TWI323908B - - Google Patents

Download PDF

Info

Publication number
TWI323908B
TWI323908B TW95148339A TW95148339A TWI323908B TW I323908 B TWI323908 B TW I323908B TW 95148339 A TW95148339 A TW 95148339A TW 95148339 A TW95148339 A TW 95148339A TW I323908 B TWI323908 B TW I323908B
Authority
TW
Taiwan
Prior art keywords
glass substrate
plasma
optical film
brightness
reflective layer
Prior art date
Application number
TW95148339A
Other languages
Chinese (zh)
Other versions
TW200826135A (en
Inventor
Jenn Wei Mii
Original Assignee
Longtech Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Longtech Systems Corp filed Critical Longtech Systems Corp
Priority to TW95148339A priority Critical patent/TW200826135A/en
Publication of TW200826135A publication Critical patent/TW200826135A/en
Application granted granted Critical
Publication of TWI323908B publication Critical patent/TWI323908B/zh

Links

Landscapes

  • Gas-Filled Discharge Tubes (AREA)

Description

1323908 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種增加電漿顯示器PDP ( P1 asma D i sp 1 ay Pane 1 )或電聚電視(當電聚顯示器加入電視選台 功能時,即成為所謂之電漿電視)亮度之結構,尤其是一 種藉由加設一全介電質光學薄膜反光層而再度利用螢光劑 層的激發而使得波長為140-200nm,尤其是147nm或 173nm的紫外光予以反射,而波長約為400nm以上之可 視光不會被反射且可以通過前述的全介電質光學薄膜反光 層,藉此而可加強電漿電視前面板的亮度。 【先前技術】 電漿顯示器PDP的主要構造係如圖一所示,是矩陣電 路結構(Matrix Circuit)其主要是由一前玻璃基板11以及 一後玻璃基板12所組成;其中,在前玻璃基板11的下方 、 是設有複數組平行之透明電極1 la以及增加電流之細微金 屬,即所謂匯流排電極(bus electrode) 111所組成,以可 和外界產生電氣連接,而在後玻璃基板12處則是設有複數 個於其表面上塗佈有螢光劑層的阻隔壁13,並在各個由阻 隔壁13所隔成的小容室15 (cel丨)的底面則是設有複數個 與前玻璃基板上透明電極呈垂直排列之定址電極lib,藉 此後玻璃基板12亦可和外界產生電氣連接。 面板其技術發展一直到1990年代,仍是AC交流和 DC直流二種不同驅動方式互相競爭的時期,而目前各家公 1323908 司一致選擇AC交流型PDP電 請茶看圖二所示’如前所述PDP電漿顯示器構造方面 是由前玻璃基板(front glass substrate) 11、後玻璃基板(rear glass substrate) 12等上下兩層玻璃基板所構成,並在將前 玻璃基板11和後玻璃基板12間所密封的放電空間中注入 (隋性)氣體來完成基本的架構。在前玻璃基板1〗内置放 有複數個透明電極Ha,而在後玻璃基板丨2上和前玻璃基 板丨I間則是設有複數個阻隔壁丨3,並在兩兩阻隔壁丨3 ^ 的壁面上塗佈有複數個螢光劑層M;爾後,則可藉由該等 透明電極11a的放電、該等螢光劑層14的反射,:可:可 視光予以反㈣前玻璃基板】卜以強化由前朗基板η 所呈現圖像的亮度。另外,由圖中所示,可見到複數個定 址電極lib是設置在該複數個螢光劑層Μ下方的介電質 16中’因此’藉由此定址電極Ub的控制,與透明電極】 $配合’則可選擇到應發光的顯示小容冑i5 (a")而由 别玻璃基板丨丨射出。由上述的理論可知,其主要的 =要是倚靠在兩兩阻隔壁13間之壁面上所_ 劑層14。 J $冗 請^圖三所示,其中可見到於放電空財所加入的 乱體通常是氙氣和氖氣的混合氣人 者,但壽命較短,或者氦氣、气…二虱I、矾U 气去-Α 矾虱及氖氣三種氣體之混合 卜般為-,也有從 發後所產生的光波通常會在波長為激 f :其是’在波長147nm及173nm處係可形成特別的激波型 na^r圖二所示,當習用的電装顯示器内透明電極 欠電蚪,一般所觀察到發光的情形是由向下及 紫外光所激發螢光劑層14而產生的光,但是向上方之紫 全地浪費了 ’請參閱圖四所示,其向上照射之紫外 先破則玻縣板及其保護層、透明電極等所吸收變為熱能 而非可視光能,以致於前玻璃基板n的光度 = 有效的提昇。 、在作 …再者,近年來以1/4光波長膜厚之介電質鍍膜所發展 之光學薄膜技術進步很快,尤其是在真空_之膜厚偵測 與監控以及離子濺鍍之優質鍍膜技術發展方面使得以高 低不同折射率之介電質材料重複組合而成之多層光學薄= 堆鑛膜’其中之介電質高反射鑛膜以及長波通濾波器均已 可達到相當理想的效果,此類非金屬之全介電質鍍臈膜堆 可能高達數層,十數層,甚或是數十層之膜堆,其特性是 在没疋的光波區域為高反射性,而在此光波區域以外,平 均通過率就很高,臈堆可為重複性,重複對稱性或多腔體 膜堆。以此類光學鍍膜之應用則可設定在真空紫外光(vuv; Vacuum Lmra_violet)區域或稱深紫外光區(阳/1323908 IX. Description of the invention: [Technical field to which the invention pertains] The present invention relates to an increase in a plasma display PDP (P1 asma D i sp 1 ay Pane 1 ) or an electro-convergence television (when an electro-poly display is added to a television channel selection function) , that is, the so-called plasma TV) brightness structure, especially by adding a full dielectric optical film reflective layer and re-using the excitation of the phosphor layer to make the wavelength of 140-200nm, especially 147nm or The 173 nm ultraviolet light is reflected, and the visible light having a wavelength of about 400 nm or more is not reflected and can pass through the aforementioned full dielectric optical film reflective layer, thereby enhancing the brightness of the plasma TV front panel. [Prior Art] The main structure of the plasma display PDP is shown in FIG. 1. It is a matrix circuit structure mainly composed of a front glass substrate 11 and a rear glass substrate 12; wherein, the front glass substrate Below the 11 is a transparent electrode 1 la having a parallel array of parallel electrodes and a fine metal for increasing current, a so-called bus electrode 111, to make an electrical connection with the outside, and at the rear glass substrate 12 Then, a plurality of barrier walls 13 coated with a phosphor layer on the surface thereof are provided, and a plurality of surfaces are provided on the bottom surface of each of the small chambers 15 (cel丨) partitioned by the barrier walls 13 The transparent electrodes on the front glass substrate are vertically aligned address electrodes lib, whereby the rear glass substrate 12 can also be electrically connected to the outside. The technology development of the panel until the 1990s is still a period of competition between AC and DC and DC. The current 1323908 divisions have chosen AC-type PDP electricity to see the tea as shown in Figure 2. The PDP plasma display is constructed by two glass substrates, a front glass substrate 11, a rear glass substrate 12, and the like, and the front glass substrate 11 and the rear glass substrate 12 are formed. The basic structure is completed by injecting (隋) gas into the sealed discharge space. A plurality of transparent electrodes Ha are disposed in the front glass substrate 1 and a plurality of barrier walls 3 are disposed between the rear glass substrate 丨2 and the front glass substrate 丨I, and the barrier walls 3 are formed in the two barrier walls. The wall surface is coated with a plurality of phosphor layers M; after that, the discharge of the transparent electrodes 11a and the reflection of the phosphor layers 14 can be:: visible light can be reversed (four) front glass substrate] To enhance the brightness of the image presented by the front substrate η. In addition, as shown in the figure, it can be seen that a plurality of address electrodes lib are disposed in the dielectric 16 under the plurality of phosphor layers 因此, so by the control of the address electrode Ub, and the transparent electrode] In conjunction with ', you can choose to display the small volume 胄i5 (a") that should be illuminated and be ejected from other glass substrates. As can be seen from the above theory, the main = if it depends on the wall 14 between the two barrier walls 13. J $ Redundant ^ Figure 3, which can be seen in the discharge of empty money, the chaos is usually a mixture of helium and helium, but the life is shorter, or suffocating, gas... I虱, 矾U gas to - Α 矾虱 and 氖 三种 三种 三种 三种 三种 三种 三种 三种 三种 三种 , , , , , 三种 三种 三种 三种 三种 三种 三种 三种 三种 三种 三种 三种 三种 三种 三种 三种 三种 三种 三种 三种 三种 三种 三种 三种 三种 三种 三种 三种 三种 三种 三种 三种 三种The wave pattern na^r is shown in Figure 2. When the transparent electrode in the conventional electric display is under-powered, the general observation of the illuminating condition is the light generated by the phosphor layer 14 excited by the downward and ultraviolet light, but upward. Fang Zhizi wasted all the time. 'Please refer to Figure 4, the UV light that is irradiated upwards is absorbed by the glass plate and its protective layer and transparent electrode, so that it is absorbed into thermal energy instead of visible light energy, so that the front glass substrate The luminosity of n = effective boost. In addition, in recent years, optical thin film technology developed by dielectric coating with 1/4 light wavelength film thickness has made rapid progress, especially in vacuum film thickness detection and monitoring and ion sputter quality. In the development of coating technology, the multilayer optical thin film of the dielectric material with different refractive indexes and high refractive index = the mineral film, the high-reflection mineral film and the long-wave filter have achieved quite satisfactory results. Such non-metallic full-dielectric ruthenium-plated film stacks may be up to several layers, dozens of layers, or even tens of layers of film stacks, which are characterized by high reflectivity in the absence of light waves, and in which light waves Outside the region, the average pass rate is high and the stack can be repetitive, repeating symmetry or multi-cavity membrane stacks. Applications such as this type of optical coating can be set in the vacuum ultraviolet (vuv; Vacuum Lmra_violet) region or deep ultraviolet region (yang /

