JP2005308473A - Eccentricity measuring method and eccentricity measuring device - Google Patents

Eccentricity measuring method and eccentricity measuring device Download PDF

Info

Publication number
JP2005308473A
JP2005308473A JP2004123832A JP2004123832A JP2005308473A JP 2005308473 A JP2005308473 A JP 2005308473A JP 2004123832 A JP2004123832 A JP 2004123832A JP 2004123832 A JP2004123832 A JP 2004123832A JP 2005308473 A JP2005308473 A JP 2005308473A
Authority
JP
Japan
Prior art keywords
optical system
optical
measured
light source
eccentricity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004123832A
Other languages
Japanese (ja)
Inventor
Eiji Yasuda
英治 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2004123832A priority Critical patent/JP2005308473A/en
Publication of JP2005308473A publication Critical patent/JP2005308473A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an eccentricity measuring method or the like capable of measuring the eccentricity amount of all the optical surfaces of an optical system equipped with a reflecting optical surface having power. <P>SOLUTION: This method is characterized by including a projecting process for projecting a light source 101 onto a prescribed position O by a projecting optical system 120, an imaging process for imaging a reflection image of the light source 101 on the light receiving surface of a CCD camera 114 by an imaging optical system 130, a reflection image position detection process for detecting the reflection image position I by the CCD camera 114, a light source object image distance changing process for changing the I-O distance L between the prescribed position O and the reflection image position I, a repeating measuring process for repeating the light source object image distance changing process and the reflection image position detection process in the state of two or more different I-O distances L corresponding to the number of the degree of eccentricity freedom of a reflection optical surface 12 when using a refraction optical surface 13 entered by light reflected by the reflection optical surface 12 as an optical surface to be measured, and an eccentricity amount calculation process for calculating the eccentricity amount of each optical surface based on a detection result of two or more reflection image position detection processes. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、光学系、例えば、パワーを有する反射光学面を備える光学系に好適な偏心測定方法及び偏心測定装置に関する。   The present invention relates to an eccentricity measuring method and an eccentricity measuring apparatus suitable for an optical system, for example, an optical system having a reflective optical surface having power.

複数の光学面で構成される光学系では、組み上がり後に、各光学面の姿勢が設計値どおりに保持されていることが望ましい。組み上がり後の各光学面の姿勢が設計値と異なる状態は、偏心が存在する状態である。このような状態では、光学系の光学性能が劣化してしまう。光学面の偏心による光学性能の劣化は、光学系が小型になるほど顕著になる。このため、光学系、特に小型な光学系では、組み上がり後の偏心測定を高精度に行うことは重要である。以後、本明細書において、「複数の光学面を組み上げた後に各光学面の姿勢を測定する」ことを「組み上がり偏心測定」という。従来技術の、組み上がり偏心測定を行う偏心測定装置の構成や偏心測定方法は、例えば、以下の特許文献1に提案されている。   In an optical system composed of a plurality of optical surfaces, it is desirable that the posture of each optical surface is maintained as designed after assembly. A state in which the posture of each optical surface after assembly is different from the design value is a state in which eccentricity exists. In such a state, the optical performance of the optical system is deteriorated. Degradation of optical performance due to decentering of the optical surface becomes more prominent as the optical system becomes smaller. For this reason, in an optical system, particularly a small optical system, it is important to perform decentration measurement after assembling with high accuracy. Hereinafter, in this specification, “measuring the posture of each optical surface after assembling a plurality of optical surfaces” is referred to as “assembled eccentricity measurement”. The configuration of an eccentricity measuring apparatus and an eccentricity measuring method for measuring assembled eccentricity according to the prior art are proposed in, for example, Patent Document 1 below.

近年、銀塩カメラ、デジタルカメラ、内視鏡、携帯機器等に用いられる光学系は、薄型化、小型化が要求されている。この要求を満たすため、このような光学系では、光学系の中にパワー(屈折力)を有する反射光学面を含むことが多くなっている。このため、パワーを有する反射光学面を含む光学系(レンズ部組)が、組み上がり偏心測定の対象となる。パワーを有する反射光学面を備える光学系としては、例えば入射光の光路を所定角度だけ偏向させて、入射光の光路とは異なる光路へ反射する構成が知られている。   In recent years, an optical system used for a silver salt camera, a digital camera, an endoscope, a portable device, and the like is required to be thin and small. In order to satisfy this requirement, such an optical system often includes a reflective optical surface having power (refractive power) in the optical system. For this reason, an optical system (lens unit set) including a reflective optical surface having power is an object of assembly decentration measurement. As an optical system including a reflective optical surface having power, for example, a configuration in which an optical path of incident light is deflected by a predetermined angle and reflected to an optical path different from the optical path of incident light is known.

特開昭58−200127号公報Japanese Patent Laid-Open No. 58-200237

しかしながら、例えば特許文献1に提案された従来技術の偏心測定装置及び偏心測定方法では、反射光学面を備えている光学系の組上がり偏心測定を行うことが以下の理由から困難である。まず、反射光学面からの反射光は、上述のように、入射光とは異なる光路へ偏向するように反射される。これにより、測定光学系から射出して被測定光学系へ入射した光は、反射光学面により、測定光学系とは異なる方向へ反射されてしまう。このため、従来技術の偏心測定装置及び偏心測定方法では、反射光学面の偏心量を測定できない。   However, for example, in the prior art eccentricity measuring apparatus and the eccentricity measuring method proposed in Patent Document 1, it is difficult to measure the assembled eccentricity of an optical system having a reflective optical surface for the following reason. First, the reflected light from the reflecting optical surface is reflected so as to be deflected to an optical path different from the incident light as described above. Thereby, the light emitted from the measurement optical system and incident on the optical system to be measured is reflected in a direction different from that of the measurement optical system by the reflection optical surface. For this reason, the eccentricity measuring device and the eccentricity measuring method of the prior art cannot measure the amount of eccentricity of the reflective optical surface.

さらに、組み上がり偏心測定においては、パワーを有する反射光学面からの反射光が入射する光学面偏心量も測定する必要がある。ここで、反射光学面のパワー及び偏心は、反射光が入射する光学面の偏心測定に影響する。このため、特に、反射光学面の偏心量を測定できないと、反射光学面以降の光学面の偏心量も測定することができなくなる。この結果、反射光学面の位置が前方(物体側)にあるような光学系では、被測定光学系の大半の光学面について、その面の偏心量を測定することができなくなってしまう。このように、従来技術の偏心測定装置及び偏心測定方法では、反射光学面を備える光学系、特に小型な光学系の偏心量を、高精度で測定することが困難である。   Further, in the assembly eccentricity measurement, it is necessary to measure the amount of eccentricity of the optical surface on which the reflected light from the reflective optical surface having power enters. Here, the power and decentering of the reflecting optical surface affect the decentering measurement of the optical surface on which the reflected light is incident. For this reason, in particular, if the amount of eccentricity of the reflecting optical surface cannot be measured, the amount of eccentricity of the optical surfaces after the reflecting optical surface cannot be measured. As a result, in an optical system in which the position of the reflective optical surface is in the front (object side), it becomes impossible to measure the amount of eccentricity of most of the optical surfaces of the optical system to be measured. As described above, in the eccentricity measuring apparatus and the eccentricity measuring method of the prior art, it is difficult to measure the eccentricity of an optical system having a reflective optical surface, particularly a small optical system, with high accuracy.

本発明は、上記問題点に鑑みてなされたものであり、パワーを有する反射光学面を備える光学系の全ての光学面の偏心量を、組み上がった状態で高精度に測定できる偏心測定方法及び偏心測定装置を提供することを目的とする。   The present invention has been made in view of the above problems, and an eccentricity measuring method capable of measuring the amount of eccentricity of all optical surfaces of an optical system including a reflective optical surface having power with high accuracy in an assembled state, and An object of the present invention is to provide an eccentricity measuring device.

上述した課題を解決し、目的を達成するために、第1の本発明によれば、パワーを有する少なくとも一つの反射光学面と、反射光学面で反射した光が入射する少なくとも一つの屈折光学面とを有する被測定光学系の各光学面の偏心量を測定する偏心測定方法であって、照明光を供給する光源又は照明された指標を投影光学系により被測定光学系の被測定光学面に対する所定位置へ投影する投影工程と、被測定光学面からの反射光で形成される、光源の反射像又は指標の反射像を結像光学系により光検出器の受光面に結像する結像工程と、光源の反射像の位置又は指標の反射像の位置を光検出器により検出する反射像位置検出工程と、反射像位置検出工程の検出結果に基づいて、被測定光学系の被測定光学面の偏心量を算出する偏心量算出工程と、投影光学系による光源の共役像又は指標の共役像の位置と、結像光学系による光検出器の受光面の共役像の位置との光軸に沿った間隔である光源物像距離を変える光源物像距離可変工程と、被測定光学系の反射光学面で反射した光が入射する少なくとも一つの屈折光学面を被測定光学面としたときに、反射光学面の偏心自由度の数に応じて、光源物像距離可変工程と反射像位置検出工程とを2以上の異なる光源物像距離の状態で繰り返し行う繰り返し測定工程とを含むことを特徴とする偏心測定方法を提供できる。   In order to solve the above-described problems and achieve the object, according to the first aspect of the present invention, at least one reflective optical surface having power and at least one refractive optical surface on which light reflected by the reflective optical surface is incident. A decentering measurement method for measuring the decentering amount of each optical surface of an optical system to be measured having a light source for supplying illumination light or an illuminated indicator with respect to the optical surface to be measured of the optical system to be measured by a projection optical system Projection process for projecting to a predetermined position and imaging process for forming a reflected image of a light source or a reflected image of an index formed by reflected light from an optical surface to be measured on a light receiving surface of a photodetector by an imaging optical system And a reflected image position detecting step for detecting the position of the reflected image of the light source or the position of the reflected image of the index by the photodetector, and the measured optical surface of the measured optical system based on the detection result of the reflected image position detecting step. Process for calculating the amount of eccentricity The distance between the positions of the conjugate image of the light source by the projection optical system or the conjugate image of the index and the position of the conjugate image of the light receiving surface of the photodetector by the imaging optical system is changed along the optical axis. Depending on the number of degrees of freedom of decentration of the reflecting optical surface when the light source object image distance changing step and at least one refractive optical surface on which the light reflected by the reflecting optical surface of the measuring optical system is incident are used as the measuring optical surface Thus, it is possible to provide an eccentricity measuring method including a repeated measurement step in which the light source object image distance varying step and the reflected image position detecting step are repeatedly performed in the state of two or more different light source object image distances.

