JP2005310416A - Short arc type mercury lamp - Google Patents

Short arc type mercury lamp Download PDF

Info

Publication number
JP2005310416A
JP2005310416A JP2004122415A JP2004122415A JP2005310416A JP 2005310416 A JP2005310416 A JP 2005310416A JP 2004122415 A JP2004122415 A JP 2004122415A JP 2004122415 A JP2004122415 A JP 2004122415A JP 2005310416 A JP2005310416 A JP 2005310416A
Authority
JP
Japan
Prior art keywords
ultraviolet
mercury lamp
arc tube
short arc
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004122415A
Other languages
Japanese (ja)
Other versions
JP4274036B2 (en
Inventor
Kengo Yamazaki
憲五 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Ushio Inc
Original Assignee
Ushio Denki KK
Ushio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK, Ushio Inc filed Critical Ushio Denki KK
Priority to JP2004122415A priority Critical patent/JP4274036B2/en
Publication of JP2005310416A publication Critical patent/JP2005310416A/en
Application granted granted Critical
Publication of JP4274036B2 publication Critical patent/JP4274036B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Vessels And Coating Films For Discharge Lamps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a short arc type mercury lamp capable of preventing deterioration of an ultraviolet reflective film and reflecting ultraviolet rays certainly, even if the temperature of the reflective film becomes high during lighting, excellent in emission efficiency, and having higher luminance. <P>SOLUTION: This short arc type mercury lamp has an arc tube 1 made of quartz glass wherein a pair of electrodes 3, 4 are arranged, and mercury ≥0.20 mg/mm<SP>3</SP>is put and sealed. On the surface of the arc tube 1, an ultraviolet reflective film 5 is formed whose main body is principal tetragonal system crystal structures of zirconium oxide. Moreover, while this short arc type mercury lamp is lighted, the temperature of its arc tube 1 becomes 900°C or higher. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、液晶ディスプレイ装置やDMD(デジタルミラーデバイス)を使ったDLP(デジタルライトプロセッサ)などのプロジェクタ装置のバックライトに利用されるショートアーク型水銀ランプに関する。   The present invention relates to a short arc type mercury lamp used for a backlight of a projector device such as a liquid crystal display device or a DLP (digital light processor) using a DMD (digital mirror device).

通常、液晶プロジェクタ装置等に用いられる光源ユニットは、矩形状のスクリーンに対して、均一にしかも十分な演色性をもって画像を照明させることが要求され、このため、光源としては、発光管内に水銀や金属ハロゲン化物を封入したショートアーク型水銀ランプが使われている。   In general, a light source unit used in a liquid crystal projector device or the like is required to illuminate an image with a uniform and sufficient color rendering property on a rectangular screen. Short arc mercury lamps with metal halides enclosed are used.

このようなショートアーク型水銀ランプは、発光スペクトルが紫外線領域から赤外線領域まで幅広い範囲にわたっているが、実際に画像を照明する際に利用される波長は可視光領域であり、残りの紫外線領域、赤外線領域の光は照明には利用されていないものである。   Such short arc type mercury lamps have a broad emission spectrum ranging from the ultraviolet region to the infrared region, but the wavelength used when actually illuminating an image is the visible region, and the remaining ultraviolet region and infrared region. The light in the area is not used for illumination.

一方、最近では、ランプの発光効率を上げてより高輝度なランプが要求されてきており、発光管の表面に紫外線反射膜を形成し、アークから放射される紫外線を紫外線反射膜で発光管内に戻し、水銀エネルギーを高めることで、ランプの発光効率を上げ高輝度化する工夫がなされている。
このような技術は、特開2003−242930公報に記載されている。
On the other hand, recently, there has been a demand for a lamp with higher brightness by increasing the luminous efficiency of the lamp. An ultraviolet reflecting film is formed on the surface of the arc tube, and ultraviolet rays emitted from the arc are put into the arc tube by the ultraviolet reflecting film. In return, the mercury energy is increased to increase the luminous efficiency of the lamp and increase the brightness.
Such a technique is described in JP2003-242930A.

この紫外線反射膜は、SiOとTaを交互に積層した膜である。このSiOとTaを交互に積層した紫外線反射膜は耐熱性が低く、熱によって膜が劣化し、発光管の温度が900℃以上となるようなランプでは実用上問題となっていた。 This ultraviolet reflective film is a film in which SiO 2 and Ta 2 O 5 are alternately laminated. This ultraviolet reflective film in which SiO 2 and Ta 2 O 5 are alternately laminated has low heat resistance, the film deteriorates due to heat, and has become a practical problem in a lamp in which the temperature of the arc tube is 900 ° C. or higher. .