Far-Ultraviolet Region 12〇-20〇nm)(如圖五所示之入區以 及圖Ί 之A區);於本發明所示的PDP放電紫外光光譜 約為140nm延伸以至200nm内為高反射區,而在可視光區 域(400-800mn)為高穿透(通過)區(B),所以用肉眼看 1323908 此類鍍膜的玻璃鏡層是透明的,不會遮蔽可視光。另外光 學薄膜之介電質材料相當多,從低折射率1.36 (波長為 230nm時)之A1F3氟化、折射率1.38(波長為550nm時) 之MgF2氟化鎂、折射率1.59(波長為550nm時)之LaF3氟 化鑭、折射率丨_7 (波長為550nm時)之MgO氧化鎂、折 射率2.35 (波長為550nm時)之ZnS硫化鋅以及具有較高 折射率5.6之PbTe錄化鉛(5000nm時),在此VUV區所使 用的介電質材料一般以氟化鋼LaF3為高折射率,而氟化鎂 MgF2為低折射率的組成,此二種材質之鍍膜可低至140nm 處仍不易吸收此區之深紫外光,故是為光學薄膜深紫外光 之良好材料;另外,光學薄膜製鍍的方法亦相當的多,一 般是以氣態成膜之方式為主,又可分為物理氣相沈積法(簡 稱PVD)以及化學氣相沈積法(簡稱CVD),此處就不再 贅述,所以如何以所謂的光學鍍膜來替代傳統的反光層, 以達到有效提高亮度的功效,即為本發明需要探討的目的。 【發明内容】 本發明主要的目的即是在提供一種增加電漿顯示器或 電漿電視亮度之結構,其所使用的技術手段主要即是在前 玻璃基板最下方置放有一全介電質光學薄膜反光層,藉此 而可將前後玻璃基板之間容室中所產生向上方之紫外光線 予以反射,其中該紫外光之波長係為14 0 - 2 0 0 nm ’尤其是 波長147nm或173nm,而波長為400nm以上至800nm之可 視光線則予以高透射的通過;如此,由透明電極加上定址 8 配合所產生的紫外光,則可因為本發明的全介電質▲ 予薄犋反光層而得以再度的反射回紅、綠、藍各 、光 示小容室㈤"之營光劑層上,而形成為紅、綠早^ 勺可視光,並由前玻璃基板穿透出去,而達到強化♦ 顯示器或電漿電视亮度的目的。 梵漿 本發明所使用的再一手段則是可在前玻螭基板的印 方置放有一全介電質光學薄膜反光層,同時, 板營光劑層的下方則置^層可將可視光 光學薄膜反光層,則蕻ώ 电質 學薄膜反来屛7^ 璃基又之全介電質光 :、 曰。將波長為140-200nm的光線,尤豆θ 長為147nm或丨77 /、疋坡 _-_nm的可=;:/光線予mu皮長為 介電質光學薄膜反先層 ===基板所設之全 用紫外光的反射以及可視予以反射,屆時則可利 電浆電視亮度的目的。先的反射而可強化電漿顯示器或 方置段則是可在前破璃基板的最下 板螢光劑層的下方則置:錢反光層’同時,在後玻璃基 藉由此兩層全介電質另^~+全介電質光學薄膜反光層, I40-200nm的光線,尤其θ干薄犋反光層而可將波長為 予以反射而達到強化電;=波長為147nm或D3nm的光線 本發明所使用的二二’’’、員不态或電漿電視亮度的目的。 方置放有一全介電質光風^段即是可在前玻璃基板的最下 板螢光劑層的下方目,丨盟&寻膜反光層’同時’在後玻璃基 片J罝敌一今八& s 电質光學薄膜反光層以及 1323908 -可將可視光反射之全介電質光學薄膜反光層, 玻璃基板及後玻璃基板所設之同一材質全介電質 反光層而可將波長為140-200_的紫外光線,尤其/ ' 為147函或173_的紫外光線先予以反射,再藉由^ = 可視先反射之全介電質光學薄膜反光層而可 40請0麵的可視光予以再反射,而達到強化電 = 或電漿電視亮度的目的。 - ”’ 【實施方式】 請參閱本創作所附圖式的圖六,其中所 明中所糊顯示器或電浆電視前破璃基板的形成= 由圖式中可知其首先是置入前玻璃基板11(即步驟S1), 再於該玻璃基板11的一側形成有透明電極lla(即步驟 S2),再於該透明電極山側形成有匯流電極1 驟S3) (buSe,ectrode);爾後,該匯流電極山的一_ 有f明介電層以及密封層23的形成(即步驟S4),再來 則是在該透明介電相及密封層23的—側形成有 鎮CMgO)保護層24 (即步驟S5)。 、、而f發明的第一全介電質光學薄膜反光層25則是在 上述保護層24的—側’也就是面向後破璃基板方向的-側 莖斤形成(即步驟別)’·其主要是以光波長λ/4或其它比例 薄膜锻膜多層膜堆的方式而成,而膜堆是以高低 :二之介電質材料重複組合而成之多層光學薄膜堆 、 ㉟非金屬之全介電質鍍膜膜堆可能高達數層,甚 1323908 • b數十層,其雜是在設定的光波區域為高反射性(各 * 種角度之平均反射率可達到99.5%左右),而在此光波區 或以外各種角度之平均通過率就很高亦可高達%%(抗 .反射膜加入)。以此類光學鑛膜之應用則可設定紫外光區 域為高反射性而在可視光區域為高通過性,所以用肉眼看 此類鍍膜的玻璃是透明的,不會遮蔽可視光。 藉由上述的第一全介電質光學薄膜反光層25,由透明 # 電極Ua,發出來的光線祇要是介於波長丨40-200nm的光 ’’泉,尤其疋波長為147nm或173nm的光線則會予以全部的 反射回到螢光劑層14(如圖七所示),以強化在前玻璃基板 11的骨度。 “再者’對於紫外光而言,由於螢光劑層所塗佈的厚度 極薄4度因此不L ’以致於某些區域會有細微的間碎存 在’所以為了避免紫外光向外射出,此一薄層螢光劑層的 可進一步設置可令短波光線予以反射的光學塗膜,使 鲁 #紫外光可重複多次反射而將螢光劑塗料以激發成為可 見光,如圖八所示,本發明的再一實施例則是可在前玻璃 基板II的最下方置放有一第一全介電質光學薄膜反光層 .25,同時,在螢光劑層14的下方再設置有一第二全介電質 .光學濤膜反光層25’,藉由該第一全介電質光學薄膜反光層 25及該第二全介電質光學薄獏反光層25,而可將波長為 140-20〇nm的光線,尤其是波長為]47〇〇1或丨731^的=線 予以反射而達到強化電漿顯示器或電漿電視亮度的目的。 而另一作法即是在螢光劑層14的下方設置—可反射 1323908 可視光之第三全介電質光學薄膜反光層26(如圖九所示), 則波長為400-800nm的可視光光線在遇到該第三全介電質 -光學薄膜反光層26後,同樣地予以反射,屆時則可利用紫 . 外光的反射以及可視光的反射而達到強化電漿顯示器或電 毁電視亮度的目的。 如圖十所示,本發明的另一實施例即是可在前玻璃基 板1丨的最下方置放有一第一全介電質光學薄膜反光層 》25,同時,在螢光劑層14的下方則是置放一第二全介電質 光學薄膜反光層25,以及一可反射可視光之第三全介電質 光學薄膜反光層26,藉由該第一全介電質光學薄膜反光層 25及該第二全介電質光學薄膜反光層25,而可將波長為 MO-20〇nm的光線,尤其是波長為丨47nm或】73nm的光線 予以反射,並藉由該第三全介電質光學薄膜反光層26而可 將波長為400-80〇nm的可視光予以再反射’而達到強化電 裝顯示器或電漿電視亮度的目的。另外,當該後破璃基板 丨12上另行设有第二全介電質光學薄膜反光層或第三全 介電質光學薄膜反光層26時,即如圖八至圖十之實施例, 該後玻璃基板12上原本包覆該定址電極nb之介電質16 則可予以取消。 若是本發明之發電空間是注入了水銀及惰性氣體的 話,則可將波長為170-270nm的光線,尤其是波長丨84 9nm 或253.7nm的紫外光線予以反射’而波長為4〇〇nrn以上至 800nm的光線則可高透射的予以通過,此則是前述所謂的 短波反射,長波通過最佳的實例;不過一般之電漿顯示器 1323908 或電漿電視並未使用水銀,其原因除了環保之因素外,主 要是因為工作溫度之關係,水銀的沸點在1大氣壓之下是 357°C,但是若在10 Torr氣壓下則降為182.85°C就會氣 化,若小至0.01 Ton•則是44.85°C就會氣化,因為一般水 銀燈之管内真空為十幾個Torr,在這樣低壓下水銀比較容 易成為氣體’而電蒙顯不器或電聚電視之真空壓為500 Torr,已接近一大氣壓760 Torr,是水銀燈的幾十倍,故水 銀不易成為氣體以資利用。但是若將電漿顯示器或電漿電 視的放電氣體壓力降為十幾個Torr,可能又將面臨隋性氣 體容易耗盡而壽命不長的缺點,若有自動補氣裝置則可降 低電漿顯示器或電漿電視的氣壓而水銀之氣體也可應用 了。而此一情形則可在另外所附圖式的圖十一中見及,由 圖中可見到在波長為140-200nrn處為尚反射率區域,而在 當波長為400nm以上至800nm時,則為高穿透率區域。由 此則可知,本發明的第一全介電質光學薄膜反光層25於置 放在前玻璃基板11時,確實的可以達到將短波予以反射, 而允許長波通過的目的。 再者,本發明上述的各個實施例中,均可在該玻璃基 板1 1的上方表面處加設一抗反射層(AR: Anti-Reflector) 27 (即步驟S7)來加強玻璃基板11發出的光度;一般可增 加約5%的亮度。 另外,本發明中所指之第一全介電質光學薄膜反光層 25或第二全介電質光學薄膜反光層25’乃是具有可反射任 何角度之紫外光(400nm以下,一般界定),同時又可讓可 1323908 視光(400nm〜800nm,一般界定,當然亦可界定380nm以 上為可視光,視人眼之敏銳度而定)通過之功能,舉凡各 種反射膜如長波通、高反射、帶通、帶止、截止;®光膜等 等名稱,只要具有紫外光波反射而同時可視光通過之介電 質鍍膜均在本發明保護範圍以内。 另外,熟知該項技術之人亦可清楚知悉:該設於前玻 璃基板Π及後玻璃基板12間用以放電產生紫外光之透明 電極11a當亦可由其它相當之電極所替代,所以舉凡在本 發明基本架構下所為之等效性簡單替換,當亦完全屬本發 明專利範圍所涵蓋者。 【圖式簡單說明】 第一圖:為現行電漿顯示器或電漿電視結構的立體示 意圖。 第二圖:為習用電漿顯示器或電漿電視於前玻璃基板 處亮度形成的結構示意圖。 第三圖:為氖氣和氙氣於放電空間内被激發時所產生 光譜的示意圖。 第四圖:為習用放電時,向上之紫外光線被浪費的示 意圖。 第五圖:為不同光波長度穿透全介電質高反射鍍膜之 反射度以及透射度的分佈圖。 第六圖:為本發明所提供增加電漿顯示器或電漿電視 亮度之結構的製作流程圖。 1323908 第七圖:為本發明所提供增加電漿顯示器或電漿電視 亮度之結構的第一實施例的結構示意圖。 第八圖:為本發明所提供增加電漿顯示器或電漿電視 亮度之結構的第二實施例的結構示意圖。 第九圖:為本發明所提供增加電漿顯示器或電漿電視 亮度之結構的第三實施例的結構示意圖。 第十圖:為本發明所提供增加電漿顯示器或電漿電視 免度之結構的弟四貫施例的結構不意圖。 第十一圖:為本發明所提供的全介電質光學薄膜長波 通(Long Wave Pass)反光層可達到高反射率(在短波區) 以及面穿透率(在長波區)的目的不意圖。 