また、第2の本発明によれば、パワーを有する少なくとも一つの反射光学面と、反射光学面で反射した光が入射する少なくとも一つの屈折光学面とを有する被測定光学系の各光学面の偏心量を測定する偏心測定装置であって、照明光を供給する光源又は照明された指標と、光源又は指標を被測定光学系の被測定光学面に対する所定位置へ投影する投影光学系と、被測定光学面からの反射光で形成される、光源の反射像又は指標の反射像を所定面に結像する結像光学系と、所定面又は所定面の近傍に設けられ、光源の反射像の位置又は指標の反射像の位置を検出する光検出器と、投影光学系による光源の共役像又は指標の共役像の位置と、結像光学系による光検出器の受光面の共役像の位置との光軸に沿った間隔である光源物像距離を変えるための可変駆動部と、光検出器からの位置検出結果に基づいて、被測定光学系を構成する各光学面の偏心量を算出する偏心量算出部とを有し、偏心量算出部は、被測定光学系の反射光学面で反射した光が入射する少なくとも一つの屈折光学面を被測定光学面としたときに、反射光学面の偏心自由度の数に応じて、投影光学系による光源の共役像又は指標の共役像の位置と、結像光学系による光検出器の受光面の共役像の位置との光軸に沿った間隔である光源物像距離を変えた2以上の異なる状態における位置検出結果に基づいて、各光学面の偏心量を算出することを特徴とする偏心測定装置を提供できる。   According to the second aspect of the present invention, each optical surface of the optical system to be measured has at least one reflective optical surface having power and at least one refractive optical surface on which light reflected by the reflective optical surface is incident. An eccentricity measuring apparatus for measuring the amount of eccentricity, comprising: a light source that supplies illumination light or an illuminated index; a projection optical system that projects the light source or index to a predetermined position with respect to the measured optical surface of the measured optical system; An imaging optical system that forms a reflected image of a light source or a reflected image of an index on a predetermined surface, which is formed by reflected light from the measurement optical surface, and is provided in the vicinity of the predetermined surface or the predetermined surface. A position detector or a position of the reflected image of the index, a position of a conjugate image of the light source or index conjugate image by the projection optical system, and a position of the conjugate image of the light receiving surface of the photodetector by the imaging optical system To change the distance of the light source object image, which is the distance along the optical axis And a decentering amount calculation unit for calculating the decentering amount of each optical surface constituting the optical system to be measured based on the position detection result from the photodetector. When at least one refracting optical surface on which light reflected by the reflecting optical surface of the measuring optical system is incident is used as the optical surface to be measured, the conjugate of the light source by the projection optical system depends on the number of degrees of freedom of eccentricity of the reflecting optical surface. Positions in two or more different states in which the distance of the light source object image, which is the distance along the optical axis, between the position of the conjugate image of the image or index and the position of the conjugate image of the light receiving surface of the photodetector by the imaging optical system is changed An eccentricity measuring device can be provided that calculates the amount of eccentricity of each optical surface based on the detection result.

本発明によれば、例えば、パワーを有する反射光学面を備える光学系の各光学面の偏心量を、組み上がった状態で高精度に測定できるという効果を奏する。   According to the present invention, for example, there is an effect that the amount of eccentricity of each optical surface of an optical system including a reflective optical surface having power can be measured with high accuracy in an assembled state.

以下に、本発明に係る偏心測定装置及び偏心測定方法の実施例を図面に基づいて詳細に説明する。なお、この実施例により本発明が限定されるものではない。   Embodiments of an eccentricity measuring apparatus and an eccentricity measuring method according to the present invention will be described below in detail with reference to the drawings. In addition, this invention is not limited by this Example.

(偏心測定の原理)
図1と図2とを参照して、本実施例における偏心測定の原理を説明する。図1において、被測定光学系は、4枚のレンズ面S1、S2、S3、S4で構成されている。レンズ面S1、S2、S3、S4のうち、レンズ面S4の偏心量を測定する場合を考える。投影光学系(不図示)により、レンズ面S4の見かけの曲率中心位置C4とは異なる位置I1に、光源の光源像を投影する。見かけの曲率中心位置とは、他のレンズ面S1、S2、S3により形成される、レンズ面S4の設計値である曲率中心位置の像位置をいう。なお、レンズ面S1、S2、S3は、レンズ面S4と結像光学系(不図示)との間に存在している。
(Principle of eccentricity measurement)
With reference to FIG. 1 and FIG. 2, the principle of the eccentricity measurement in a present Example is demonstrated. In FIG. 1, the optical system to be measured is composed of four lens surfaces S1, S2, S3, and S4. Consider a case in which the amount of eccentricity of the lens surface S4 is measured among the lens surfaces S1, S2, S3, and S4. A projection optical system (not shown) projects a light source image of the light source at a position I1 different from the apparent center of curvature position C4 of the lens surface S4. The apparent curvature center position refers to the image position of the curvature center position, which is the design value of the lens surface S4, formed by the other lens surfaces S1, S2, and S3. The lens surfaces S1, S2, and S3 exist between the lens surface S4 and the imaging optical system (not shown).

そして、被測定光学面であるレンズ面S4による光源の反射像が、位置I2に形成される。測定基準軸Bに対して、全てのレンズ面S1、S2、S3、S4に偏心がなければ、測定基準軸B上の位置に、反射像が形成される。これに対して、いずれかのレンズ面S1、S2、S3、S4が偏心していると、測定基準軸Bに直交する面内の位置I2に、光源の反射像が形成される。このため、被測定面であるレンズ面S4の偏心量は、測定基準軸Bに対する反射像の位置I2の距離から求めることができる。   Then, a reflection image of the light source by the lens surface S4 that is the optical surface to be measured is formed at the position I2. If all the lens surfaces S1, S2, S3, and S4 are not decentered with respect to the measurement reference axis B, a reflected image is formed at a position on the measurement reference axis B. On the other hand, if any one of the lens surfaces S1, S2, S3, and S4 is decentered, a reflected image of the light source is formed at a position I2 in a plane orthogonal to the measurement reference axis B. For this reason, the amount of eccentricity of the lens surface S4 that is the surface to be measured can be obtained from the distance of the position I2 of the reflected image with respect to the measurement reference axis B.

なお、図1において、紙面に垂直な方向をx方向、紙面と平行な方向をy方向とする。また、測定基準軸Bから反射像の位置I2までの距離を、ふれ量Δx及びΔy(以下、「ふれ量Δ」という。)とする。   In FIG. 1, the direction perpendicular to the paper surface is defined as the x direction, and the direction parallel to the paper surface is defined as the y direction. The distances from the measurement reference axis B to the position I2 of the reflected image are referred to as shake amounts Δx and Δy (hereinafter referred to as “flow amount Δ”).

上述のことを、4枚のレンズ面S1〜S4の構成を例にして、数式を用いてさらに説明する。ふれ量Δは、個々のレンズ面の偏心量、即ち測定基準軸Bに対する傾きεを変数とする関数で表すことができる。近軸領域においては、ふれ量Δは各レンズ面S1〜S4の偏心量εの線形結合で表すことができる。このため、ふれ量Δは、不図示の測定光学系側のレンズ面S1から近軸光線追跡を行うことで順次に求めることができる。例えば、図1のような4面からなる被測定光学系の場合、ふれ量Δと偏心量εの関係は、以下の(1)式で表すことができる。   The above will be further described using mathematical expressions by taking the configuration of the four lens surfaces S1 to S4 as an example. The amount of deflection Δ can be expressed by a function having the amount of eccentricity of each lens surface, that is, the inclination ε with respect to the measurement reference axis B as a variable. In the paraxial region, the deflection amount Δ can be expressed by a linear combination of the eccentric amounts ε of the lens surfaces S1 to S4. For this reason, the deflection amount Δ can be obtained sequentially by performing paraxial ray tracing from the lens surface S1 on the measurement optical system side (not shown). For example, in the case of an optical system to be measured having four surfaces as shown in FIG. 1, the relationship between the amount of deflection Δ and the amount of eccentricity ε can be expressed by the following equation (1).

Figure 2005308473
Figure 2005308473

ここで、i=1〜4の整数として、
Δiはレンズ面Sによる反射像のふれ量、
εはレンズ面Sの偏心量、
11〜a44は周知の近軸光線追跡によって定まる各レンズ面Sに固有の定数、
をそれぞれ示す。
Here, as an integer of i = 1 to 4,
Δi is the amount of deflection of the reflected image by the lens surface S i ,
ε i is the amount of eccentricity of the lens surface S i ,
a 11 ~a 44-specific constants each lens surface S i determined by the paraxial ray tracing is well known,
Respectively.

さらに、被測定光学系がn面のレンズ面から構成されているときは、n個成分のふれ量Δに関する列ベクトルと、n個成分の偏心量εに関する列ベクトルとの、n行×n列の行列式(2)で表すことができる。このように、ふれ量Δと偏心量εとは、所定の関数fで関連付けることができる。   Further, when the optical system to be measured is composed of n lens surfaces, n rows × n columns of a column vector related to the n component deflection Δ and a column vector related to the n component eccentricity ε. Can be expressed by the determinant (2). In this way, the deflection amount Δ and the eccentricity amount ε can be related by a predetermined function f.

Figure 2005308473
Figure 2005308473

このため、被測定光学系を構成する各レンズ面S1〜S4について、ふれ量Δを測定することで、関数fに基づいて、測定基準軸Bに対する各レンズ面S1〜S4の偏心量εを求めることができる。   For this reason, by measuring the deflection Δ for each of the lens surfaces S1 to S4 constituting the measured optical system, the eccentricity ε of each of the lens surfaces S1 to S4 with respect to the measurement reference axis B is obtained based on the function f. be able to.

次に、図2を用いて、偏心量を測定する基本的な構成を説明する。図2において、被測定光学系303は、レンズ304と反射光学面305とから構成されている。反射光学面305は、測定基準軸Bに対する傾き、例えば偏心量εを有している。ここでは、反射光学面(被測定面)305の偏心量εを測定する場合を考える。   Next, a basic configuration for measuring the amount of eccentricity will be described with reference to FIG. In FIG. 2, the optical system 303 to be measured includes a lens 304 and a reflective optical surface 305. The reflective optical surface 305 has an inclination with respect to the measurement reference axis B, for example, an eccentricity ε. Here, consider a case where the amount of eccentricity ε of the reflective optical surface (surface to be measured) 305 is measured.

レンズ302は、ビームスプリッタ306を透過した光源301からの光により、光源像を位置Oに形成する。位置Oは、反射光学面305の測定基準軸B上の見かけの曲率中心位置Cとは異なる位置である。なお、レンズ302は、投影光学系と結像光学系との機能とを兼用する。反射光学面305からの反射光により、光源301の反射像が位置Iに形成される。レンズ302は、ビームスプリッタ306を介して、反射像を光検出器の受光面307へ結像する。結像位置は、偏心が無いときは、測定基準軸B上に存在する。   The lens 302 forms a light source image at the position O by the light from the light source 301 that has passed through the beam splitter 306. The position O is a position different from the apparent curvature center position C on the measurement reference axis B of the reflective optical surface 305. Note that the lens 302 combines the functions of the projection optical system and the imaging optical system. A reflected image of the light source 301 is formed at a position I by the reflected light from the reflective optical surface 305. The lens 302 forms a reflected image on the light receiving surface 307 of the photodetector via the beam splitter 306. The imaging position exists on the measurement reference axis B when there is no eccentricity.

反射光学面305によるふれ量Δ(1次のふれ量)と、受光面307上のふれ量Δim(2次のふれ量)とは、以下の関係で示される。
Δim=β×Δ
ここで、βは結像光学系であるレンズ302の結像倍率である。
The deflection amount Δ (primary deflection amount) by the reflection optical surface 305 and the deflection amount Δim (secondary deflection amount) on the light receiving surface 307 are expressed by the following relationship.
Δim = β × Δ
Here, β is an imaging magnification of the lens 302 that is an imaging optical system.

このように、2次のふれ量Δimは、レンズ302の倍率で一義的に定まる。このため、レンズ302の倍率と、ふれ量Δimとに基づいて、ふれ量Δを算出できる。   Thus, the secondary shake amount Δim is uniquely determined by the magnification of the lens 302. Therefore, the shake amount Δ can be calculated based on the magnification of the lens 302 and the shake amount Δim.

(座標系の説明)
具体的な数値例を掲げる前に、図3を参照して、本明細書で用いる座標系について説明する。2点鎖線で示す光軸AXに沿って、光は紙面に対して右から左に向かって進む場合を基準とする。距離、長さLL、LL’等の符号は、紙面に対して右から左に向かって測る量を正、逆に左から右に向かって図る量を負とする。また、曲率半径Rは、レンズ面Sの面頂Vから曲率中心Cまでの距離と定義する。なお、図3で示す定義と異なる座標系を用いる場合は、その都度、異なる座標系の定義を言及する。
(Explanation of coordinate system)
Before giving specific numerical examples, the coordinate system used in this specification will be described with reference to FIG. A case where light travels from right to left with respect to the paper surface along the optical axis AX indicated by a two-dot chain line is a reference. The signs such as the distance, the length LL, and LL ′ are positive for the amount measured from right to left with respect to the paper surface, and negative for the amount that is measured from left to right. The radius of curvature R is defined as the distance from the top V of the lens surface S to the center of curvature C. In addition, when using a coordinate system different from the definition shown in FIG. 3, the definition of a different coordinate system is mentioned each time.