また、膜形成物質が異なる酸化ジルコニウムを使った紫外線反射膜が知られている。
このような技術は、特開平6−267504公報に記載されている。
しかしながら、酸化ジルコニウムを使ったとしても、ランプ点灯中に膜に微小なクラックが入り、膜が白濁化し、光が散乱して光の利用率が低下する問題があった。
Further, an ultraviolet reflecting film using zirconium oxide having a different film forming material is known.
Such a technique is described in JP-A-6-267504.
However, even when zirconium oxide is used, there is a problem that microcracks are formed in the film during lamp operation, the film becomes cloudy, light is scattered, and the light utilization rate is lowered.

このような現象が起こる原因を追求していくと、発光管が高温になると酸化ジルコニウム膜の結晶構造が変化する結晶変態が発生することが原因であることがわかった。
つまり、通常、酸化ジルコニウムの単層膜であっても、SiOとZrOを交互に積層した干渉膜であっても、酸化ジルコニウムの結晶構造が単斜晶系結晶構造であり、発光管の温度が900℃以上と高温状態が続くと容積変化がおき、膜にクラックが入ることが原因であることを見出した。
特開2003−242930公報 特開平6−267504公報
In pursuit of the cause of such a phenomenon, it was found that the crystal transformation that changes the crystal structure of the zirconium oxide film occurs when the temperature of the arc tube becomes high.
That is, even if it is a single-layer film of zirconium oxide or an interference film in which SiO 2 and ZrO 2 are alternately laminated, the crystal structure of zirconium oxide is a monoclinic crystal structure, and the arc tube It has been found that when the temperature continues at a high temperature of 900 ° C. or higher, the volume changes and the film is cracked.
JP 2003-242930 A JP-A-6-267504

本発明は、上記の事情に基づいてなされたものであって、点灯中紫外線反射膜が高温になっても、膜が劣化せず確実に紫外線を反射することができ、発光効率が優れ、より高輝度なショートアーク型水銀ランプを提供することにある。   The present invention has been made based on the above circumstances, and even when the UV reflective film is turned on at a high temperature, the film can be reliably reflected without deterioration, and the luminous efficiency is excellent. The object is to provide a high-intensity short arc mercury lamp.

請求項1に記載のショートアーク型高圧水銀ランプは、内部に一対の電極が配置され、かつ、0.20mg/mm以上の水銀を封入した石英ガラス製の発光管を有する放電ランプにおいて、前記発光管の表面に、酸化ジルコニウムの正方晶系結晶構造を主体とする紫外線反射膜が形成されていることを特徴とする。 The short arc type high-pressure mercury lamp according to claim 1 is a discharge lamp having a quartz glass arc tube in which a pair of electrodes are arranged and 0.20 mg / mm 3 or more of mercury is enclosed. An ultraviolet reflecting film mainly comprising a tetragonal crystal structure of zirconium oxide is formed on the surface of the arc tube.

請求項2に記載のショートアーク型水銀ランプは、請求項1に記載のショートアーク型水銀ランプであって、特に、点灯中、前記発光管の温度が900℃以上になっていることを特徴とする。   The short arc type mercury lamp according to claim 2 is the short arc type mercury lamp according to claim 1, and in particular, the temperature of the arc tube is 900 ° C. or more during lighting. To do.

本発明のショートアーク型水銀ランプによれば、点灯中紫外線反射膜が高温になっても、膜が劣化せず確実に紫外線を反射することができ、紫外線を発光管内のアーク戻すことにより、発光効率に優れ、より高輝度化を達成することができる。   According to the short arc type mercury lamp of the present invention, even if the ultraviolet reflective film becomes high temperature during lighting, the film can be surely reflected without deteriorating, and light is emitted by returning the ultraviolet ray to the arc in the arc tube. High efficiency and higher brightness can be achieved.