【主要元件符號說明】 11 前玻璃基板 11a 透明電極 lib 定址電極 12 後玻璃基板 13 阻隔壁 14 螢光劑層 15 小容室 16 介電質 A 商反射區 B 南通過區Far-Ultraviolet Region 12〇-20〇nm) (into the area shown in Figure 5 and the area A in Figure ;); the PDP discharge ultraviolet light spectrum shown in the present invention extends from about 140 nm to a high reflection area within 200 nm. While in the visible light region (400-800mn) is a high penetration (pass) zone (B), the glass mirror layer of this type of coating is transparent to the naked eye and does not obscure the visible light. In addition, the dielectric material of the optical film is quite large, and it is fluorinated from A1F3 having a low refractive index of 1.36 (at a wavelength of 230 nm), MgF2 magnesium fluoride having a refractive index of 1.38 (at a wavelength of 550 nm), and a refractive index of 1.59 (at a wavelength of 550 nm). LaF3 yttrium fluoride, MgO magnesium oxide with refractive index 丨_7 (at 550 nm), ZnS zinc sulfide with refractive index of 2.35 (at 550 nm), and PbTe recording lead with higher refractive index of 5.6 (5000 nm) When the dielectric material used in the VUV region is generally a high refractive index of the fluorinated steel LaF3, and the magnesium fluoride MgF2 is a low refractive index composition, the coating of the two materials can be as low as 140 nm. Absorbing the deep ultraviolet light in this area, it is a good material for the optical film deep ultraviolet light; in addition, the optical film plating method is also quite a lot, generally in the form of gaseous film formation, and can be divided into physical gas Phase deposition method (PVD) and chemical vapor deposition (CVD) are not repeated here, so how to replace the traditional light-reflecting layer with so-called optical coating to achieve effective brightness enhancement The purpose of the invention needs to be explored. SUMMARY OF THE INVENTION The main object of the present invention is to provide a structure for increasing the brightness of a plasma display or a plasma TV. The technical means used is mainly to place a full dielectric optical film at the bottom of the front glass substrate. a light reflecting layer, whereby the upward ultraviolet light generated in the chamber between the front and rear glass substrates is reflected, wherein the ultraviolet light has a wavelength of 1400-1200 nm, especially a wavelength of 147 nm or 173 nm, and The visible light having a wavelength of 400 nm or more to 800 nm is transmitted with high transmission; thus, the ultraviolet light generated by the transparent electrode plus the address 8 is matched by the full dielectric ▲ of the present invention. It is reflected again back to the red, green, and blue, and the small chamber (5) " of the camping agent layer, and formed into red, green and early scoop visible light, and penetrated from the front glass substrate to achieve reinforcement ♦ The purpose of the brightness of the display or plasma TV. Another method used in the present invention is that a full dielectric optical film reflective layer can be placed on the front side of the front glass substrate, and at the same time, the layer can be visible under the light camping layer. Optical film reflective layer, then 蕻ώ 质 学 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ The light with a wavelength of 140-200 nm, the length of the Bean θ is 147 nm or 丨77 /, and the slope of the _-__nm can be:; / ray to the length of the mu skin is the dielectric optical film reverse layer === substrate It is designed to reflect the UV light and reflect it visually. At that time, it can improve the brightness of the plasma TV. The first reflective and reinforced plasma display or square section can be placed underneath the lowermost phosphor layer of the front glass substrate: the money reflective layer 'at the same time, the back glass base by the two layers The dielectric is another ^~+ full dielectric optical film reflective layer, I40-200nm light, especially θ dry thin 犋 reflective layer can reflect the wavelength to achieve enhanced electricity; = wavelength 147nm or D3nm light The purpose of the invention is to use the brightness of the two or two ''', the non-state or the plasma TV. The square is placed with a full dielectric light, which can be placed underneath the lowermost phosphor layer of the front glass substrate, and the 丨 && film-seeking reflective layer 'at the same time' in the rear glass substrate J This eight & s electro-optical film reflective layer and 1323908 - a full dielectric optical film reflective layer that reflects visible light, a full dielectric reflective layer of glass and a rear glass substrate For the ultraviolet light of 140-200_, especially the UV light of / 147 or 173_ is reflected first, and then the visible light of the full dielectric optical film can be visible by ^ = visible first reflection. The light is re-reflected to achieve the purpose of enhancing the electric power = or the brightness of the plasma TV. - "' [Embodiment] Please refer to Figure 6 of the drawing of the present invention, in which the formation of the paste display or the plasma front glass substrate is as follows: It is known from the drawings that the first glass substrate is placed first. 