(偏心測定装置の概略構成)
図4は、本発明の実施例1に係る偏心測定装置100の概略構成を示す。偏心測定装置100は、測定光学系150と、偏心量算出部であるコンピュータ115と、被測定光学系取付け台170とで構成される。被測定光学系160は、被測定光学系取付け台170に取り付けられる。被測定光学系160として、プリズム光学系を用いる。このプリズム光学系は、パワーを有する少なくとも一つの反射光学面と、反射光学面で反射した光が入射する少なくとも一つの屈折光学面とを有する。被測定光学系160の構成につては、後述する。そして、偏心測定装置100により、被測定光学系160の各光学面の偏心量を組み上がった状態で測定する。まず、初めに偏心測定装置100の構成について説明し、次に偏心測定の原理及び手順について説明する。
(Schematic configuration of the eccentricity measuring device)
FIG. 4 shows a schematic configuration of the eccentricity measuring apparatus 100 according to the first embodiment of the present invention. The decentration measuring apparatus 100 includes a measuring optical system 150, a computer 115 serving as an eccentricity calculating unit, and a measured optical system mounting base 170. The measured optical system 160 is attached to the measured optical system mounting base 170. A prism optical system is used as the optical system 160 to be measured. This prism optical system has at least one reflecting optical surface having power and at least one refractive optical surface on which light reflected by the reflecting optical surface is incident. The configuration of the measured optical system 160 will be described later. Then, the eccentricity measuring apparatus 100 measures the amount of eccentricity of each optical surface of the optical system 160 to be measured in an assembled state. First, the configuration of the eccentricity measuring device 100 will be described, and then the principle and procedure of the eccentricity measurement will be described.

(偏心測定装置の構成)
測定光学系150は、光源101と、投影光学系120と、結像光学系130と、光検出器であるCCDカメラ114とを備えている。半導体レーザ等の光源101は、被測定光学系160を照明するための照明光を供給する。光源101からの光は、レンズ102を透過して、ビームスプリッタ104へ入射する。レンズ102は、可変駆動部であるモータ103により、光軸AXに沿った方向に移動できる。ビームスプリッタ104は、光源101からの入射光を反射して、光路を90°折り曲げる。ビームスプリッタ104として、例えば、透過光の強度と反射光の強度とが略1:1のハーフミラーを用いることができる。ビームスプリッタ104で反射した光は、レンズ105を透過する。レンズ102とレンズ105とで投影光学系120を構成する。投影光学系120は、被測定光学系160のうちの被測定光学面に対する所定の位置Oに、光源101の像を投影する。位置Oは、被測定光学面の見かけの曲率中心位置とは異なる位置である。見かけの曲率中心位置は、測定基準軸Bと一致している光軸AX上に存在している。
(Configuration of eccentricity measuring device)
The measurement optical system 150 includes a light source 101, a projection optical system 120, an imaging optical system 130, and a CCD camera 114 that is a photodetector. A light source 101 such as a semiconductor laser supplies illumination light for illuminating the optical system 160 to be measured. Light from the light source 101 passes through the lens 102 and enters the beam splitter 104. The lens 102 can be moved in a direction along the optical axis AX by a motor 103 which is a variable drive unit. The beam splitter 104 reflects incident light from the light source 101 and bends the optical path by 90 °. As the beam splitter 104, for example, a half mirror in which the intensity of transmitted light and the intensity of reflected light are approximately 1: 1 can be used. The light reflected by the beam splitter 104 passes through the lens 105. The lens 102 and the lens 105 constitute a projection optical system 120. The projection optical system 120 projects an image of the light source 101 at a predetermined position O with respect to the optical surface to be measured in the optical system 160 to be measured. The position O is a position different from the apparent center of curvature position of the optical surface to be measured. The apparent center of curvature position exists on the optical axis AX that coincides with the measurement reference axis B.

なお、光源101からの照明光で、指標を照明する構成としても良い。指標を照明する変形例の構成を図9−1に示す。図9−1は、指標183を照明するときの、照明ユニット180の構成を示す。その他の構成は、図4で示す構成と同一であるため省略する。光源ユニット180は、例えば、ハロゲンランプ、キセノンランプ、又は半導体レーザ等の光源181と、集光レンズ182と、指標183とで構成されている。図9−2は、指標183のパターンの正面構成を示す。図9−2に示すように、指標183は、スリットを組み合わせた透過領域と、斜線を付して示す遮光領域とで構成されている。透過領域のパターンの大きさtは略1mmである。指標183は2次光源であり、図4における光源101と同様の役割を果たす。そして、投影光学系120は、光源101の像の代わりに、照明された指標183の像を位置Oへ投影する。   Note that the indicator may be illuminated with illumination light from the light source 101. A configuration of a modified example in which the indicator is illuminated is shown in FIG. FIG. 9A shows a configuration of the illumination unit 180 when the indicator 183 is illuminated. Other configurations are the same as those shown in FIG. The light source unit 180 includes, for example, a light source 181 such as a halogen lamp, a xenon lamp, or a semiconductor laser, a condenser lens 182, and an index 183. FIG. 9-2 shows a front configuration of the pattern of the index 183. As illustrated in FIG. 9B, the index 183 includes a transmissive region in which slits are combined and a light shielding region indicated by hatching. The size t of the transmissive region pattern is approximately 1 mm. The index 183 is a secondary light source and plays the same role as the light source 101 in FIG. Then, the projection optical system 120 projects the illuminated image of the index 183 onto the position O instead of the image of the light source 101.

図4に戻って説明する。位置Oに形成された光源101の像は、被測定光学面に投影される。そして、被測定光学面からの反射光により、位置Iに光源101の反射像(以下、「第1反射像」という。)が形成される。なお、光源101と、投影光学系120と、後述する結像光学系130とは、光軸AXに関して略同軸上に存在するようにそれぞれ配置されている。さらに、位置Oと位置Iとの光軸AXに沿った間隔を、光源物像距離(以下、「I-O距離L」という。)とする。I-O距離Lの正負の符号のとり方については、図2での説明に従う。また、被測定光学面の偏心量は、測定基準軸Bを基準として測定される。測定基準軸Bとしては、例えば、本実施例のように測定光学系150の光軸AXを用いることができる。なお、これに限られず、測定光学系150の任意の軸、例えば筐体に平行な軸などを測定基準軸Bとすることもできる。簡単のため、以後は、測定基準軸Bと光軸AXとを一致させた例に基づいて説明を行う。   Returning to FIG. The image of the light source 101 formed at the position O is projected on the optical surface to be measured. Then, a reflected image of the light source 101 (hereinafter referred to as “first reflected image”) is formed at the position I by the reflected light from the optical surface to be measured. Note that the light source 101, the projection optical system 120, and an imaging optical system 130 described later are arranged so as to be substantially coaxial with respect to the optical axis AX. Further, an interval between the position O and the position I along the optical axis AX is a light source object image distance (hereinafter referred to as “I-O distance L”). The method for taking the positive and negative signs of the IO distance L is as described in FIG. The amount of eccentricity of the optical surface to be measured is measured with reference to the measurement reference axis B. As the measurement reference axis B, for example, the optical axis AX of the measurement optical system 150 can be used as in this embodiment. Note that the measurement reference axis B may be any axis of the measurement optical system 150, for example, an axis parallel to the housing. For simplicity, the following description is based on an example in which the measurement reference axis B and the optical axis AX are matched.

第1反射像からの光は、再度レンズ105を透過する。レンズ105を透過した光は、ビームスプリッタ104を透過する。ビームスプリッタ104を透過した光は、レンズ群140へ入射する。レンズ群140は、3枚のレンズ106、107、108で構成されている。レンズ105と、レンズ群140とで結像光学系130を構成する。なお、レンズ105は、投影光学系120用として、結像光学系と共通して用いられる。結像光学系130は、第1反射像を、所定面に、第2反射像として結像する。この所定面又は所定面の近傍には、光検出器である例えば1/3インチ相当のCCDカメラ114が設けられている。ここでは、所定面とCCDカメラ114の受光面とを略一致させている。CCDカメラ114は、第2反射像を撮像する。なお、投影光学系120、結像光学系130を構成する各レンズ構成は、図示した構成に限られず、適宜、レンズ枚数を増加すること、又は減少することができる。また、コンピュータ115が、CCDカメラ114と、可変駆動部であるモータ103、109、110、111、112、113とに接続されている。コンピュータ115の機能については後述する。   The light from the first reflected image passes through the lens 105 again. The light that has passed through the lens 105 passes through the beam splitter 104. The light that has passed through the beam splitter 104 enters the lens group 140. The lens group 140 includes three lenses 106, 107, and 108. The lens 105 and the lens group 140 constitute an imaging optical system 130. The lens 105 is used in common with the imaging optical system for the projection optical system 120. The imaging optical system 130 forms the first reflected image as a second reflected image on a predetermined surface. A CCD camera 114 corresponding to, for example, 1/3 inch, which is a photodetector, is provided on the predetermined surface or in the vicinity of the predetermined surface. Here, the predetermined surface and the light receiving surface of the CCD camera 114 are substantially matched. The CCD camera 114 captures the second reflected image. In addition, each lens structure which comprises the projection optical system 120 and the imaging optical system 130 is not restricted to the structure shown in figure, The number of lenses can be increased or decreased suitably. A computer 115 is connected to the CCD camera 114 and motors 103, 109, 110, 111, 112 and 113 which are variable drive units. The function of the computer 115 will be described later.

レンズ群140は、可変駆動部であるモータ112により、光軸AXに沿った方向へ移動可能である。レンズ群140を光軸AXに沿って移動することで、第1反射像を、CCDカメラ114の受光面に、所定の倍率で結像できる。すなわち、レンズ群140は、第2反射像の大きさを変化させることができる。さらに、レンズ群140を構成するレンズ106、107、108は、それぞれ可変駆動部であるモータ109、110、111によって、互いの間隔を変えることができる。このように、レンズ140は、ズーム光学系である。レンズ140の倍率は、第1反射像がCCDカメラ114の受光面へ所望の倍率で結像するように設定される。   The lens group 140 can be moved in a direction along the optical axis AX by a motor 112 which is a variable drive unit. By moving the lens group 140 along the optical axis AX, the first reflected image can be formed on the light receiving surface of the CCD camera 114 at a predetermined magnification. That is, the lens group 140 can change the size of the second reflected image. Furthermore, the distance between the lenses 106, 107, and 108 constituting the lens group 140 can be changed by motors 109, 110, and 111, which are variable drive units, respectively. Thus, the lens 140 is a zoom optical system. The magnification of the lens 140 is set so that the first reflected image is formed on the light receiving surface of the CCD camera 114 at a desired magnification.

さらに、可変駆動部であるモータ113は、測定光学系150の全体を光軸AXに沿って移動させる。これにより、被測定光学系150と被測定光学系160との間隔、即ち作動距離を調整できる。このようにすれば、例えば、被測定光学面の曲率半径の大きさに応じて、作動距離を調整できる。   Furthermore, the motor 113 which is a variable drive unit moves the entire measurement optical system 150 along the optical axis AX. Thereby, the space | interval of the to-be-measured optical system 150 and the to-be-measured optical system 160, ie, a working distance, can be adjusted. In this way, for example, the working distance can be adjusted according to the radius of curvature of the optical surface to be measured.