本発明のショートアーク型高圧水銀ランプについて図面を用いて説明する。
図1は、本発明のショートアーク型高圧水銀ランプの説明図である。
ショートアーク型高圧水銀ランプは、石英ガラス製の発光管1と、この発光管1の両側に延在して形成された封止管2を有するものであり、発光管1の内部には一対の電極3、4が配置され、かつ、0.20mg/mm以上の水銀が封入され、電極3、4の一部は封止管2内で封止されている。
そして、発光管1の外面に紫外線反射膜5が形成されている。
The short arc type high pressure mercury lamp of the present invention will be described with reference to the drawings.
FIG. 1 is an explanatory diagram of a short arc type high-pressure mercury lamp of the present invention.
The short arc type high-pressure mercury lamp has an arc tube 1 made of quartz glass and a sealing tube 2 formed extending on both sides of the arc tube 1. Electrodes 3 and 4 are disposed, and mercury of 0.20 mg / mm 3 or more is sealed, and a part of the electrodes 3 and 4 is sealed in the sealing tube 2.
An ultraviolet reflecting film 5 is formed on the outer surface of the arc tube 1.

紫外線反射膜5は、高屈折率層に酸化ジルコニウム(ZrO)、低屈折率層に酸化ケイ素(SiO)を交互に積層した膜である。
具体的な紫外線反射膜の仕様は、高屈折率層をHとし、低屈折率層をLとして、それぞれ、高屈折率層Hと低屈折率層Lの光学膜厚(nd)は89.4nmであり、反射率最低ピーク値が550nmである。
Ultraviolet reflection film 5, zirconium oxide in the high refractive index layer (ZrO 2), a film formed by alternately laminating silicon oxide (SiO 2) in the low refractive index layer.
The specific specification of the ultraviolet reflecting film is that the high refractive index layer is H and the low refractive index layer is L, and the optical film thicknesses (nd) of the high refractive index layer H and the low refractive index layer L are 89.4 nm, respectively. The minimum peak value of reflectance is 550 nm.

そして、紫外線反射膜5は、高屈折率層Hと低屈折率層Lは、以下の設計に示す通りであり、1つのスタックが、0.65(H/2×L×H/2)であるスタックを8層組み合わせたものである。
そして、この紫外線反射膜5は、正方晶系結晶構造を主体とするものである。
In the ultraviolet reflecting film 5, the high refractive index layer H and the low refractive index layer L are as shown in the following design, and one stack is 0.65 (H / 2 × L × H / 2). This is a combination of 8 stacks.
The ultraviolet reflecting film 5 is mainly composed of a tetragonal crystal structure.

この紫外線反射膜の反射特性を示すデータを図2に示す。図2は、横軸に波長(nm)を示し、縦軸は反射率を示す。
図2からわかるように、本発明のショートアーク型水銀ランプの紫外線反射膜は、波長320nm〜400nmの波長の紫外線を80%以上の割合で反射し、可視光から赤外線領域である420nm以上の光は10%以下しか反射せず、確実に紫外線を反射し、可視光を透過する膜であることがわかる。
Data showing the reflection characteristics of the ultraviolet reflecting film is shown in FIG. In FIG. 2, the horizontal axis represents wavelength (nm), and the vertical axis represents reflectance.
As can be seen from FIG. 2, the ultraviolet reflecting film of the short arc type mercury lamp of the present invention reflects ultraviolet light having a wavelength of 320 nm to 400 nm at a rate of 80% or more, and light from the visible light to the infrared region of 420 nm or more. It can be seen that the film reflects only 10% or less, reliably reflects ultraviolet rays, and transmits visible light.

次に、本発明のショートアーク型水銀ランプの紫外線反射膜の結晶構造について説明する。
紫外線反射膜は、高屈折率層Hに酸化ジルコニウム(ZrO)、低屈折率層Lに酸化ケイ素(SiO)を交互に積層した膜であり、高屈折率層Hと低屈折率層Lは、1つのスタックが、0.65(H/2×L×H/2)であるスタックを8層組み合わせたものであり、高屈折率層Hと低屈折率層Lの光学膜厚(nd)は89.4nmであり、反射率最低ピーク値が550nmである。
Next, the crystal structure of the ultraviolet reflecting film of the short arc type mercury lamp of the present invention will be described.
Ultraviolet reflection film, a zirconium oxide in the high refractive index layer H (ZrO 2), a film formed by alternately laminating a low refractive index layer L on silicon oxide (SiO 2), the high refractive index layer H and the low refractive index layer L Is a combination of eight stacks each having a stack of 0.65 (H / 2 × L × H / 2), and the optical film thickness (nd of the high refractive index layer H and low refractive index layer L) ) Is 89.4 nm, and the minimum reflectance peak value is 550 nm.

紫外線反射膜5は、スパッタ蒸着法によって、高屈折率層と低屈折率層を交互に積層するものであり、高屈折率層のターゲットはZrであり、低屈折率層のターゲットはSiである。   The ultraviolet reflective film 5 is one in which a high refractive index layer and a low refractive index layer are alternately laminated by a sputtering vapor deposition method, the target of the high refractive index layer is Zr, and the target of the low refractive index layer is Si. .

そして、反応容器内にそれぞれのターゲットを配置し、放電ガスとしてAr、反応ガスとしてOを導入しながら、それぞれのターゲットに交互にパルス電圧を印加することによって、ZrO−SiOの多層紫外線反射膜を形成する。 Then, each target is arranged in a reaction vessel, and while introducing Ar as a discharge gas and O 2 as a reaction gas, a pulse voltage is alternately applied to each target, whereby a multilayer ultraviolet ray of ZrO 2 —SiO 2 is applied. A reflective film is formed.

今回、紫外線反射膜の低屈折率層SiO生成時には、放電ガスとしてArを50sccmで固定して導入し、反応ガスとしてOを40sccmで固定して導入し、高屈折率層ZrO生成時には、放電ガスとしてArを50sccmで固定して導入し、反応ガスとしてOを20〜60sccmの間で変化させて導入して、発光管の外表面に異なる結晶構造の紫外線反射膜を形成したランプを5本作成し、その結晶構造の違いと、1000時間点灯後の紫外線反射膜の状態を調べる実験を行った。 At this time, when the low refractive index layer SiO 2 of the ultraviolet reflecting film is generated, Ar is fixed and introduced as a discharge gas at 50 sccm, and O 2 is fixed and introduced as a reactive gas at 40 sccm, and when the high refractive index layer ZrO 2 is generated. A lamp in which Ar is fixed as a discharge gas and introduced at 50 sccm, and O 2 is introduced as a reaction gas by changing between 20 to 60 sccm, and an ultraviolet reflecting film having a different crystal structure is formed on the outer surface of the arc tube 5 were prepared, and an experiment was conducted to examine the difference in the crystal structure and the state of the ultraviolet reflective film after lighting for 1000 hours.

結晶構造の違いとは、高屈折率層の生成時に、反応ガスであるOの導入量を少なくすると酸化ジルコニウム(ZrO)の結晶構造は正方晶系結晶構造が主体となり、逆に、反応ガスであるOの導入量を多くすると酸化ジルコニウム(ZrO)の結晶構造は単斜晶系結晶構造が主体となり、反応ガスであるのOの導入量を変化させることにより、酸化ジルコニウム(ZrO)の結晶構造を変化させるものである。 The difference in crystal structure is that when the amount of O 2 that is a reaction gas is reduced during the formation of a high refractive index layer, the crystal structure of zirconium oxide (ZrO 2 ) is mainly a tetragonal crystal structure. When the amount of O 2 introduced as a gas is increased, the crystal structure of zirconium oxide (ZrO 2 ) is mainly a monoclinic crystal structure. By changing the amount of introduced O 2 as a reaction gas, zirconium oxide ( It changes the crystal structure of ZrO 2 ).

また、紫外線反射膜を構成している酸化ジルコニウム(ZrO)の結晶構造を調べる方法は、紫外線反射膜のX線回折を行った。
X線回折は、予め酸化ジルコニウム(ZrO)の結晶構造が正方晶系であるピーク値と単斜晶系であるピーク値がわかっており、それぞれの結晶構造によって生じるピーク値を合算して、ピーク値の大きな方が結晶構造が主体となっている。
Further, as a method for examining the crystal structure of zirconium oxide (ZrO 2 ) constituting the ultraviolet reflecting film, X-ray diffraction of the ultraviolet reflecting film was performed.
In X-ray diffraction, the peak value in which the crystal structure of zirconium oxide (ZrO 2 ) is a tetragonal system and the peak value in a monoclinic system are known in advance, and the peak values generated by the respective crystal structures are added together. The larger peak value is mainly composed of crystal structure.

図3は、下記に示す図4のランプ2の紫外線反射膜のX線回折結果を示すものであり、図中●のピークは酸化ジルコニウム(ZrO)の結晶構造が正方晶系の結晶構造であり、○のピークは酸化ジルコニウム(ZrO)の結晶構造が単斜晶系の結晶構造のピーク値であり、明らかに、この紫外線反射膜は、●のピーク値の合算値(強度値)が、○のピーク値の合算値(強度値)に比べ大きく、この紫外線反射膜は酸化ジルコニウム(ZrO)の結晶構造が正方晶系の結晶構造であることがわかる。 FIG. 3 shows the result of X-ray diffraction of the ultraviolet reflecting film of the lamp 2 shown in FIG. 4 shown below. The peak in FIG. 3 is the crystal structure of the tetragonal crystal structure of zirconium oxide (ZrO 2 ). Yes, the peak of ○ is the peak value of the monoclinic crystal structure of zirconium oxide (ZrO 2 ). Obviously, this ultraviolet reflective film has a combined value (intensity value) of the peak value of ● It can be seen that this ultraviolet reflective film has a tetragonal crystal structure in the crystal structure of zirconium oxide (ZrO 2 ).

図4は、上述した酸化ジルコニウム(ZrO)の結晶構造を異ならすために行った5本のランプの製造方法のまとめと、酸化ジルコニウム(ZrO)の結晶構造のX線回折強度比と、1000時間点灯後の紫外線反射膜の状態を記載した実験説明図である。 Figure 4 is a summary of five lamp manufacturing method performed to be different crystal structure of the above zirconium oxide (ZrO 2), and X-ray diffraction intensity ratio of the crystal structure of zirconium oxide (ZrO 2), It is experiment explanatory drawing which described the state of the ultraviolet reflective film after lighting for 1000 hours.

図4に示すショートアーク型水銀ランプは、以下の仕様のとおりのランプであり、紫外線反射膜のみ異なるものである。
発光管:石英ガラス製
封入物:発光管内容積に対して0.25mg/mmの水銀とハロゲン
定格:250W
点灯時発光管温度:930℃
The short arc type mercury lamp shown in FIG. 4 is a lamp having the following specifications, and only the ultraviolet reflecting film is different.
Arc tube: Quartz glass enclosure: 0.25 mg / mm 3 mercury and halogen rating with respect to arc tube volume: 250 W
Arc tube temperature at lighting: 930 ° C

図4中、ランプ1、ランプ2、ランプ3は、紫外線反射膜の酸化ジルコニウム(ZrO)のX線回折強度が、単斜晶系の強度値より、正方晶系の強度値が大きくなっており、ランプ1、ランプ2、ランプ3の紫外線反射膜は、酸化ジルコニウムの結晶構造が正方晶系結晶構造であることがわかる。
逆に、ランプ4、ランプ5は、紫外線反射膜の酸化ジルコニウム(ZrO)のX線回折強度が、単斜晶系の強度値より、正方晶系の強度値が小さくなっており、ランプ4、ランプ5の紫外線反射膜は、酸化ジルコニウムの結晶構造が単斜晶系結晶構造であることがわかる。
In FIG. 4, in the lamp 1, the lamp 2 and the lamp 3, the X-ray diffraction intensity of zirconium oxide (ZrO 2 ) in the ultraviolet reflecting film has a tetragonal intensity value larger than the monoclinic intensity value. It can be seen that the ultraviolet reflective films of lamp 1, lamp 2, and lamp 3 have a tetragonal crystal structure as the crystal structure of zirconium oxide.
On the contrary, in the lamps 4 and 5, the X-ray diffraction intensity of zirconium oxide (ZrO 2 ) in the ultraviolet reflecting film has a tetragonal intensity value smaller than the monoclinic intensity value. In the ultraviolet reflecting film of the lamp 5, it can be seen that the crystal structure of zirconium oxide is a monoclinic crystal structure.

また、図4より、ランプ1、ランプ2、ランプ3の紫外線反射膜は、酸化ジルコニウムの結晶構造が正方晶系結晶構造であるため、1000時間ランプを点灯しても紫外線反射膜にクラックや白濁が起こらず、確実に紫外線を反射することができ、しかも、発光管内に0.20mg/mm以上の水銀が封入され、この封入された水銀を全て蒸発させるために発光管の温度が900℃以上の高温になっても、紫外線反射膜熱によって劣化せず、紫外線を発光管内のアークに確実に戻すことができ、発光効率に優れ、より高輝度なランプとなる。 In addition, as shown in FIG. 4, the ultraviolet reflective films of lamp 1, lamp 2, and lamp 3 have a tetragonal crystal structure of zirconium oxide, so that the ultraviolet reflective film is cracked or clouded even when the lamp is turned on for 1000 hours. In this case, 0.20 mg / mm 3 or more of mercury is enclosed in the arc tube, and the arc tube has a temperature of 900 ° C. in order to evaporate all of the enclosed mercury. Even when the temperature is higher than the above, it is not deteriorated by the heat of the ultraviolet reflection film, and the ultraviolet rays can be reliably returned to the arc in the arc tube, resulting in a lamp with excellent luminous efficiency and higher brightness.