11 (ie, step S1), a transparent electrode 11a is formed on one side of the glass substrate 11 (ie, step S2), and a bus electrode 1 is further formed on the side of the transparent electrode (step S3) (buSe, ectrode); The formation of the junction electrode layer and the formation of the sealing layer 23 (ie, step S4), and the formation of the protective layer 24 of the CMgO) on the side of the transparent dielectric phase and the sealing layer 23 ( That is, the first full-dielectric optical film reflective layer 25 in the step S5) is formed on the side of the protective layer 24, that is, in the direction of the rear-facing glass substrate.别)·· It is mainly formed by a multilayer film stack of optical wavelength λ/4 or other ratio, and the stack is a multilayer optical film stack which is repeatedly combined with high and low dielectric materials. 35 non-metallic full dielectric coated film stacks may be up to several layers, even 1323908 • b dozens of layers, The impurity is highly reflective in the set light wave region (the average reflectance of each * angle can reach about 99.5%), and the average pass rate at various angles in the light wave region or outside is as high as %% ( Anti-reflective film is added. With the application of such optical mineral film, the ultraviolet light region can be set to be highly reflective and high in the visible light region, so the glass of such coating is transparent to the naked eye, and will not The visible light is shielded. The light emitted from the transparent # electrode Ua by the first all-dielectric optical film reflective layer 25 is only a light having a wavelength of -40-200 nm, especially a wavelength of 147 nm. Or 173 nm light will be totally reflected back to the phosphor layer 14 (as shown in Figure 7) to strengthen the boneness of the front glass substrate 11. "Furthermore" for ultraviolet light, due to the fluorescent agent The thickness of the layer applied is extremely thin 4 degrees and therefore does not L' so that some areas may have fine interspersed 'so that in order to avoid ultraviolet light from being emitted outward, this thin layer of phosphor layer can be further set up. An optical coating film that reflects short-wave light, Lu #UV can repeat the multiple reflections to fluorinate the phosphor coating into visible light. As shown in FIG. 8, another embodiment of the present invention can place a first full portion at the bottom of the front glass substrate II. a dielectric optical film reflective layer. 25, and a second full dielectric, optical film reflective layer 25' disposed under the phosphor layer 14 is reflective by the first full dielectric optical film. The layer 25 and the second full-dielectric optical thin reflective layer 25 can reflect light having a wavelength of 140-20 〇 nm, especially a line having a wavelength of 47〇〇1 or 丨731^. Enhance the brightness of plasma display or plasma TV. Another method is to provide a visible light of a wavelength of 400-800 nm under the phosphor layer 14 - a third full dielectric optical film reflective layer 26 (shown in FIG. 9) that can reflect 1323908 visible light. After the third full-dielectric-optical film reflective layer 26 is encountered, the light is reflected in the same manner, and then the reflection of the external light and the reflection of the visible light can be used to enhance the brightness of the plasma display or the electric destruction television. the goal of. As shown in FIG. 10, another embodiment of the present invention is that a first full dielectric optical film reflective layer 25 can be placed at the bottom of the front glass substrate 1 ,, and at the same time, in the phosphor layer 14 Bottom is a second full dielectric optical film reflective layer 25, and a third full dielectric optical film reflective layer 26 that reflects visible light, the first full dielectric optical film reflective layer And the second full-dielectric optical film reflective layer 25, and the light having a wavelength of MO-20〇nm, especially the light having a wavelength of 丨47nm or 73nm, can be reflected by the third full media The electro-optic optical film reflective layer 26 can re-reflect the visible light having a wavelength of 400-80 〇 nm to enhance the brightness of the electrical display or the plasma television. In addition, when the second full dielectric optical film reflective layer or the third full dielectric optical film reflective layer 26 is separately disposed on the rear glass substrate 12, as shown in the embodiment of FIG. 8 to FIG. The dielectric 16 on the rear glass substrate 12 that originally covers the address electrode nb can be eliminated. If the power generation space of the present invention is filled with mercury and an inert gas, light having a wavelength of 170-270 nm, especially ultraviolet light having a wavelength of 984 9 nm or 253.7 nm can be reflected, and the wavelength is above 4 〇〇nrn to 800nm light can be transmitted with high