(偏心測定原理の詳細)
次に、図5と図6を参照して、本発明の偏心測定方法の原理の詳細について説明する。図5は、被測定光学系125である。被測定光学系は、プリズム10とレンズ20とから構成される小型な光学系である。プリズム10は、入射側から順に、第1面11と、第2面12と、第3面13との3つの光学面を有する。レンズ20は、第4面14と第5面15との2つの光学面を有する。プリズム10の第1面11は負(凹)の屈折力(以下、「負パワー」という。)を有する屈折面、第2面12は正(凸)の屈折力(以下、「正パワー」という。)を有する反射面、第3面13は正パワーを有する屈折面である。そして、プリズム10は全体として正パワーを有する。これにより、プリズム10は、入射した光束を集光させ、かつ光路を略90°折り曲げて偏向する。
(Details of the eccentricity measurement principle)
Next, the details of the principle of the eccentricity measuring method of the present invention will be described with reference to FIGS. FIG. 5 shows the optical system 125 to be measured. The measured optical system is a small optical system composed of the prism 10 and the lens 20. The prism 10 has three optical surfaces including a first surface 11, a second surface 12, and a third surface 13 in order from the incident side. The lens 20 has two optical surfaces, a fourth surface 14 and a fifth surface 15. The first surface 11 of the prism 10 has a negative (concave) refractive power (hereinafter referred to as “negative power”), and the second surface 12 has a positive (convex) refractive power (hereinafter referred to as “positive power”). The third surface 13 is a refracting surface having positive power. The prism 10 has a positive power as a whole. As a result, the prism 10 condenses the incident light beam and deflects the optical path by bending it by approximately 90 °.

プリズム10の第2面12からの反射光は、光路を略90°偏向されてしまうため、測定光学系側へ戻らない。このため、上述したように従来技術の偏心測定装置では、第2面12の偏心量を測定できない。これは、上記(2)式において、第2行目成分の方程式を得られないことに相当する。これにより、未知数である偏心量εの数に対して、互いに独立な方程式の数が一つ不足するため、全ての偏心量εを求めることができなくなってしまう。 The reflected light from the second surface 12 of the prism 10 is deflected by approximately 90 ° in the optical path, and therefore does not return to the measurement optical system side. For this reason, as described above, the eccentricity measuring device of the prior art cannot measure the eccentricity of the second surface 12. This corresponds to the fact that the equation of the second row component cannot be obtained in the above equation (2). Thus, for the number of eccentricity epsilon n is unknown, the number of independent equations for missing one, it becomes impossible to determine all of the eccentricity epsilon n.

第2面12の偏心量は、第3面13以降の光学面におけるふれ量Δに寄与している。換言すると、第3面13や、第4面14とのふれ量Δには、第2面12の偏心量の情報が含まれている。ここで、第1のI-O距離Lと第2のI-O距離Lとは、距離が異なるものとする。すると、各々のI-O距離では、第3面13以降の光学面におけるふれ量Δに対する、第2面12の偏心量の寄与度は、それぞれのI-O距離で異なる。   The amount of eccentricity of the second surface 12 contributes to the amount of deflection Δ on the optical surface after the third surface 13. In other words, the amount of deviation Δ between the third surface 13 and the fourth surface 14 includes information on the amount of eccentricity of the second surface 12. Here, it is assumed that the first IO distance L and the second IO distance L are different from each other. Then, at each IO distance, the degree of contribution of the eccentric amount of the second surface 12 to the deflection amount Δ on the optical surface after the third surface 13 is different at each IO distance.

これらのことを考慮すると、第3面13以降の任意の光学面において、第1のI-O距離と第2のI-O距離Lでふれ量Δを検出することにより、所定の一つの光学面に対して2個の互いに独立な方程式を得ることができる。また、異なるI-O距離Lによる測定をさらに増やせば、原理的には、一つの光学面に対して、異なるI-O距離の測定回数の分だけ、互いに独立な方程式を得ることができる。   In consideration of these, by detecting the deflection amount Δ at the first IO distance and the second IO distance L on any optical surface after the third surface 13, one predetermined optical surface is obtained. Two mutually independent equations can be obtained for the surface. In addition, if the number of measurements with different I-O distances L is further increased, in principle, equations independent of each other can be obtained for one optical surface by the number of times of measurement of different I-O distances.

(反射光学面の偏心自由度)
次に、図6を参照して、反射光学面が有する偏心自由度について説明する。x軸とy軸とz軸との直交する3軸座標系において、原点ORGを含むx-y面と第2面12の面とを一致させる。このとき、第2面12は、x軸回りチルトε、y軸回りチルトε、z軸回りチルトε、x軸方向シフトδ、y軸方向シフトδ、z軸方向シフトδの6つの独立な自由度を有する。また、x軸回りチルトε、y軸回りチルトε、z軸回りチルトεにおける偏心量の正負の符号の取り方は、図6の左の3つの座標系CORにそれぞれ示す。
(Degree of freedom of reflection optical surface)
Next, with reference to FIG. 6, the degree of freedom of decentering that the reflecting optical surface has will be described. In the three-axis coordinate system in which the x axis, the y axis, and the z axis are orthogonal to each other, the xy plane including the origin ORG and the plane of the second plane 12 are matched. At this time, the second surface 12 has an x-axis tilt ε y , a y-axis tilt ε x , a z-axis tilt ε z , an x-axis direction shift δ x , a y-axis direction shift δ y , and a z-axis direction shift δ z. 6 independent degrees of freedom. Further, how to obtain positive and negative signs of the eccentricity in the x-axis tilt ε y , the y-axis tilt ε x , and the z-axis tilt ε z are shown in the three coordinate systems COR on the left in FIG.

このため、図5に示した光学系125の偏心量を測定するときは、例えば、第3面13において、第1のI-O距離L〜第7のI-O距離Lという7つの状態で、ふれ量Δを検出する。これにより、未知である偏心自由度の数と同数の、互いに独立な方程式を得ることができる。具体的には、第1面11〜第5面15の5つの光学面に関して、次式(3)及び(3’)を用いて偏心量を算出する。   Therefore, when measuring the amount of eccentricity of the optical system 125 shown in FIG. 5, for example, on the third surface 13, there are seven states of the first IO distance L to the seventh IO distance L. The amount of deflection Δ is detected. As a result, the same number of independent equations as the number of unknown eccentric degrees of freedom can be obtained. Specifically, with respect to the five optical surfaces of the first surface 11 to the fifth surface 15, the amount of eccentricity is calculated using the following equations (3) and (3 ').

Figure 2005308473
Figure 2005308473

Figure 2005308473
Figure 2005308473

ただし、各パラメータは以下の内容をそれぞれ示す。
ε1x:第1面11のチルトx成分
ε1y:第1面11のチルトy成分
ε2x:第2面12のy軸回りチルト成分
ε2y:第2面12のx軸回りチルト成分
ε2z:第2面12のz軸回りチルト成分
δ2x:第2面12のx軸方向シフト成分
δ2y:第2面12のy軸方向シフト成分
δ2z:第2面12のz軸方向シフト成分
ε3x:第3面13のチルトx成分
ε3y:第3面13のチルトy成分
ε4x:第4面14のチルトx成分
ε4y:第4面14のチルトy成分
ε5x:第5面15のチルトx成分
ε5y:第5面15のチルトy成分
Δ1_x:第1面11の反射像ふれ量のx成分
Δ1_y:第1面11の反射像ふれ量のy成分
Δ3a_x:第3面13の第1のI-O距離Lの状態における反射像ふれ量のx成分
Δ3a_y:第3面13の第1のI-O距離Lの状態における反射像ふれ量のy成分
Δ3b_x:第3面13の第2のI-O距離Lの状態における反射像ふれ量のx成分
Δ3b_y:第3面13の第2のI-O距離Lの状態における反射像ふれ量のy成分
Δ3c_x:第3面13の第3のI-O距離Lの状態における反射像ふれ量のx成分
Δ3c_y:第3面13の第3のI-O距離Lの状態における反射像ふれ量のy成分
Δ3d_x:第3面13の第4のI-O距離Lの状態における反射像ふれ量のx成分
Δ3d_y:第3面13の第4のI-O距離Lの状態における反射像ふれ量のy成分
Δ3f_x:第3面13の第5のI-O距離Lの状態における反射像ふれ量のx成分
Δ3f_y:第3面13の第5のI-O距離Lの状態における反射像ふれ量のy成分
Δ3g_x:第3面13の第6のI-O距離Lの状態における反射像ふれ量のx成分
Δ3g_y:第3面13の第6のI-O距離Lの状態における反射像ふれ量のy成分
Δ3h_x:第3面13の第7のI-O距離Lの状態における反射像ふれ量のx成分
Δ3h_y:第3面13の第7のI-O距離Lの状態における反射像ふれ量のy成分
Δ4_x:第4面14の反射像ふれ量のx成分
Δ4_y:第4面14の反射像ふれ量のy成分
Δ5_x:第5面15の反射像ふれ量のx成分
Δ5_y:第5面15の反射像ふれ量のy成分
However, each parameter indicates the following contents.
ε 1x : Tilt x component of the first surface 11 ε 1y : Tilt y component of the first surface 11 ε 2x : Tilt component around the y axis of the second surface 12 ε 2y : Tilt component around the x axis of the second surface 12 ε 2z : Z-axis tilt component δ 2x of the second surface 12: x-axis direction shift component δ 2y of the second surface 12: y-axis direction shift component δ 2z of the second surface 12: z-axis direction shift component of the second surface 12 ε 3x : tilt x component of the third surface 13 ε 3y : tilt y component of the third surface 13 ε 4x : tilt x component of the fourth surface 14 ε 4y : tilt y component of the fourth surface 14 ε 5x : fifth surface 15 of the tilt x component epsilon 5y: tilt y component of the fifth surface 15 delta 1_X: reflection image deflection amount of the x component delta 1_Y of the first surface 11: y component of the reflected image deflection amount of the first surface 11 Δ 3a_x: No. 3 surface 13 of the first I-O distance x component of the reflected image deflection amount in a state of L Δ 3a_y: 3 13 of the first I-O distance y components of the reflected image deflection amount in a state of L Δ 3b_x: x component of the reflected image deflection amount in a state of the second I-O distance L of the third surface 13 Δ 3b_y: No. Reflected image shake amount y component Δ 3c_x of the third surface 13 in the second IO distance L state: Reflected image shake amount x component Δ 3c_y of the third surface 13 in the third IO distance L state : Y component Δ 3d_x of the reflected image shake amount in the state of the third IO distance L of the third surface 13: x component of the reflected image shake amount of the third surface 13 in the state of the fourth IO distance L Δ 3d_y : y component of the reflected image shake amount in the state of the fourth IO distance L of the third surface 13 Δ 3f_x : Reflection image shake amount of the third surface 13 in the state of the fifth IO distance L x component Δ 3f — y: y component Δ 3g — x of reflected image deflection in the state of the fifth IO distance L of the third surface 13: third surface 13 x component Δ 3g_y of reflected image deflection in the state of the sixth IO distance L: y component Δ 3h_x of reflected image deflection in the state of the sixth IO distance L of the third surface 13: 3 surface 13 of the seventh I-O distance L in the state in the reflected image deflection amount of the x-component Δ 3h_y: third surface 13 of the seventh I-O distance y component delta 4_X of the reflected image deflection amount in a state L : fourth surface 14 of the reflected image deflection amount of the x component delta 4_Y: fourth surface 14 of the reflected image deflection amount of the y component delta 5_X: x component of the reflected image deflection amount of the fifth surface 15 delta 5_Y: fifth surface 15 Y component of reflected image shake amount of

また、右辺の項Bi、Bi’(i=1〜10の整数)は定数項である。定数項Bi、Bi’は、予め設計値である偏心量が意図的に与えられているとき、0以外の数値を有する項である。さらに、右辺の係数a11〜a107、a11’〜a107’は、光学系125の各光学面の曲率半径、面間隔、媒質屈折率等の設計値データから求めることができる。 The terms Bi and Bi ′ (i = 1 to 10) on the right side are constant terms. The constant terms Bi and Bi ′ are terms having numerical values other than 0 when an eccentric amount that is a design value is intentionally given in advance. Furthermore, the coefficients a 11 to a 107 and a 11 ′ to a 107 ′ on the right side can be obtained from design value data such as the radius of curvature, the surface interval, and the medium refractive index of each optical surface of the optical system 125.

