TW200809133A - Optical reflecting thin film coatings - Google Patents

Optical reflecting thin film coatings Download PDF

Info

Publication number
TW200809133A
TW200809133A TW095134323A TW95134323A TW200809133A TW 200809133 A TW200809133 A TW 200809133A TW 095134323 A TW095134323 A TW 095134323A TW 95134323 A TW95134323 A TW 95134323A TW 200809133 A TW200809133 A TW 200809133A
Authority
TW
Taiwan
Prior art keywords
coating
refractive index
index material
reflective
high refractive
Prior art date
Application number
TW095134323A
Other languages
Chinese (zh)
Inventor
Robert G Naum
Ivan P Nazarenko
Robert T Napierala
Original Assignee
Applied Coatings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Coatings Inc filed Critical Applied Coatings Inc
Publication of TW200809133A publication Critical patent/TW200809133A/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0816Multilayer mirrors, i.e. having two or more reflecting layers
    • G02B5/0825Multilayer mirrors, i.e. having two or more reflecting layers the reflecting layers comprising dielectric materials only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/281Interference filters designed for the infrared light

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Optical Filters (AREA)

Abstract

Optical coatings comprising layers of low index materials alternating with layers of high index materials where a plurality of the high index layers resistant to high temperature and/or UV have essentially stable electrical resistivity properties when subjected to ultraviolet portions of the electromagnetic spectrum and/or high temperatures are taught. These coatings are well-suited for today's small high intensity lamps and reflectors used in higher performance projection and lighting systems. These high index materials are chosen to have an index of refraction equal to or greater than 1.8 and a melting temperature greater than 500 DEG C and may be, for example, selected from the group consisting essentially of Ta2O5 or Nb2O5, HfO2, ZrO2, WO2, Mo2, In2O3 or blends thereof. Coatings selectively reflect desired wavelengths, e.g., one coating reflects at least 95% of visible light and transmits at least 80% of infrared.

Description

200809133 (1) 九、發明說明 【發明所屬之技術領域】 本發明廣義地係關於光學薄膜塗層。但更特定而言, 本發明係關於一種製造光學薄膜塗層的方法;這些光學塗 層可作爲干擾濾波器而反射和傳遞所需波長的電磁光譜, 並用於抵抗紫外線射線及/或高溫的損害,同時還可保持 自身電阻係數穩定。本發明的光學薄膜塗層應用於極多種 Φ 的用途(例如塗覆高强度反射燈的反射內表面)。 【先前技術】 以下所討論的背景資訊旨在更佳地呈現本發明的新穎 性與利用性。這些背景資訊並非爲所採納的先前技藝。 現有高效能燈包括一個用於提供光源的燈泡或燈芯、 反射罩(亦稱鏡罩,用於引導燈泡光線),以及一層用於 過濾燈泡發射光譜的光學塗層。現有的典型高效能燈具包 φ 括高强度放電(HID)燈(圖 la )、鎢鹵素燈(圖 lb ) ,以及其他帶有塡充氣體燈泡的燈具。圖 1 a係顯示典 型的 HID燈具裝置la,該裝置通常包括一個呈典型抛物 線狀、橢圓狀,或圓拱狀的反射器2 ;該反射罩具有一個 可向後伸出的頸形區域2a,其中燈泡5 (亦稱燈芯)所具 有的電極7採用電氣連接方式,用於産生和發射電磁射 線。此外,該燈具裝置還包括一個前置開口 6a,開口上覆 蓋有透鏡6b,光線16可通過該透鏡投射出來。光學反射 薄膜塗層4沉積在反射內表面3上;該塗層通常被稱爲 -5- 200809133 (2) “鏡子”,用於提供高效能燈所需的類似於反射鏡一樣的 表面。燈泡電流通過第一個燈泡觸點8b進入燈泡;該觸 點與電氣引脚9a保持電氣連接,而該引脚又與第一個電 極7保持電氣連接。第二個電極7與第二個電氣引脚9a 保持電氣連接,而該引脚又與第二個燈泡觸點8b保持電 氣連接;這樣便形成了一個電氣回路。 與螢光燈和白熾燈相比,高效能燈所産生的光强度較 φ 大(以流明爲單位進行測量,其中流明是指一燭光均勻點 光源所發出的光通量),並且在相對較小的燈具中所産生 的色溫也較高;但是,高效能燈産生的有害紫外線 (UV)· 射線也較多。該射線(在此所說的射線是指介於 UV至 紅外線 (IR)區域之間的電磁光譜)是因耐火容器(電弧 管)內發生電弧放電而在 HID燈泡中産生的。凡是對光 强度、能源效率要求較高的領域(例如:爲體育儒、大型 公共區域、倉庫、室外活動區域、街道、停車場、人行道 Φ 提供照明),通常會使用 HID燈;最近,這些燈具經發 現還可作爲機動車頭燈使用。此外,HID燈(特別是金 屬鹵素燈)還可在小型零售店和住宅環境中使用。室內園 藝人員通常也需要使用 HID燈,特別是對需要高强度陽 光照射(如蔬菜和花卉)的作物而言尤其如此。H ID燈 甚至還被用於爲巨無霸空中巴士 A 3 8 0提供外部照明,且 至目前爲止,幾乎所有的投影系統都使用 HID燈作爲光 源,這其中包括投影電視和高品質的圖像投影系統。 圖 lb展示了鎢鹵素燈裝置lb的典型構造,該裝 -6- 200809133 (3) 置通常包括一個呈典型抛物線狀、橢圓狀,或 射器2 ;該反射罩具有一個可向後伸出的頸形1 中安裝有燈泡5b (亦稱燈芯),用於産生和 線。此外,該燈具裝置還包括一個前置開口 6 覆蓋有透鏡6b,光線16可通過該透鏡投射出 射薄膜塗層4係沉積在反射內表面3上。通 氣引脚9a,電流可到達燈泡5b的螺旋形燈糸 φ 第二個電氣引脚9a,便可形成電氣回路。 鎢鹵素白熾燈不同於 HID燈,這些白熾 形的鎢製燈芯7b,而該燈芯則被密封在透明 果要求具有良好的流明維持度、緊密,並且要 如零售店照明、舞臺和放映室燈具、醫療照明 明和住宅照明),則會使用鎢鹵素燈。雖然鎢 高,並具有較長的使用壽命,但與任何其他形 相比,它所産生的有害 UV射線也更多。 φ 光學反射薄膜塗層係沉積在反射器的內表 提高反射率,也可將其沉積在反射器的背面, 上。反射器的內表面可以稱之爲薄膜塗層沉積 底。薄膜塗層可經設計爲完全反射者,以使得 來的所有電磁光譜都能充分地向前反射。爲人 個用於高强度燈具中的典型塗層設計係被稱之 ” 設計。如圖 2所示,在冷光鏡塗層設計 擾塗層具有濾波器的作用;因此,對於由燈泡 的可見光譜,其中的所選部分會向前反射,並 圓拱狀的反 區域2 a ’其 發射電磁射 a, 開口上 來。光學反 過第一個電 糸7 b。通過 燈具有螺旋 容器內。如 求有白光( 、博物館照 鹵素燈效率 式的白熾燈 面上;但爲 或在其兩側 於其上的基 燈泡發射出 所熟知的一 爲 冷光鏡 中,光學干 5所産生 離開、遠離 200809133 (4) 燈具裝置,而大多數的IR波長則被引導至燈具的內部 ,並通過塗層傳遞出去。由於電磁光譜中的 部分屬 於熱源,因此向前反射的可見射線被認爲是“冷”光。 更爲常見的是,這些塗層經設計以選擇性地反射或傳 遞所需波長的電磁光譜。設計要素是由所考量的光學功能 、以及由光學塗層反射的所需波長而決定的;且典型地包 括待沉積塗層的化學性質、各待沉積塗層的層數、將不同 φ 塗層沉積至基底的順序、各塗層的厚度,以及塗層的形態 。此類塗層通常由多層低折射率 (π L)材料(如 Si〇x )和高折射率 (?? Η)材料(如 TiOX )反復交錯而成。 衆所周知,當這些塗層由多層T?L和T/Η塗層交錯而成時 ,便會形成“阻帶”,或集中於設計波長λ G高度反射率 的區域。高反射率設計要求各塗層的厚度達到設計波長的 四分之一。該設計形式可表示爲:200809133 (1) Description of the Invention [Technical Field of the Invention] The present invention broadly relates to an optical film coating. More particularly, the present invention relates to a method of making an optical film coating that acts as an interference filter to reflect and transmit an electromagnetic spectrum of a desired wavelength and to resist damage from ultraviolet radiation and/or high temperatures. At the same time, it can keep its own resistance coefficient stable. The optical film coatings of the present invention are useful in a wide variety of Φ applications (e.g., coating a reflective inner surface of a high intensity reflector lamp). [Prior Art] The background information discussed below is intended to better present the novelty and usability of the present invention. This background information is not the prior art adopted. Existing high-performance lamps include a light bulb or wick for providing a light source, a reflector (also known as a mirror cover for guiding light bulbs), and an optical coating for filtering the emission spectrum of the bulb. The existing typical high-performance lighting package φ includes high-intensity discharge (HID) lamps (Fig. la), tungsten halogen lamps (Fig. lb), and other lamps with 塡 inflatable bulbs. Figure 1a shows a typical HID luminaire device 1a, which typically includes a reflector 2 that is typically parabolic, elliptical, or dome-shaped; the reflector has a neck-shaped region 2a that projects rearwardly, wherein The bulb 5 (also known as the wick) has an electrode 7 that is electrically connected for generating and emitting electromagnetic radiation. In addition, the luminaire device further includes a front opening 6a, the opening being covered with a lens 6b through which the light 16 can be projected. An optically reflective film coating 4 is deposited on the reflective inner surface 3; this coating is commonly referred to as -5-200809133 (2) "mirror" for providing a mirror-like surface required for high performance lamps. The bulb current enters the bulb through the first bulb contact 8b; the contact remains electrically connected to the electrical pin 9a, which in turn is electrically connected to the first electrode 7. The second electrode 7 is electrically connected to the second electrical pin 9a, which in turn is electrically connected to the second bulb contact 8b; thus forming an electrical circuit. Compared with fluorescent lamps and incandescent lamps, high-performance lamps produce light with a larger intensity than φ (measured in lumens, where lumens refers to the luminous flux emitted by a single-candle light source) and is relatively small. The color temperature produced in the luminaire is also high; however, high-efficiency lamps produce more harmful ultraviolet (UV) rays. The ray (herein referred to as the ray between the UV and infrared (IR) regions) is generated in the HID bulb due to arcing within the refractory vessel (arc). HID lamps are often used in areas where high light intensity and energy efficiency are required (for example, lighting for sports, large public areas, warehouses, outdoor activity areas, streets, parking lots, sidewalks Φ); recently, these lamps have been used. It has also been found to be used as a headlight for motor vehicles. In addition, HID lamps (especially metal halide lamps) can also be used in small retail stores and residential environments. Indoor gardeners also often need to use HID lamps, especially for crops that require high levels of sunlight (such as vegetables and flowers). The H ID lamp is even used to provide external illumination for the Big Mac Airbus A 3 80, and so far, almost all projection systems use HID lamps as light sources, including projection TVs and high quality images. Projection system. Figure lb shows a typical construction of a tungsten halogen lamp unit lb. The package -6-200809133 (3) typically includes a typical parabolic, elliptical, or ejector 2; the reflector has a neck that can be extended rearward A light bulb 5b (also known as a wick) is mounted in the shape 1 for generating a sum wire. In addition, the luminaire assembly further includes a front opening 6 covered with a lens 6b through which the ray 16 can be projected onto the reflective inner surface 3 by projecting a thin film coating 4 . The venting pin 9a, the current can reach the spiral lamp 糸 φ of the bulb 5b, the second electrical pin 9a, to form an electrical circuit. Tungsten halogen incandescent lamps are different from HID lamps, these incandescent tungsten wicks 7b, and the wicks are sealed in transparent fruit requiring good lumen maintenance, tightness, and such as retail store lighting, stage and projection room lighting, Tungsten halogen lamps are used for medical lighting and residential lighting. Although tungsten is high and has a long service life, it produces more harmful UV rays than any other form. The φ optically reflective film coating is deposited on the inside of the reflector to increase the reflectivity, or it can be deposited on the back of the reflector. The inner surface of the reflector can be referred to as a thin film coating deposition. The thin film coating can be designed to be fully reflective so that all of the electromagnetic spectrum is sufficiently forward reflected. A typical coating design for high-intensity luminaires is called "design. As shown in Figure 2, the tuned coating in the cold-light mirror coating has the effect of a filter; therefore, for the visible spectrum of the bulb , the selected part of which will be reflected forward, and the arcuate anti-region 2 a ' emits an electromagnetic radiation a, the opening comes up. The optical reverses the first electric 糸 7 b. The light has a spiral container inside. There is white light (the museum is based on the halogen lamp efficiency type of incandescent lamp surface; but the light bulb that is known or emitted on the two sides of the light bulb is known as a cold light mirror, the optical dry 5 is generated to leave, away from 200809133 (4 The luminaire device, while most of the IR wavelength is directed to the interior of the luminaire and transmitted through the coating. Since part of the electromagnetic spectrum is a heat source, the visible ray reflected forward is considered "cold" light. More commonly, these coatings are designed to selectively reflect or transmit an electromagnetic spectrum of the desired wavelength. The design elements are required by the optical function being considered and reflected by the optical coating. Long and decided; and typically includes the chemistry of the coating to be deposited, the number of layers of each coating to be deposited, the order in which the different φ coatings are deposited onto the substrate, the thickness of each coating, and the morphology of the coating. The like coating is usually formed by repeatedly interlacing a plurality of low refractive index (π L) materials (such as Si〇x) and high refractive index (??) materials (such as TiOX). It is known that when these coatings are composed of multiple layers T When the L and T/Η coatings are interlaced, a “stop band” is formed, or concentrated in the area where the design wavelength λ G is highly reflective. The high reflectivity design requires the thickness of each coating to reach the design wavelength of four points. One. The design form can be expressed as:

介質/(HL)m H/基底 式1 其中 m是多層堆疊的回合數, 介質是射線與塗層外表面接觸之前所處的材料(在此情況 下,介質是空氣或等同於空氣), HL是包含一層7? Η層和一層7/ L層的層組對, Η是η材料層, L是材料層,以及 200809133 (5) 基底是塗層所沉積的材料(在此情況下,基底是反射器的 反射內表面)。 爲形成選擇性地過濾某一部分光譜的堆疊,塗層設計 通常要求由多個層組成多層堆疊;其中,塗層的化學成分 、厚度,以及各層在某一堆疊中的位置都是預先確定好的 。對於抛物線狀或橢圓狀的反射器(需要“寬頻”反射) φ ,光學塗層的設計包括由?和塗層交錯而成的多重 堆疊;其中,高反射率區域相互交叠,涵蓋整個波長頻帶 以及呈錐形角傾面入射的光線。 但是,高强度燈泡所産生熱量以及燈具所産生高UV 射線通量而導致之有害的物理和化學變化,會使可用塗層 (其依照“式1 ”而製作)受到損壞。圖 3所提供的圖 例展示了 UV射線光譜的通量强度部分(即包括 UVA 40 0-3 1 5 nm區域波長、並稱作是不可見光的部分)、 φ UVB 315-280 nm、UVC 2 80-100 nm,以及由典型的 HID 高强度燈所産生的可見光( 400 - 700 nm波長區域)。 這些塗層所遭受的有害物理化學變化包括圖像衰減,並且 沉積塗層中電阻係數的測量値會出現下降。 出於大螢幕背投電視和其他投影顯示系統的設計需要 ,燈具裝置變得愈加小巧;與此同時,燈泡電氣引脚也與 燈具內側沉積表面的觸點連接在一起。在此設計中,引脚 的電氣連接件將與反射器內表面的反射塗層相接觸。這表 示該塗層必須作爲電性絕緣體使用,並以此在操作過程中 -9- 200809133 (6) 能够將電阻係數或電阻値保持在可接受的程度。如果 UV 光子通量、高溫或其他因素造成該塗層的電阻係數降低, 則燈泡的工作電流將從電阻値較小的電路流過,並且可能 會造成燈泡短路。如此,光學薄膜反射塗層的顯然需要經 設計爲反射或傳遞所需的波長,能够承受高溫影響並能暴 露在 UV能量之下,並且無論 UV光子通量和高溫(通 常是由這些燈具所産生)的大小強度如何,都能維持其電 Φ 阻係數。 【發明內容】 本發明則滿足了目前業界對於光學塗層的需求,亦即 其所依據的設計和材料係産生用於達成所需波長並承受高 溫和暴露於 UV作用的千擾濾波器,且如此以維持可接 受程度的電阻係數。該塗層是根據本發明的原理製作而成 ;對於高强度燈具而言,其燈泡所産生的 UV射線量通 Φ 常較高,並且溫度也較高,而該塗層在這些燈具中則能够 提供理想的使用效果。此外,該塗層也適合用於:需要塗 層反射及/或傳遞所需波長的電磁能量、塗層能够抵抗 UV和高溫的損害、塗層能够保持基本上的電氣穩定性( 基本上的電氣穩定性表示該塗層能够將電阻係數保持在足 够高的程度,從而在將其裝入燈具時能可靠地作爲電性絕 緣體而作用),以及塗層能够對所需波長的反射及/或傳 遞能量選擇性地加以控制。 本發明的反射光學薄膜塗層能够在傳遞紅外線射線的 -10 - 200809133 (7) 同時反射可見光、能够持續抵抗UV射線的影響,並且 能够將其電氣特性保持在可接受的程度。此類塗層所含堆 疊係包含物理化學特性都已預先確定的多個層交錯而成。 一個此類光學反射塗層的例子係具有堆疊的塗層設計;該 堆疊包含首層是低折射率的材料與第二層是高折射率的材 料反復交錯而成,以達成其光譜。此設計部分經反復交錯 ’可達到所需數量的堆疊,並在最後形成沉積堆疊;該沉 φ 積堆疊由首層是高折射率的材料與第二層是低折射率的材 料交錯而成,其中(舉例而言)高折射率材料包含能够抵 抗 UV波長射線的 Ta205 ;同時,塗層數量已預先確定 ,以產生所欲的光學活動(例如:反射及/或傳遞特定波 長的能量)。 另一種設計可提供反射光學薄膜塗層,其產生類似上 述的結果,其中包括堆疊順序、包含具有首先多個塗層堆 疊;其中’每個堆疊包含高折射率材料與低折射率材料反 φ 復交錯而成,其中高折射率材料能够抵抗 UV波長的射 線,其中例如高折射率材料含有 N b 2 〇 5。 由於能够保持其起初高的電阻係數,因此本發明塗層 能夠提供所塗層的反射器,在將其裝入裝具時,能夠可靠 地作爲電性絕緣體而作用。 本發明的這些和其他優點係經由所提供的千擾濾波器 塗層而實現其可能’其包含具有多個低折射率材料的層與 高折射率材料的層相交錯而成的塗層(其中,多層高折射 率的層能够抵抗高溫及/或紫外線射線的損害,並且當暴 -11 - 200809133 (8) 露於電磁光譜的紫外線區域時,及/或暴露於高溫條件下 時,該塗層具有基本上穩定的電阻係數性質)。 此外,該塗層能够選擇性地反射可見光,但也會傳遞 紅外線射線;尤爲特別的是,該塗層可選擇性地反射至少 95%的、波長介於 400-700 nm之間的可見光,並至少 會傳遞80%的、波長大於 8 70 nm的紅外線射線。 除此之外,干擾濾波器塗層的低折射率材料具有折射 φ 率小於 1 · 8,並且熔化溫度高於 5 0 0 °C,其基本組成可包 括(但不限於)SiOx、Si02、MgF2、SiO、Si、Y2〇3、 Al2〇3、BaF2、CaF2、CeF3、Na3AlF6、NdF3、YF3,A1F3 或上述材料的混合物。相較而言,局折射率材料所具有折 射率則等於或大於1·8、熔點溫度高於 50(TC,並且基本 組成可包括(但不限於)Ta205或 Nb205、Hf02、Zr02 、W02、Μο2、Ιη203或上述材料的混合物。 此外,干擾濾波器塗層也可進一步包含不能抵抗 UV 響射線及/或高溫損害的高折射率材料,這些材料的基本組 成可包括(但不限於)Ti02、Tix〇y或這兩種物質的混合 物。 本發明(也可稱之爲一種塗層)可包含:至少一塗層 堆疊,其包含多個 i) 一層低折射率的材料,並與下者交錯 η )當暴露在紫外線電磁光譜及/或高溫條件下時, 能够保持電氣特性基本穩定的高折射率材料塗層;其中塗 層堆疊可作爲反射濾波器的表面,用於反射電磁射線中預 12- 200809133 (9) 先確定的部分,以及用於傳遞電磁射線中預先確定的部分 。在某些情况下,電磁射線中所反射的預先確定部分包含 可見光,電磁射線中所傳遞的預先確定部分包含紅外線射 線;而在另一些情况下,電磁·射線中所反射的預先確定部 分包含紅外線射線,電磁射線中所傳遞的預先確定部分包 含可見光。 此外’該塗層還可具有外表面(最後沉積者)堆疊, ^ 其係由電性穩定的折射率高材料與低折射率材料交錯形成 的層所組成,並至少包含一內表面堆疊,其係由下列層所 組成: I)低折射率材料,並且與 i i)對紫外線較敏感的高折射率材料交錯而成。 本發明亦包括一種反射塗層的製造方法,其包含以下 步驟: a) 提供具有多個下列層: Φ i) 一層低折射率材料,其與 ii) 一層電氣性能基本上穩定的高折射率材料交錯 而成, b) 提供多個高折射率層,以抵抗紫外線及/或高溫的 損害,並且當暴露於高溫及/或電磁光譜的紫外線部分中 時,具有基本上保持穩定的電阻係數特性, c) 將塗層沉積在反射基底表面上,以及 d) 在反射基底表面上將塗層定制爲特定的形狀,用 於投射出具有所需色溫、强度以及色品的光線來。 13· 200809133 (10) 本發明主要在於一種利用反射器的燈具,而該反射器 具有一個反射內表面和一個反射外表面;其中,無論是反 射內表面、反射外表面,還是這兩個表面,都附有干擾濾 波器塗餍,該塗層包括:: a) 多個低折射率材料與高折射率材料交錯的層,以 及 b) 多個抗 UV射線及/或高溫損害的高折射率層, φ 在暴露於電磁光譜的 UV部分及/或高溫條件下時, 該塗層具有基本上穩定的電阻係數特性。 反射器可由玻璃、塑膠、陶瓷、玻璃陶瓷、金屬或其 他有用材料製成,並包括一個帶有反光表面的反射前部, 用於向前投射反射器的反射光線;同時,該反射器還包括 一個後部,其端部是一個加長、且向後突出的空腔,該空 腔的內表面不是前反射表面的組成部分;反射器沉積在反 光表面、空腔內表面、空腔外表面或內外表面上,並帶有 φ 干擾濾波器塗層;當暴露在電磁光譜的 UV部分中時, 以及/或處於高溫條件下時,該塗層具有基本上穩定的電 阻係數特性。 此外,該發明也可稱爲干擾濾波器塗層,可用於反射 電磁射線中預先確定的部分,以及用於傳遞電磁射線中預 先確定的部分;這其中包括: a) 多個低折射率材料與高折射率材料交錯的層,以 及 b) 多個抗抗紫外線射線及/或高溫損害的高折射率層 -14 - 200809133 (11) ;當暴露在電磁光譜的紫外線部分中時,以及/或處於高 溫條件下時,該塗層具有穩定的電阻係數特性;而該層是 由玻璃、金屬、塑膠、陶瓷、玻璃陶瓷或上述材料的混合 物製成的反射器塗層;其中,燈泡通過可拆卸的方式與燈 具連接,或是通過固定方式與燈具連接,從而可以符合照 明、舞臺和放映室、醫療照明、投影照明領域的應用要求 【實施方式】 經由下列的詳細說明和相關圖式,技藝人士將清楚瞭 解本發明的其他功效和優點。 定義 介電質,在此係指無機氧化物、氟化物、亞硝酸鹽、硼化 物以及同類物質,這些物質可選擇性地傳遞、反射或吸收 Φ 不同波長的電磁光譜。 介電性塗層,在此係指高反射率的干擾濾波器,其係被認 知爲一種製作特定以獲致所需波長反射率的塗層,其可由 四分之一波長膜交錯的層(其包含高折射率材料與低折射 率材料反復交錯而成,其中低折射率材料的折射率低於基 底)所組成;或者係由包含不同層厚度或跨越寬廣波長間 隔不同薄膜係數的層所組成。 通量,在此係指一束光波中的能量、射線或光功率的流量 速率。 -15- 200809133 (12) 高强度放電(HID)燈,在此係指具有水銀蒸氣、金屬鹵 化物(也稱 HQI )、高壓鈉、低壓鈉的燈具;在少數情 况下’也指氙燈。HID燈的發光要素是耐火容器(電弧 管)中能够非常穩定地進行電弧放電,其容器壁的負載超 過 3 W/cm2 (1 9.4 W/in·2)。 紅外線(IR)跨越了二個電磁波長的數量級,這些電磁波 長介於大約 750 nm和1 mm電磁光譜之間。近紅外 _ (N IR,IR - A D IN )的波長爲0 · 7 5 - 1 · 4 μ m 。近紅外射線 能够産生大量的熱量。 干擾濾波器(或光學濾波器)是由多層沉積在基底上的塗 層所構成的多層薄膜裝置;該基底的光譜特性是由於波長 干擾的結果。Medium / (HL) m H / Substrate 1 where m is the number of rounds of the multilayer stack, the medium is the material before the ray is in contact with the outer surface of the coating (in this case, the medium is air or equivalent to air), HL Is a layer pair comprising a layer of 7? Η and a layer of 7/L, Η is a layer of η material, L is a layer of material, and 200809133 (5) The substrate is a material deposited by the coating (in this case, the substrate is The reflective inner surface of the reflector). To form a stack that selectively filters a portion of the spectrum, the coating design typically requires a multi-layer stack of multiple layers; wherein the chemical composition, thickness, and location of the layers in a stack are predetermined. . For parabolic or elliptical reflectors (requires "broadband" reflection) φ, the design of the optical coating consists of ? Multiple stacks interlaced with the coating; where the high reflectance regions overlap each other, covering the entire wavelength band and the light incident at a tapered angle. However, the harmful physical and chemical changes caused by the heat generated by the high-intensity bulb and the high UV ray flux produced by the luminaire can damage the available coating (which is made according to Equation 1). The legend provided in Figure 3 shows the flux intensity portion of the UV ray spectrum (ie, the portion that includes the UVA 40 0-3 15 5 region wavelength and is referred to as invisible light), φ UVB 315-280 nm, UVC 2 80 -100 nm, and visible light (400 - 700 nm wavelength region) produced by a typical HID high intensity lamp. The harmful physicochemical changes that these coatings suffer include image attenuation, and the measurement of the resistivity in the deposited coating will decrease. For the design of large-screen rear projection TVs and other projection display systems, the fixtures have become increasingly compact; at the same time, the electrical pins of the bulbs are also connected to the contacts on the deposition surface inside the fixture. In this design, the electrical connections of the pins will be in contact with the reflective coating on the inner surface of the reflector. This means that the coating must be used as an electrical insulator and to maintain the resistivity or resistance 可接受 at an acceptable level during operation -9- 200809133 (6). If the UV photon flux, high temperature, or other factors cause the resistivity of the coating to decrease, the lamp's operating current will flow from a circuit with a small resistance , and may cause a short circuit in the lamp. As such, the optical film reflective coating clearly needs to be designed to reflect or transmit the desired wavelength, to withstand high temperature effects and to be exposed to UV energy, and regardless of UV photon flux and high temperature (usually produced by these lamps) The strength and strength of the ) can maintain its electrical Φ resistance coefficient. SUMMARY OF THE INVENTION The present invention satisfies the current demand for optical coatings in the industry, that is, the design and materials upon which the interference filters are used to achieve the desired wavelengths and withstand high temperatures and exposure to UV, and This is to maintain an acceptable level of electrical resistivity. The coating is made in accordance with the principles of the present invention; for high-intensity luminaires, the amount of UV radiation produced by the bulb is often higher and the temperature is higher, and the coating can be used in these fixtures. Provide ideal results. In addition, the coating is also suitable for: requiring the coating to reflect and/or transmit electromagnetic energy of the desired wavelength, the coating is resistant to UV and high temperature damage, and the coating is capable of maintaining substantial electrical stability (substantially electrical) Stability means that the coating maintains the resistivity to a high enough level to act reliably as an electrical insulator when it is incorporated into the luminaire, and that the coating can reflect and/or transmit to the desired wavelength. Energy is selectively controlled. The reflective optical film coating of the present invention is capable of simultaneously reflecting visible light in the transmission of infrared rays, and is capable of continuously resisting the influence of UV rays, and is capable of maintaining its electrical characteristics to an acceptable level. The stacks contained in such coatings are interlaced with layers having predetermined physicochemical properties. An example of one such optically reflective coating is a stacked coating design; the stack consists of a material having a low refractive index in the first layer and a material having a high refractive index in the second layer repeatedly staggered to achieve its spectrum. The design portion is repeatedly staggered to achieve the desired number of stacks, and at the end a deposition stack is formed; the sink φ stack is interleaved by a material having a high refractive index in the first layer and a low refractive index material in the second layer. Where, for example, the high refractive index material comprises Ta205 capable of resisting UV wavelength radiation; at the same time, the amount of coating has been predetermined to produce the desired optical activity (eg, reflecting and/or delivering energy of a particular wavelength). Another design can provide a reflective optical film coating that produces results similar to those described above, including stacking sequences, including having a first plurality of coating stacks; wherein 'each stack comprises a high refractive index material and a low refractive index material Interleaved in which the high refractive index material is resistant to radiation of the UV wavelength, wherein for example the high refractive index material contains Nb2?5. The coating of the present invention is capable of providing a coated reflector which can reliably act as an electrical insulator when it is loaded into the tool because it can maintain its initially high resistivity. These and other advantages of the present invention are achieved by a provided interference filter coating that may comprise a coating comprising a layer having a plurality of low refractive index materials interleaved with a layer of high refractive index material (wherein The multilayer high refractive index layer is resistant to high temperature and/or ultraviolet radiation damage and is applied when the violent -11 - 200809133 (8) is exposed to the ultraviolet region of the electromagnetic spectrum and/or exposed to high temperature conditions. Has a substantially stable resistivity property). In addition, the coating selectively reflects visible light, but also transmits infrared radiation; in particular, the coating selectively reflects at least 95% of visible light having a wavelength between 400 and 700 nm. At least 80% of the infrared rays with a wavelength greater than 8 70 nm are transmitted. In addition, the low refractive index material of the interference filter coating has a refractive index of less than 1 · 8 and a melting temperature of more than 500 ° C. The basic composition may include, but is not limited to, SiOx, SiO 2 , MgF 2 . , SiO, Si, Y2〇3, Al2〇3, BaF2, CaF2, CeF3, Na3AlF6, NdF3, YF3, A1F3 or a mixture of the above materials. In comparison, the refractive index material has a refractive index equal to or greater than 1.8, a melting point temperature higher than 50 (TC, and the basic composition may include, but is not limited to, Ta205 or Nb205, Hf02, Zr02, W02, Μο2 , Ι 203 or a mixture of the above materials. In addition, the interference filter coating may further comprise a high refractive index material that is not resistant to UV radiation and/or high temperature damage, and the basic composition of these materials may include, but is not limited to, Ti02, Tix 〇y or a mixture of the two substances. The invention (also referred to as a coating) may comprise: at least one coating stack comprising a plurality of i) a layer of low refractive index material interlaced with the lower one a high refractive index material coating capable of maintaining a substantially stable electrical property when exposed to ultraviolet electromagnetic spectrum and/or high temperature conditions; wherein the coating stack can be used as a surface of a reflective filter for reflecting electromagnetic radiation. 200809133 (9) The first part determined and used to transmit the predetermined part of the electromagnetic ray. In some cases, the predetermined portion reflected in the electromagnetic ray contains visible light, and the predetermined portion transmitted in the electromagnetic ray contains infrared rays; and in other cases, the predetermined portion reflected in the electromagnetic ray contains infrared rays The predetermined portion transmitted by the ray, the electromagnetic ray, contains visible light. Furthermore, the coating may also have an outer surface (final depositor) stack, which consists of a layer of electrically stable refractive index high material interleaved with a low refractive index material and comprising at least one inner surface stack. It consists of the following layers: I) Low refractive index material and interlaced with ii) UV-sensitive high refractive index materials. The invention also includes a method of making a reflective coating comprising the steps of: a) providing a plurality of layers: Φ i) a layer of low refractive index material, and ii) a layer of high refractive index material having substantially stable electrical properties. Interleaved, b) providing a plurality of high refractive index layers to resist UV and/or high temperature damage, and having substantially constant resistivity characteristics when exposed to high temperature and/or ultraviolet portions of the electromagnetic spectrum, c) depositing a coating on the surface of the reflective substrate, and d) customizing the coating to a particular shape on the surface of the reflective substrate for projecting light of the desired color temperature, intensity, and chromaticity. 13· 200809133 (10) The present invention mainly relates to a luminaire using a reflector having a reflective inner surface and a reflective outer surface; wherein, whether it is a reflective inner surface, a reflective outer surface, or both surfaces, Both are provided with an interference filter coating comprising: a) a plurality of layers of low refractive index material interleaved with the high refractive index material, and b) a plurality of high refractive index layers resistant to UV radiation and/or high temperature damage. , φ The coating has substantially stable resistivity characteristics when exposed to the UV portion of the electromagnetic spectrum and/or high temperature conditions. The reflector may be made of glass, plastic, ceramic, glass ceramic, metal or other useful materials and includes a reflective front with a reflective surface for projecting the reflected light from the reflector forward; at the same time, the reflector also includes a rear portion having an elongated and rearwardly projecting cavity, the inner surface of the cavity being not part of the front reflective surface; the reflector being deposited on the reflective surface, the inner surface of the cavity, the outer surface of the cavity or the inner and outer surfaces Above, with a φ interference filter coating; the coating has substantially stable resistivity characteristics when exposed to the UV portion of the electromagnetic spectrum, and/or under high temperature conditions. Furthermore, the invention may also be referred to as an interference filter coating, which may be used to reflect a predetermined portion of the electromagnetic radiation, and to deliver a predetermined portion of the electromagnetic radiation; these include: a) a plurality of low refractive index materials and a layer of high refractive index material interleaved, and b) a plurality of high refractive index layers resistant to UV rays and/or high temperature damage-14 - 200809133 (11); when exposed to the ultraviolet portion of the electromagnetic spectrum, and/or at The coating has a stable resistivity characteristic under high temperature conditions; and the layer is a reflector coating made of glass, metal, plastic, ceramic, glass ceramic or a mixture of the above materials; wherein the bulb is detachable The method is connected with the luminaire, or is connected to the luminaire by a fixed manner, so as to meet the application requirements in the fields of illumination, stage and projection room, medical illumination, projection illumination [Embodiment] Through the following detailed description and related drawings, the skilled person will Other effects and advantages of the present invention are clearly understood. Definition Dielectric, referred to herein as inorganic oxides, fluorides, nitrites, borides, and the like, which selectively transfer, reflect, or absorb electromagnetic spectra of different wavelengths of Φ. Dielectric coating, as used herein, refers to a high reflectivity interference filter that is recognized as a coating that is specifically tailored to achieve the desired wavelength reflectance, which can be interlaced by a quarter-wave film (its The high refractive index material and the low refractive index material are repeatedly interlaced, wherein the low refractive index material has a lower refractive index than the substrate; or it is composed of layers containing different layer thicknesses or different film coefficients across a wide wavelength interval. Flux, as used herein, refers to the rate of flow of energy, radiation, or optical power in a beam of light. -15- 200809133 (12) High-intensity discharge (HID) lamps, in this case, lamps with mercury vapour, metal halides (also known as HQI), high-pressure sodium, low-pressure sodium; in a few cases, 氙 lamps. The light-emitting element of the HID lamp is that the arc discharge can be performed very stably in the refractory container (arc tube), and the load on the container wall exceeds 3 W/cm 2 (1 9.4 W/in·2). Infrared (IR) spans the order of two electromagnetic wavelengths between approximately 750 nm and 1 mm of electromagnetic spectrum. The near-infrared _ (N IR, IR - A D IN ) has a wavelength of 0 · 7 5 - 1 · 4 μ m . Near-infrared rays can generate a lot of heat. The interference filter (or optical filter) is a multilayer thin film device consisting of a plurality of layers deposited on a substrate; the spectral characteristics of the substrate are due to wavelength interference.