transmission, which is the so-called short-wave reflection, long-wave transmission through the best example; but the general plasma display 1323908 or plasma TV does not use mercury, the reason is not only environmental factors Mainly because of the working temperature, the boiling point of mercury is 357 ° C under 1 atm, but if it is reduced to 182.85 ° C at 10 Torr, it will vaporize. If it is as small as 0.01 Ton, it is 44.85 °. C will be gasified, because the vacuum inside the tube of a typical mercury lamp is more than a dozen Torr. At such a low pressure, mercury is relatively easy to become a gas. The electric vacuum is 500 Torr, which is close to one atmosphere 760. Torr is dozens of times that of mercury lamps, so mercury is not easily used as a gas. However, if the discharge gas pressure of the plasma display or the plasma TV is reduced to more than a dozen Torr, it may face the disadvantage that the inert gas is easily exhausted and the life is not long. If there is an automatic air supply device, the plasma display can be lowered. Or the pressure of the plasma TV and the mercury gas can also be applied. This case can be seen in Figure 11 of the other drawings. It can be seen that the wavelength is 140-200nrn, and when the wavelength is above 400nm to 800nm, then It is a high penetration area. From this, it can be seen that the first all-dielectric optical film reflecting layer 25 of the present invention can surely reflect short waves while allowing long waves to pass when placed on the front glass substrate 11. Furthermore, in each of the above embodiments of the present invention, an anti-reflection layer (AR) may be added to the upper surface of the glass substrate 11 (ie, step S7) to reinforce the glass substrate 11. Luminosity; generally can increase the brightness by about 5%. In addition, the first full-dielectric optical film reflective layer 25 or the second full-dielectric optical film reflective layer 25' referred to in the present invention has ultraviolet light (400 nm or less, generally defined) capable of reflecting any angle. At the same time, it can make 1323908 optometry (400nm~800nm, generally defined, of course, can also define 380nm or more as visible light, depending on the sharpness of the human eye) through the functions, such as various reflection films such as long wave, high reflection, Band pass, band stop, cut-off; ® light film, etc., as long as the dielectric coating with ultraviolet light reflection and visible light passes is within the scope of the present invention. In addition, those skilled in the art can also clearly understand that the transparent electrode 11a disposed between the front glass substrate and the rear glass substrate 12 for discharging ultraviolet light can also be replaced by other equivalent electrodes, so Equivalent substitutions under the basic framework of the invention are also fully covered by the scope of the invention. [Simple description of the diagram] The first picture: is a stereoscopic view of the current plasma display or plasma TV structure. Figure 2 is a schematic view showing the structure of the brightness of a conventional plasma display or plasma TV at the front glass substrate. Figure 3: Schematic diagram of the spectrum produced when helium and helium are excited in the discharge space. Figure 4: A schematic representation of the upward UV light being wasted for conventional discharge. Figure 5: Distribution of reflectance and transmittance for a full dielectric high reflection coating for different wavelengths of light. Fig. 6 is a flow chart showing the construction of the structure for increasing the brightness of a plasma display or a plasma TV according to the present invention. 1323908 FIG. 7 is a schematic structural view of a first embodiment of a structure for increasing the brightness of a plasma display or a plasma television according to the present invention. Figure 8 is a block diagram showing the structure of a second embodiment of the structure for increasing the brightness of a plasma display or a plasma TV. Fig. 9 is a structural schematic view showing a third embodiment of the structure for increasing the brightness of a plasma display or a plasma television according to the present invention. Fig. 10 is a schematic view showing the structure of the fourth embodiment of the present invention for increasing the structure of the plasma display or the plasma television. Figure 11: The long-wavelength reflective layer of the full-dielectric optical film provided by the present invention can achieve high reflectance (in the short-wavelength region) and surface transmittance (in the long-wavelength region). . [Main component symbol description] 11 Front glass substrate 11a Transparent electrode lib Address electrode 12 Rear glass substrate 13 Barrier wall 14 Fluorescent layer 15 Small chamber 16 Dielectric A Refractory area B South pass area