(3)式、(3’)式の第2行目〜第8行目は、第3面13に対する7つの異なるI-O距離Lでの測定に基づく算出式を示している。(3)式、(3’)式の第2行目〜第8行目の意義について説明する。第2行目は、第3面13に対する第1のI-O距離Lでの測定に基づいて、第2面12のy軸回りチルト成分を算出する式である。第3行目は、第3面13に対する第2のI-O距離Lでの測定に基づいて、第2面12のx軸回りチルト成分を算出する式である。第4行目は、第3面13に対する第3のI-O距離Lでの測定に基づいて、第2面12のz軸回りチルト成分を算出する式である。第5行目は、第3面13に対する第4のI-O距離Lでの測定に基づいて、第2面12のx軸方向シフト成分を算出する式である。第6行目は、第3面13に対する第5のI-O距離Lでの測定に基づいて、第2面12のy軸方向シフト成分を算出する式である。第7行目は、第3面13に対する第6のI-O距離Lでの測定に基づいて、第2面12のz軸方向シフトを算出する式である。第8行目は、第3面13に対する第7のI-O距離Lでの測定に基づいて、第3面13のチルトx成分を算出する式である。以上のようにして、被測定光学系125の全ての光学面の偏心量が測定可能となる。   The second to eighth lines of the expressions (3) and (3 ′) indicate calculation expressions based on measurements at seven different IO distances L with respect to the third surface 13. The significance of the second to eighth lines of the expressions (3) and (3 ′) will be described. The second line is an equation for calculating the tilt component around the y-axis of the second surface 12 based on the measurement at the first IO distance L with respect to the third surface 13. The third line is an equation for calculating a tilt component around the x-axis of the second surface 12 based on the measurement at the second IO distance L with respect to the third surface 13. The fourth line is an equation for calculating a tilt component around the z-axis of the second surface 12 based on the measurement at the third IO distance L with respect to the third surface 13. The fifth line is an equation for calculating the x-axis direction shift component of the second surface 12 based on the measurement at the fourth IO distance L with respect to the third surface 13. The sixth line is an equation for calculating the y-axis direction shift component of the second surface 12 based on the measurement at the fifth IO distance L with respect to the third surface 13. The seventh line is an equation for calculating the z-axis direction shift of the second surface 12 based on the measurement at the sixth IO distance L with respect to the third surface 13. The eighth line is an equation for calculating the tilt x component of the third surface 13 based on the measurement at the seventh IO distance L with respect to the third surface 13. As described above, the decentering amounts of all the optical surfaces of the optical system 125 to be measured can be measured.

なお、I-O距離Lの変化量が小さいとき、第3面13以降の任意の光学面のふれ量Δに対する、第2面12の偏心量の寄与度の変化量が小さくなる場合がある。この場合、第3面13に対して7つのI-O距離Lで測定を行なうよりも、第3面13〜第5面15において、合計で7つのI-O距離Lでふれ量Δを検出することが望ましい。また、同一の光学面において2つ以上の測定を行う場合は、I-O距離Lを、互いに異なるようにする。   When the change amount of the I-O distance L is small, the change amount of the contribution of the eccentric amount of the second surface 12 to the deflection amount Δ of any optical surface after the third surface 13 may be small. In this case, the amount of deflection Δ is detected on the third surface 13 to the fifth surface 15 with a total of seven IO distances L, rather than measuring with respect to the third surface 13 with the seven IO distances L. It is desirable to do. Further, when two or more measurements are performed on the same optical surface, the I-O distance L is made different from each other.

また、第2面12が球面形状で、かつ偏心量が比較的小さい場合がある。このようなときは、図6において、x軸回りチルトεとy軸方向シフトδとは同一の偏心成分として扱うことができる。同様に、y軸回りチルトεとx軸方向シフトδとも、同一の偏心成分として扱うことができる。この場合、z軸回りチルトεは考慮しなくて良いので、実効的な偏心自由度の数は3つとなる。この結果、第3面13〜第5面15において、合計で4つ(=3+1)のI-O距離Lふれ量Δを検出すれば良い。ただし、同一面において2つ以上の測定を行う場合は、I-O距離Lを、互いに異なるようにする。 In addition, the second surface 12 may have a spherical shape and the amount of eccentricity may be relatively small. In such a case, in FIG. 6, the tilt about the x-axis ε y and the y-axis direction shift δ y can be treated as the same eccentric component. Similarly, the y-axis tilt ε x and the x-axis direction shift δ x can be treated as the same eccentric component. In this case, since the tilt ε z around the z axis does not need to be considered, the number of effective eccentric degrees of freedom is three. As a result, a total of four (= 3 + 1) IO distance L deflection amounts Δ may be detected on the third surface 13 to the fifth surface 15. However, when two or more measurements are performed on the same surface, the I-O distance L is made different from each other.

このように、反射光学面からの反射光が入射する屈折光学面の数をn(nは整数)、反射光学面の独立した実効的な偏心自由度の数をm(mは整数)とすると、反射光学面からの反射光が入射する屈折光学面において、合計でm+n個のI-O距離でふれ量Δの検出を行なえば良い。ただし、同一光学面において2つ以上の測定を行う場合は、I-O距離Lを、互いに異なるようにする。   Thus, when the number of refractive optical surfaces on which reflected light from the reflecting optical surface is incident is n (n is an integer), and the number of independent effective eccentric degrees of freedom of the reflecting optical surface is m (m is an integer). On the refractive optical surface on which the reflected light from the reflective optical surface is incident, the deflection amount Δ may be detected with a total of m + n IO distances. However, when two or more measurements are performed on the same optical surface, the I-O distance L is made different from each other.

また、いずれの光学面においても、適切なI-O距離Lを設定することが大事である。どの程度の距離がI-O距離Lとして適切であるかの判断は、(3)式及び(3’)式の右辺の行列成分a11〜a107、a11’〜a107’に基づいて定める。好ましくは、(3)式及び(3’)式の各行の同一列の成分ができるだけ異なる値となるようにI-O距離Lを設定することが望ましい。 It is important to set an appropriate IO distance L for any optical surface. The determination of how much distance is appropriate as the IO distance L is based on the matrix components a 11 to a 107 and a 11 ′ to a 107 ′ on the right side of the equations (3) and (3 ′). Determine. Preferably, it is desirable to set the I-O distance L so that the components in the same column in each row of the formulas (3) and (3 ′) have different values as much as possible.

なお、やや低い精度で、概略の偏心量を測定したい場合は、適宜m+n個の測定状態の数を減らすこともできる。ただし、全ての光学面の偏心量を求めるためには、少なくとも1+n個の測定を行うことが必要である。   If it is desired to measure the approximate amount of eccentricity with slightly low accuracy, the number of m + n measurement states can be appropriately reduced. However, in order to obtain the amount of eccentricity of all optical surfaces, it is necessary to perform at least 1 + n measurements.

なお、I-O距離Lを異ならせるためには、図4におけるレンズ102、レンズ群140、測定光学系150を、測定基準軸Bに沿った方向に移動させることによって実現できる。   In order to make the IO distance L different, the lens 102, the lens group 140, and the measurement optical system 150 in FIG. 4 can be moved in the direction along the measurement reference axis B.

(被測定光学系の数値データ)
次に、被測定光学系を、具体的な数値データに基づいて説明する。図7は、被測定光学系160の断面構成を示す。被測定光学系160はプリズム光学系であり、図5で説明したプリズム10と基本的な構成は同一である。被測定光学系160の第1面11は負パワーを有する球面、第2面12は反射光学面であり、正パワーを有する球面、第3面13は正パワーを有する球面である。そして、被測定光学系160は、全体として正パワーであり、集光作用を有する。
(Numerical data of measured optical system)
Next, the optical system to be measured will be described based on specific numerical data. FIG. 7 shows a cross-sectional configuration of the optical system 160 to be measured. The optical system 160 to be measured is a prism optical system, and the basic configuration is the same as that of the prism 10 described in FIG. The first surface 11 of the optical system 160 to be measured is a spherical surface having a negative power, the second surface 12 is a reflecting optical surface, a spherical surface having a positive power, and the third surface 13 is a spherical surface having a positive power. The optical system 160 to be measured has a positive power as a whole and has a condensing function.

被測定光学系160の数値データを、表1に掲げる。r1、r2、r3は各光学面の曲率半径、d1、d2は各光学面間の面間隔、n1、n2は測定用光源波長(λ=587.56nm)における屈折率をそれぞれ示す。また、曲率半径、面間隔の単位はmmである。なお、曲率半径と面間隔との符号は、図7に示すように、各光学面ごとに異なる座標系COR1、COR2、COR3にそれぞれ従うものとする。   Table 1 shows numerical data of the optical system 160 to be measured. r1, r2, and r3 are the radii of curvature of the optical surfaces, d1 and d2 are the surface spacings between the optical surfaces, and n1 and n2 are the refractive indices at the measurement light source wavelength (λ = 587.56 nm), respectively. The unit of curvature radius and surface interval is mm. In addition, as shown in FIG. 7, the signs of the radius of curvature and the surface spacing follow coordinate systems COR1, COR2, and COR3 that are different for each optical surface.

(表1)
第1面11 r1=-221.6183 d1= 10 n1=1.84666
第2面12 r2=-153.7985 d2= -10 n2=1.84666
第3面13 r3= 138.0552
(Table 1)
First surface 11 r1 = -221.6183 d1 = 10 n1 = 1.84666
Second surface 12 r2 = -153.7985 d2 = -10 n2 = 1.84666
Third surface 13 r3 = 138.0552

(偏心量測定手順)
次に本実施例における被測定光学系160の偏心量を測定する以下の手順(A)〜(I)を説明する。
(A)まず、上述した被測定光学系160を被測定光学系取り付け台170に取り付ける。
(Eccentricity measurement procedure)
Next, the following procedures (A) to (I) for measuring the amount of eccentricity of the optical system 160 to be measured in this embodiment will be described.
(A) First, the above-described measured optical system 160 is attached to the measured optical system mounting base 170.

(B)偏心量算出部の機能を兼用するコンピュータ115に、例えば、以下の測定条件データを入力する。
(1)被測定光学系160の曲率半径r、面間隔d、屈折率n、
(2)測定光学系160の取り付け位置や取り付け向き、
(3)反射光学面である第2面12の偏心自由度、
(4)いずれの光学面で、2つ以上の異なるI-O距離Lで測定するか。
本実施例では、第2面12の独立な偏心自由度は、y軸回りチルトと、x軸回りチルトと、z軸方向シフトとの3つである。このため、第3面13において、4つ(=3+1)の異なるI-O距離Lで偏心測定を行なう。
(B) For example, the following measurement condition data is input to the computer 115 that also functions as the eccentricity calculation unit.
(1) The radius of curvature r of the optical system 160 to be measured, the surface spacing d, the refractive index n,
(2) Mounting position and mounting direction of the measurement optical system 160,
(3) Degree of freedom of the second surface 12 that is a reflective optical surface,
(4) Which optical surface is to be measured at two or more different IO distances L?
In the present embodiment, there are three independent degrees of freedom of eccentricity of the second surface 12, that is, a tilt around the y axis, a tilt around the x axis, and a shift in the z axis direction. For this reason, eccentricity measurement is performed on the third surface 13 at four (= 3 + 1) different I-O distances L.

(C)コンピュータ115は、入力された表1に掲げた数値データに基づいて近軸光線追跡を行う。そして、近軸光線追跡結果に基づいて、各光学面11、12、13ごとに見かけの曲率中心位置、最適なI-O距離Lの値、関数fの行列係数a及びa’を算出する。算出する行列係数a及びa’は、測定原理で上述した(3)式及び(3’)式の第1行目、第2行目、第3行目、第7行目、及び第8行目の成分に相当する。行列係数a及びa’の具体的な数値データを以下の(4)式及び(4’)式に示す。   (C) The computer 115 performs paraxial ray tracing based on the input numerical data listed in Table 1. Based on the paraxial ray tracing result, the apparent curvature center position, the optimum value of the IO distance L, and the matrix coefficients a and a ′ of the function f are calculated for each of the optical surfaces 11, 12, and 13. The matrix coefficients a and a ′ to be calculated are the first row, the second row, the third row, the seventh row, and the eighth row of the equations (3) and (3 ′) described above in the measurement principle. Corresponds to the eye component. Specific numerical data of the matrix coefficients a and a ′ are shown in the following expressions (4) and (4 ′).

Figure 2005308473
Figure 2005308473

Figure 2005308473
Figure 2005308473

ただし、偏心量チルトεの単位は「分」であり、シフトδ、ふれ量Δの単位は「mm」である。また、各状態におけるI-O距離Lの値を表2に掲げる。   However, the unit of the eccentric amount tilt ε is “minute”, and the unit of the shift δ and the deflection amount Δ is “mm”. Table 2 shows the value of the IO distance L in each state.

(表2)
(4)及び(4’)式の第1行目(第1面11に対する第1のI-O距離L) L= 0.0
(4)及び(4’)式の第2行目(第3面13に対する第1のI-O距離L) L= 0.496
(4)及び(4’)式の第3行目(第3面13に対する第2のI-O距離L) L=-25.959
(4)及び(4’)式の第4行目(第3面13に対する第3のI-O距離L) L=-62.305
(4)及び(4’)式の第5行目(第3面13に対する第4のI-O距離L) L=124.760
(Table 2)
The first row of the equations (4) and (4 ′) (first IO distance L with respect to the first surface 11) L = 0.0
The second row of the expressions (4) and (4 ′) (first IO distance L with respect to the third surface 13) L = 0.496
The third row of the expressions (4) and (4 ′) (second IO distance L with respect to the third surface 13) L = −25.959
The fourth row of the expressions (4) and (4 ′) (the third IO distance L with respect to the third surface 13) L = −62.305
The fifth row of the expressions (4) and (4 ′) (fourth I-O distance L with respect to the third surface 13) L = 124.760

(D)さらに、コンピュータ115は、各光学面11,12、13の反射倍率と、結像光学系130の結像倍率も算出する。そして、コンピュータ115は、各光学面を測定するとき、(C)での計算結果に従って、所定の制御信号を、モータ103、109、110、111、112、113へ出力する。この所定の制御信号によって、投影光学系120、結像光学系130、レンズ群140、各レンズ106、107、108、及び測定光学系150が、所定のフォーカス位置及び結像倍率に設定される。すなわち、各モータ103、109、110、111、112、113は、制御信号に応じて、所定のフォーカス位置及び結像倍率となるように測定光学系150、投影光学系120、結像光学系130の位置や変倍倍率を制御する。なお、測定光学系150全体の位置を制御することで、光源101及びCCDカメラ114(光検出器)の測定基準軸Bに沿った方向の位置を制御できる。   (D) Further, the computer 115 calculates the reflection magnification of each of the optical surfaces 11, 12, and 13 and the imaging magnification of the imaging optical system 130. Then, when measuring each optical surface, the computer 115 outputs a predetermined control signal to the motors 103, 109, 110, 111, 112, 113 in accordance with the calculation result in (C). With this predetermined control signal, the projection optical system 120, the imaging optical system 130, the lens group 140, the lenses 106, 107, 108, and the measurement optical system 150 are set to a predetermined focus position and imaging magnification. That is, each of the motors 103, 109, 110, 111, 112, and 113 has the measurement optical system 150, the projection optical system 120, and the imaging optical system 130 so as to obtain a predetermined focus position and imaging magnification according to the control signal. Control the position and zoom ratio. Note that the position of the light source 101 and the CCD camera 114 (photodetector) in the direction along the measurement reference axis B can be controlled by controlling the position of the entire measurement optical system 150.

(E)上述の演算に続いて、コンピュータ115により、投影工程が行われる。この投影工程では、投影光学系120により、照明光を供給する光源101の投影が行われる。最初は、被測定光学系160の第1面11が、被測定光学面である。よって、第1面11に対する所定位置Oへ、光源101を投影する。なお、光源101の代わりに、照明された指標を用いてもよい。この投影工程によって、第1面11からの反射光で、光源101の反射像(第1の反射像)が形成される。   (E) Following the above calculation, the computer 115 performs a projection process. In this projection process, the projection optical system 120 projects the light source 101 that supplies illumination light. Initially, the first surface 11 of the optical system 160 to be measured is the optical surface to be measured. Therefore, the light source 101 is projected onto the predetermined position O with respect to the first surface 11. Instead of the light source 101, an illuminated indicator may be used. By this projection process, a reflected image (first reflected image) of the light source 101 is formed by the reflected light from the first surface 11.

(F)次に、結像工程において、光源101の反射像を、結像光学系130により光検出器であるCCDカメラ114の受光面に結像する。これにより、第2の反射像が形成される。   (F) Next, in the imaging step, the reflected image of the light source 101 is imaged on the light receiving surface of the CCD camera 114 as a photodetector by the imaging optical system 130. As a result, a second reflected image is formed.

(G)反射像位置検出工程において、光源101の反射像の位置を、光検出器であるCCDカメラ114により撮像(検出)する。そして、撮像した像に基づいて、2次のふれ量Δimが算出される。   (G) In the reflected image position detecting step, the position of the reflected image of the light source 101 is imaged (detected) by the CCD camera 114 which is a photodetector. Then, based on the captured image, a secondary shake amount Δim is calculated.

(H)次に、偏心量算出工程において、反射像位置検出工程の検出結果に基づいて、第1面11の偏心量を算出する。具体的には、コンピュータ115は、第1面11の2次のふれ量Δimをデジタル信号として取り込む。さらに、式(4)、(4’)で示される第1面11の関数fと、2次のふれ量Δimと、及び結像光学系130の結像倍率とに基づいて、第1面11の偏心量を算出する。続いて、第2面12の測定を行う。   (H) Next, in the eccentric amount calculating step, the eccentric amount of the first surface 11 is calculated based on the detection result of the reflected image position detecting step. Specifically, the computer 115 captures the secondary deflection amount Δim of the first surface 11 as a digital signal. Further, based on the function f of the first surface 11 expressed by the equations (4) and (4 ′), the secondary deflection amount Δim, and the imaging magnification of the imaging optical system 130, the first surface 11. The amount of eccentricity is calculated. Subsequently, the second surface 12 is measured.

(I)光源物像距離可変工程では、光源物像距離、即ちI-O距離Lを変えることが行われる。光源物像距離は、投影光学系120による光源101の共役像の位置Oと、結像光学系130によるCCDカメラ114(受光面)の共役像の位置Iとの、光軸AXに沿った間隔である。光源物像距離可変工程で、最初のI-O距離Lが設定されると、このI-O距離Lで反射像位置検出工程が行われる。次に、光源物像距離可変工程で2番目のI-O距離Lが設定され、このI-O距離Lで反射像位置検出工程が行われる。このような複数の測定は、繰り返し測定工程において行われる。このように、光源物像距離可変工程では、反射光学面で反射した光が入射する屈折光学面において、反射光学面の偏心自由度の数(3つ)に応じて、反射像位置検出工程を、2以上の異なるI-O距離Lで繰り返し行う。   (I) In the light source object image distance varying step, the light source object image distance, that is, the I-O distance L is changed. The light source object image distance is the distance along the optical axis AX between the position O of the conjugate image of the light source 101 by the projection optical system 120 and the position I of the conjugate image of the CCD camera 114 (light receiving surface) by the imaging optical system 130. It is. When the first IO distance L is set in the light source object image distance varying step, the reflected image position detecting step is performed at the IO distance L. Next, the second IO distance L is set in the light source object image distance varying step, and the reflected image position detecting step is performed at this IO distance L. A plurality of such measurements are performed in a repeated measurement process. Thus, in the light source object image distance varying step, the reflected image position detecting step is performed on the refractive optical surface on which the light reflected by the reflecting optical surface is incident, according to the number of degrees of freedom (3) of the eccentricity of the reflecting optical surface. Repeat for two or more different IO distances L.

ここで、第2面12の偏心自由度の数が3つで、第2面12からの反射光が入射する第3面13の数が1つである。よって、未知数は、合計4つ(=3+1)となる。そこで、4つの異なるI-O距離Lで測定を行うことになる。具体的には、第3面13について、第1のI-O距離Lと、第2のI-O距離Lと、第3のI-O距離Lと、第4のI-O距離Lの4つの異なるI-O距離Lで、それぞれふれ量Δimの算出を行う。これにより、被測定光学系160の各光学面11、12、13の偏心量を全て測定することができる。   Here, the number of degrees of freedom of eccentricity of the second surface 12 is three, and the number of the third surfaces 13 on which the reflected light from the second surface 12 is incident is one. Therefore, there are a total of four unknowns (= 3 + 1). Therefore, measurement is performed at four different IO distances L. Specifically, for the third surface 13, the first IO distance L, the second IO distance L, the third IO distance L, and the fourth IO distance L The deflection amount Δim is calculated for each of four different IO distances L. Thereby, all the eccentric amounts of the optical surfaces 11, 12 and 13 of the optical system 160 to be measured can be measured.

このように、第3面13においてI-O距離Lが異なる4つの状態で測定を行なうことにより、パワーを有する反射光学面(第2面12)も含めた全ての光学面11、12、13の偏心量を、被測定光学系160が組み上がった状態で高精度に測定することができる。   As described above, the measurement is performed in four states with different I-O distances L on the third surface 13, so that all the optical surfaces 11, 12, 13 including the reflective optical surface having power (second surface 12) are included. Can be measured with high accuracy in a state where the optical system 160 to be measured is assembled.

次に、図8を参照して、本発明の実施例2に係る偏心測定方法を説明する。偏心測定に用いる偏心測定装置の構成は、上記実施例1で説明した偏心測定装置100と同一である。本実施例は、測定対象である被測定光学系200の構成が実施例1と異なるときの偏心測定方法である。なお、実施例1で説明した偏心測定方法と同一の手順については、重複する説明を省略し、異なる手順を中心にして説明する。   Next, an eccentricity measuring method according to Embodiment 2 of the present invention will be described with reference to FIG. The configuration of the eccentricity measuring apparatus used for the eccentricity measurement is the same as that of the eccentricity measuring apparatus 100 described in the first embodiment. The present embodiment is a decentering measurement method when the configuration of the optical system 200 to be measured is different from that of the first embodiment. In addition, about the same procedure as the eccentricity measuring method demonstrated in Example 1, the overlapping description is abbreviate | omitted and it demonstrates focusing on a different procedure.

図8は、本実施例に係る偏心測定方法を適用する被測定光学系200の断面構成を示す。パワーを有する反射光学面を含んだ反射光学系では、光学収差を低減するために、球面と異なる形状、例えばアナモルフィック非球面形状、自由曲面形状等を用いることがある。このような球面と異なる形状、いわゆる非球面形状では、一意的に光学面の曲率半径を定義できないことがある。本実施例は、光学面が自由曲面形状のときに、高精度に偏心測定を行なうことができるものである。   FIG. 8 shows a cross-sectional configuration of a measured optical system 200 to which the eccentricity measuring method according to the present embodiment is applied. In a reflective optical system including a reflective optical surface having power, a shape different from a spherical surface, for example, an anamorphic aspherical shape, a free-form surface shape, or the like may be used in order to reduce optical aberration. In such a shape different from the spherical surface, that is, a so-called aspherical shape, the curvature radius of the optical surface may not be uniquely defined. In this embodiment, when the optical surface has a free-form surface shape, the eccentricity measurement can be performed with high accuracy.

図8に示すように、被測定光学系200は、2つのプリズム30、40で構成されている。2つのプリズム30、40を構成する第1面21、第2面22、第3面23、第4面24、第5面25、第6面26、第7面27は、全てパワーを有する光学面である。第2面22、第3面23、第6面26は、自由曲面形状の反射光学面である。第2面22、第3面23、第6面26の偏心自由度は、x軸回りチルトと、y軸回りチルトと、z軸回りチルトと、x軸方向シフトと、y軸方向シフトと、z軸方向シフトとの合計6つである。   As shown in FIG. 8, the measured optical system 200 includes two prisms 30 and 40. The first surface 21, the second surface 22, the third surface 23, the fourth surface 24, the fifth surface 25, the sixth surface 26, and the seventh surface 27 constituting the two prisms 30 and 40 are all optical having power. Surface. The second surface 22, the third surface 23, and the sixth surface 26 are free-form reflecting optical surfaces. The degrees of freedom of eccentricity of the second surface 22, the third surface 23, and the sixth surface 26 are the x-axis tilt, the y-axis tilt, the z-axis tilt, the x-axis direction shift, and the y-axis direction shift. There are a total of six with a shift in the z-axis direction.

自由曲面形状とは以下の(5)式で定義される形状である。(5)式におけるz軸が自由曲面の軸となる。   The free-form surface shape is a shape defined by the following equation (5). The z axis in equation (5) is the axis of the free-form surface.

Figure 2005308473
Figure 2005308473

ここで、(5)式の第1項は球面項、第2項は自由曲面項である。
また、c:頂点の曲率、
k:コーニック定数(円錐定数)、
r=(X+Y)1/2
N:2以上の自然数である。
Here, the first term of the equation (5) is a spherical term, and the second term is a free-form surface term.
C: curvature of vertex,
k: Conic constant (conical constant),
r = (X 2 + Y 2 ) 1/2 ,
N: A natural number of 2 or more.

Figure 2005308473
ただし、Cj(jは2以上の整数)は係数である。
Figure 2005308473
However, Cj (j is an integer of 2 or more) is a coefficient.

また、第1面21、第4面24、第5面25、第7面27は、球面形状の屈折光学面である。第2面22、第3面23、第6面26は、反射光学面である。この反射光学面は、入射光の光路を偏向させて反射する面である。このため、第2面22、第3面23、第6面26からの反射光自体からは、ふれ量Δを検出できない。従って、上記実施例1で述べたように、各反射光学面からの反射光が入射する光学面おいて、それぞれ7つ(=自由度の数6+光学面の数1)の異なるI-O距離Lで測定を行なう。   The first surface 21, the fourth surface 24, the fifth surface 25, and the seventh surface 27 are spherical refractive optical surfaces. The second surface 22, the third surface 23, and the sixth surface 26 are reflective optical surfaces. This reflective optical surface is a surface that deflects and reflects the optical path of incident light. For this reason, the deflection amount Δ cannot be detected from the reflected light itself from the second surface 22, the third surface 23, and the sixth surface 26. Accordingly, as described in the first embodiment, seven different IO distances (= 6 of degrees of freedom + number of optical surfaces 1) on each of the optical surfaces on which the reflected light from each reflecting optical surface is incident. Measure at L.

具体的に説明すると、第2面22の偏心量と第4面24の偏心量とを測定するために、第4面24において、第1〜第7の異なるI-O距離Lで測定を行なう。また、第3面23の偏心量と第5面25の偏心量とを測定するために、第5面25において、第1’〜第7’の異なるI-O距離Lで測定を行なう。さらに、第6面26の偏心量と第7面27の偏心量とを測定するために、第7面27において、第1”〜第7”の異なるI-O距離Lの状態で測定を行なう。   Specifically, in order to measure the amount of eccentricity of the second surface 22 and the amount of eccentricity of the fourth surface 24, the fourth surface 24 is measured at first to seventh different IO distances L. . Further, in order to measure the amount of eccentricity of the third surface 23 and the amount of eccentricity of the fifth surface 25, the measurement is performed on the fifth surface 25 at different 1 ′ to 7 ′ IO distances L. Further, in order to measure the amount of eccentricity of the sixth surface 26 and the amount of eccentricity of the seventh surface 27, the measurement is performed on the seventh surface 27 in the state of different I—O distances L from 1st to 7th. .

また、実施例1で説明したように、コンピュータ115に、被測定光学系200の曲率半径r、面間隔d、屈折率nの数値データを入力する。このとき、第2面22、第3面23、第6面26については、y-z面内及びx-z面内(図7参照)におけるローカル曲率半径を入力する。ローカル曲率半径とは、光束が反射光学面又は屈折光学面と交わる領域の中央付近における面の曲率半径をいう。ローカル曲率半径は、y-z面とx-z面とで異なることがある。この場合は、y-z面内のローカル曲率半径と、x-z面内のローカル曲率半径との両方の曲率半径を用いる。ただし、両方の曲率半径を用いると、y-z面のI-O距離Lと、x-z面のI-O距離Lとは異なってくる。このため、投影光学系120の位置は、y-z面とx-z面とで異なる。よって、2次のふれ量Δimの検出は、y成分とx成分とで別々に行なうことが望ましい。なお、測定精度をやや低くして、概略の偏心量を測定できれば良い場合がある。このような場合は、y-z面又はx-z面のローカル曲率半径のみを用いても十分測定可能である。   Further, as described in the first embodiment, numerical data of the radius of curvature r, the surface interval d, and the refractive index n of the optical system 200 to be measured are input to the computer 115. At this time, for the second surface 22, the third surface 23, and the sixth surface 26, the local curvature radii in the yz plane and the xz plane (see FIG. 7) are input. The local radius of curvature refers to the radius of curvature of the surface near the center of the region where the light beam intersects the reflective optical surface or refractive optical surface. The local curvature radius may be different between the yz plane and the xz plane. In this case, both the radius of curvature in the yz plane and the radius of curvature in the xz plane are used. However, if both radii of curvature are used, the IO distance L of the yz plane and the IO distance L of the xz plane are different. For this reason, the position of the projection optical system 120 differs between the yz plane and the xz plane. Therefore, it is desirable to detect the secondary shake amount Δim separately for the y component and the x component. In some cases, it may be sufficient to measure the approximate amount of eccentricity with a slightly reduced measurement accuracy. In such a case, sufficient measurement is possible using only the local curvature radius of the yz plane or the xz plane.

なお、さらに高精度な偏心測定を行なうこともできる。その場合、上記(3)式及び(3’)式、又は(4)式及び(4’)式に相当する式を用いる代わりに、設計値又は他の測定器による形状の実測値に基づいて、リアルレイトレースを用いて直接偏心量を求めることが望ましい。   It is also possible to perform eccentricity measurement with higher accuracy. In that case, instead of using the expressions (3) and (3 ′) or the expressions corresponding to the expressions (4) and (4 ′), it is based on design values or actual measured values of shapes by other measuring instruments. It is desirable to directly determine the amount of eccentricity using a real ray trace.

リアルレイトレースを用いるときは、各光学面の曲率半径r、間隔d、屈折率n等の数値データに加えて、第2面22、第3面23、第6面26の面形状データをコンピュータ29に入力する。面形状データは、設計値データ又は実測値データを用いる。リアルレイトレースの演算結果を用いることで、さらに高精度に偏心量を算出できる。   When using the real ray trace, in addition to numerical data such as the radius of curvature r, the distance d, and the refractive index n of each optical surface, the surface shape data of the second surface 22, the third surface 23, and the sixth surface 26 are calculated by a computer. 29. As the surface shape data, design value data or measured value data is used. By using the calculation result of the real ray trace, the amount of eccentricity can be calculated with higher accuracy.

次に、反射像位置検出工程において、CCDカメラ114で2次のふれ量Δim、又は反射像の光強度分布を検出する。そして、例えば、検出された2次のふれ量Δimを目標値(ターゲット)にして、被測定光学系200の各光学面の偏心量を変数として最小二乗法等を用いた最適化計算を行なう。これにより、各光学面の偏心量をさらに精度良く算出することができる。   Next, in the reflected image position detection step, the CCD camera 114 detects the secondary shake amount Δim or the light intensity distribution of the reflected image. Then, for example, the detected second-order deflection amount Δim is set as a target value (target), and optimization calculation using the least square method or the like is performed using the amount of eccentricity of each optical surface of the optical system 200 to be measured as a variable. Thereby, the amount of eccentricity of each optical surface can be calculated with higher accuracy.

また、本実施例では、第1面21、第4面24、第5面25、第7面27が球面と異なる形状、即ち非球面形状のときでも、同様の手順で偏心量を測定できる。以上のように、実施例2によれば、被測定光学系200が複数の反射光学面と、球面以外の自由曲面面形状の光学面とを含んでいても、反射光学面も含めた全ての光学面の偏心量を光学系が組み上がった状態で高精度に測定できる。   Further, in the present embodiment, even when the first surface 21, the fourth surface 24, the fifth surface 25, and the seventh surface 27 have shapes different from spherical surfaces, that is, aspherical shapes, the eccentricity can be measured by the same procedure. As described above, according to the second embodiment, even if the optical system under measurement 200 includes a plurality of reflective optical surfaces and an optical surface having a free-form surface other than a spherical surface, all the optical surfaces including the reflective optical surfaces are included. The amount of eccentricity of the optical surface can be measured with high accuracy in a state where the optical system is assembled.

以上のように、本発明に係る偏心測定方法及び偏心測定装置は、組み上がり偏心測定、特に、パワーを有する反射光学面を備える光学系の全ての光学面の偏心量を測定するために有用である。なお、本発明を上記実施例に基づいて説明したが、本発明はこれらの実施例に限定されず、本発明の趣旨を逸脱しない範囲で種々の変形が可能である。   As described above, the eccentricity measuring method and the eccentricity measuring apparatus according to the present invention are useful for assembly eccentricity measurement, particularly for measuring the amount of eccentricity of all optical surfaces of an optical system including a reflective optical surface having power. is there. Although the present invention has been described based on the above embodiments, the present invention is not limited to these embodiments, and various modifications can be made without departing from the spirit of the present invention.

実施例1における偏心測定原理を説明する図である。It is a figure explaining the eccentricity measurement principle in Example 1. FIG. 実施例1における偏心測定原理を説明する他の図である。It is another figure explaining the eccentricity measurement principle in Example 1. FIG. 長さ等に関する符号の取り方を説明する図である。It is a figure explaining how to take the code about length etc. 実施例1に係る偏心測定装置の概略構成を示す図である。It is a figure which shows schematic structure of the eccentricity measuring apparatus which concerns on Example 1. FIG. 被測定光学系の構成例を説明する図である。It is a figure explaining the structural example of a to-be-measured optical system. 被測定光学系の偏心の種類を説明する図である。It is a figure explaining the kind of eccentricity of a to-be-measured optical system. 被測定光学系の構成例を説明する他の図である。It is another figure explaining the structural example of a to-be-measured optical system. 実施例2における被測定光学系の構成例を説明するさらに他の図である。FIG. 10 is still another diagram illustrating a configuration example of an optical system to be measured in Example 2. 指標を用いる光源ユニットの概略構成を示す図である。It is a figure which shows schematic structure of the light source unit using a parameter | index. 指標の正面構成を示す図である。It is a figure which shows the front structure of a parameter | index.

符号の説明Explanation of symbols

100 偏心測定光学系
101 光源
102、105、106、107、108 レンズ
103、109、110、111、112、113 モータ
104 ビームスプリッタ
114 CCDカメラ
115 コンピュータ
120 投影光学系
130 結像光学系
150 測定光学系
160 被測定光学系
170 取付け台
B 測定基準軸
AX 光軸
S1、S2、S3、S4 レンズ面
I、O 位置
C 見かけの曲率中心の位置
301 光源
302 レンズ
303 被測定光学系
304 レンズ
305 反射光学面
306 ビームスプリッタ
307 受光面
10 プリズム
20 レンズ
11、12、13、14、15 各光学面
200 被測定光学系
21、24、25、27 屈折光学面
22、23、26 反射光学面
180 光源ユニット
181 光源
182 集光レンズ
183 指標
DESCRIPTION OF SYMBOLS 100 Eccentricity measurement optical system 101 Light source 102, 105, 106, 107, 108 Lens 103, 109, 110, 111, 112, 113 Motor 104 Beam splitter 114 CCD camera 115 Computer 120 Projection optical system 130 Imaging optical system 150 Measurement optical system 160 Optical system to be measured 170 Mounting base B Measurement reference axis AX Optical axis S1, S2, S3, S4 Lens surface I, O Position C Position of apparent curvature center 301 Light source 302 Lens 303 Optical system to be measured 304 Lens 305 Reflective optical surface 306 Beam splitter 307 Light receiving surface 10 Prism 20 Lens 11, 12, 13, 14, 15 Each optical surface 200 Optical system to be measured 21, 24, 25, 27 Refractive optical surface 22, 23, 26 Reflective optical surface 180 Light source unit 181 Light source 182 Condensation Lens 183 index

Claims (5)

パワーを有する少なくとも一つの反射光学面と、前記反射光学面で反射した光が入射する少なくとも一つの屈折光学面とを有する被測定光学系の各光学面の偏心量を測定する偏心測定方法であって、
照明光を供給する光源又は照明された指標を投影光学系により前記被測定光学系の被測定光学面に対する所定位置へ投影する投影工程と、
前記被測定光学面からの反射光で形成される、前記光源の反射像又は前記指標の反射像を結像光学系により光検出器の受光面に結像する結像工程と、
前記受光面における前記光源の反射像の位置又は前記指標の反射像の位置を前記光検出器により検出する反射像位置検出工程と、
前記反射像位置検出工程の検出結果に基づいて、前記被測定光学系の前記被測定光学面の偏心量を算出する偏心量算出工程と
前記投影光学系による前記光源の共役像又は前記指標の共役像の位置と、前記結像光学系による前記光検出器の前記受光面の共役像の位置との光軸に沿った間隔である光源物像距離を変える光源物像距離可変工程と、
前記被測定光学系の前記反射光学面で反射した光が入射する少なくとも一つの前記屈折光学面を前記被測定光学面としたときに、前記反射光学面の偏心自由度の数に応じて、前記光源物像距離可変工程と前記反射像位置検出工程とを2以上の異なる前記光源物像距離の状態で繰り返し行う繰り返し測定工程とを含むことを特徴とする偏心測定方法。
An eccentricity measuring method for measuring an eccentricity amount of each optical surface of an optical system to be measured having at least one reflective optical surface having power and at least one refractive optical surface on which light reflected by the reflective optical surface is incident. And
A projection step of projecting a light source for supplying illumination light or an illuminated indicator onto a predetermined position with respect to the optical surface to be measured of the optical system to be measured by a projection optical system;
An image forming step of forming an image of the reflected image of the light source or the reflected image of the index formed by reflected light from the optical surface to be measured on the light receiving surface of the photodetector by an imaging optical system;
A reflected image position detecting step of detecting the position of the reflected image of the light source on the light receiving surface or the position of the reflected image of the index by the photodetector;
Based on the detection result of the reflected image position detection step, an eccentricity amount calculating step for calculating an eccentricity amount of the optical surface to be measured of the optical system to be measured, and a conjugate image of the light source or a conjugate of the index by the projection optical system A light source object image distance varying step for changing a light source object image distance, which is an interval along the optical axis between the position of the image and the position of the conjugate image of the light receiving surface of the photodetector by the imaging optical system;
When at least one of the refractive optical surfaces on which the light reflected by the reflective optical surface of the optical system to be measured is incident is the optical surface to be measured, A decentering measurement method comprising: a repetitive measurement step of repeatedly performing a light source object image distance varying step and the reflected image position detecting step in a state of two or more different light source object image distances.
前記被測定光学系の前記反射光学面で反射した光が入射する前記屈折光学面の数をn(nは整数)と、前記屈折光学面の独立な偏心自由度の数をm(mは整数)とそれぞれしたとき、
前記被測定光学系の前記反射光学面で反射した光が入射する前記屈折光学面を前記被測定光学面として、n+m個の異なる前記光源物像距離の状態で前記繰り返し測定工程を行い、
同一の前記被測定光学面においては2以上の異なる前記光源物像距離の状態で前記反射像位置検出工程を行うことを特徴とする請求項1に記載の偏心測定方法。
The number of the refractive optical surfaces on which the light reflected by the reflective optical surface of the optical system to be measured is incident is n (n is an integer), and the number of independent degrees of eccentricity of the refractive optical surface is m (m is an integer). )
With the refractive optical surface on which the light reflected by the reflective optical surface of the optical system to be measured is incident as the optical surface to be measured, the repetitive measurement step is performed in the state of n + m different light source object image distances,
The eccentricity measuring method according to claim 1, wherein the reflected image position detecting step is performed with two or more different light source object image distances on the same optical surface to be measured.
前記被測定光学系は、球面とは異なる形状である自由曲面形状の光学面を有し、
前記光源物像距離は、前記自由曲面形状の所定の領域における曲率半径に基づいて定めることを特徴とする請求項1又は2に記載の偏心測定方法。
The optical system to be measured has a free-form optical surface that is a shape different from a spherical surface,
The eccentricity measuring method according to claim 1, wherein the light source object image distance is determined based on a radius of curvature in a predetermined region of the free-form surface shape.
前記偏心量算出工程において、被測定光学面に関する設計値データ又は実測値データに基づいたリアルレイトレースの演算結果を用いることを特徴とする請求項1〜3のいずれか一項に記載の偏心測定方法。   The eccentricity measurement according to any one of claims 1 to 3, wherein in the eccentricity calculation step, a calculation result of a real ray trace based on design value data or actual measurement value data on the optical surface to be measured is used. Method. パワーを有する少なくとも一つの反射光学面と、前記反射光学面で反射した光が入射する少なくとも一つの屈折光学面とを有する被測定光学系の各光学面の偏心量を測定する偏心測定装置であって、
照明光を供給する光源又は照明された指標と、
前記光源又は前記指標を前記被測定光学系の被測定光学面に対する所定位置へ投影する投影光学系と、
前記被測定光学面からの反射光で形成される、前記光源の反射像又は前記指標の反射像を所定面に結像する結像光学系と、
前記所定面又は前記所定面の近傍に設けられ、前記光源の反射像の位置又は前記指標の反射像の位置を検出する光検出器と、
前記投影光学系による前記光源の共役像又は前記指標の共役像の位置と、前記結像光学系による前記光検出器の前記受光面の共役像の位置との光軸に沿った間隔である光源物像距離を変えるための可変駆動部と、
前記光検出器からの位置検出結果に基づいて、前記被測定光学系を構成する前記各光学面の偏心量を算出する偏心量算出部とを有し、
前記偏心量算出部は、前記被測定光学系の前記反射光学面で反射した光が入射する少なくとも一つの前記屈折光学面を前記被測定光学面としたときに、前記反射光学面の偏心自由度の数に応じて、前記投影光学系による前記光源の共役像又は前記指標の共役像の位置と、前記結像光学系による前記光検出器の受光面の共役像の位置との光軸に沿った間隔である光源物像距離を変えた2以上の異なる状態における前記位置検出結果に基づいて、前記各光学面の偏心量を算出することを特徴とする偏心測定装置。
An eccentricity measuring device that measures the amount of eccentricity of each optical surface of an optical system to be measured, having at least one reflective optical surface having power and at least one refractive optical surface on which light reflected by the reflective optical surface is incident. And
A light source that provides illumination light or an illuminated indicator;
A projection optical system that projects the light source or the index onto a predetermined position with respect to the optical surface to be measured of the optical system to be measured;
An imaging optical system that forms a reflected image of the light source or a reflected image of the index on a predetermined surface, which is formed by reflected light from the optical surface to be measured;
A photodetector that is provided in the vicinity of the predetermined surface or the predetermined surface and detects the position of the reflected image of the light source or the position of the reflected image of the index;
A light source that is an interval along the optical axis between the position of the conjugate image of the light source or the conjugate image of the index by the projection optical system and the position of the conjugate image of the light receiving surface of the photodetector by the imaging optical system A variable drive for changing the object image distance;
An eccentric amount calculation unit that calculates an eccentric amount of each optical surface constituting the optical system to be measured based on a position detection result from the photodetector;
The decentering amount calculation unit has a degree of freedom of decentering of the reflective optical surface when at least one refractive optical surface on which light reflected by the reflective optical surface of the optical system to be measured enters is the optical surface to be measured. Depending on the number of the optical axis, the position of the conjugate image of the light source or the conjugate image of the index by the projection optical system and the position of the conjugate image of the light receiving surface of the photodetector by the imaging optical system are along the optical axis. An eccentricity measuring apparatus that calculates an eccentricity amount of each optical surface based on the position detection results in two or more different states in which the light source object image distance, which is an interval, is changed.
JP2004123832A 2004-04-20 2004-04-20 Eccentricity measuring method and eccentricity measuring device Withdrawn JP2005308473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004123832A JP2005308473A (en) 2004-04-20 2004-04-20 Eccentricity measuring method and eccentricity measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004123832A JP2005308473A (en) 2004-04-20 2004-04-20 Eccentricity measuring method and eccentricity measuring device

Publications (1)

Publication Number Publication Date
JP2005308473A true JP2005308473A (en) 2005-11-04

Family

ID=35437427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004123832A Withdrawn JP2005308473A (en) 2004-04-20 2004-04-20 Eccentricity measuring method and eccentricity measuring device

Country Status (1)

Country Link
JP (1) JP2005308473A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008096197A (en) * 2006-10-10 2008-04-24 Olympus Corp Device for measuring eccentricity

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008096197A (en) * 2006-10-10 2008-04-24 Olympus Corp Device for measuring eccentricity

Similar Documents

Publication Publication Date Title
JP4474150B2 (en) Eccentricity measurement method
JP5842302B2 (en) Projection optics for microlithography.
JP2006030194A (en) Illuminator for dark field inspection
JP2009162539A (en) Light wave interferometer apparatus
US9205576B2 (en) Image forming optical system, imaging apparatus, profile measuring apparatus, structure manufacturing system and structure manufacturing method
JP5540614B2 (en) Optical element eccentricity adjustment method, eccentricity measurement method, and lens processing method using an autocollimator
US20020057495A1 (en) Measuring system for performance of imaging optical system
JP4298587B2 (en) Displaying eccentricity measurement results
JP2010145468A (en) Height detection device and toner height detection apparatus using the same
JP2005140673A (en) Aspherical eccentricity measuring device and aspherical eccentricity measuring method
US6972850B2 (en) Method and apparatus for measuring the shape of an optical surface using an interferometer
JP2005201703A (en) Interference measuring method and system
JP2005308473A (en) Eccentricity measuring method and eccentricity measuring device
JP2009267064A (en) Measurement method and exposure apparatus
JP5358898B2 (en) Optical surface shape measuring method and apparatus, and recording medium
JP4388341B2 (en) Eccentricity measuring device
JP4190044B2 (en) Eccentricity measuring device
JP2008232815A (en) Device of measuring eccentricity of lens system
US6831792B2 (en) Objective lens, combination of objective lenses, and method for adjusting optical system using objective lens
JP2005024504A (en) Eccentricity measuring method, eccentricity measuring instrument, and object measured thereby
JP7289780B2 (en) Eccentricity measuring method and eccentricity measuring device
CN114545645B (en) Periscope type integrated optical circuit assembling and adjusting method
US20240142339A1 (en) Methods of geometry parameters measurement for optical gratings
JP2005315683A (en) Shearing interferometer and interference measuring device
JP4639808B2 (en) Measuring apparatus and adjustment method thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070703