折射率(或折射係數)是針對某一材料而言的;它是指相 ¥寸於真空傳播速度’電磁射線在該材料中的減緩因數。該 係數通常以符號η表示,並且某一材料的折射率可通過 以下公式定義:The refractive index (or refractive index) is for a material; it refers to the mitigation factor of the electromagnetic radiation in the material. This coefficient is usually expressed by the symbol η, and the refractive index of a material can be defined by the following formula:

2 其中ε r是該材料的相對電容率,是相對滲透率。對方4 非磁性材料,μ r非常接近於1,因此《近似於。 電阻係數(也稱爲比電阻値)在此是指用於衡量材料 抵抗電流能力大小的測量指標。電阻係數低係表示很容易 地允許電荷移動的材料,並且是藉由定義電流在各向異性 材料中電傳導的矩陣來描述,其爲“歐姆定律”一般形式 •16- 200809133 (13) :其中 P -E/y 或 R=/7 (i/A) 式 3 其中:i〇 =電阻係數 E ==電動勢 J =電流密度。 ^ i =電流 A =塗層的截面積 紫外線 (UV ),在此係指剛剛超出可見光紫色區域的不 可見光的光譜區域,其波長範圍爲 100於 400 nm。 紫外線 A,在此通常是指 315至 400 nm的電磁光譜 區域。 紫外線 B,在此通常是指 280至 3 1 5 nm的電磁光譜 區域。 φ 紫外線 c,在此通常是指 100至 280 nm的電磁光譜 區域。 本發明係關於一種過濾電磁光譜中所需部分的反射光 學薄膜塗層,以及關於一種製造該塗層的方法。根據本發 明的原理所製造的塗層適合於供凡是需要採用反射光學塗 層(特別是需要由塗層來反射所需波長和傳遞其他所需的 波長)、能够承受暴露於高強度 UV射線和高溫之下、 同時還能使其電阻係數保持穩定的應用領域。本發明所揭 -17- 200809133 (14) 示的塗層令人驚訝且出人意料地能够承受高溫及/或 UV 射線的影響,更加令人驚訝和出人意料的是在暴露於 UV 射線及/或高溫之下後,不論 UV光子通量的大小如何, 也不論高溫(通常由燈泡産生)愈來愈增加,該塗層都能 維持其電阻係數(隔離電阻)。本發明所提供的反射塗層 可用於(舉例而言)使 HID、鎢鹵素燈及/或其他同類高 效能燈的反射內表面得到加强。此外,該塗層設計可帶來 φ 光譜性能的增强、以及穩定性的提高。依據本發明方法的 反射塗層,可依需要而設計反射所需波長的電磁光譜,但 傳遞其他所需部分的射線(如IR射線)。 構成本發明反射塗層的層分別均經設計具有所選擇的 物理化學特性,能够過濾電磁射線中所需的部分。這些層 的區別在於各自的化學及/或物理特性都是量身設計的。 所揭示的塗層包含至少一個堆疊;其中,一個堆疊可包含 一層或多層,而各塗層均具有預定的化學成分及/或形態 φ 結構。本發明其中之一種堆疊設計係具有第一層與第二層 塗層反復交錯而形成預定數目的層。由於本發明的塗層能 够承受暴露於高強度UV射線與IR射線所生熱而致的 高溫之下,同時還能維持其電阻係數,因此,其適合於供 凡是需要使用反射光學濾波器塗層的所有應用(例如:供 塗覆高强度反射器的反射表面)。而在此將藉由利用高强 度反射器燈具塗層的應用爲實例,來說明本發明的塗層設 計。此實例旨在簡明清楚,而並非限制本發明的範圍僅於 如此而已。須注意:爲求清楚呈現,圖 4 a至4 d僅限於 -18- 200809133 (15) 展示反射器燈具裝置10、20、30和40內表面上的兩個 塗層堆疊,雖然可理解在任何塗層中可使用任意數量的堆 疊,並且在堆疊中也可使用任意數量的層;而層和堆疊的 數目則視所將産生結果的光學物理特性而定,其將於下述 中討論。 塗層目前係藉由業界所熟知的沉積技術來予以沉積, 包括物理氣相沈積法、電阻真空蒸發法、電子槍法、離子 φ 輔助法、濺鈾法、陰極電弧法、化學氣相沈積法,以及低 溫溶液沈積法;雖然亦可以使用一些較不熟知、或尙需瞭 解的技術。高强度反射器可使用業界熟知材料或較不熟知: 的材料(例如:玻璃、陶瓷、塑膠或金屬,或是具有所需 特性但尙需瞭解的材料)製造而成。 實施例 1:圖 4a是一幅截面圖,其例示 HID反 射器燈具,該燈具有本發明的塗層優點;其中 ΗID燈具 裝置1 〇包括一個呈典型抛物線狀、橢圓狀,或圓拱狀 Φ 的反射器殼體12、可向後伸出的頸形區域12a、反射器燈 具裝置10的反射內表面13、沉積在內表面13上的“一 型塗層堆疊” 14a (第一組待沉積的堆疊);同時,沉積 在“ 一型塗層堆疊” 14a上的反射薄膜光學“二型塗層堆 疊” 14 b塗層(最後沉積的外部堆疊,不受 u V影響) 所提供的反射鏡面能够抵抗UV射線及/或高溫的損害, 並且保持基本上有用的電阻係數或電阻値;此外,該燈具 還包括覆蓋反射器殼體12的前部開口之反射器透鏡16b 、燈泡或燈芯15a (射線光源1“)的電弧管觸點17、 -19- 200809133 (16) 通過第一條電氣引脚19a供應電流至燈泡的接線點或燈 泡觸點18b、和經由接線點或燈泡觸點18a而形成完整電 路的第二條電氣引脚19 b。 HID反射器燈具的發光元件是在耐火容器中的電弧 放電,該容器中還包含有不同的氣體和金屬鹽。該耐火容 器通常被稱爲是電弧管。這些燈具産生的壓力和溫度相對 較高。因此,現有塗層的損壞係部分由該等高溫所造成。 φ 從本發明的塗層獲益的 HID燈包括水銀蒸氣燈、金屬鹵 化物燈、陶瓷燈、低壓鈉燈、高壓鈉燈,以及較少見之氙 短弧燈,雖然本發明並不局限於僅在上述類型的燈具中使 用。任何將從本發明的塗層獲益的燈具均爲本發明所欲供 應用的範疇。 圖 4b是一幅截面圖,其係例示鎢鹵素白熾反射器 燈具20 ;其包括一個呈典型拋物線狀、橢圓狀,或圓拱狀 的反射器殻體12、可向後伸出的頸形區域12a、反射器燈 φ 具裝置20的反射內表面13、塗覆在內表面13上的“ 一 型塗層堆疊” 14a (第一組待沉積的堆疊)、沉積在“一 型塗層堆疊” 14a上的反射薄膜光學“二型塗層堆疊” 14b而提供所需能够抵抗 UV射線及/或高溫損害並維持 基本上有用程度的電阻係數或電阻値的反射鏡面塗層、供 産生所需光線的燈泡或燈芯1 5b、覆蓋反射器殼體1 2螺 旋鎢製燈芯17b (射線光源)的反射器透鏡16b、以及第 一條電氣引脚19a和第二條電氣引脚19b。 鎢鹵素白熾燈不同於 HID燈,這些白識燈具有螺旋 -20- 200809133 (17) 形的鎢製燈芯,而該燈芯則被密封在石英或其他特殊的玻 璃容器內。這些燈泡中塡充的氣體能够防止鎢從螺旋燈芯 上氣化之後沉積在封閉的玻璃管上,因而能够重新生成燈 芯。凡是要求具有良好的流明維持度、燈具結構緊凑,並 要求有白光的領域,均可使用鎢鹵素燈。雖然鎢鹵素燈展 示出了較高的效率,並具有較長的使用壽命,但所産生的 UV射線也更多;衆所周知,與任何白熾燈相比,UV射 Φ 線會使現有的反射塗層出現退化。 現根據圖式,應注意的是:本發明是藉由不同的成分 、塗層排列、厚度、化學成分、形態、大小、形狀和形式‘ 而例示出爲具體實例。應了解者:對於此處所述的具體實 例,係作爲例示性質,而並非限制本發明局僅於此處所述 具體實例的範疇內。 例如,圖 4a和圖 4b分別展示了 HID反射器燈 具和鎢鹵素反射器;其中,在各燈具的內反射表面上,沉 φ 積有以下塗層:直接沉積在燈具內表面上的是低折射率7? L材料(如Si〇2 ),接下來沉積的是一層高折射率7? Η材 料(如 Ti〇2 ),然後沉積下一層 Si〇2和下一層 Ti〇2 ;如此類推,直至低折射率材料與緊隨其後的高折射率材 料反復交錯,達到預定的沉積數目,並形成堆疊。對於這 種塗層交錯的模式,在此稱之爲“一型沉積堆疊”。對於 “ 一型沉積堆疊”中的層數量,以及所沉積的堆疊數量, 則將取決於經計算的塗層要達到所欲光學特性所需要者。 對於塗層的厚度、塗層之間的相對位置,以及塗層與塗層 -21 - 200809133 (18) 形態之間的相對關係亦然,所有這些亦根據光學設計原理 而決定。 各塗層的厚度定義爲: 厚度= Ai(A/4?71cos(9i) 式 4 其中: !是材料的折射率, λ 是頻帶中心處的波長, Θ 是錐形角入射光線的中心角,並且 Ai是頻帶重叠的定義係數。 於此塗層的形成階段,這兩層塗層堆疊産生習知的“ 冷光鏡”反射塗層。如上所述,冷光鏡塗層可向前反射可 見光’將其射出燈具’同時還可通過反射器塗層和反射器 向後傳遞 IR射線。在沉積了最後一層“ 一型塗層堆疊 ”之後,便可沉積“二型塗層堆疊”。“二型塗層堆疊” 包括由低折射率材料(如 si〇2 )與高折射率材料(如 Ta2〇5 )交錯形成的塗層,其中高折射率材料能够抵抗高 溫和 uv射線的損害。在將“二型塗層堆疊”沉積在“ 一型塗層堆疊”上時’會出現出人意外和令人驚訝的結果 。這種塗層設計所需的高折射率材料(如Ta205 )能够抵 抗高溫和 UV射線的損害,它所提供的塗層不僅可以反 射由高强度燈具燈泡所産生的幾乎所有可見光波長的電磁 -22- 200809133 (19) 光譜,還能够傳遞IR波長的熱量,而且在達到上述功 能時’還可以抵抗 UV射線和高溫的損害,並保持其電 阻係數。 表1係例示一種較佳的光學塗層設計具體實例,該 實例遵循本發明的原則;其中,該設計的第一部分,即“ 一型塗層堆疊”,包括兩層(或者還可以選擇多層)由低 折射率材料和高折射率材料交錯而成的堆疊(例如,由第 • 一層是介電材料 Si〇2與第二層介電材料 Ti〇2交錯而 成;並且,頂層堆疊或最後沉積的堆疊(即此處所說的“ 二型塗層堆疊,在表1中該堆疊顯示在塗層列表的底部 )是藉由沉積一組由高折射率材料與低折射率材料 sio2 反復交錯所形成的塗層而成,其中高折射率材料能够抵抗 射線和高溫的影響(如Ta2〇5 )。如上所述,此設計 令人驚訝和出人意外的結果是:由此所生成的塗層能够保 持其電阻係數,從而能够在塗層中安放電極,而無須擔心 φ 短路。更特別地,表1中所述的塗層包括“一型塗層堆 疊”,該堆疊所含超過四十層,但取決於所欲的光學特性 ’層的數目可能會更多或更少;其係由低折射率介電材料 (如 SiOx、Si〇2、MgF2、SiO、Si、Y2〇3、Al2〇3、BaF2 、CaF2、CeF3、Na3AlF6、NdF3、YF3、A1F3 或上述材料 的混合物)與高折射率介電材料製成的塗層反復交錯而成 ,這些高折射率的介電材料(如 Ti02、TixOY、Nb2〇5、2 where ε r is the relative permittivity of the material and is the relative permeability. The other 4 non-magnetic materials, μ r is very close to 1, so "approximate. The resistivity (also known as specific resistance 値) is used herein to measure the resistance of a material to current capability. Low resistivity is a material that readily allows charge to move and is described by a matrix that defines the electrical conduction of current in an anisotropic material, which is the general form of "Ohm's Law". 16-200809133 (13): P - E / y or R = / 7 (i / A) Equation 3 where: i 〇 = resistivity E = = electromotive force J = current density. ^ i = current A = cross-sectional area of the coating. Ultraviolet (UV), here the spectral region of the invisible light just beyond the visible violet region, with a wavelength in the range of 100 to 400 nm. Ultraviolet A, here usually refers to the electromagnetic spectrum of 315 to 400 nm. Ultraviolet B, here usually refers to the electromagnetic spectrum of 280 to 3 15 nm. φ UV c, here usually refers to the electromagnetic spectrum of 100 to 280 nm. The present invention relates to a reflective optical film coating for filtering a desired portion of an electromagnetic spectrum, and to a method of making the coating. Coatings made in accordance with the principles of the present invention are suitable for use with reflective optical coatings (especially requiring the coating to reflect the desired wavelength and impart other desired wavelengths), capable of withstanding exposure to high intensity UV radiation and Under high temperature, it can also stabilize its resistivity. The coatings disclosed in the invention -17-200809133 (14) are surprisingly and unexpectedly capable of withstanding the effects of high temperatures and/or UV rays, and are even more surprising and unexpected in exposure to UV rays and/or high temperatures. After that, regardless of the size of the UV photon flux, and regardless of the high temperature (usually produced by the bulb), the coating maintains its resistivity (isolation resistance). The reflective coatings provided by the present invention can be used, for example, to enhance the reflective inner surface of HID, tungsten halogen lamps, and/or other similar high performance lamps. In addition, the coating design provides enhanced spectral performance and improved stability. The reflective coating according to the method of the present invention can be designed to reflect the electromagnetic spectrum of the desired wavelength, but to deliver other desired portions of the radiation (e.g., IR radiation). The layers constituting the reflective coating of the present invention are each designed to have selected physicochemical properties to filter the desired portions of the electromagnetic radiation. These layers differ in that their respective chemical and/or physical properties are tailored. The disclosed coating comprises at least one stack; wherein one stack can comprise one or more layers, and each coating has a predetermined chemical composition and/or morphology φ structure. One of the stacked designs of the present invention has a first layer and a second layer of coating that are repeatedly staggered to form a predetermined number of layers. Since the coating of the present invention can withstand the high temperature caused by exposure to high-intensity UV rays and IR rays while maintaining its electrical resistivity, it is suitable for coatings that require reflection optical filters. All applications (eg for reflective surfaces coated with high-intensity reflectors). The coating design of the present invention will now be illustrated by the use of a high intensity reflector luminaire coating as an example. This example is intended to be illustrative, and not to limit the scope of the invention. It should be noted that for clarity of presentation, Figures 4a through 4d are limited to -18-200809133 (15) showing two coating stacks on the inner surface of reflector luminaire devices 10, 20, 30 and 40, although understandable in any Any number of stacks can be used in the coating, and any number of layers can be used in the stack; and the number of layers and stacks depends on the optical physical properties that will produce the results, which will be discussed below. Coatings are currently deposited by well-known deposition techniques, including physical vapor deposition, resistive vacuum evaporation, electron gun, ion φ assist, uranium sputtering, cathodic arc, chemical vapor deposition, And low temperature solution deposition; although some less well known or urgently needed techniques can be used. High-intensity reflectors can be fabricated using materials well known in the art or materials that are less well known (eg, glass, ceramic, plastic or metal, or materials with desirable properties but need to be understood). Embodiment 1 FIG. 4a is a cross-sectional view illustrating a HID reflector lamp having the advantages of the coating of the present invention; wherein the ΗID luminaire device 1 includes a typical parabolic, elliptical, or dome-shaped Φ The reflector housing 12, the rearwardly projectable neck region 12a, the reflective inner surface 13 of the reflector luminaire device 10, and the "type coating stack" 14a deposited on the inner surface 13 (the first group to be deposited) At the same time, the reflective film deposited on the "type coating stack" 14a optical "two-layer coating stack" 14 b coating (the final deposited external stack, not affected by u V) provides the mirror surface Resistant to UV radiation and/or high temperature damage, and maintain a substantially useful resistivity or resistance 値; in addition, the luminaire further includes a reflector lens 16b covering the front opening of the reflector housing 12, a bulb or wick 15a (ray The arc tube contact 17 of the light source 1"), -19-200809133 (16) supplies current to the junction of the bulb or the bulb contact 18b via the first electrical pin 19a, and is formed via the junction or bulb contact 18a Complete electricity The second electrical lead 19b of the road. The illuminating element of the HID reflector luminaire is an arc discharge in a refractory vessel which also contains different gases and metal salts. The refractory vessel is commonly referred to as an arc tube. These lamps produce relatively high pressures and temperatures. Therefore, the damage of existing coatings is partly caused by such high temperatures. φ HID lamps that benefit from the coating of the present invention include mercury vapor lamps, metal halide lamps, Ceramic lamps, low pressure sodium lamps, high pressure sodium lamps, and less common short arc lamps, although the invention is not limited to use only in lamps of the above type. Any luminaire that would benefit from the coating of the present invention is Figure 4b is a cross-sectional view illustrating a tungsten halogen incandescent reflector lamp 20; it includes a reflector housing 12 that is typically parabolic, elliptical, or dome-shaped, A rearwardly projecting neck region 12a, a reflector lamp φ having a reflective inner surface 13 of the device 20, a "type coating stack" 14a coated on the inner surface 13 (a first set of stacks to be deposited), deposited in " Reflective film optical "type 2 coating stack" 14b on the type of coating stack 14a provides a mirror coating that is resistant to UV radiation and/or high temperature damage and maintains a substantially useful degree of resistivity or resistance 、, a bulb or wick 15b for generating the desired light, a reflector lens 16b covering the reflector housing 1 2 spiral tungsten wick 17b (radiation source), and a first electrical pin 19a and a second electrical pin 19b Tungsten halogen incandescent lamps are different from HID lamps, which have a spiral -20-200809133 (17) shaped tungsten wick that is sealed in quartz or other special glass containers. The gas filled in these bulbs prevents tungsten from depositing on the closed glass tube after vaporization from the spiral wick, thereby regenerating the wick. Tungsten halogen lamps can be used in any field where good lumen maintenance, compact lamp construction, and white light are required. Although tungsten halogen lamps exhibit higher efficiency and have a longer service life, they also produce more UV rays; it is well known that UV-ray Φ lines will make existing reflections compared to any incandescent lamp. The coating is degraded. DETAILED DESCRIPTION OF THE INVENTION It is to be noted that the present invention is exemplified by specific examples by different compositions, coating arrangements, thicknesses, chemical compositions, shapes, sizes, shapes and forms. It should be understood that the specific examples described herein are illustrative of the nature of the invention and are not intended to limit the scope of the invention. For example, Figures 4a and 4b illustrate a HID reflector luminaire and a tungsten halogen reflector, respectively; wherein, on the internal reflective surface of each luminaire, the sink φ has the following coating: direct deposition on the inner surface of the luminaire is low refraction Rate 7? L material (such as Si〇2), then deposit a layer of high refractive index 7? Η material (such as Ti〇2), then deposit the next layer of Si〇2 and the next layer of Ti〇2; and so on, until The low refractive index material is repeatedly interleaved with the high refractive index material that follows, reaching a predetermined number of depositions and forming a stack. The pattern of interlacing such coatings is referred to herein as a "type deposition stack." The number of layers in a "type deposition stack", as well as the number of stacks deposited, will depend on the calculated coating to achieve the desired optical properties. The relative relationship between the thickness of the coating, the relative position between the coatings, and the morphology of the coating and the coating is also determined by the optical design principles. The thickness of each coating is defined as: Thickness = Ai(A/4?71cos(9i) Equation 4 where: ! is the refractive index of the material, λ is the wavelength at the center of the band, and Θ is the central angle of the incident light at the cone angle, And Ai is the definition coefficient of the band overlap. During the formation phase of the coating, the two layers of coating stack produce a conventional "cold mirror" reflective coating. As described above, the cold mirror coating can reflect the visible light forward' It emits the luminaire' while also transmitting IR radiation back through the reflector coating and reflector. After depositing the last layer of “type coating stack”, a “type 2 coating stack” can be deposited. “Type 2 coating The stack includes a coating formed by interlacing a low refractive index material (such as si〇2) with a high refractive index material (such as Ta2〇5), wherein the high refractive index material is resistant to high temperature and uv radiation damage. When the coating stack is deposited on a “type coating stack”, unexpected and surprising results can occur. The high refractive index material (such as Ta205) required for this coating design is resistant to high temperatures and UV rays. Damage, the coating it provides It not only reflects the electromagnetic-22-200809133 (19) spectrum of almost all visible wavelengths generated by high-intensity lamps, but also transmits the heat of the IR wavelength, and also resists UV rays and high temperature damage when achieving the above functions. And maintain its resistivity. Table 1 illustrates a preferred example of a preferred optical coating design that follows the principles of the present invention; wherein the first portion of the design, "a type of coating stack," includes two layers. (or alternatively, multiple layers) a stack of low refractive index materials and high refractive index materials interleaved (for example, a first layer is a dielectric material Si〇2 and a second dielectric material Ti〇2 is interleaved; Also, the top stack or the last deposited stack (ie, the "type 2 coating stack, shown in Table 1 at the bottom of the coating list" is by depositing a set of high refractive index materials with low refraction. The rate material sio2 is formed by repeated interlacing of the coating, wherein the high refractive index material is resistant to radiation and high temperature effects (such as Ta2〇5). As mentioned above, this design is surprising. And surprisingly, the resulting coating is able to maintain its resistivity so that the electrodes can be placed in the coating without worrying about φ shorts. More specifically, the coatings described in Table 1 include " A type of coating stack", the stack contains more than forty layers, but depending on the desired optical properties, the number of layers may be more or less; it is composed of a low refractive index dielectric material (such as SiOx, Si) 〇2, MgF2, SiO, Si, Y2〇3, Al2〇3, BaF2, CaF2, CeF3, Na3AlF6, NdF3, YF3, A1F3 or a mixture of the above materials) are repeatedly interlaced with a coating made of a high refractive index dielectric material These high refractive index dielectric materials (such as Ti02, TixOY, Nb2〇5,

Ta205、Hf02、Zr02、ZnS、W02、M02、In2〇3 或上述材 料的混合物)可抵抗UV射線和高溫的損害;另外,還 -23- 200809133 (20) 有一層頂層塗層(或最後所沉積者,即“二型塗層 ),其包含由低折射率的介電材料(如 Si〇x、 M g F 2 ' SiO、Si、Y 2 〇 3 ' AI2O3、BaF〗、CaF】、 Na3AlF6、NdF3、YF3、A1F3或上述材料的混合物 二層介電材料(如 Ta205或Nb205、Hf02、ZrO 、M02、ln203或上述材料的混合物)交錯而成, 的塗層外表面不會受 UV或高溫的影響。 堆疊” Si02、 CeF3、 )與第 2、W02 所形成Ta205, Hf02, Zr02, ZnS, W02, M02, In2〇3 or a mixture of the above materials) is resistant to UV rays and high temperature damage; in addition, -23- 200809133 (20) has a top coat (or finally deposited) , "di-type coating", which comprises a low refractive index dielectric material (such as Si〇x, M g F 2 'SiO, Si, Y 2 〇 3 ' AI2O3, BaF〗, CaF], Na3AlF6, NdF3, YF3, A1F3 or a mixture of the above materials, a two-layer dielectric material (such as Ta205 or Nb205, Hf02, ZrO, M02, ln203 or a mixture of the above materials) is interlaced, and the outer surface of the coating is not subject to UV or high temperature. Effect. Stacking "Si02, CeF3," and 2nd, W02

-24- 200809133(21)-24- 200809133(21)

表1 反射器的多層設計 層數 材料 光學設計厚度 (nm) 1 Si02 145.6 2 Ti02 74.1 3 Si02 125.4 4 Ti02 88.9 5 Si02 134.5 6 Ti02 85.9 7 Si02 133.8 8 Ti02 83.2 9 Si02 143.5 10 TI02 85.3 11 Si02 132.8 12 TI02 81.2 13 SI02 128.8 14 Ti02 85.9 15 Si02 131.7 16 Ti02 64.8 17 Si02 127.1 18 Ti02 57.8 19 Si02 104.8 20 T»02 57.7 21 Si02 118.9 22 Ti02 61.2 23 Si02 108.6 24 TI02 56.9 25 Si02 108.6 26 T»02 65.1 27 Si02 108.9 28 Ta205 60.4 29 Si02 84.8 30 Ta205 45.2 31 Si02 76.6 32 Ta205 56.3 33 Si02 89.3 34 Ta205 55.5 35 Si02 80.2 36 Ta205 49.9 37 Si02 - 83.4 38 Ta205 52.4 39 Si02 74.5 40 Ta205 52.7 41 Si02 169.5 實施例 2:圖 4c和圖 4d例示 HID和鎢鹵素高 强度反射器燈具,該燈具係沉積本發明的交錯塗層,其中 包含多重且相同的“二型塗層堆疊”。如上所述,“二型 -25- 200809133 (22) 塗層堆疊”由低折射率介電材料(如 SiOx、Si〇2、Table 1 Multilayer Design Layer of Reflector Material Optical Design Thickness (nm) 1 Si02 145.6 2 Ti02 74.1 3 Si02 125.4 4 Ti02 88.9 5 Si02 134.5 6 Ti02 85.9 7 Si02 133.8 8 Ti02 83.2 9 Si02 143.5 10 TI02 85.3 11 Si02 132.8 12 TI02 81.2 13 SI02 128.8 14 Ti02 85.9 15 Si02 131.7 16 Ti02 64.8 17 Si02 127.1 18 Ti02 57.8 19 Si02 104.8 20 T»02 57.7 21 Si02 118.9 22 Ti02 61.2 23 Si02 108.6 24 TI02 56.9 25 Si02 108.6 26 T»02 65.1 27 Si02 108.9 28 Ta205 60.4 29 Si02 84.8 30 Ta205 45.2 31 Si02 76.6 32 Ta205 56.3 33 Si02 89.3 34 Ta205 55.5 35 Si02 80.2 36 Ta205 49.9 37 Si02 - 83.4 38 Ta205 52.4 39 Si02 74.5 40 Ta205 52.7 41 Si02 169.5 Example 2: Figure 4c And Figure 4d illustrates a HID and tungsten halogen high intensity reflector luminaire that deposits the interlaced coating of the present invention comprising multiple and identical "type 2 coating stacks". As mentioned above, "Type II -25-200809133 (22) Coating Stack" consists of low refractive index dielectric materials (eg SiOx, Si〇2)

MgF2、SiO、Si、Y203、Al2〇3、BaF2、CaF2、CeF3、 Na3AlF6、NdF3、YF3、A1F3或上述材料的混合物)與第 一層筒折射率介電材料(如Ta2〇5或Nb2〇5、Hf〇2、 Zr02 ' WO2 ' Mo2 ' In2〇3或上述材料的混合器)反復交 錯而成,所生成的塗層具有穩定的電氣性能,並且不受. UV或高溫的影響。特別是,圖4 C是一幅截面圖,其例 _ 示了 HID反射器燈具裝置3❶;其包括一個通常爲抛 物線狀、橢圓狀,或圓拱狀的反射器殼體1 2、可向後伸出 的頸形區域1 2 a、反射器燈具裝置3 0的反射內表面1 3、 沉積在內表面13且不受 UV影響的多層反射光學薄層 “二型塗層堆疊” 14 (該堆疊令人驚訝和出人意料的是: 所産生的所欲反射鏡面塗層能够抵抗 UV射線及/或高溫 的損害,並且能使電阻係數和電阻値保持基本上有用的程 度)、覆蓋反射器殼體12前部開口的透鏡16 b、燈泡或 φ 燈芯15 a (射線光線16 a的光源)的電弧觸點17、通過第 一條電氣引脚19a向燈泡提供電流的接線點或燈泡觸點 18b、具有第二條電氣引脚19b經由接線點或燈泡觸點 18a而形成完整電路。 圖 4d是一幅截面圖,其例示鎢鹵素白熾反射器燈 具,其利用本發明的塗層;其中,鎢鹵素燈具裝置 40 包含一個通常爲抛物線狀、橢圓狀,或圓拱狀的反射器殼 體12、可向後伸出的頸形區域12a、反射器燈具裝置40 的反射內表面13、沉積在內表面13且不受 UV影響的 -26- 200809133 (23) 多層反射光學薄層“二型塗層堆疊” 1 4 (該堆疊令人驚訝 和出人意料的是:所産生的所需反射鏡面塗層能够抵抗 U V射線及/或高溫的損害,並且能使電阻係數和電阻値 保持基本上有用的程度)、覆蓋反射器殼體1 2前部開口 的反射器透鏡16b、燈泡或燈芯15b (用於産生射線光線 16a)的螺旋鎢製燈芯i7b,以及與螺旋鎢製燈芯17b保 持電氣連接的第一條電氣引線19a,其與第二條電氣引脚 φ 19b保持電氣連接,而形成完整的電路。 圖 5是一幅截面圖形,其例示此種優良的抗 UV塗 層設計的具體實例。在此例中,還有另一種優良的塗層具 體實例,該實例被稱爲“三型塗層堆疊塗層設計”;該 設計僅包含多重且相同的“二型塗層堆疊”。特別是,爲 清楚起見,該圖 5僅限於顯示兩層交錯的“二型塗層堆 疊”,其中各堆疊24均具有多個單獨的塗層22;其中, 單獨的層包含由低折射率材料L與高折射率材料η反復 φ 交錯所形成的層。根據該設計,直接沉積在反射器壁32 上的第一層塗層中含有低折射率塗層L。根據本發明的原 理’要達到特定的光譜反應設計目標,可能還會在圖5 所示的兩層堆疊上沉積一層或多層其他的堆疊。 表2展示“三型塗層堆疊”塗層設計的例子,該設 計包含由低折射率介電材料 Si〇2和高折射率材料 Nb2〇5反復交錯形成的塗層;其中,高折射率材料能够抵 抗UV射線和高溫的損害。此外,依據本發明,堆疊可 由任何其他低折射率的介電材料塗層(所具有的折射率等 -27- 200809133 (24) 於或小於1.8,並且熔點溫度高於500 。(:,如MgF2、MgF2, SiO, Si, Y203, Al2〇3, BaF2, CaF2, CeF3, Na3AlF6, NdF3, YF3, A1F3 or a mixture of the above materials) and the first layer of refractive index dielectric material (such as Ta2〇5 or Nb2〇5) Hf〇2, Zr02 'WO2 'Mo2 'In2〇3 or a mixer of the above materials) are repeatedly staggered, and the resulting coating has stable electrical properties and is not affected by UV or high temperature. In particular, Figure 4C is a cross-sectional view, which illustrates an HID reflector luminaire assembly 3; it includes a generally parabolic, elliptical, or dome-shaped reflector housing 2, which can be extended rearward a neck-shaped region 1 2 a, a reflective inner surface 13 of the reflector luminaire device 30, a multilayer reflective optical thin layer "two-type coating stack" deposited on the inner surface 13 and not affected by UV 14 (the stacking order) Surprisingly and unexpectedly: the resulting mirror coating produced is resistant to UV rays and/or high temperature damage and enables the resistivity and resistance to remain substantially useful), covering the reflector housing 12 a portion of the open lens 16b, the bulb or the φ wick 15a (the source of the ray 16a), the connection point or the bulb contact 18b that supplies current to the bulb via the first electrical pin 19a, The two electrical pins 19b form a complete circuit via the junction or bulb contact 18a. Figure 4d is a cross-sectional view illustrating a tungsten halogen incandescent reflector luminaire utilizing the coating of the present invention; wherein the tungsten halogen luminaire device 40 includes a generally parabolic, elliptical, or dome shaped reflector housing The body 12, the rearwardly projecting neck region 12a, the reflective inner surface 13 of the reflector lamp unit 40, and the inner surface 13 are not affected by UV. -26-200809133 (23) Multilayer reflective optical thin layer "Type 2 Coating Stacking" 1 4 (This stack is surprisingly and unexpectedly: the resulting mirror coating produced is resistant to UV rays and/or high temperature damage and enables the resistivity and resistance to remain substantially useful. Degree), a reflector lens 16b covering the front opening of the reflector housing 12, a spiral tungsten wick i7b for the bulb or wick 15b (for generating the ray 16a), and an electrical connection to the spiral tungsten wick 17b. An electrical lead 19a is electrically connected to the second electrical pin φ 19b to form a complete circuit. Fig. 5 is a cross-sectional view illustrating a specific example of such an excellent UV-resistant coating design. In this case, there is another excellent example of a coating which is referred to as a "three-type coating stack coating design"; this design contains only multiple and identical "type 2 coating stacks". In particular, for the sake of clarity, Figure 5 is limited to showing a two-layer staggered "type 2 coating stack" wherein each stack 24 has a plurality of individual coatings 22; wherein the individual layers comprise a low refractive index The material L and the high refractive index material η are repeatedly φ interleaved to form a layer. According to this design, the first layer of coating deposited directly on the reflector wall 32 contains a low refractive index coating L. In accordance with the principles of the present invention, one or more layers of other stacks may be deposited on the two-layer stack shown in Figure 5 to achieve a particular spectral reaction design goal. Table 2 shows an example of a "three-type coating stack" coating design comprising a coating formed by repeated interleaving of a low refractive index dielectric material Si〇2 and a high refractive index material Nb2〇5; wherein the high refractive index material It is resistant to UV rays and high temperature damage. Further, in accordance with the present invention, the stack may be coated with any other low refractive index dielectric material (having a refractive index, etc. -27-200809133 (24) at or below 1.8, and a melting point temperature above 500. (:, such as MgF2 ,

SiO 、 Si 、 Y2O3 、 Al2〇3 、 BaF2 、 CaF2 、 CeF3 、 Na3AlF6 、SiO, Si, Y2O3, Al2〇3, BaF2, CaF2, CeF3, Na3AlF6,

NdF3、YF3、AIF3或上述材料的混合物)與任何其他能够 抵抗UV射線的高折射率材料(所具有的折射率等於或 大於1.8,並且熔點溫度高於5 00 t,如Ta205、Hf02 、Zr02、W02、M〇2、ln2〇3或上述材料的混合物)交錯 沉積而成。此類塗層能够提高燈具的光譜特性,並能抵抗 ϋ 因暴露在 UV射線及/或高溫條件下所導致的物理、化學 變化;此外,更爲重要的是:該塗層能够將其電阻係數保 持在可接受的程度,從而使該塗層能够保持其電阻値,這 些都是令人驚訝和出人意外的。爲獲致這些令人驚訝和出 人意外的結果,各介電塗層的沉積厚度通常會達到所選光 譜帶中心處對應波長的四分之一。對於此設計,其令人驚 訝和出人意外的結果是:該塗層能够抵抗 UV射線以及 由燈泡所産生的高溫影響,同時還可保持其電阻係數穩定 Φ ;其獲致的層,便可在塗層中安放接收燈泡引脚的電極, 而無須擔心短路。在此優良的塗層設計中,基底上沉積的 由高折射率77 Η塗層材料與低折射率7? L材料反復交錯形 成的層超過了四十層。此塗層適合供沉積於例如高强度燈 具內反射表面;其選擇性地反射或傳遞預定的光譜部分、 抵抗UV和高溫的損害,並且能够將其電阻係數或電阻 値保持在這些燈具中得以作爲絕緣體的程度。 -28 - 200809133(25) 表 2 塗層的多層設計 層數 材料 光學設計厚度 (nm) 1 SI02 130.9 2 Nb205 80.2 3 S102 120.1 4 Nb205 73.6 5 Si02 138.9 6 Nb205 81.1 7 Si02 144.7 8 Nb20S 78.2 9 Si02 137.9 10 Nb205 78.2 11 Si02 136.7 12 Nb205 82.2 13 SiD2 125.2 14 Nb205 74.2 15 Si02 122.2 16 Nb20S 60.9 17 Si02 84.5 18 Nb205 53.9 19 Si02 112.3 20 Nb205 67.3 21 Si02 113.3 22 Nb205 63.1 23 Si02 107.6 24 Nb205 57.9 25 Si02 106.1 26 Nb205 57.9 27 Si02 100.7 28 Nb205 54.7 29 Si02 73.4 30 Nb205 39.2 31 Si02 83.8 32 Nb205 52.8 33 Si02 86.4 34 Nb205 51.1 35 Si02 81.6 36 Nb205 48.6 37 Si02 84.6 38 Nb20S 46.9 39 Si02 66.9 40 Nb205 49.6 41 Si02 174.2NdF3, YF3, AIF3 or a mixture of the above materials) and any other high refractive index material capable of resisting UV rays (having a refractive index equal to or greater than 1.8, and a melting point temperature higher than 500 t, such as Ta205, Hf02, Zr02, W02, M〇2, ln2〇3 or a mixture of the above materials are interlaced. Such coatings can improve the spectral characteristics of the luminaire and resist physical and chemical changes caused by exposure to UV radiation and/or high temperatures; more importantly, the coating can have its resistivity It is surprising and surprising to remain at an acceptable level so that the coating retains its electrical resistance. To achieve these surprising and unexpected results, the thickness of each dielectric coating typically reaches a quarter of the corresponding wavelength at the center of the selected band. The surprising and surprising result of this design is that the coating resists UV rays and the high temperature effects produced by the bulb while maintaining its resistivity stable Φ; The electrode that receives the bulb pins is placed in the coating without worrying about short circuits. In this excellent coating design, the layer deposited by the high refractive index 77 Η coating material and the low refractive index 7 Å material deposited on the substrate repeatedly exceeds forty layers. The coating is suitable for deposition on, for example, a reflective surface within a high intensity luminaire; it selectively reflects or transmits a predetermined portion of the spectrum, resists UV and high temperature damage, and is capable of retaining its resistivity or resistance 这些 in these luminaires. The extent of the insulator. -28 - 200809133(25) Table 2 Multilayer design layer number of coating material Optical design thickness (nm) 1 SI02 130.9 2 Nb205 80.2 3 S102 120.1 4 Nb205 73.6 5 Si02 138.9 6 Nb205 81.1 7 Si02 144.7 8 Nb20S 78.2 9 Si02 137.9 10 Nb205 78.2 11 Si02 136.7 12 Nb205 82.2 13 SiD2 125.2 14 Nb205 74.2 15 Si02 122.2 16 Nb20S 60.9 17 Si02 84.5 18 Nb205 53.9 19 Si02 112.3 20 Nb205 67.3 21 Si02 113.3 22 Nb205 63.1 23 Si02 107.6 24 Nb205 57.9 25 Si02 106.1 26 Nb205 57.9 27 Si02 100.7 28 Nb205 54.7 29 Si02 73.4 30 Nb205 39.2 31 Si02 83.8 32 Nb205 52.8 33 Si02 86.4 34 Nb205 51.1 35 Si02 81.6 36 Nb205 48.6 37 Si02 84.6 38 Nb20S 46.9 39 Si02 66.9 40 Nb205 49.6 41 Si02 174.2

原理:此處所述的光學塗層是指干擾濾波器;這些濾 波器通常是由諸如氧化矽和氧化鈮材料、或是由以上所列 -29 200809133 (26) 化合物構成的薄層,並沉積在光學基底上。通過對具體的 化學成分、厚度、塗層之間的相對位置、形態、層的數量 進行精心的選擇,本發明得以製得業界首見的塗層,其可 抵抗 UV射線和高溫的損害(並且塗層本身因此不會受 到破壞),並且除了能够對塗層的反射率和傳遞率進行量 身訂製’並以此來實現多種所需的光學表現之外,還能因 此使其電阻係數的保持率接近1 00%。 Φ 對於特定供反射器和燈泡光譜所用的設計,藉由適當 選擇其中所建構的材料,可將表面反射率降低至 0.2% 以下。反射率可增加至接近 9 9 · 9 9 %的水平,以産生高 反射 (HR)塗層。此外,也可將反射率的大小調整至任 何特定數値,例如藉此産生能够反射 9 0 %或更多的可見 光並能傳遞幾乎所有的IR波長的鏡面,如圖 1和2 中所市。或者,塗層經設計使得反射表面僅反射窄頻帶波 長內的光線,而産生光學濾波器。介電性塗層的多樣性, φ 提供其於許多光學和光領域的應用,並且也可供應用於對 於光譜控制要求高且存在 UV波長的消費器材領域。 需要理解的是··反射率達到極大値的波長係當多層結 構的高折射率塗層和低折射率塗層的厚度均正好爲波長的 四分之一。峰値反射率 “ f” 是所用兩種材料的折射率 比値與堆疊中實際包含的層數目的函數。藉由增加更多的 層,或使用折射率比値更高的材料,可使峰値反射率增加 。對於某單一介面上的振幅反射率,可將其定義爲: -30- 200809133 (27) 0-夕) (1 + p) 其中 式 5Principle: The optical coatings described herein refer to interference filters; these filters are typically deposited from thin layers such as yttria and yttria or from the compounds listed in -29 200809133 (26) above. On an optical substrate. By carefully selecting the specific chemical composition, thickness, relative position between the coatings, morphology, and number of layers, the present invention produces the first coating in the industry that is resistant to UV rays and high temperature damage (and The coating itself is therefore not damaged), and in addition to being able to tailor the reflectivity and transfer rate of the coating to achieve a variety of desired optical performances, The retention rate is close to 100%. Φ For specific designs used for reflector and bulb spectroscopy, the surface reflectance can be reduced to less than 0.2% by appropriate selection of the materials constructed. The reflectivity can be increased to a level close to 9 9 · 9 9 % to produce a highly reflective (HR) coating. In addition, the reflectance can be adjusted to any particular number, for example, to produce a mirror that is capable of reflecting 90% or more of visible light and capable of transmitting almost all of the IR wavelengths, as shown in Figures 1 and 2. Alternatively, the coating is designed such that the reflective surface reflects only light within a narrow band of wavelengths to produce an optical filter. The diversity of dielectric coatings, φ provides its application in many optical and optical applications, and is also applicable to consumer equipment where high spectral control is required and UV wavelengths are present. It is to be understood that the wavelength at which the reflectance reaches an extremely high level is such that the thickness of the high refractive index coating and the low refractive index coating of the multilayer structure are exactly one quarter of the wavelength. The peak reflectance "f" is a function of the refractive index ratio 値 of the two materials used and the number of layers actually contained in the stack. The peak reflectance can be increased by adding more layers or by using a material with a higher refractive index than 値. For the amplitude reflectivity of a single interface, it can be defined as: -30- 200809133 (27) 0- 夕) (1 + p) where Equation 5

\nl) nS 其中是基底係數, nH是高折射率塗層的係數, φ 是低折射率塗層的係數,以及 ΛΓ是堆疊中塗層的總數。 此外,曲線的高反射率部分的寬度亦決定於薄膜係數比値 ;該比値越高,高反射區域也越寬。 或者,塗層的傳遞屬性取決於以下因素:所産生光線 的波長、基底(在此處的例子中是指燈泡的反射內表面) 的折射率、塗層或層的折射率、塗層的厚度、入射光線的 角度或介面表面的形狀,以及塗層和基底的吸收率。 • 如“圖1,,和“圖 2,,所示,根據計算可預測··根 據本發明的原則沉積所得的塗層,將可以反射可見區域中 幾乎所有(如果不是全部的話)的波長,並能傳遞大部分 的IR波長;而實驗結果則證實了此等預測。 -31 - 200809133 (28) 反射率vs.波長\nl) nS where is the base coefficient, nH is the coefficient of the high refractive index coating, φ is the coefficient of the low refractive index coating, and ΛΓ is the total number of coatings in the stack. In addition, the width of the high reflectance portion of the curve is also determined by the film coefficient ratio 値; the higher the ratio, the wider the high reflection area. Alternatively, the transfer properties of the coating depend on the following factors: the wavelength of the light produced, the refractive index of the substrate (in this case the reflective inner surface of the bulb), the refractive index of the coating or layer, and the thickness of the coating. The angle of the incident ray or the shape of the interface surface, as well as the absorptivity of the coating and substrate. • as shown in Fig. 1, and Fig. 2, which is predictable according to the calculations. The resulting coating deposited according to the principles of the present invention will reflect almost all, if not all, of the wavelengths in the visible region. And can pass most of the IR wavelength; and the experimental results confirm these predictions. -31 - 200809133 (28) Reflectance vs. Wavelength

0000000000 0987654321 1 (%)褂MM0000000000 0987654321 1 (%)褂MM

一設計 一·一實驗 35( 50 550 650 750 850 950 1050 波長(nm) 塗層設計所製塗層的反射率 VS, 圖 1 :按照實施例 波長關係圖 反射率vs.波長 1¾A design one-to-one experiment 35 (50 550 650 750 850 950 1050 wavelength (nm) coating design reflectivity VS, Figure 1: according to the example wavelength relationship reflectance vs. wavelength 13⁄4

波長(nm) 設計 實驗 圖 2 :按照實施例 2塗層設計所製塗層的反射率 vs, -32· 200809133 (29) 波長關係圖 實驗:圖 6以圖形方式顯示用於測試塗層 驗步驟,這些塗層均按照本發明原理製成。實驗 燈具60、燈具栅板62、UV感測器65、反射器 計,以及一台裝有顯示幕、用於顯示實驗結果的 驗流程的第一步是將多個測試探針插入燈具(附 p 內表面)的不同位置,用於測量表面電阻値。在 下完成了塗層表面的電阻測量工作之後,便對塗 面進行高强度 UV光線實驗,其中包括紫外線 至 400 nm )、紫外線 B( 280 至 315nm ) C ( 100至 280 nm), 以及 IR射線熱量實 在自然條件下進行第一項測量時,電阻値仍有變 繼續進行電阻測量,直至電阻穩定爲止。同時, 係以電子方式得到連續記錄,並顯示在日誌圖表 φ 可以記錄下 UV射線和熱量對塗層電阻値造成 所得結果如圖3、4和5所示;這些結果顯示 露在 UV射線和高溫損害下,本發明的塗層仍 足够的電阻値,從而可以確保電氣特性的穩定( ,這些塗層維持其幾乎所有的電阻係數)。 圖 3中的一條曲線顯示:當塗層暴露在 和射線産生的熱量中時,該塗層的電阻値 久性的大幅下降。該塗層僅包含由高折射率TiO 射率Si02交錯形成的塗層,並被沉積在反射器 效率的實 設備包括 64、電阻 電腦。實 有反射器 自然條件 層反射表 A ( 3 1 5 、紫外線 驗。如果 化,則應 測量結果、 上,從而 的影響。 :即使暴 可以保持 也就是說 UV射線 出現了永 2和低折 的內表面 -33- 200809133 (30) 上,其係依照上述實驗程序而測量。如“圖3 ”所示’在 打開 UV之後大約兩秒內,電阻値的下降幅度接近三個 數量級(從大約爲2 X 107 Ohms的初始値降爲3 X 104 Ohms )。如果兩個高强度燈泡的電極與該塗層相接觸,則 當電阻係數出現永久性地降低,並達到此數量級時’則極 有可能造成短路。因此,對於如今越來越小的高强度燈具 而言,目前市場上現有的、且使用廣泛的塗層並不適合作 φ 爲最好的反射光學塗層。此外,圖 3中所示的第二條曲 線相對平滑,該曲線也是由高折射率 Ti〇2與低折射率 Si〇2塗層組成,但其成分略有不同;在尙未暴露在 UV 射線和高溫下時,其已顯示令人無法接受的電阻係數大小 ,當暴露於 UV射線和高溫下之後,電阻係數出現了進 一步的降低。Wavelength (nm) Design Experiment Figure 2: Reflectance vs. Coating of Coating Design According to Example 2, -32· 200809133 (29) Wavelength Diagram Experiment: Figure 6 graphically shows the test procedure for testing the coating These coatings are all made in accordance with the principles of the present invention. The first step of the experimental luminaire 60, the luminaire grid 62, the UV sensor 65, the reflector meter, and a test screen equipped with a display screen for displaying the experimental results is to insert a plurality of test probes into the luminaire (attached) Different positions of p inner surface) for measuring surface resistance 値. After the resistance measurement of the coating surface is completed, high-intensity UV light experiments are performed on the coated surface, including ultraviolet light to 400 nm), ultraviolet B (280 to 315 nm) C (100 to 280 nm), and IR ray heat. When the first measurement is performed under natural conditions, the resistance 値 remains unchanged until the resistance is stabilized. At the same time, continuous recording is obtained electronically and displayed in the log chart φ. The results obtained by UV rays and heat on the coating resistance are shown in Figures 3, 4 and 5; these results show exposure to UV rays and high temperatures. Under the damage, the coating of the present invention is still sufficiently resistant to enthalpy, thereby ensuring the stability of electrical properties (these coatings maintain almost all of their resistivity). A curve in Figure 3 shows that the resistivity of the coating is greatly reduced when the coating is exposed to heat generated by the radiation. The coating contains only a coating formed by the interposition of high refractive index TiO SiO2 and is deposited on the reflector efficiency, including a 64-resistance computer. There are reflector natural condition layer reflection table A (3 1 5, UV test. If it is, it should measure the result, the upper, and thus the effect. Even if the storm can be maintained, that is, the UV rays appear forever 2 and low fold. On the inner surface -33- 200809133 (30), it is measured according to the above experimental procedure. As shown in "Figure 3", within about two seconds after the UV is turned on, the resistance 値 decreases by nearly three orders of magnitude (from approximately 2 The initial enthalpy of X 107 Ohms is reduced to 3 X 104 Ohms. If the electrodes of the two high-intensity bulbs are in contact with the coating, then when the resistivity is permanently reduced and reaches this order of magnitude, it is highly likely This creates a short circuit. Therefore, for today's smaller and smaller high-intensity luminaires, the existing and widely used coatings on the market do not fit φ as the best reflective optical coating. In addition, Figure 3 shows The second curve is relatively smooth. The curve is also composed of a high refractive index Ti〇2 and a low refractive index Si〇2 coating, but its composition is slightly different; when the ruthenium is not exposed to UV rays and high temperatures, it has Display order The unacceptable magnitude of the resistivity, after exposure to UV rays and high temperatures, has a further reduction in the resistivity.

一:二二;: i |二:一 : : : ; I”; : : : : ; ΐ ·ι;:: : : : : I: 90 βο 7ο 60 50 11111 (I) ΙδOne: two two;: i | two: one : : : ; I "; : : : : ; ΐ ·ι;:: : : : : I: 90 βο 7ο 60 50 11111 (I) Ιδ

UV開啓 UV開啓之後的時間(秒) 10 圖 3例示高反射率 Ti02和低反射率 Si02的層交錯 -34 - 200809133 (31) 而成的塗層之電阻値。 依照表 1中所示的設計製作塗層,其中,該設計的 第一部分包含兩層堆疊,各堆疊係爲低折射率材料 Si〇2 和高折射率材料 Ti〇2反復交錯而成的層形成,其最上層 (最後沉積者)堆疊是由能够抵抗 UV射線和高溫影響 的高折射率材料塗層所構成;在本例中,是由 Ta2〇5與 g 低折射率材料8102交錯而形成。將塗層按照上述實驗流 程而暴露於 UV射線和 IR射線所産生的熱量之中。如 上所述,此設計的新穎之處在於··如此所製作和處理的塗 層維持其基本上所有的電阻係數,如圖 4所示。基本上 所有的電阻係數表示:能够保持使塗層作爲絕緣體所需的 電阻係數大小;導致塗層其中所安放的電極便可與該塗層 相接觸,而無須擔心短路。如果兩個高强度燈泡電極與塗 層相接觸,即使是暴露在 UV射線及/或高溫損害之下, φ 該塗層所能保持的電阻係數大小也可以防止短路發生。因 此,此塗層係爲供應用於如今越來越小的高强度燈具中作 爲反射光學塗層使用的優良選擇。 -35- 200809133 (32) 1〇10UV ON Time after the UV is turned on (seconds) 10 Figure 3 illustrates the high-reflectivity Ti02 and the low-reflectivity layer of Si02 -34 - 200809133 (31) The resistance of the coating. The coating was made according to the design shown in Table 1, wherein the first part of the design comprises two layers, each of which is a layer formed by repeatedly interlacing a low refractive index material Si〇2 and a high refractive index material Ti〇2. The uppermost (last depositor) stack is composed of a high refractive index material coating that is resistant to UV rays and high temperature effects; in this example, it is formed by interlacing Ta2〇5 with g low refractive index material 8102. The coating was exposed to heat generated by UV rays and IR rays in accordance with the above experimental procedure. As noted above, the novelty of this design is that the coating thus produced and treated maintains substantially all of its resistivity, as shown in FIG. Essentially all of the resistivity values are: the amount of resistivity required to maintain the coating as an insulator; the electrodes placed in the coating can be brought into contact with the coating without concern for short circuits. If the two high-intensity bulb electrodes are in contact with the coating, the resistivity of the coating can be prevented from occurring even if exposed to UV rays and/or high temperature damage. Therefore, this coating is an excellent choice for use as a reflective optical coating in today's increasingly smaller high-intensity luminaires. -35- 200809133 (32) 1〇10

107 - { I ..................................................... 1061-i_ -5 UV尙未開啓〇 UV 時間(秒)107 - { I .............................................. ....... 1061-i_ -5 UV尙 not turned on 〇UV time (seconds)

圖4顯示依照“表1 ”中所示設計而製作的塗層,暴露 於 u v射線和ϊ R産生的熱量時,其電阻値降幅非常小 〇 Φ 根據本發明第二種塗層設計所製造的塗層,係包含低 折射率介電性材料 S i 0 2和筒折射率材料 N b 2 〇 5反復交 錯之層,其中高折射率材料能够抵抗 UV射線和高溫的 損害,其如表 2所示,也按照上述實驗流程,暴露於 UV射線和IR射線所産生的熱量中。圖 5顯示此塗層 並非本身就具有優秀的電阻係數大小,但令人驚訝和出人 意外的是:當暴露在 UV射線和高溫下時,此塗層似乎 能夠維持其實質上所有的電阻係數,從而使所得塗層能够 作爲絕緣體使用,而其特性的變化極小(如果有的話); -36- 200809133 (33) 並且,其中安放的電極可與該塗層相接觸,而沒有短路風 險。因此,此塗層係爲供應用於如今越來越小的高强度燈 具中作爲反射光學塗層使用的優良選擇。 90 80 70 111 SM0) amFigure 4 shows a coating made according to the design shown in "Table 1". When exposed to heat generated by uv rays and ϊ R, the resistance 値 is very small. Φ Φ According to the second coating design of the present invention The coating is a layer comprising a low-refractive-index dielectric material S i 0 2 and a cylindrical refractive index material N b 2 〇5, wherein the high refractive index material is resistant to UV rays and high temperature damage, as shown in Table 2. It is also exposed to the heat generated by UV rays and IR rays according to the above experimental procedure. Figure 5 shows that this coating does not have an excellent resistivity value by itself, but surprisingly and surprisingly: when exposed to UV radiation and high temperatures, the coating appears to be able to maintain substantially all of its resistivity. Thus, the resulting coating can be used as an insulator with minimal change in characteristics (if any); -36- 200809133 (33) Also, the electrode placed therein can be in contact with the coating without risk of short circuit. Therefore, this coating is an excellent choice for use as a reflective optical coating in today's increasingly smaller high strength lamps. 90 80 70 111 SM0) am

UV開啓 時間(秒) 1〇10UV on time (seconds) 1〇10

圖 5顯示依照表2的設計所製作的塗層,暴露於 UV # 射線和IR産生的熱量時,其電阻値沒有實質的變化。 在一項觀察高溫對塗層穩定性單獨所造成影響的比較 性實驗中;將依照表 2 所示的設計而製作的 Si02/Nb205塗層沉積在玻璃基底的反射內表面上,然後 將該燈具放入烤箱中’並加熱至 1 〇〇〇 °C。冷却之後’ 該塗層沒有受到明顯的物理損壞’但玻璃却出現了明顯的 軟化和變形跡象;在一些實驗中’玻璃還會因爲熱感應壓 力而出現裂紋。應注意的是:該塗層仍然粘著在變形的基 -37- 200809133 (34) 底之上,並且沒有出現任何與基底相脫離的跡象。對於使 用傳統材料製作的反射器,這種耐久性並不明顯。 結論:總之,實驗結果表明:按照本發明設計原理製 作的光學塗層能够根據需要對電磁射線進行控制。也就是 ,本發明的塗層係經設計除了在燈具的使用壽命內能够提 供更好的耐久性和反射率穩定性之外,係反射及/或傳遞 電磁光譜中所需的部分,同時出人意外、且令人驚訝地抵 φ 抗 UV射線損害·,更加令人驚訝和出人意外的是:該塗 層能够維持其電阻係數,從而使其更加適合在小型高强度 燈具中使用,而這些燈具的工作溫度也會較高。應理解的 是:在將該塗層沉積(如果需要)在反射器內部、外部或 雙面上時,都是屬於本發明範圍內的一部份。特別是,該 塗層在表現出能够抵抗 UV射線和熱退化能力的同時, 還能够傳遞幾乎所有IR波長的射線(高於 800 λ ), 並能反射幾乎所有的可見光(400 - 700 λ )。本發明的塗 φ 層設計如此處所述,乃包含決定塗層的層厚度、層的數量 、層的形態、層之間的相對排列,以及更爲重要的是塗層 成分,以形成具有所需光學特性的薄膜塗層。 應理解的是:該等圖式並不必然按照比例。在某些情 况下,如果不是理解本發明所需要者,或者會使其他細節 難以理解者,則這些細節可能會被省略。 爲說明起見,以上敘述中使用了特定和經定義的專用 術語,以提供技藝人士對本發明能有更完全的理解。但是 ,對於技藝人士而言,在將本發明付諸實踐時,顯然不需 -38 - 200809133 (35) 要對特定細節有所限制。因此,以上在對特定具體實例進 行說明時,僅是用於例示和說明的目的;並且,以上說明 內容並非本發明的全部內容,或者不應將本發明局限於此 處所示的狹隘範圍內。技藝人士將會認識到:可對於在此 所述的發明細節、具體實例以及具體實例的製作方法做出 許多修改,但並未偏離本發明的精髓和範圍。此外,本發 明並不局限於此處所述的方法、具體實例、細節或細節的 φ 組合,而係涵蓋以下隨附申請專利範圍內的所有變形、方 法、修改以及細節組合。本發明僅受申請專利範圍的限制 【圖式簡單說明】 爲了使本發明的這些和其他特點及優點更能充分地被 理解和明白,將藉由例示的方式對本發明進行說明,同時 還會引用附圖中所示的特定具體例;其中,貫穿這幾幅圖 φ 式,同類部件將使用同類圖號來表示。應該知道的是:這 些圖式僅用於展示本發明的較佳具體例,因此不能視爲是 對發明範圍的任何限制。如此,本發明藉由使用所附圖式 ,將涉及更多的具儒內容和細節;其中: 圖la是一幅截面圖,係例示市場上現有HID燈 的反射器。 圖1 是一幅截面圖,係例示市場上現有鎢鹵素燈 的反射器。 圖2是一幅示意圖,係例示目前已知的干擾薄膜塗 -39 - 200809133 (36) 層的設計情况。 圖 3以圖形方式例示 UV光譜和可見光波長的强 度;這些光譜和可見光是由典型的 hid高强度燈泡所産 生的。 圖 4a是一幅截面圖,係例示其燈具的內表面沉積 有一層本發明塗層設§十的 hid以反射器。 圖 4 b是一幅截面圖’係例示其燈具的內表面沉積 p 有一層本發明塗層設計的鎢鹵素燈反射器。 圖4c是一幅截面圖’係例示其燈具的內表面沉積有 本發明第二層塗層設計的HID燈反射器。 圖 4 d是一幅截面圖,係例示燈具的內表面沉積有 一層採用了本發明的第二層塗層設計的鎢鹵素燈反射器。 圖 5是一幅圖形式的、理想狀態下的截面視圖,係 例示沉積在反射器壁內表面部分上的本發明 UV防護塗 層;該塗層至少包含兩的塗層堆疊’每個堆疊具有多個塗 φ 覆層。 圖 6係以圖形方式顯示産生圖 1和 2所示結果 的實驗。 【主要元件符號說明】 la:現有的 HID反射器燈具裝置 1 :現有的鎢鹵素反射器燈具裝置 2 :呈典型抛物線狀、橢圓狀、或圓拱狀的反射器(燈具 殼體) -40- 200809133 (37) 2 a : 2的向後伸出的頸形區域 3 :反射器燈具裝置1的反射內表面 4 :光學薄膜塗層 5 :電弧管燈泡或燈芯 5b :螺旋形燈泡或燈芯 6 a :開口(光線通過該開口發射) 6b:供遮蓋開口 6a的反射器透鏡 p 7 :電弧管電極 7b :螺旋形鎢製燈芯 8b :燈泡觸點 9a :電氣引脚 10:本發明的 HID反射器燈具 12 :呈典型抛物線狀、橢圓狀、或圓拱狀的反射器殼體 12a :可向後伸出的頸形區域 13 :反射器燈具裝置10的反射內表面 φ 14 :未沉積於任何其他堆疊上的“二型塗層堆疊”塗層 14a: —型塗層堆疊(爲形成塗層而欲沉積的第一組堆疊 ) 14b:沉積在一型塗層堆疊上的二型塗層堆疊 15a :電弧管燈泡或燈芯 15b :螺旋形燈泡或燈芯 16 :通過現有的反射器透鏡所投射的光線 16a :通過本發明透鏡所投射的光線 1 7 :電弧管觸點 -41 - 200809133 (38) 17b :螺旋形鎢製燈芯 18 a :第一接線點或燈泡觸點 18b :第二接線點或燈泡觸點 19a :第一電氣引脚 19b :第二電氣引脚 20 :本發明的鎢鹵素燈裝置 22 :單層 24 :多層堆疊 Η :高折射率層77 ΗFigure 5 shows a coating made according to the design of Table 2, which has no substantial change in resistance 暴露 when exposed to heat generated by UV # ray and IR. In a comparative experiment to observe the effect of high temperature on the stability of the coating alone; a SiO 2 /Nb 205 coating prepared according to the design shown in Table 2 was deposited on the reflective inner surface of the glass substrate, and then the luminaire was Put in the oven' and heat to 1 〇〇〇 °C. After cooling, the coating was not subject to significant physical damage, but the glass showed significant signs of softening and deformation; in some experiments, the glass also cracked due to heat induced pressure. It should be noted that the coating remained adhered to the base of the deformed base -37-200809133 (34) and showed no signs of detachment from the substrate. This durability is not significant for reflectors made from conventional materials. Conclusion: In summary, the experimental results show that the optical coating produced in accordance with the design principles of the present invention is capable of controlling electromagnetic radiation as needed. That is, the coating of the present invention is designed to reflect and/or transmit the desired portion of the electromagnetic spectrum, in addition to providing better durability and reflectivity stability over the life of the luminaire. Unexpectedly and surprisingly against UV damage, it is even more surprising and surprising that the coating maintains its resistivity, making it more suitable for use in small, high-intensity luminaires. The operating temperature of the luminaire will also be higher. It should be understood that it is within the scope of the invention to deposit the coating, if desired, on the interior, exterior or both sides of the reflector. In particular, the coating exhibits resistance to UV rays and thermal degradation while delivering nearly all IR wavelengths (above 800 λ) and reflecting almost all visible light (400 - 700 λ). The φ layer design of the present invention, as described herein, includes determining the layer thickness of the coating, the number of layers, the morphology of the layers, the relative alignment between the layers, and, more importantly, the coating composition to form the A thin film coating that requires optical properties. It should be understood that the drawings are not necessarily to scale. In some cases, these details may be omitted if they are not required to understand the invention or if other details are difficult to understand. For purposes of explanation, specific and specific terms are used in the above description to provide a more complete understanding of the invention. However, it is apparent to those skilled in the art that when the invention is put into practice, it is not necessary to limit the specific details. -38 - 200809133 (35) Therefore, the above description of the specific embodiments is only for the purpose of illustration and description; and the above description is not the entire content of the present invention, or the invention should not be limited to the narrow range shown here. . A person skilled in the art will recognize that many modifications may be made to the details of the invention, the specific examples, and the embodiments of the invention described herein without departing from the scope and scope of the invention. Further, the present invention is not limited to the combinations of the methods, the specific examples, the details, or the details of the details described herein, but all the modifications, methods, modifications, and combinations of the details are included in the following claims. The present invention is to be construed as being limited by the scope of the appended claims. Specific specific examples are shown in the drawings; wherein, throughout the figures φ, like parts will be denoted by the same reference numerals. It should be understood that these drawings are merely illustrative of the preferred embodiments of the invention and are not to be construed as limiting the scope of the invention. Thus, the present invention will involve more congruent content and details by using the drawings; wherein: Figure la is a cross-sectional view illustrating a reflector of an existing HID lamp on the market. Figure 1 is a cross-sectional view showing a reflector of a conventional tungsten halogen lamp on the market. Fig. 2 is a schematic view showing the design of the currently known interference film coating layer - 39 - 200809133 (36). Figure 3 graphically illustrates the intensity of the UV and visible wavelengths; these spectra and visible light are produced by a typical hid high intensity bulb. Figure 4a is a cross-sectional view showing the inner surface of the luminaire in which a layer of hid of the present invention is deposited as a reflector. Figure 4b is a cross-sectional view illustrating the deposition of the inner surface of the luminaire. A tungsten halogen reflector having a coating design of the present invention. Fig. 4c is a cross-sectional view showing an HID lamp reflector in which the inner surface of the luminaire is deposited with the second layer coating design of the present invention. Figure 4d is a cross-sectional view showing that the inner surface of the luminaire is deposited with a tungsten halogen reflector having a second coating design of the present invention. Figure 5 is a cross-sectional view of the present invention in an ideal state, illustrating a UV protective coating of the present invention deposited on an inner surface portion of a reflector wall; the coating comprising at least two coating stacks - each having a stack Multiple coated φ coatings. Figure 6 is a graphical representation of the experiment that produced the results shown in Figures 1 and 2. [Main component symbol description] la: Existing HID reflector lamp device 1: Existing tungsten halogen reflector lamp device 2: Reflector with typical parabolic, elliptical or dome shape (lamp housing) -40- 200809133 (37) 2 a: 2 rearwardly projecting neck region 3: reflective inner surface of reflector lamp assembly 1: optical film coating 5: arc tube bulb or wick 5b: spiral bulb or wick 6 a : Opening (light is emitted through the opening) 6b: reflector lens p7 for covering opening 6a: arc tube electrode 7b: spiral tungsten wick 8b: bulb contact 9a: electrical pin 10: HID reflector lamp of the present invention 12: reflector housing 12a in a typical parabolic, elliptical, or dome shape: neck-shaped region 13 projecting rearward: reflective inner surface φ 14 of reflector luminaire device 10: not deposited on any other stack "Type 2 coating stack" coating 14a: - type coating stack (first set of stacks to be deposited to form a coating) 14b: Type 2 coating stack 15a deposited on a type of coating stack: arc Tube bulb or wick 15b: spiral bulb or wick 16: Light 16a projected by an existing reflector lens: light projected by the lens of the invention 17: arc tube contact -41 - 200809133 (38) 17b: spiral tungsten wick 18 a : first connection point or bulb Contact 18b: second connection point or bulb contact 19a: first electrical lead 19b: second electrical lead 20: tungsten halogen lamp device 22 of the invention: single layer 24: multilayer stack: high refractive index layer 77 Η

L :低折射率層7? L 30:本發明的 HID反射器燈具裝置 32 :反射器壁部分 40 :本發明的鎢鹵素燈裝置 60 :燈具 62 : UV栅板 φ 64 :反射器 65 : UV感測器 -42-L: low refractive index layer 7? L 30: HID reflector lamp device 32 of the present invention: reflector wall portion 40: tungsten halogen lamp device 60 of the present invention: lamp 62: UV grid plate φ 64: reflector 65: UV Sensor-42-

Claims (1)

200809133 (1) 十、申請專利範圍 1 · 一種干擾濾波器塗層,其包含: 含有多個下列者的塗層 a) —層低折射率材料,其與下者交錯 b) —層高折射率材料,以及 c) 多個抗高溫及/或紫外射線損害的該高折射率層 ’ B 在暴露於電磁光譜的紫外線部分及/或高溫時,該塗 層具有基本上穩定的電阻係數性質。 2 ·如申請專利範圍第1項之干擾濾波器塗層,其 進一步包含其中該塗層選擇性地反射可見光,但傳遞紅外 射線。 3 ·如申請專利範圍第1項之干擾濾波器塗層,其 進一步包含其中該塗層選擇性地反射至少9 5 % 、波長介 於400-700 nm的可見光,以及傳遞至少8〇% 、波長大 # 於870 nm的紅外射線。 4 ·如申請專利範圍第1項之干擾濾波器塗層,其 中該低折射率材料進一步包含具有折射率低於1 . 8,且其 中該材料的熔點溫度高於500。(:。 5 ·如申請專利範圍第1項之干擾濾波器塗層,其 進一# €含其中該低折射率材料係選自基本上由下列所組 成之群· Si〇x、Si〇2、MgF2、si〇、si、γ2〇3、Al2〇3、 BaF2、CaF2、CeF3、Na3AlF6、NdF3、YF3、A1F3 或其混 合。 - 43- 200809133 (2) 中 一如申明專利範圍第丨項$干擾濾波器塗層,其 該高折射率材料進-步包含具有折射率等於或大於二 且該材料的熔點溫度高於5〇〇 一 7.如申請專利範圍第1項之干擾濾波器塗層,其 進—步包含其中該高折射率材料係選自基本上由下列所組 成之群.Ta2〇5 或 Nb2〇5、Hf〇2、2价、助2 ' m〇2、 ln203或其混合。 • 8.如申請專利範圍第7項之干擾濾波器塗層,其 進一步包含封紫外線及/或高溫敏感的高折射率材料。 9·如申請專利範圍第8項之干擾濾波器塗層,其 進一步包含選自基本上由下列所組成之群之高折射率材料 :Ti02、Tix〇Y或其混合。 10· —種塗層,其包含: 含有下列的塗層, 包含多個下列者之至少一塗層堆疊 i) 一層低折射率的材料,其與下者交錯 ii) 一層基本上電氣穩定的高折射率材料。 11·如申請專利範圍第 10項之塗層,其進一步包 含其中該堆疊所提供的反射濾波器表面係反射電磁射線中 的預定部分,且傳遞電磁射線中的預定部分。 1 2 ·如申請專利範圍第11項之塗層,其進一步包含 其中: 該經反射的電磁射線中的預定部分係包含可見光,以 及 -44 - 200809133 (3) 該經傳遞的電磁射線中的預定部分係包含紅外射線。 1 3 ·如申請專利範圍第1 2項之塗層,其進一步包含 其中: 該經反射的電磁射線中的預定部分係包含紅外射線, 以及 該經傳遞的電磁射線中的預定部分係包含可見光。 14 ·如申請專利範圍第 1 0項之塗層,其進一步包 Φ 含其中該電氣穩定的高折射率材料係選自基本上由下列所 組成之群:Ta2〇5 或 Nb2〇5、Hf〇2、Zr02、WO:、Mo2、 ln203或其混合。 1 5.如申請專利範圍第1 〇項之塗層,其進一步包 含其中該至少一塗層堆疊係包含多數個該塗層堆疊。 16.如申請專利範圍第10項之塗層,其進一步包 3其中該问折射率材料當暴露於電磁光譜的紫外線部分及 /或高溫時,係維持基本上穩定的電阻係數。 Φ 17 ·如申請專利範圍第15項之塗層,其進一步包 含其中該外部堆疊係由該高折射率材料與該低折射率材料 的層父錯所組成’且至少一內部堆疊係由下列層所組成·· i)低折射率材料,其係與下列者交_ i i)對紫外線敏感的高折射率材料。 18. —種製造反射塗層的方法,其包含以下步驟: a)提供多個下列者: i) ——層低折射率的材料’其係與下列者交錯 ii) 一層基本上電氣穩定的高折射率材料, -45· 200809133 (4) b) 提供多個抗紫外射線及/或高溫的該高折射率層, 並且當暴露於局溫及/或電磁光譜的紫外線部分時,具有 基本上穩定的電阻率性質, c) 將該塗層沉積在反射基底表面上,以及 d) 在該反射基底的表面上將該塗層定制爲特定的形 狀’以投射出具有所欲色溫、强度以及色品的光線。 19· 一種利用反射器的燈具,該反射器具有一個反射 φ 內表面和一個反射外表面,其中該反射內表面、反射外表 面,或是該兩個表面係經塗覆有干擾濾波器塗層,其包含 a) 多個低折射率材料與高折射率材料交錯的層,以 及 b) 多個抗UV射線及/或高溫損害效應的該高折射率 層, 該塗層暴露於電磁光譜的UV部分及/或高溫時,係具 φ 有基本上穩定電阻係數性質。 2 0. —種由玻璃、塑膠、陶瓷、玻璃陶瓷、金屬或其 他材料所製成的反射器,其包含一個具有反光表面的反射 前部,用於向前投射該反射器的反射光線,以及一個終止 於一加長、且向後突出的空腔之後部,其中該空腔的內表 面並不是該前反射表面的組成部分;該反射器係以干擾濾 波器塗層而塗覆於在該反光表面上,以及在該空腔的內表 面、外表面或該空腔的該兩個表面上,其當暴露在電磁光 譜的 UV部分及/或高溫時,係具有基本上穩定的電阻係 -46- 200809133 (5) 數性質。 2 1 · —種干擾濾波器塗層,其係供反射電磁射線中預 定的部分,以及傳遞電磁射線中預定的部分,其包含: a) 多個下列者: i) 一層低折射率的材料,其係與下者交錯 ii) 一層高折射率材料,以及 b) 多個抗紫外射線及/或高溫的該高折射率的層 該塗層暴露於電磁光譜的紫外線部分及/或高溫時, 具有基本上穩定的電氣性質。 2 2 .如申請專利範圍第 2 1項之干擾濾波器塗層, 其進一步包含該塗層係作爲由玻璃、金屬、塑膠、陶瓷、 玻璃陶瓷或其組合所製之反射器的塗層,其中燈泡係可拆 卸式與燈具連接,或是通過固定式地與燈具連接,以符合 照明、舞臺和劇場、醫療照明、投影照明的應用。200809133 (1) X. Patent application scope 1 · An interference filter coating comprising: a coating containing a plurality of: a) low refractive index material interlaced with b) - high refractive index The material, and c) the plurality of high refractive index layers 'B resistant to high temperature and/or ultraviolet radiation damage' B have substantially stable resistivity properties when exposed to the ultraviolet portion of the electromagnetic spectrum and/or high temperatures. 2. The interference filter coating of claim 1, further comprising wherein the coating selectively reflects visible light but transmits infrared radiation. 3. The interference filter coating of claim 1, further comprising: wherein the coating selectively reflects at least 95% of visible light having a wavelength between 400 and 700 nm, and transmits at least 8%, wavelength Large # infrared rays at 870 nm. 4. The interference filter coating of claim 1, wherein the low refractive index material further comprises a refractive index of less than 1.8, and wherein the material has a melting point temperature above 500. (: 5) The interference filter coating of claim 1 of the patent scope, wherein the low refractive index material is selected from the group consisting essentially of: Si〇x, Si〇2 MgF2, si〇, si, γ2〇3, Al2〇3, BaF2, CaF2, CeF3, Na3AlF6, NdF3, YF3, A1F3 or a mixture thereof. - 43- 200809133 (2) Zhongyi as claimed in the patent scope item 干扰 interference a filter coating, the high refractive index material further comprising an interference filter coating having a refractive index equal to or greater than two and a melting point temperature of the material higher than 5〇〇-7. The further step comprises wherein the high refractive index material is selected from the group consisting essentially of: Ta2〇5 or Nb2〇5, Hf〇2, 2 valence, 2' m〇2, ln203 or a mixture thereof. • 8. The interference filter coating of claim 7 further comprising a high refractive index material that is UV and/or high temperature sensitive. 9. The interference filter coating according to claim 8 of the patent application, Further comprising a high refractive index material selected from the group consisting essentially of: TiO 2 , Tix〇Y or a mixture thereof. 10. A coating comprising: a coating comprising at least one of a plurality of coatings i) a layer of a low refractive index material interlaced ii) A layer of substantially electrically stable high refractive index material. 11. The coating of claim 10, further comprising wherein the reflective filter surface provided by the stack reflects a predetermined portion of the electromagnetic radiation and delivers a predetermined portion of the electromagnetic radiation. 1 2 - The coating of claim 11, further comprising: wherein the predetermined portion of the reflected electromagnetic radiation comprises visible light, and -44 - 200809133 (3) predetermined in the transmitted electromagnetic radiation Some parts contain infrared rays. 13. The coating of claim 12, further comprising: wherein the predetermined portion of the reflected electromagnetic radiation comprises infrared radiation, and wherein the predetermined portion of the transmitted electromagnetic radiation comprises visible light. 14. A coating according to claim 10, further comprising Φ wherein the electrically stable high refractive index material is selected from the group consisting essentially of Ta2〇5 or Nb2〇5, Hf〇 2. Zr02, WO:, Mo2, ln203 or a mixture thereof. 1 5. The coating of claim 1, further comprising wherein the at least one coating stack comprises a plurality of the coating stacks. 16. The coating of claim 10, further comprising wherein the refractive index material maintains a substantially stable resistivity when exposed to the ultraviolet portion of the electromagnetic spectrum and/or to elevated temperatures. Φ 17 The coating of claim 15 further comprising wherein the external stack consists of a layer of the high refractive index material and the low refractive index material and at least one internal stack is composed of the following layers Composition·i) Low refractive index material, which is a high refractive index material sensitive to ultraviolet rays. 18. A method of making a reflective coating comprising the steps of: a) providing a plurality of: i) - a layer of low refractive index material - interlaced with ii) a layer of substantially electrically stable high Refractive index material, -45· 200809133 (4) b) providing a plurality of high refractive index layers resistant to ultraviolet rays and/or high temperatures, and substantially stable when exposed to ultraviolet portions of the local temperature and/or electromagnetic spectrum Resistivity properties, c) depositing the coating on the surface of the reflective substrate, and d) customizing the coating to a particular shape on the surface of the reflective substrate to project the desired color temperature, intensity, and chromaticity The light. 19. A luminaire utilizing a reflector having a reflective φ inner surface and a reflective outer surface, wherein the reflective inner surface, the reflective outer surface, or both surfaces are coated with an interference filter coating And comprising: a) a plurality of layers of low refractive index material interleaved with the high refractive index material, and b) a plurality of high refractive index layers resistant to UV rays and/or high temperature damage, the coating being exposed to UV of the electromagnetic spectrum When partially and/or at high temperatures, the tie φ has a substantially stable resistivity property. 2 0. A reflector made of glass, plastic, ceramic, glass ceramic, metal or other material, comprising a reflective front with a reflective surface for projecting the reflected light of the reflector forward, and An end portion of the cavity terminating in an elongated, rearward projection, wherein the inner surface of the cavity is not part of the front reflective surface; the reflector is applied to the reflective surface with an interference filter coating And on the inner surface, the outer surface of the cavity or the two surfaces of the cavity, which when exposed to the UV portion of the electromagnetic spectrum and/or high temperature, have a substantially stable resistance system -46- 200809133 (5) Number nature. 2 1 - an interference filter coating for the predetermined portion of the reflected electromagnetic ray and for transmitting a predetermined portion of the electromagnetic ray comprising: a) a plurality of: i) a layer of low refractive index material, Interlaced with the latter ii) a layer of high refractive index material, and b) a plurality of layers of high refractive index that are resistant to ultraviolet radiation and/or high temperatures, the coating being exposed to the ultraviolet portion of the electromagnetic spectrum and/or at elevated temperatures, Basically stable electrical properties. 2 2. The interference filter coating of claim 21, further comprising the coating as a coating of a reflector made of glass, metal, plastic, ceramic, glass ceramic or a combination thereof, wherein The bulb is detachably connected to the luminaire or is fixedly connected to the luminaire to suit lighting, stage and theater, medical lighting, and projection lighting applications. -47--47-
TW095134323A 2006-08-10 2006-09-15 Optical reflecting thin film coatings TW200809133A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2006/031058 WO2008018871A1 (en) 2006-08-10 2006-08-10 Optical reflecting thin-film coatings

Publications (1)

Publication Number Publication Date
TW200809133A true TW200809133A (en) 2008-02-16

Family

ID=39033294

Family Applications (1)

Application Number Title Priority Date Filing Date
TW095134323A TW200809133A (en) 2006-08-10 2006-09-15 Optical reflecting thin film coatings

Country Status (2)

Country Link
TW (1) TW200809133A (en)
WO (1) WO2008018871A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI472952B (en) * 2010-03-03 2015-02-11 Nat Univ Chung Hsing Control button and its operating method
CN113068406A (en) * 2019-10-31 2021-07-02 高丽大学校产学协力团 Radiation cooling element and method for producing the same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8035285B2 (en) 2009-07-08 2011-10-11 General Electric Company Hybrid interference coatings, lamps, and methods
US20140077681A1 (en) * 2012-09-18 2014-03-20 General Electric Company Enhanced aluminum thin film coating for lamp reflectors
CN104969099A (en) 2012-09-26 2015-10-07 8797625加拿大有限公司 Multilayer optical interference filter
US20150267908A1 (en) * 2014-03-18 2015-09-24 GE Lighting Solutions, LLC Integration of light emitting diode (led) optical reflectors with multilayer dielectric thin film coating into heat dissipation paths
CN104103490A (en) * 2014-07-04 2014-10-15 安徽华夏显示技术股份有限公司 Reflection cup for xenon discharging light source and fabrication and surface treatment processes thereof
CN111580305A (en) * 2020-05-13 2020-08-25 Tcl华星光电技术有限公司 Backlight module

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3325666A (en) * 1964-07-24 1967-06-13 Polaroid Corp Inert lamp reflector
CA2017471C (en) * 1989-07-19 2000-10-24 Matthew Eric Krisl Optical interference coatings and lamps using same
US5923471A (en) * 1996-11-26 1999-07-13 Deposition Sciences, Inc. Optical interference coating capable of withstanding severe temperature environments
US6441541B1 (en) * 1999-08-25 2002-08-27 General Electric Company Optical interference coatings and lamps using same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI472952B (en) * 2010-03-03 2015-02-11 Nat Univ Chung Hsing Control button and its operating method
CN113068406A (en) * 2019-10-31 2021-07-02 高丽大学校产学协力团 Radiation cooling element and method for producing the same
US11543157B2 (en) 2019-10-31 2023-01-03 Korea University Research And Business Foundation Radiative cooling device and method of manufacturing the same

Also Published As

Publication number Publication date
WO2008018871A1 (en) 2008-02-14

Similar Documents

Publication Publication Date Title
TW200809133A (en) Optical reflecting thin film coatings
EP0617092B1 (en) Article having a light-scattering coating, its preparation and use
CN101529554A (en) Incandescent lamp incorporating extended high-reflectivity IR coating and lighting fixture incorporating such an incandescent lamp
US8253309B2 (en) Incandescent lamp incorporating reflective filament supports and method for making it
CN101878516A (en) The IR reflecting grating that is used for lamp
JPH06302302A (en) Light transmitting product and lamp based therewith
JP2002504262A (en) Lamp having an optical interference filter
WO2007078665A1 (en) Method for optimizing lamp spectral output
JP2005285775A (en) Improved plasma lamp and method
WO2006006097A2 (en) Compact fluorescent lamp
JP2008158145A (en) Antireflection film and optical article with the same
US6471376B1 (en) Increased life reflector lamps
US6727650B2 (en) High pressure discharge lamp with reflection layer on the neck portion
JP2007242370A (en) Reflector and light source apparatus
JP2007511037A (en) Electric lamp with optical interference film
TW200400532A (en) High-pressure gas discharge lamp
CN102187254A (en) High refractive index materials for energy efficient lamps
US6710520B1 (en) Stress relief mechanism for optical interference coatings
JPH10134767A (en) Metal halide lamp with transparent insulation coating film
WO2008078241A1 (en) White light emitting electric lamp assembly
JP3054663B2 (en) Multilayer reflector
JP4274036B2 (en) Short arc type mercury lamp
WO2001075358A1 (en) Luminaire
JP2007521621A (en) light bulb
WO2009156899A1 (en) Multilayer filter for lamps.