23 透明介電層以及密封層 24 保護層 25 第一全介電質光學薄膜反光層 25’第二全介電質光學薄膜反光層 26 第三全介電質光學薄膜反光層 1323908 27 抗反射層 111 匯流電極23 transparent dielectric layer and sealing layer 24 protective layer 25 first full dielectric optical film reflective layer 25' second full dielectric optical film reflective layer 26 third full dielectric optical film reflective layer 1323908 27 anti-reflection layer 111 bus electrode

Claims (1)

1323908 —98Γ12ΓϋΊ--— 年月日修正替換頁 十、申請專利範圍: 1--- 1. 一種增加電漿顯示器或電漿電視亮度之結構,其係 具有一前玻璃基板、一後玻璃基板、複數個分別設於該前 玻璃基板與該後玻璃基板一側之電極、複數個形成於該前 玻璃基板與該後玻璃基板間且加入有惰性氣體之放電空 間’該等放電空間並可因上述電極之作用而產生波長介於 140nm至200nm之紫外光,以及塗佈在該後玻璃基板上方 的複數個螢光劑層,其特徵在: 該前玻璃基板的下方係更設有一第一全介電質光學薄 膜反光層,使能將該波長為140nm至200nm之紫外光反射 到該複數個螢光劑層以激發成為可視光,同時該可視光係 可穿透過§亥第一全介電質光學薄旗反光層,達到加強電聚 顯示器或電聚電視的免度。 2·如申請專利範圍第1項所述的增加電漿顯示器或電 漿電視亮度之結構,其中’該後玻璃基板所設複數個螢光 劑層下方係更設有一第二全介電質光學薄膜反光層,該第 二全介電質光學薄膜反光層亦具有可反射波長為14〇nm至 200nm之紫外光’使能配合該前玻璃基板所設之該第一全 介電質光學薄膜反光層,以強化對該波長14〇ηηι至2〇〇ni^ 之紫外光的反射。 3.如申請專利範圍第1項所述的增加電漿顯示器或電 漿電視亮度之結構,其中,該後玻璃基板所設複數個螢光 劑層的下方係更設有一可反射可視光之第三全介電質光學 薄膜反光層,藉由該第三全介電質光學薄膜反光層係可將 1323908 98. 12. 01 年月曰修正替換頁 由該複數個螢光劑層所激發之可視光予以反射,以強化電 漿·顯示器或電漿·電視的党度。 4. 如申請專利範圍第3項所述的增加電漿顯示器或電 漿電視免度之結構’其中,該後玻璃基板所設複數個螢光 劑層及該第三全介電質光學薄膜反光層之間係更設有一第 二全介電質光學薄膜反光層,使能配合該前玻璃基板所設 之該第一全介電質光學薄膜反光層,以強化對於該波長為 140nm至200nm之紫外光的反射,並藉該第三全介電質光 學薄膜反光層使將該複數個螢光劑層所激發之可視光予以 反射,以強化電漿顯示器或電漿電梘的亮度。 5. 如申請專利範圍第1項所述的增加電漿顯示器或電 漿電視亮度之結構,其中該紫外光的波長尤其係指147nm 或 173nm。 6. 如申請專利範圍第1項所述的增加電漿顯示器或電 漿電視亮度之結構,其中該可視光的波長範圍係介於400nm 至800nm間。 7. 如申請專利範圍第1項所述的增加電漿顯示器或電 漿電視亮度之結構,其中,該電極係為一透明電極。 8. 如申請專利範圍第1項所述的增加電漿顯示器或電 漿電視亮度之結構,其中該惰性氣體係選自由氙氣、氖氣 及氦氣所組成族群中之一種或一種以上的混合氣體。 9. 如申請專利範圍第1項所述的增加電漿顯示器或電 漿電視亮度之結構,其中該複數個螢光劑層係由紅、綠、 藍三種顏色之螢光體所構成。 18 1323908 rgosnn--------- 牟月曰修正替換頁 10. 一種增加電漿顯示器或電漿電視亮度之^構了其係U 具有一前玻璃基板、一後玻璃基板、複數個分別設於該前 玻璃基板與該後玻璃基板一側之電極、複數個形成於i亥前 玻璃基板與該後玻璃基板間且加入有水銀及惰彳生氣體之放 電空間’該等放電空間並可因上述電極之作用而產生波長 介於170nm至270mn之紫外光’以及塗佈在該後玻璃基板 上方的複數個螢光劑層,其特徵在: 該前玻璃基板的下方係更設有一第—全介電質光學薄 膜反光層’使能將該波長為170nm至27〇nm之紫外光反射 到該複數個螢光劑層以激發成為可視光,同時 可穿透過該第一全介電質光學薄膜反先層,== 顯示器或電漿電視的亮度。 11. 如申請專利範圍第1〇項所述的增加電漿顯示器或 電漿電視亮度之結構,其中,該後玻璃基板所設複數個螢 光劑層下方係更設有一第二全介電質光學薄膜反光層,該 第二全介電質光學薄膜反光層亦具有可反射波長為l70nm 至270nm之紫外光,使能配合該前玻璃基板所設之該第一 全介電質光學薄膜反光層,以強化對該波長為17〇nm至 27〇nm之紫外光的反射。 12. 如申請專利範圍第1〇項所述的增加電漿顯示器或 電漿電視亮度之結構,其中,該後玻璃基板所設複數個螢 光劑層的下方係更設有一可反射可視光之第三全介電質光 學薄膜反光層’藉由該第三全介電質光學薄膜反光層係可 將由該複數個螢光劑層所激發之可視光予以反射,以強化 1323908 98,12. 01 Ί 卑月曰修正替換頁 電漿顯示器或電漿電視的亮度。 ~~~ --- 13. 如申請專利範圍第12項所述的增加電漿顯示器或 電漿電視亮度之結構,其中,該後玻璃基板所設複數個螢 光劑層及該第三全介電質光學薄膜反光層之間係更設有一 第二全介電質光學薄膜反光層,使能配合該前玻璃基板所 設之該第一全介電質光學薄膜反光層,以強化對該波長為 170nm至270nm之紫外光的反射,並藉該第三全介電質光 學薄膜反光層使將該複數個螢光劑層所激發之可視光予以 反射,以強化電漿顯示器或電漿電視的亮度。 14. 如申請專利範圍第10項所述的增加電漿顯示器或 電漿電視亮度之結構,其中該紫外光的波長尤其係指 184. 9nm 或 253. 7nm。 15. 如申請專利範圍第10項所述的增加電漿顯示器或 電漿電視亮度之結構,其中該可視光的波長範圍則係介於 400nm 至 800nm 間。 16. 如申請專利範圍第10項所述的增加電漿顯示器或 電漿電視亮度之結構,其中,該電極係為一透明電極。 17. 如申請專利範圍第10項所述的增加電漿顯示器或 電漿電視亮度之結構,其中該複數個螢光劑層係由紅、綠、 藍三種顏色之螢光體所構成。 201323908 —98Γ12ΓϋΊ--- Year, Month and Day Correction Replacement Page 10, Patent Application Range: 1--- 1. A structure for increasing the brightness of plasma display or plasma TV, which has a front glass substrate and a rear glass substrate. a plurality of electrodes respectively disposed on one side of the front glass substrate and the rear glass substrate, and a plurality of discharge spaces formed between the front glass substrate and the rear glass substrate and containing an inert gas, and the discharge spaces may be The action of the electrode generates ultraviolet light having a wavelength between 140 nm and 200 nm, and a plurality of phosphor layers coated on the rear glass substrate, wherein the front glass substrate is further provided with a first full-scale The electro-optical optical film reflective layer enables ultraviolet light having a wavelength of 140 nm to 200 nm to be reflected to the plurality of phosphor layers to be excited to be visible light, and the visible light system can penetrate the first full dielectric Optical thin flag reflective layer, to enhance the immunity of electro-concentration display or TV-based TV. 2. The structure for increasing the brightness of a plasma display or a plasma TV as described in claim 1, wherein the rear of the plurality of phosphor layers provided on the rear glass substrate is further provided with a second full dielectric optical a thin film reflective layer, the second full dielectric optical film reflective layer also having ultraviolet light having a reflectance wavelength of 14 nm to 200 nm, enabling the first full dielectric optical film to be reflective with the front glass substrate The layer is reinforced to reflect the ultraviolet light of the wavelength 14 〇ηηι to 2〇〇ni^. 3. The structure for increasing the brightness of a plasma display or a plasma TV according to claim 1, wherein the lower portion of the plurality of phosphor layers disposed on the rear glass substrate is further provided with a reflective light. The three-composite optical film reflective layer can be visualized by the plurality of phosphor layers by the third full-dielectric optical film reflective layer system. The light is reflected to enhance the party's degree of plasma, display or plasma and television. 4. The structure of increasing the plasma display or the plasma television of the third aspect of the patent application, wherein the rear glass substrate is provided with a plurality of phosphor layers and the third full dielectric optical film is reflective Between the layers, a second full dielectric optical film reflective layer is further disposed to match the first full dielectric optical film reflective layer provided on the front glass substrate to enhance the wavelength of 140 nm to 200 nm. The reflection of ultraviolet light and the visible light excited by the plurality of phosphor layers are reflected by the third full dielectric optical film reflective layer to enhance the brightness of the plasma display or the plasma electrode. 5. The structure for increasing the brightness of a plasma display or a plasma television as described in claim 1, wherein the wavelength of the ultraviolet light means, in particular, 147 nm or 173 nm. 6. The structure for increasing the brightness of a plasma display or a plasma television as described in claim 1, wherein the visible light has a wavelength range between 400 nm and 800 nm. 7. The structure for increasing the brightness of a plasma display or a plasma television as described in claim 1, wherein the electrode is a transparent electrode. 8. The structure for increasing the brightness of a plasma display or a plasma TV as described in claim 1, wherein the inert gas system is selected from the group consisting of one or more of a group consisting of helium, neon and xenon. . 9. The structure for increasing the brightness of a plasma display or a plasma television as described in claim 1, wherein the plurality of phosphor layers are composed of phosphors of three colors of red, green and blue. 18 1323908 rgosnn--------- 牟月曰Revision Replacement Page 10. An increase in the brightness of a plasma display or a plasma TV. The system U has a front glass substrate, a rear glass substrate, and a plurality of An electrode disposed on one side of the front glass substrate and the rear glass substrate, and a plurality of discharge spaces formed between the front glass substrate and the rear glass substrate and having mercury and an inert gas added thereto The ultraviolet light having a wavelength of 170 nm to 270 nm and the plurality of phosphor layers coated on the rear glass substrate may be generated by the action of the electrode, and the lower surface of the front glass substrate is further provided with a first - a full dielectric optical film reflective layer' enables ultraviolet light having a wavelength of 170 nm to 27 Å to be reflected to the plurality of phosphor layers to excite visible light while penetrating the first full dielectric Optical film reverse layer, == brightness of display or plasma TV. 11. The structure for increasing the brightness of a plasma display or a plasma TV according to the first aspect of the patent application, wherein a plurality of phosphor layers disposed on the rear glass substrate are further provided with a second full dielectric. The optical thin film reflective layer, the second full dielectric optical film reflective layer also has ultraviolet light having a wavelength of from 70 nm to 270 nm, and is configured to cooperate with the first full dielectric optical film reflective layer provided on the front glass substrate To enhance the reflection of ultraviolet light having a wavelength of 17 〇 nm to 27 〇 nm. 12. The structure for increasing the brightness of a plasma display or a plasma TV according to the first aspect of the invention, wherein the lower portion of the plurality of phosphor layers disposed on the rear glass substrate is further provided with a reflective light. The third full-dielectric optical film reflective layer ′ can reflect the visible light excited by the plurality of phosphor layers by the third full-dielectric optical film reflective layer to strengthen the 1323908 98, 12. 01卑 卑月曰 Corrected the brightness of the replacement page plasma display or plasma TV. ~~~ --- 13. The structure of increasing the brightness of the plasma display or the plasma TV as described in claim 12, wherein the rear glass substrate is provided with a plurality of phosphor layers and the third full media Between the reflective layers of the electro-optic optical film, a second full dielectric optical film reflective layer is further disposed to match the reflective layer of the first full-dielectric optical film provided on the front glass substrate to strengthen the wavelength Reflecting ultraviolet light of 170 nm to 270 nm, and reflecting the visible light excited by the plurality of phosphor layers by the third full dielectric optical film reflective layer to enhance the plasma display or the plasma television brightness. 14. The wavelength of the ultraviolet light is, in particular, 184.9 nm or 253.7 nm, as described in claim 10, wherein the wavelength of the ultraviolet light is increased. 15. The structure for increasing the brightness of a plasma display or a plasma television as described in claim 10, wherein the visible light has a wavelength range between 400 nm and 800 nm. 16. The structure for increasing the brightness of a plasma display or a plasma television according to claim 10, wherein the electrode is a transparent electrode. 17. The structure for increasing the brightness of a plasma display or a plasma television according to claim 10, wherein the plurality of phosphor layers are composed of phosphors of three colors of red, green and blue. 20
TW95148339A 2006-12-05 2006-12-22 A structure to increase the brightness of plasma display panel or plasma television TW200826135A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95148339A TW200826135A (en) 2006-12-05 2006-12-22 A structure to increase the brightness of plasma display panel or plasma television

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW95145157 2006-12-05
TW95148339A TW200826135A (en) 2006-12-05 2006-12-22 A structure to increase the brightness of plasma display panel or plasma television

Publications (2)

Publication Number Publication Date
TW200826135A TW200826135A (en) 2008-06-16
TWI323908B true TWI323908B (en) 2010-04-21

Family

ID=44772304

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95148339A TW200826135A (en) 2006-12-05 2006-12-22 A structure to increase the brightness of plasma display panel or plasma television

Country Status (1)

Country Link
TW (1) TW200826135A (en)

Also Published As

Publication number Publication date
TW200826135A (en) 2008-06-16

Similar Documents

Publication Publication Date Title
JP4960617B2 (en) Electromagnetic wave shielding filter, manufacturing method thereof, and plasma display panel device
JP4934680B2 (en) Plasma display panel and plasma display apparatus using the same
TW591680B (en) Plasma display panel and production method thereof
JP4248721B2 (en) Ultraviolet conversion material and display device using the ultraviolet conversion material
US7312576B2 (en) High efficiency plasma display panel (PDP) provided with electrodes within laminated dielectric barrier ribs
JP2004119118A (en) Plasma display device and its manufacturing method
TWI323908B (en)
JP2003249175A (en) Dielectric composition for dielectric film of plasma display panel and manufacturing method therefor
US6577056B1 (en) Plasma display apparatus
CN101266906B (en) Plasma display panel and method of manufacturing thereof
EP2083437B1 (en) Plasma display panel having high clarity and color purity
JP2009081077A (en) Plasma display panel and plasma display device using it
JP2002042663A (en) Ac drive plasma display device and method of manufacturing the same
KR100509600B1 (en) Plasma display panel with filter film and method for manufacturing the filter film
KR20060104535A (en) Plasma display apparatus
JP2003132799A (en) Alternate current driving type plasma display
CN101206984A (en) Structure for increasing electric plasm display or electric plasm television lightness
KR100299529B1 (en) Dichroic mirror for plasma display panel
KR20070074268A (en) An upper plate of a plasma display panel, a method for manufacturing it and a plasma display panel
KR100788939B1 (en) Plasma display pannel
KR100922751B1 (en) Plasma display panel
KR100827381B1 (en) Contrast ratio film of plasma display panel, plasma display panel using the same and manufacturing method thereof
KR100603365B1 (en) Plasma display panel
KR100776506B1 (en) Plasma display device with improved efficiency of radiating heat
JP2009259504A (en) Plane display member, plasma display panel, plane display device and plasma display device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees