, and a basic structure is adopted in which a transparent anode is formed on a substrate using a glass plate, and light is emitted from the substrate side. It is said. On the other hand, in recent years, a panel of a method (active matrix method) in which a driving transistor is provided for each light emitting pixel has been studied. However, when light is extracted from the substrate side, these drive circuits and wiring portions block light, so that there is a problem that the aperture ratio of the pixel (the area ratio of the portion that actually emits light in the element) becomes small.

そこで特許文献1、2で開示されているように、陰極を透明な電子注入金属層と非晶質透明導電膜で形成し、陰極側から光を取り出すことが試みられている。この素子構成は、TFT駆動回路基板の上に画素電極である金属反射電極(陽極)を形成し、さらに有機EL層、透明陰極を設けるものである。光は陰極から取り出されるので、開口率の低下の問題は解決される。しかし画素電極(陽極)からの正孔注入性、素子プロセスの安定性などでまだ十分な改善が得られていない。   Therefore, as disclosed in Patent Documents 1 and 2, it has been attempted to extract light from the cathode side by forming the cathode with a transparent electron injection metal layer and an amorphous transparent conductive film. In this element configuration, a metal reflective electrode (anode) as a pixel electrode is formed on a TFT drive circuit substrate, and an organic EL layer and a transparent cathode are further provided. Since light is extracted from the cathode, the problem of lowering the aperture ratio is solved. However, sufficient improvement has not yet been obtained in terms of hole injection from the pixel electrode (anode), device process stability, and the like.

金属反射電極である陽極材料として、特許文献1では仕事関数4.8eV以上の金属材料、例えばAu、Pt、Ni、Pdが挙げられている。しかしこれらの材料はパターン形成が困難であり、また有機膜との密着性にも問題がある。   As an anode material that is a metal reflective electrode, Patent Document 1 mentions a metal material having a work function of 4.8 eV or more, such as Au, Pt, Ni, and Pd. However, these materials are difficult to form a pattern and have a problem in adhesion to an organic film.

また特許文献2ではパターン形成が容易なCrを含む周期律表5または6族の金属材料を陽極材料として用いることが提案されているが、仕事関数が4.5eV以下なので、電極からの正孔注入性が劣り、駆動電圧が3〜10V程大きくなってしまうという問題があった。   Patent Document 2 proposes to use a periodic table 5 or group 6 metal material containing Cr, which is easy to form a pattern, as the anode material. However, since the work function is 4.5 eV or less, hole injection from the electrode is performed. There is a problem that the driving voltage is increased by about 3 to 10 V.

従来の、基板上に透明陽極を形成し、発光を基板側から取り出す構成の有機EL素子においては、透明陽極材料としてITO(インジウム−錫酸化物)に代表されるインジウム酸化物系化合物が主に用いられる。この透明陽極の正孔注入性を向上させるため、また、パターニングなどのプロセス工程により発生する有機物汚染を除くために、Oプラズマ処理やUVオゾン処理などの電極前処理が一般的に用いられている。正孔注入性が向上する原理としては以下のように言われている。ITOを例にとれば、そもそも形成されたITO電極のごく表面部分には酸素の欠陥があり、この酸素欠陥が表面の仕事関数を低下させて正孔注入性を阻害している。そこで、Oプラズマ処理やUVオゾン処理などの酸化処理をおこなうことで、表面の酸素欠陥がなくなり、正孔注入性が向上する、というものである。 In a conventional organic EL device in which a transparent anode is formed on a substrate and light emission is extracted from the substrate side, an indium oxide compound represented by ITO (indium-tin oxide) is mainly used as a transparent anode material. Used. In order to improve the hole injection property of the transparent anode and to remove organic contamination caused by process steps such as patterning, electrode pretreatments such as O 2 plasma treatment and UV ozone treatment are generally used. Yes. The principle of improving the hole injection property is said as follows. Taking ITO as an example, there is an oxygen defect in the very surface portion of the ITO electrode formed in the first place, and this oxygen defect lowers the work function of the surface and inhibits the hole injection property. Therefore, by performing oxidation treatment such as O 2 plasma treatment and UV ozone treatment, oxygen defects on the surface are eliminated and hole injection properties are improved.

特許文献3では、表面の酸素欠陥が存在する部分を、逆スパッタによりエッチングして、内部の酸素欠陥がない部分を露出させて有機EL層を成膜するという技術も開示されている。
特開平10-162959号公報 特開2001-043980号公報 特開2002-170666号公報
Patent Document 3 also discloses a technique in which a portion having oxygen defects on the surface is etched by reverse sputtering to expose a portion having no internal oxygen defects to form an organic EL layer.
Japanese Patent Laid-Open No. 10-162959 Japanese Patent Laid-Open No. 2001-043980 JP 2002-170666 A

ところで、本発明のごとき基板上の金属反射電極を陽極とし、対向する透明電極側から光取り出しをおこなう構成の有機EL素子では、金属単体あるいは合金から正孔注入をおこなうが、有機物汚染を除く目的でのOプラズマ処理やUVオゾン処理は透明電極材料と同様に有効であるものの、正孔注入性を向上させる目的でのそれら酸化処理は必ずしも効果的ではない場合があった。 By the way, in an organic EL device having a structure in which a metal reflective electrode on a substrate as an anode is used as in the present invention and light is extracted from the opposite transparent electrode side, holes are injected from a single metal or an alloy, but the object is to eliminate organic contamination. Although the O 2 plasma treatment and UV ozone treatment are effective as in the case of the transparent electrode material, the oxidation treatment for the purpose of improving the hole injection property may not always be effective.

よって本発明は、対向する陽極と陰極からなる1対の電極と、前記1対の電極の間に少なくとも有機化合物からなる発光層が設けられた有機EL素子の製造方法において、基板上に該陽極を形成したのちに、これを逆スパッタ処理し、続いて表面の酸化処理をおこなったのちに発光層と陰極の形成を行うことを特徴とする有機EL素子の製造方法を提供する。   Therefore, the present invention provides a method for producing an organic EL device in which a pair of electrodes composed of an anode and a cathode opposed to each other and a light emitting layer composed of at least an organic compound is provided between the pair of electrodes. A method of manufacturing an organic EL device is provided, in which a light emitting layer and a cathode are formed after reverse sputtering treatment is performed, followed by surface oxidation treatment.

基板上に金属反射電極を配し、対向する透明電極側から光取り出しをおこなう有機EL素子の製造方法において、本発明の金属反射電極への逆スパッタ処理と、OプラズマやUVオゾン処理などの電極酸化処理を併用することで、駆動電圧が低く、発光ムラのない安定した発光が得られる有機EL素子を得ることができた。 In a method for manufacturing an organic EL element in which a metal reflective electrode is arranged on a substrate and light is extracted from the opposite transparent electrode side, reverse sputtering treatment to the metal reflective electrode of the present invention, O 2 plasma, UV ozone treatment, etc. By using the electrode oxidation treatment in combination, it was possible to obtain an organic EL element having a low driving voltage and stable emission without light emission unevenness.

本発明者らが詳細な検討を行ったところ、金属反射電極に対して酸化処理が有効とならない理由は、処理により金属表面に酸化膜が形成されることで、仕事関数は上昇するものの、電気抵抗は上昇する方向であり、結果として正孔注入性が阻害されることが原因となっていることがわかった。また、酸化をすすめると電極の光反射率が低下してしまい、結局目的の輝度が得られない場合も生じた。酸化処理が効果的となる、つまり表面の仕事関数は上昇するが抵抗成分は注入性を阻害しないという条件はごく狭い範囲の条件となってしまう。   As a result of detailed studies by the present inventors, the reason why the oxidation treatment is not effective for the metal reflective electrode is that an oxide film is formed on the metal surface by the treatment, and the work function is increased, but the electrical function is increased. It has been found that the resistance is in the increasing direction, and as a result, the hole injection property is hindered. In addition, when the oxidation was promoted, the light reflectance of the electrode was lowered, and in some cases, the target luminance could not be obtained. The condition that the oxidation treatment is effective, that is, the work function of the surface is increased but the resistance component does not hinder the injection property is a very narrow range of conditions.

また、好ましい正孔注入性が得られる条件を見いだしても、得られる発光状態はムラが多く、不安定な場合が多かった。この理由としては、金属反射電極に用いることのできる金属材料の多くが、電極形成後のプロセス工程を経た後、表面に自然酸化膜が形成されたり、先述したように有機物汚染が残ったりしており、Oプラズマ処理やUVオゾン処理などの酸化処理によって表面に均一で適度な酸化膜が形成されないことが原因となっていることが考えられる。 Further, even when the conditions for obtaining a preferable hole injection property were found, the obtained light emitting state was often uneven and unstable. The reason for this is that many of the metal materials that can be used for the metal reflective electrode have a natural oxide film formed on the surface after the process steps after electrode formation, or organic contamination remains as described above. It can be considered that this is caused by the fact that a uniform and appropriate oxide film is not formed on the surface by the oxidation treatment such as O 2 plasma treatment or UV ozone treatment.

そこで本発明では、金属反射電極に対して逆スパッタ処理を行い、続いて表面の酸化処理をおこなう製造方法を提案する。これにより表面の清浄化と、均一で適度な酸化状態をつくることで、すぐれた正孔注入性をもち、駆動電圧を低くできる有機EL素子を得ることができる。   Therefore, the present invention proposes a manufacturing method in which reverse sputtering treatment is performed on the metal reflective electrode, and then surface oxidation treatment is performed. Thus, by cleaning the surface and creating a uniform and appropriate oxidation state, an organic EL element having excellent hole injection properties and a low driving voltage can be obtained.

単純に金属反射電極に逆スパッタを行っただけでは、たとえばCr電極を例にとれば、先述したように仕事関数が4.5eV以下の表面となってしまい、正孔注入性は向上しない。   If reverse sputtering is simply performed on the metal reflective electrode, for example, if a Cr electrode is taken as an example, the surface has a work function of 4.5 eV or less as described above, and the hole injection property is not improved.

逆スパッタ処理は、従来知られている技術を用いればよく、マグネトロンスパッタや高周波(RF)スパッタなどを好適に用いることができる。スパッタガスとしては不活性ガス、特にArを好適に用いることができる。バック圧、スパッタ圧、電気出力などの条件は、電極材料やその膜厚などによっても異なり、素子特性から適度に調整されるべきものである。   For the reverse sputtering treatment, a conventionally known technique may be used, and magnetron sputtering, radio frequency (RF) sputtering, or the like can be suitably used. As the sputtering gas, an inert gas, particularly Ar can be preferably used. Conditions such as the back pressure, sputtering pressure, and electric output vary depending on the electrode material and its film thickness, and should be appropriately adjusted from the element characteristics.

酸化処理は、先述したOプラズマ処理、UVオゾン処理の他に、熱酸化処理などの方法も用いることができる。また、これらを併用してもよく、特にUVオゾン処理とOプラズマ処理を連続して行うことですぐれた効果を得られる場合もあった。また、逆スパッタ処理ののち、同一チャンバー内でOプラズマ処理を行うなど、工程のあいだに大気にさらさないようにするとより効果的である。 For the oxidation treatment, a method such as thermal oxidation treatment can be used in addition to the above-described O 2 plasma treatment and UV ozone treatment. These may be used in combination, and in particular, an excellent effect may be obtained by performing UV ozone treatment and O 2 plasma treatment successively. Further, it is more effective not to expose to the atmosphere during the process, such as performing O 2 plasma treatment in the same chamber after the reverse sputtering treatment.

本発明の有機EL素子は、基板上に金属反射電極(陽極)が形成され、さらに有機EL層、透明陰極が設けられており、光は陰極から取り出される構成である。   The organic EL device of the present invention has a structure in which a metal reflective electrode (anode) is formed on a substrate, an organic EL layer and a transparent cathode are provided, and light is extracted from the cathode.

陰極は透明導電層であり、表示素子として均一発光が得られるようにシート抵抗値が40Ω/□以下であることが望ましい。例えばIn-Sn-O系酸化物、In-Zn-O系酸化物からなる透明導電膜が好ましい。   The cathode is a transparent conductive layer and desirably has a sheet resistance of 40Ω / □ or less so that uniform light emission can be obtained as a display element. For example, a transparent conductive film including an In—Sn—O-based oxide or an In—Zn—O-based oxide is preferable.

電子注入層は、発光層を含む有機EL層へ、陰極から電子を注入できる層である。   The electron injection layer is a layer that can inject electrons from the cathode into the organic EL layer including the light emitting layer.

例えば仕事関数の小さい(3.8eV以下)金属、例えばMg,Ca,Ba,Li,Scなどが少なくとも含まれる金属単体か合金の薄膜が用いられる。   For example, a thin metal or alloy thin film containing at least a metal having a low work function (3.8 eV or less), for example, Mg, Ca, Ba, Li, Sc, or the like is used.

別の好ましい形態としては、アルカリ土類金属、例えばBaO,SrO,CuOなどの薄膜が用いられる。   As another preferred embodiment, a thin film of an alkaline earth metal such as BaO, SrO, or CuO is used.

さらに他の好ましい例として、電子注入性金属、あるいはアルカリ土類金属酸化物と電子輸送性の化合物との混合物であっても良い。   As still another preferred example, an electron injecting metal or a mixture of an alkaline earth metal oxide and an electron transporting compound may be used.

最も好ましい電子注入層は、炭酸セシウム(CsCO)に代表される塩とAlqに代表される電子輸送性の化合物の共蒸着膜である。好ましい混合比は炭酸セシウムが体積比で5〜30%程度である(望ましくは10%程度で、モル比率では〜50%に相当)。 The most preferable electron injection layer is a co-evaporated film of a salt typified by cesium carbonate (Cs 2 CO 3 ) and an electron transporting compound typified by Alq 3 . A preferable mixing ratio is about 5 to 30% by volume of cesium carbonate (desirably about 10%, corresponding to about 50% in molar ratio).

本発明は、陽極金属電極から正孔の注入を安定に、低電圧から行える素子の製造方法について示すものであるが、炭酸セシウムとAlqなど電子輸送性化合物の共蒸着膜など良好な特性を示す電子注入層と組み合わせて用いられるべきものである。 The present invention shows a method for manufacturing an element that can stably inject holes from an anode metal electrode from a low voltage, and has good characteristics such as a co-deposited film of an electron transporting compound such as cesium carbonate and Alq 3. It should be used in combination with the electron injection layer shown.

有機EL層は、陽極と陰極の間に介在し、発光層のみからなる層であってもよく、また電子輸送層、正孔輸送層などを積層した多層構造のものであってもよい。   The organic EL layer may be a layer consisting only of the light emitting layer interposed between the anode and the cathode, or may have a multilayer structure in which an electron transport layer, a hole transport layer and the like are laminated.

有機EL素子は、電界印加時に陽極から正孔が、陰極から電子が注入され、電子と正孔の再結合によって発光させる機能を有している。これらは従来有機EL素子における公知のものを用いることができる。   The organic EL element has a function of emitting light by recombination of electrons and holes by injecting holes from the anode and electrons from the cathode when an electric field is applied. As these, known materials in conventional organic EL elements can be used.

図1は本発明にかかる有機EL素子の基本的な構成を示す断面図である。   FIG. 1 is a cross-sectional view showing a basic configuration of an organic EL element according to the present invention.

各画素は陽極Aと、陰極Kと、両者の間に保持された有機EL層10とからなる。有機層10は陽極Aから供給される正孔と陰極Kから供給される電子との再結合によって発光する発光層102を含んでいる。正孔輸送層101、電子注入輸送層103とを含んでいる。   Each pixel includes an anode A, a cathode K, and an organic EL layer 10 held between the two. The organic layer 10 includes a light emitting layer 102 that emits light by recombination of holes supplied from the anode A and electrons supplied from the cathode K. A hole transport layer 101 and an electron injection transport layer 103 are included.

また、隣接画素とは素子分離膜104により分離されている。素子分離膜104は公知の樹脂材料、無機材料などを用いることができ、具体的にはアクリル樹脂やポリイミド、SiO、SiNなどを使用することができる。また、逆スパッタによる素子分離膜へのダメージを避けるために、樹脂材料で素子分離膜を形成したのちにSiOなどの無機材料で保護膜を設けることも有効である。 Adjacent pixels are separated by an element isolation film 104. For the element isolation film 104, a known resin material, an inorganic material, or the like can be used. Specifically, an acrylic resin, polyimide, SiO 2 , SiN, or the like can be used. In order to avoid damage to the element isolation film due to reverse sputtering, it is also effective to provide a protective film with an inorganic material such as SiO 2 after forming the element isolation film with a resin material.

陽極Aは、素子電極としてパターン形成が容易な金属材料が選ばれる。Al、Cr、Ta、W、Ni、Pd、Agないしそれらを含む合金などを使うことができる。   For the anode A, a metal material that is easy to form a pattern is selected as an element electrode. Al, Cr, Ta, W, Ni, Pd, Ag or an alloy containing them can be used.

以下、本発明の実施例について説明する。   Examples of the present invention will be described below.

Cr電極
マグネトロンDCスパッタ法により、Crターゲットを用いて、ガラス基板上に陽極AとしてCr膜をスパッタ成膜した。成膜条件は、バック圧3×10E(−4)Pa、Arガス圧0.4Pa、300Wの電気出力でおこない、この際成膜マスクを用いて、3mmのストライプ形状、150nmの厚さにとした。
Cr electrode A Cr film was formed as an anode A by sputtering on a glass substrate by a magnetron DC sputtering method using a Cr target. The film formation was performed with a back pressure of 3 × 10E (−4) Pa, an Ar gas pressure of 0.4 Pa, and an electrical output of 300 W. At this time, a film formation mask was used to form a stripe shape of 3 mm and a thickness of 150 nm. .

SiO素子分離膜
次にSiOをRFスパッタ法により、素子分離膜となる絶縁層として250nmの厚さに成膜した。この際成膜マスクを交換することによりCrストライプ上に2mm□の開口でCr/C-Nが画素電極として露出するようにした。バック圧3×10E(−4)Pa、Arガス圧0.4Pa、13.56MHz、300Wの電気出力条件で行った。
SiO 2 element isolation film Next, SiO 2 was deposited to a thickness of 250 nm as an insulating layer to be an element isolation film by RF sputtering. At this time, the film formation mask was replaced so that Cr / CN was exposed as a pixel electrode through a 2 mm square opening on the Cr stripe. The measurement was performed under the electrical output conditions of a back pressure of 3 × 10E (−4) Pa, an Ar gas pressure of 0.4 Pa, 13.56 MHz, and 300 W.

逆スパッタ処理
そのまま同じスパッタ装置内で、Cr電極とSiO素子分離膜が形成された基板の逆スパッタ処理を行った。SiOターゲット上で、バック圧3×10E(−4)Pa、Arガス圧0.4Pa、13.56MHz、200Wの電気出力条件で、10分間処理を行った。
Reverse Sputtering Treatment The substrate on which the Cr electrode and the SiO 2 element separation film were formed was subjected to reverse sputtering treatment in the same sputtering apparatus. On the SiO 2 target, the treatment was performed for 10 minutes under the electrical output conditions of a back pressure of 3 × 10E (−4) Pa, an Ar gas pressure of 0.4 Pa, 13.56 MHz, and 200 W.

電極酸化処理
つづいて、基板を大気暴露せずにOプラズマ処理装置に搬送した。Oプラズマ処理は、基板付近に設けたリング状電極に50WのRF電力を投入し、酸素圧力は0.6Pa、処理時間は40秒でおこなった。
Electrode oxidation treatment Subsequently, the substrate was transferred to an O 2 plasma treatment apparatus without being exposed to the atmosphere. In the O 2 plasma treatment, RF power of 50 W was applied to a ring electrode provided in the vicinity of the substrate, the oxygen pressure was 0.6 Pa, and the treatment time was 40 seconds.

有機EL層形成
真空チャンバーを、1×10E(-4)Paまで排気した後、蒸着マスクを用いることにより所定の部分に有機EL層を蒸着した。所定の部分とは基板上で、Crが露出している部分である(画素電極)。
Organic EL Layer Formation After the vacuum chamber was evacuated to 1 × 10E (−4) Pa, an organic EL layer was deposited on a predetermined portion by using a deposition mask. The predetermined portion is a portion where the Cr is exposed on the substrate (pixel electrode).

まず正孔輸送層としてTPD(N,N´−ジフェニル−N,N´−ビス(3メチルフェニル)−1,1´−ビフェニル−4,4´−ジアミン)を50nm、発光層としてAlq(アルミニウム-トリキノリノレート)を30nm、電子注入輸送層としてAlq 9:CsCO 1(体積比)なる共蒸着膜を50nmの膜厚に設けた。 First, TPD (N, N′-diphenyl-N, N′-bis (3methylphenyl) -1,1′-biphenyl-4,4′-diamine) is 50 nm as the hole transport layer, and Alq 3 (as the light emitting layer). aluminum - Toriki Norino rate) of 30 nm, electron injection transport layer as Alq 3 9: providing the Cs 2 CO 3 1 (by volume) composed of co-deposited film to a film thickness of 50nm.

それぞれの蒸着ボートにセットした材料を抵抗加熱方式で蒸発させ、有機層は〜0.5nm/sec.、共蒸着層もそれぞれのボート電流値を調整することで、あわせて〜0.5nm/sec.の蒸着速度で、膜形成を行った。   The material set in each vapor deposition boat is evaporated by resistance heating method, the organic layer is ~ 0.5nm / sec., And the co-deposition layer is also adjusted to each boat current value. Film formation was performed at a deposition rate of.

つづいてマスク成膜によりCr画素電極を覆って、Crストライプに交差するように、ITO(In-Sn-O)陰極膜をDCスパッタ成膜した。   Subsequently, an ITO (In—Sn—O) cathode film was formed by DC sputtering so as to cover the Cr pixel electrode by mask deposition and cross the Cr stripe.

Arガスを用いて0.4Paの圧力で、300Wの電力出力条件でITOターゲットをスパッタした。膜厚は100nmとし、同条件での単膜における比抵抗値は4×10E-6Ωcmであった。   The ITO target was sputtered using Ar gas at a pressure of 0.4 Pa and a power output condition of 300 W. The film thickness was 100 nm, and the specific resistance value of the single film under the same conditions was 4 × 10E−6 Ωcm.

素子評価
ITO透明導電膜を陰極、Cr電極を陽極として、電圧−電流−輝度特性を測定したところ、輝度300Cd/mを得た電圧は6.5Vであった。また2mm□の画素内での発光は均一であった。
Element Evaluation When a voltage-current-luminance characteristic was measured using an ITO transparent conductive film as a cathode and a Cr electrode as an anode, the voltage at which a luminance of 300 Cd / m 2 was obtained was 6.5V. Further, light emission within a 2 mm square pixel was uniform.

本実施例における金属反射電極の逆スパッタ処理条件、酸化処理条件、および素子特性評価結果を表1に示す。   Table 1 shows the reverse sputtering treatment conditions, oxidation treatment conditions, and element characteristic evaluation results of the metal reflective electrode in this example.

実施例1における電極酸化処理としてUVオゾン処理を行うこと以外は実施例1とまったく同様にして有機EL素子作製と評価をおこなった。UVオゾン処理は、逆スパッタ処理の終わった基板を、大気暴露せずにN:Oが8:2で、露点が−50℃以下に調整されたグローブボックスに搬送し、出力300Wの低圧水銀ランプを用いてUVを照射し、20分のUVオゾン処理を行った。 The organic EL device was prepared and evaluated in exactly the same manner as in Example 1 except that UV ozone treatment was performed as the electrode oxidation treatment in Example 1. In UV ozone treatment, the substrate after reverse sputtering treatment is transported to a glove box with N 2 : O 2 of 8: 2 and dew point adjusted to -50 ° C. or less without being exposed to the atmosphere. UV irradiation was performed using a mercury lamp for 20 minutes.

輝度300Cd/mを得た電圧は6.7Vであった。また2mm□の画素内での発光は均一であった。 The voltage at which a luminance of 300 Cd / m 2 was obtained was 6.7V. Further, light emission within a 2 mm square pixel was uniform.

実施例1における逆スパッタ処理を、100Wの電力出力にすること以外は実施例1とまったく同様にして有機EL素子作製と評価をおこなった。   The organic EL device was fabricated and evaluated in exactly the same manner as in Example 1 except that the reverse sputtering treatment in Example 1 was changed to a power output of 100 W.

輝度300Cd/mを得た電圧は6.7Vであった。また2mm□の画素内での発光は均一であった。 The voltage at which a luminance of 300 Cd / m 2 was obtained was 6.7V. Further, light emission within a 2 mm square pixel was uniform.

(比較例1)
実施例1における逆スパッタ処理をおこなわずに、有機EL素子作製と評価をおこなった。
(Comparative Example 1)
The organic EL element was produced and evaluated without performing the reverse sputtering process in Example 1.

輝度300Cd/mを得るのに電圧は7.9Vであった。また画素内での発光ムラが目立ち、発光状態は不安定であった。 The voltage was 7.9 V to obtain a luminance of 300 Cd / m 2 . Further, uneven light emission within the pixel was conspicuous, and the light emission state was unstable.

(比較例2)
実施例1における電極酸化処理をまったくおこなわずに有機EL素子作製と評価をおこなった。
(Comparative Example 2)
The organic EL device was produced and evaluated without performing any electrode oxidation treatment in Example 1.

輝度300Cd/m2を得るのに電圧は8.5Vであり、駆動電圧の大幅な上昇が見られた。   The voltage was 8.5 V to obtain the luminance of 300 Cd / m 2, and the driving voltage was significantly increased.

Figure 2005310473
Figure 2005310473

本発明における有機EL素子の積層構造例を示す模式図である。It is a schematic diagram which shows the laminated structure example of the organic EL element in this invention.

Claims (3)

対向する陽極と陰極からなる1対の電極と、前記1対の電極の間に少なくとも有機化合物からなる発光層が設けられた有機EL素子の製造方法において、基板上に該陽極を形成したのちに、これを逆スパッタ処理し、続いて表面の酸化処理をおこなったのちに発光層と陰極の形成を行うことを特徴とする有機EL素子の製造方法。   In a method of manufacturing an organic EL element in which a pair of electrodes composed of an anode and a cathode facing each other and a light emitting layer composed of at least an organic compound is provided between the pair of electrodes, the anode is formed on a substrate. A method for producing an organic EL element, comprising performing a reverse sputtering process and subsequently performing a surface oxidation process, followed by forming a light emitting layer and a cathode. 酸化処理はUVオゾン処理かOプラズマ処理の少なくともいずれか一方であることを特徴とする請求項1に記載の有機EL素子の製造方法。 The method for producing an organic EL element according to claim 1, wherein the oxidation treatment is at least one of UV ozone treatment and O 2 plasma treatment. 該有機EL素子は陰極側から光取り出しを行うことを特徴とする請求項1乃至2のいずれか一項に記載の有機EL素子の製造方法。   3. The method for producing an organic EL element according to claim 1, wherein the organic EL element performs light extraction from the cathode side.
JP2004124089A 2004-04-20 2004-04-20 Manufacturing method of organic el element Withdrawn JP2005310473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004124089A JP2005310473A (en) 2004-04-20 2004-04-20 Manufacturing method of organic el element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004124089A JP2005310473A (en) 2004-04-20 2004-04-20 Manufacturing method of organic el element

Publications (1)

Publication Number Publication Date
JP2005310473A true JP2005310473A (en) 2005-11-04

Family

ID=35439010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004124089A Withdrawn JP2005310473A (en) 2004-04-20 2004-04-20 Manufacturing method of organic el element

Country Status (1)

Country Link
JP (1) JP2005310473A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009021574A (en) * 2007-06-14 2009-01-29 Semiconductor Energy Lab Co Ltd Light-emitting element, light-emitting device, electronic device, and method of manufacturing light-emitting device
WO2010038356A1 (en) * 2008-09-30 2010-04-08 パナソニック株式会社 Organic el device and method for manufacturing same
JP2011119288A (en) * 2008-09-19 2011-06-16 Panasonic Corp Organic electroluminescent element
JP2012507152A (en) * 2008-10-27 2012-03-22 ザ リージェンツ オブ ザ ユニヴァシティ オブ ミシガン Inverted photosensitive device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009021574A (en) * 2007-06-14 2009-01-29 Semiconductor Energy Lab Co Ltd Light-emitting element, light-emitting device, electronic device, and method of manufacturing light-emitting device
US8319212B2 (en) 2007-06-14 2012-11-27 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and electronic device
JP2011119288A (en) * 2008-09-19 2011-06-16 Panasonic Corp Organic electroluminescent element
WO2010038356A1 (en) * 2008-09-30 2010-04-08 パナソニック株式会社 Organic el device and method for manufacturing same
JP4647708B2 (en) * 2008-09-30 2011-03-09 パナソニック株式会社 Organic EL device and manufacturing method thereof
US8362473B2 (en) 2008-09-30 2013-01-29 Panasonic Corporation Organic EL device and method for manufacturing same
JP2012507152A (en) * 2008-10-27 2012-03-22 ザ リージェンツ オブ ザ ユニヴァシティ オブ ミシガン Inverted photosensitive device

Similar Documents

Publication Publication Date Title
JP4699098B2 (en) ORGANIC EL ELEMENT AND ORGANIC EL DISPLAY DEVICE USING THE SAME
KR100844788B1 (en) Fabrication method for organic light emitting device and organic light emitting device fabricated by the same method
JP6729602B2 (en) Method for manufacturing photoelectric conversion element
WO2005004550A1 (en) Organic electroluminescent display panel and method for manufacturing same
JPWO2012017488A1 (en) LIGHT EMITTING ELEMENT, MANUFACTURING METHOD THEREOF, AND LIGHT EMITTING DEVICE
Lee et al. Realization of an efficient top emission organic light-emitting device with novel electrodes
JP2002208479A (en) Substrate with intermediate resistor for organic led element, and organic led element
JP2009302025A (en) Organic light-emitting device and electronic equipment
CN101405366B (en) Fabrication method for organic light emitting device and organic light emitting device fabricated by the same method
JP3531680B2 (en) Manufacturing method of organic EL device
JP4310843B2 (en) Method for manufacturing organic electroluminescent device
JP2001176660A (en) Manufacturing method of organic electroluminescent element and organic electroluminescent element
JPH11126689A (en) Manufacture of organic electroluminescent element and organic el element
JP2005310473A (en) Manufacturing method of organic el element
JP2004139780A (en) Electrode substrate for organic electroluminescent device, organic electroluminescent device, and manufacturing method of its device
JP4268161B2 (en) Electrode substrate for organic electroluminescence device and organic EL light emitting device
JP4241003B2 (en) Electrode substrate for organic electroluminescence device and organic EL light emitting device
WO2015182130A1 (en) Organic el element and organic el light-emitting device
JP3868061B2 (en) Organic electroluminescence device
US7009749B2 (en) Optical element and manufacturing method therefor
JP2005310470A (en) Organic el element
JP5173769B2 (en) Manufacturing method of organic EL element
JP3891435B2 (en) Organic EL device and method for manufacturing the same
JP2006054098A (en) Manufacturing method of transparent conductive film and organic el light-emitting element
JP2007234325A (en) Organic electroluminescent element and its manufacturing method

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070703