本発明のショートアーク型高圧水銀ランプの説明図である。It is explanatory drawing of the short arc type high pressure mercury lamp of this invention. 本願発明のショートアーク型高圧水銀ランプの紫外線反射膜の反射特性を示すデータ説明図である。It is data explanatory drawing which shows the reflective characteristic of the ultraviolet reflective film of the short arc type high pressure mercury lamp of this invention. 紫外線反射膜のX線回折結果を示すものである。The X-ray-diffraction result of a ultraviolet reflective film is shown. 実験データ説明図である。It is experiment data explanatory drawing.

符号の説明Explanation of symbols

1 発光管
2 封止管
3 電極
4 電極
5 紫外線反射膜
1 arc tube 2 sealing tube 3 electrode 4 electrode 5 UV reflective film

Claims (2)

内部に一対の電極が配置され、かつ、0.20mg/mm以上の水銀を封入した石英ガラス製の発光管を有する放電ランプにおいて、
前記発光管の表面に、酸化ジルコニウムの正方晶系結晶構造を主体とする紫外線反射膜が形成されていることを特徴とするショートアーク型水銀ランプ。
In a discharge lamp having an arc tube made of quartz glass in which a pair of electrodes are arranged and 0.20 mg / mm 3 or more of mercury is enclosed,
A short arc mercury lamp characterized in that an ultraviolet reflecting film mainly composed of a tetragonal crystal structure of zirconium oxide is formed on the surface of the arc tube.
点灯中、前記発光管の温度が900℃以上になっていることを特徴とする請求項1に記載のショートアーク型水銀ランプ。
2. The short arc type mercury lamp according to claim 1, wherein the temperature of the arc tube is 900 [deg.] C. or higher during lighting.
JP2004122415A 2004-04-19 2004-04-19 Short arc type mercury lamp Expired - Fee Related JP4274036B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004122415A JP4274036B2 (en) 2004-04-19 2004-04-19 Short arc type mercury lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004122415A JP4274036B2 (en) 2004-04-19 2004-04-19 Short arc type mercury lamp

Publications (2)

Publication Number Publication Date
JP2005310416A true JP2005310416A (en) 2005-11-04
JP4274036B2 JP4274036B2 (en) 2009-06-03

Family

ID=35438960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004122415A Expired - Fee Related JP4274036B2 (en) 2004-04-19 2004-04-19 Short arc type mercury lamp

Country Status (1)

Country Link
JP (1) JP4274036B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011204492A (en) * 2010-03-25 2011-10-13 Ushio Inc Ultra high pressure mercury lamp

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011204492A (en) * 2010-03-25 2011-10-13 Ushio Inc Ultra high pressure mercury lamp

Also Published As

Publication number Publication date
JP4274036B2 (en) 2009-06-03

Similar Documents

Publication Publication Date Title
US5924904A (en) Method for manufacturing a discharge tube body for high-pressure discharge lamps and method for manufacturing a hollow tube body
JPH08241694A (en) Light source with film of transparent heat preservable property
US7396271B2 (en) Method of making a plasma lamp
TW200809133A (en) Optical reflecting thin film coatings
JP2005166638A (en) Cold-cathode fluorescent lamp, and backlight unit with the same mounted
JP4274036B2 (en) Short arc type mercury lamp
JP2000011895A (en) Plasma display panel and its manufacture
JP2008158145A (en) Antireflection film and optical article with the same
KR20010110712A (en) Electric lamp and interference film
JP2003051284A (en) Fluorescence lamp and illumination instrument
JP2010266605A (en) Substrate for liquid crystal projector, liquid crystal projector liquid crystal panel using the same, and liquid crystal projector
JP2007511037A (en) Electric lamp with optical interference film
JPH0719572B2 (en) Discharge lamp
JPH10134767A (en) Metal halide lamp with transparent insulation coating film
JP2005135739A (en) Plasma display device and its manufacturing method
JP2009026467A (en) Fluorescent lamp and liquid crystal display device
US20100213841A1 (en) Discharge lamp, method for producing same, light source device, and projector
JP2001307677A (en) Hid lamp
TWI323908B (en)
JPH10125281A (en) Metal halide lamp with transparent heat insulation film
JP2001256925A (en) Rare gas fluorescent lamp
JP2018078006A (en) Light source device
JPH0636747A (en) Light source device
JP2010198905A (en) Discharge lamp, light source device, and projector
JP2011096579A (en) Discharge lamp and its manufacturing method, light source device, and projector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081219

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090223

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees