JP2005306827A - 生体高分子結晶迅速精製・計測の方法および装置 - Google Patents

生体高分子結晶迅速精製・計測の方法および装置 Download PDF

Info

Publication number
JP2005306827A
JP2005306827A JP2004149768A JP2004149768A JP2005306827A JP 2005306827 A JP2005306827 A JP 2005306827A JP 2004149768 A JP2004149768 A JP 2004149768A JP 2004149768 A JP2004149768 A JP 2004149768A JP 2005306827 A JP2005306827 A JP 2005306827A
Authority
JP
Japan
Prior art keywords
light
crystal
protein
crystals
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004149768A
Other languages
English (en)
Inventor
Isao Shimizu
勲 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004149768A priority Critical patent/JP2005306827A/ja
Publication of JP2005306827A publication Critical patent/JP2005306827A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】タンパク質結晶等の精製にあたって、タンパク質の過飽和溶液の濃度と結晶化剤溶液の濃度比や温度等の結晶生成条件を試行錯誤的・経験的に行う従来手法に代わって、結晶成長・生成の過程を大視野で連続に観測しながら良質なタンパク質等結晶を人為的に迅速に精製する方法と装置を提供する。
【解決手段】平行走査レーザ照射光をタンパク質の過飽和溶液等の混合溶液に照射し、照射光中のタンパクの分子・結晶核生成粒子等の側方と前方のラマン散乱、レーリー散乱し、光熱偏向光、光回折パターンなどの散乱光の情報を大視野で測定しモニタリングしながら、レーザ光力によってタンパク質分子や結晶核を凝集させて結晶を迅速に精製する。
【選択図】 図1

Description

本発明は、少量のタンパク過飽和溶液から良質で大型のタンパク質結晶の迅速精製を行うなど生体高分子の結晶迅速精製を、結晶化条件を大視野で定量把握しながら可能とする方法およびその装置に関するものであり、また、ナノサイズ生体細胞とタンパク等の相互作用の大視野定量可視化を可能とする方法およびその装置に関するものである。すなわち、本発明は、タンパク核生成等微粒子のレーザ光捕捉制御、タンパク質結晶迅速精製、および結晶核微粒子・結晶粒子等の計測、についての方法と装置に関するものである。更に詳細に述べると以下のようである。すなわち、レーザ光捕捉によって少量溶液中の分子・結晶核を収集凝集させ、少量のタンパク質等過飽和溶液から大型結晶の迅速生成促進を可能にするための方法および装置に関するものであり、大視野での極微細粒子の蛍光分子計測とナノ結晶核の側方レーリー光散乱測定により、結晶化条件を大視野定量把握しつつ良質タンパク質等結晶の精製を可能とするための計測の方法および装置に関するものであり、大視野の、蛍光分子測定・分光画像測定・ラマン散乱測定の併用によって、タンパク質分子・生体細胞の相互作用の大視野定量可視化を可能にする可視化の方法および装置に関するものであり、結晶核の形状・サイズ等核の成長過程の連続モニタリングを可能にする方法および装置に関するものである。
従来より、タンパク質結晶等の精製にあたっては、結晶成長・生成の過程を連続に明確に観察把握したものはなく、タンパク質の過飽和溶液の濃度と結晶化剤溶液の濃度比や温度等の結晶生成条件を試行錯誤的に見つけるという経験的手法をとるのが一般的であった。例えば、最新研究として、過飽和溶液と結晶化剤溶液の濃度の溶解度曲線を含む相図を描き、相図中の準安定領域で結晶化条件を探すという特許文献1に示すrational(合理的)法が提案されたが、それでさえ、未だ試行錯誤的である。
特開2004−26528:特願2002−181988,日本原子力研究所,発明者;新村信雄,大西裕季,新井栄揮,茶竹俊之,前田満,栗原和男
良質結晶の判定は最終的には中性子線等結晶構造解析で行われるが、なお、提案されている最新の、結晶生成過程での良否の簡易判定法は,[Wilson Plot法:中性子溶液小角散乱による散乱強度分布測定(日本原子力研究所・新村ら),動的光散乱法:レーザ照射蛋白核のブラウン運動による粒径分布測定;非特許文献1(理学電機(株)・山野)]がある。しかしこれらのいずれの判定法も溶液中の結晶核の局所的測定であり、生長過程を大視野で連続観測するには不適であり、タンパク結晶等の生長過程を大視野で連続に測定し、溶液中での結晶の良否の簡易判定を大視野で連続的に可能とする従来法はない。
山野昭人「動的光散乱の結晶化への応用」,構造生物Vol.3,No.2(1997−7)69−76
さらに、タンパク分子の核形成など成長過程の微細な粒子からの情報を明確に連続把握できる方法は従来に無く、結晶成長を制御できなかった。
また、タンパク質結晶成長過程の観察を大視野で微細に計測できる実験手法は従来には無く、結晶核生成過程の大視野での観察例は皆無である(走査型近接場原子間力顕微鏡(SNOAM)を使った局所的観測例が最新研究である)。そして、極く微細な粒子の測定法として例えば、超純水中に空間分布するナノオーダサイズの粒子群の大きさ、数密度や挙動を大視野で迅速定量可視化する方法は、未だ確立されていない。また、生体細胞と蛋白質の相互作用の迅速把握の可能な分子・ナノ粒子の大視野可視化法は未だ開発されていない。
このようなことから、医学的・社会的に解決が求められている医療用薬剤等の開発に欠くことのできない良質なタンパク質結晶の精製と開発の過程には、タンパク分子が凝集して結晶核を生成する過程を連続計測する有効な手段が無く、良質なタンパク結晶の生成過程が明確に把握できず、良質タンパク結晶の生成条件が明らかにならないから、膨大な試行錯誤の結果として、必要な結晶を得ていた。また、従来の技術では、良質結晶生成の判定を結晶の精製過程で判定する手段が無かった。さらに、従来の技術では、人為的に結晶核生成を速めて目的の結晶を得るという考えが無く、膨大な作業と時間経過の後でないと必要なものが入手できないという欠点があった。
発明が解決しようとする課題
本発明は前記の緊急な医学的・社会的な問題で、以下のような課題を解決しようとするものである。
タンパク質結晶等の精製にあたって、結晶生成・成長の過程を連続に明確に観察把握が可能な装置と方法の提供を行う。人為的に結晶核生成を速めて目的の結晶を得るための結晶成長の制御を行い、従来膨大な作業と時間経過を要した作業の軽減と時間の短縮を図る。溶液中に空間分布するナノオーダサイズの粒子群の大きさ、数密度や挙動を大視野で迅速定量可視化する方法を提供し、結晶核生成過程の大視野での観察を可能とする。溶液中での結晶の良否の簡易判定を成長の各段階で大視野連続的に行い得る、タンパク質等結晶の生成過程の連続観測・結晶精製過程の制御・結晶精製過程での結晶の質の簡易判定を可能にする装置と方法の提供を行う。
課題を解決するための手段
このため、本発明が採用した技術解決手段は、
(1)広い光照射領域を持つ走査レーザ平行光束を、透明容器等に入れたタンパク質等の過飽和水溶液と結晶化剤溶液の混合液に照射して、走査レーザ光束によってタンパク質等分子を光捕捉して凝集させ、結晶核の生成を人為的に行い、結晶の生成時間を飛躍的に速め、結晶生成を効率的に行うことを特徴とするタンパク質等結晶を精製する生体高分子結晶迅速精製・計測の方法、にある。
(2)また、観測しながらタンパク等結晶迅速精製を効率よく行なうために、コヒーレントな1波長または多波長のレーザ光をポンプ光とプローブ光として同軸で混合し、それを平行走査光束としてタンパク質等過飽和水溶液と結晶化剤溶液の混合液に大視野照射することによって、分子の大視野蛍光測定、ナノサイズタンパク核等粒子の大視野での側方レーリー光散乱、偏光比、蛍光、ラマン散乱光および前方での大視野光熱偏向光、の情報をイメージインテンシファイヤ付CCDカメラ等で画像取得し、また、前記の光情報を併用して、大量ナノ粒子群の同時画像測定を行い,さらに、ミクロンサイズの粒子に成長した結晶を前方微小角光散乱で計測を同時に行って、タンパク等結晶を構成する一連の生成過程を分子・粒子・結晶核・結晶の組成・サイズ・空間分布・密度・挙動等大視野でモニタリングし、結晶の生成条件を明らかにすることを可能とする、生体高分子結晶迅速精製・計測の方法、にある。
(3)さらに、多波長レーザ光束平行走査照射によって大視野中でのナノサイズのタンパク等の核粒子が光熱変化を起こして、プローブ光が偏向するが、そのプローブ光の偏向光を凸レンズの後焦点面上でCCDカメラ等の光強度画像測定器で捕捉し、後焦点面上での照射平行光束の光軸中心からの偏移角ごとの光強度分布を求めて、焦点面上での角度ごとの光強度の大きさから、混合液中のタンパク質等ナノ粒子群の大きさと数密度の分布を知ることを特徴とするナノ粒子群の計測を行う、生体高分子結晶迅速精製・計測の方法、にある。
(4)さらにまた、タンパク質等結晶精製混合溶液中等でミクロンサイズに成長した結晶核の形状やサイズを実時間観測しつつ結晶の良否を判定するために、平行レーザ光束中の結晶核による前方微小角散乱光(光回折パターン)をフーリエ変換レンズの後焦点面上でCCDカメラで撮り込み判別し、または、焦点面上に設置した多重マッチトフィルタで識別して、質の良くない結晶であればレーザ光照射を止めて溶解させ、質のよい結晶だけを成長させることを特徴とする、タンパク等結晶の生長を観測・制御する生体高分子結晶迅速精製・計測の方法、にある。
(5)タンパク等結晶の迅速精製および粒子・微粒子測定のために使用する装置であって、レーザ光源、前記レーザ光源からのレーザ光を平行に照射するレーザ照射手段、被測定・制御物である結晶精製混合溶液等を入れる透明容器およびその保持手段、照射平行光の収束と前方散乱信号光取得のための凸レンズを含めた光学系、前記混合溶液からの信号光の情報の取得・撮影手段、前記光情報の処理・表示の手段、等の装置を備え、タンパク等結晶の生成過程の各段階を実時間で計測・観測しながら結晶の精製を制御する、生体高分子結晶迅速精製・計測の装置、にある。
発明の効果
本発明は以下のような効果があった。
(1)請求項1記載の方法によれば、従来のタンパク質結晶等の作成では結晶核の生成が自然に任せて行われるのを待つという状態であったが、本発明によれば、結晶核生成に人為的な制御を行い目的の結晶を得るための結晶成長を速めて、従来膨大な作業と時間経過を要した作業の軽減と時間の短縮を図る、効果があった。
(2)請求項2記載の方法によれば、タンパク質結晶等の精製にあたって、結晶生成・成長の過程を連続に明確に観察把握が可能となり、溶液中に空間分布するタンパク分子、ナノサイズのタンパク核粒子、凝集粒子や結晶核等生成過程の粒子群の大きさ、数密度や挙動を大視野で迅速連続的にモニタリングすることが可能となり、タンパク質等結晶の生成条件を明らかにすることを可能にするという効果があった。
(3)請求項4記載の方法によれば、多波長レーザ光束平行走査照射によって大視野中でのナノサイズのタンパク等の核粒子が光熱変化を起こして、プローブ光が偏向するが、そのプローブ光の偏向光を凸レンズの後焦点面上でCCDカメラ等の光強度画像測定器で捕捉し、後焦点面上での照射平行光束の光軸中心からの偏移角ごとの光強度分布を求めて、焦点面上での角度ごとの光強度の大きさから、混合液中のタンパク質等ナノ粒子群の大きさと数密度の分布を知ることができ、生体高分子結晶迅速計測・精製に効果があった。
(4)請求項5記載の、タンパク質等結晶精製混合溶液中等でミクロンサイズに成長した結晶核の形状やサイズを実時間観測しつつ結晶の良否を判定するために、平行レーザ光束中の結晶核による前方微小角散乱光(光回折パターン)をフーリエ変換レンズの後焦点面上でCCDカメラで撮り込み判別し、または、焦点面上に設置した多重マッチトフィルタで識別して、タンパク質等結晶精製混合溶液中等でミクロンサイズに成長した結晶核の形状やサイズを実時間観測しつつ結晶の良否を判定するために質の良くない結晶であればレーザ光照射を止めて溶解させる方法によれば、質のよい結晶だけを成長させることが可能になり、タンパク等結晶の生長を観測・制御する生体高分子結晶迅速計測・精製に効果があった。
(5)請求項6記載の、タンパク等結晶の迅速精製および粒子・微粒子測定のために使用する装置であって、レーザ光源、前記レーザ光源からのレーザ光を平行に照射するレーザ照射手段、被測定・制御物である結晶精製混合溶液等を入れる透明容器およびその保持手段、照射平行光の収束と前方散乱信号光取得のための凸レンズを含めた光学系、前記混合溶液からの信号光の情報の取得・撮影手段、前記光情報の処理・表示の手段、等の装置を備え、タンパク等結晶の生成過程の各段階を実時間で計測・観測しながら結晶の精製を制御する装置によれば、生体高分子結晶迅速計測と精製に効果があった。
図1に、タンパク質等結晶精製をタンパク質等分子の空間分布や結晶核を生成するナノ粒子からミクロン粒子であるタンパク結晶の精製までを計測し、制御するための方法および装置構成の説明図を示す。以下、本実施の形態では、主に一例として、タンパク結晶の生成過程の計測と制御に関する説明をするが、本発明は、これに限らず、生体高分子結晶の生成過程の計測と精製制御等に適用することができる。
本発明が採用した実施の形態は、以下のようである.
(1)例えば、532nm波長の半導体レーザ励起固体レーザ光源1からのポンプ光と、632.8nm波長のHe−Neレーザを光源2とするプローブ光を、ハーフミラー3を介して同軸混合して、ミラー4で方向を変えて、例えば、焦点距離f=150mm,口径D=150mmの凸レンズL,6の前焦点面に置いた走査ミラー5(ガルバノスキャンミラー,走査角度±20°,共振周波数帯1.5kHz)に照射して、二次元走査平行光束7をつくる。走査平行レーザ光束7は凸レンズL,8によって後焦点面で収束され、ライトストップ9によって粒子等によって乱されなかった平行光束だけが遮断される。二次元平行光束7と凸レンズL,8等によって構成される測定視界の中にタンパク質結晶生成用混合液が入った透明容器10を置けば、容器10内のタンパク結晶生成溶液内のタンパク分子,タンパク核生成粒子や結晶核の測定視界の構成と結晶生成制御の場がつくられる。なお、本発明では、走査ミラー5を後焦点面に置いた凸レンズL,31をレーザ光束中に挿入して、凸レンズL,6と組み合わせて二つのレンズの焦点距離の比によってレーザ光の直径を縮小または拡大した平行光として照射光の単位断面積あたりの光エネルギーが変えられるようにして、タンパク等分子の光捕捉が効率的に行えることも特徴としているが、凸レンズL,31を挿入しない場合は、平行走査光束中の1本の照射レーザ光は凸レンズL,6の後焦点面で収束するから、その位置あたりを中心に透明容器10を設置すれば、結晶核は照射光の収束点あたりに形成される。
(2)ここでタンパク分子からの蛍光やラマン散乱光を微弱光測定器であるAPイメージャカメラ11で微弱光を面的に捉えるが、同時にファイバオプティックス12で蛍光や散乱光を撮影して、分光器が2台逆方向に繋がれている分光器13に送り、分光器13で分光画像測定してタンパク分子の組成・成分ごとの空間分布や密度を観測・測定すると共に、空間分布するナノ粒子群からの側方レーリー散乱光をAPイメージャカメラで画像撮影して、粒子径の6乗に比例した散乱光強度画像から粒子群のサイズごとの空間分布と挙動を測定して、タンパク分子の凝集から結晶核生成の過程を定量的に把握しながら光マニピュレートによって結晶核生成を制御した。なお、モーションコーダ14はAPイメージャカメラ11からの散乱光画像等を連続大量記録するために用いられ、データ処理装置15は空間分布するタンパク分子が凝集して結晶核を構成する過程の情報を総合的に処理して表示する機能を持っている。
(3)上記(2)と並列に、ナノサイズの凝集分子や結晶核がポンプ光を吸収して散乱するラマン散乱光と光熱偏向によるプローブ光の偏向は、凸レンズL,8の後焦点面上に設置された透明同心円状の形状を持つ光電変換器21によって、また、同じく後焦点面上の光強度分布を撮影するCCDカメラ22によって捉えられる。ラマン散乱光はCCDカメラ22によって処理され、タンパク分子や結晶核の組成の確認に用いられ、光電変換器21で光軸中心からの角度ごとの光強度分布を測定することによって、タンパク分子や結晶核の組成やサイズごとの空間分布が測定される。光熱偏向分光では、ナノ粒子のサイズが小さいほど微弱な偏向光が外側に拡がることを測定原理として、ナノ粒子群のサイズごとの空間分布が測定される。なお、本発明の大視野光熱偏向分光法ではナノ粒子が凸レンズL,8の前方の透明容器10内のどの位置にあっても粒子サイズごとの偏向光の角度は凸レンズL,8の後焦点面上で一定であることを特徴とするものである。従って、1個ずつの粒子サイズごとの偏向光の偏向角とその位置での光強度を標準粒子で較正しておいて、偏向光の角度ごとの光強度を測定すれば、粒子サイズごとの空間分布が分かる。光電変換器21およびCCDカメラ22からの光情報は画像処理装置23によって前記した測定各原理に従って処理され、粒子のサイズごとの空間分布や粒径・密度の変化が迅速に表示される。
(4)ミクロンオーダに成長した結晶からは前方微小角散乱(光回折パターン)が凸レンズL,8の後焦点面上に現れる。CCDカメラ22によってこの光回折パターンを捉えて結晶の形状とサイズを判定する。サイズと形状が全く同じ結晶では、結晶が凸レンズL,8の前方の透明容器10内のどの位置にあっても凸レンズL,8の後焦点面には全く同じ光回折パターンが光軸を中心にした同じ位置に現れる。
(5)本発明では、蛍光標識したタンパク質分子は安定核が形成される瞬間に蛍光量は消散するが、結晶核が成長してナノオーダになると側方レーリー散乱光が観測されから、蛍光標識したタンパク質分子の凝集場所を可視化するための溶液蛍光濃度大視野定量可視化を行い、側方レーリー散乱光の観測・計測を行い、タンパク結晶核粒子のレーザ光による捕捉と収集を行い、タンパク結晶核の凝集をレーザ・マニピュレートによって誘起する結晶生成制御を行い、生成される結晶の形状を前方微小角散乱(光回折パターン)でモニタしつつ結晶精製の評価を行い、質の良くない結晶であればレーザ光照射を止めて、溶液を撹拌して結晶を溶解させ、質のよい結晶だけを成長させるような、タンパク結晶の経済的な生成を行った。
(6)本発明は、一連のタンパク質結晶の生成を大視野モニタリングしながら光遠隔制御する、ということを特徴とするタンパク質等の結晶核・結晶の迅速精製の方法とその装置に関するものであり、また、それらの測定法・測定装置および制御法・制御装置に関するものであった。
実施例は上述した通りであるが、資料蛋白質の一例として、蛍光標識したニワトリ卵白リゾチームタンパク質過飽和水溶液と結晶化剤NaCl溶液の混合液に、やや透明性が低かったがポンプ光として半導体励起固体レーザの488nmまたは532nm波長の細いレーザ光を30〜50mm幅の比較的大視野で平行走査照射し、タンパク結晶の精製実験を行った例を示すと、従来のタンパク結晶精製にかかる1日程度以上の時間に対して十分間程度以内で結晶が生成され、本発明の効果が明らかになった。
本発明は、創薬の基礎となるタンパク質結晶などを迅速に精製できるから、製薬産業分野、基礎医学・医療研究分野・臨床医学研究分野での利用に供することができる。また、バイオ関連産業分野への利用可能性は高く、さらに,計測手段として、超純水製造・利用分野や無菌医療・治療室の大気汚染防止・空調環境整備等の産業に利用されることは大である。
本発明の方法を説明するための概略図と本発明を実施するための装置の概略構成図である。
符号の説明
1 ポンプ光用レーザ光源
2 プローブ光用レーザ光源
3 ハーフミラー
4 ミラー
5 走査鏡
6 凸レンズ
7 平行走査レーザ光束
8 凸レンズ
9 ライトストップ(遮光器)
10 混合液容器
11 APイメージャカメラまたはイメージインテンシファイヤ付CCDカメラ
12 微弱光画像撮影アレイまたはファイバ束微弱光画像増幅器
13 分光画像測定器
14 モーションコーダまたは大量画像情報蓄積・排出器
15 データ処理器
21 透明同心円状光電変換測定器
22 CCDカメラ
23 画像情報処理装置
31 凸レンズ

Claims (7)

  1. 広い光照射領域を持つ走査レーザ平行光束を、透明容器等に入れたタンパク質等の過飽和水溶液と結晶化剤溶液の混合液に照射して、走査レーザ光束によってタンパク質等分子を光捕捉して凝集させ、結晶核の生成を人為的に行い、結晶の生成時間を飛躍的に速め、結晶生成を効率的に行うことを特徴とするタンパク質等結晶を精製する生体高分子結晶迅速精製・計測の方法。
  2. 観測しながらタンパク等結晶迅速精製を効率よく行なうために、コヒーレントな1波長または多波長のレーザ光をポンプ光とプローブ光として同軸で混合し、それを平行走査光束としてタンパク質等過飽和水溶液と結晶化剤溶液の混合液に大視野照射することによって、分子の大視野蛍光測定、ナノサイズタンパク核等粒子の大視野での側方レーリー光散乱、偏光比、蛍光、ラマン散乱光および前方での大視野光熱偏向光、の情報をイメージインテンシファイヤ付CCDカメラ等で画像取得し、また、前記の光情報を併用して、大量ナノ粒子群の同時画像測定を行い,さらに、ミクロンサイズの粒子に成長した結晶を前方微小角光散乱で計測を同時に行って、タンパク等結晶を構成する一連の生成過程を分子・粒子・結晶核・結晶の組成・サイズ・空間分布・密度・挙動等大視野でモニタリングし、結晶の生成条件を明らかにすることを可能とする、生体高分子結晶迅速精製・計測の方法。
  3. 前記請求項1、請求項2の照射平行レーザ光は、コヒーレントな1波長または多波長光をポンプ光とプローブ光として同軸で混合して成る1本の光線を、凸レンズの前焦点面に置かれた走査鏡か、または第2の凸レンズの後焦点面であり第1の凸レンズの前焦点である位置に置かれた走査鏡に当てて得られる拡大平行光束から成り、ポンプ光はタンパク質等分子の共鳴吸収波長に合わせて選択される、ことを特徴とするレーザ光照射方法を用いた、タンパク等結晶を精製制御と計測を行う、生体高分子結晶迅速精製・計測の方法。
  4. 多波長レーザ光束平行走査照射によって大視野中でのナノサイズのタンパク等の核粒子が光熱変化を起こして、プローブ光が偏向するが、そのプローブ光の偏向光を凸レンズの後焦点面上でCCDカメラ等の光強度画像測定器で捕捉し、後焦点面上での照射平行光束の光軸中心からの偏移角ごとの光強度分布を求めて、焦点面上での角度ごとの光強度の大きさから、混合液中のタンパク質等ナノ粒子群の大きさと数密度の分布を知ることを特徴とするナノ粒子群の計測を行う、生体高分子結晶迅速精製・計測の方法。
  5. タンパク質等結晶精製混合溶液中等でミクロンサイズに成長した結晶核の形状やサイズを実時間観測しつつ結晶の良否を判定するために、平行レーザ光束中の結晶核による前方微小角散乱光(光回折パターン)をフーリエ変換レンズの後焦点面上でCCDカメラで撮り込み判別し、または、焦点面上に設置した多重マッチトフィルタで識別して、質の良くない結晶であればレーザ光照射を止めて溶解させ、質のよい結晶だけを成長させることを特徴とする、タンパク等結晶の生長を観測・制御する生体高分子結晶迅速精製・計測の方法。
  6. タンパク等結晶の迅速精製および粒子・微粒子測定のために使用する装置であって、レーザ光源、前記レーザ光源からのレーザ光を平行に照射するレーザ照射手段、被測定・制御物である結晶精製混合溶液等を入れる透明容器およびその保持手段、照射平行光の収束と前方散乱信号光取得のための凸レンズを含めた光学系、前記混合溶液からの信号光の情報の取得・撮影手段、前記光情報の処理・表示の手段、等の装置を備え、タンパク等結晶の生成過程の各段階を実時間で計測・観測しながら結晶の精製を制御する、生体高分子結晶迅速精製・計測の装置。
  7. 前記請求項1〜請求項5に記載の方法に使用する装置であって、生体高分子結晶迅速精製・計測の装置を構成する、分子の大視野蛍光測定装置、側方レーリー散乱および光熱偏向分光によるナノ粒子群大視野測定装置、ナノ粒子・ミクロン粒子同時大視野計測装置、タンパク微粒子等の捕捉・制御装置、ミクロン粒子のサイズと結晶形状の大視野測定装置および結晶精製制御装置、等を含む前記請求項6に記載の各手段を備える、個々の装置。
JP2004149768A 2004-04-17 2004-04-17 生体高分子結晶迅速精製・計測の方法および装置 Pending JP2005306827A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004149768A JP2005306827A (ja) 2004-04-17 2004-04-17 生体高分子結晶迅速精製・計測の方法および装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004149768A JP2005306827A (ja) 2004-04-17 2004-04-17 生体高分子結晶迅速精製・計測の方法および装置

Publications (1)

Publication Number Publication Date
JP2005306827A true JP2005306827A (ja) 2005-11-04

Family

ID=35435986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004149768A Pending JP2005306827A (ja) 2004-04-17 2004-04-17 生体高分子結晶迅速精製・計測の方法および装置

Country Status (1)

Country Link
JP (1) JP2005306827A (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006250655A (ja) * 2005-03-09 2006-09-21 Institute Of Physical & Chemical Research ラマン分光法によるタンパク質溶液結晶化過程の解析方法及び装置
JP2007248280A (ja) * 2006-03-16 2007-09-27 Nec Soft Ltd タンパク質の結晶化の判定方法、タンパク質結晶の結晶性判別方法、および該判別に用いる装置
JP2012127904A (ja) * 2010-12-17 2012-07-05 Institute Of National Colleges Of Technology Japan タンパク質結晶化分析装置及びタンパク質結晶化分析方法
JP2012255679A (ja) * 2011-06-08 2012-12-27 Kowa Co 生物由来の生理活性物質の測定方法及び測定装置
JP2013053053A (ja) * 2011-09-06 2013-03-21 Institute Of National Colleges Of Technology Japan 結晶化促進方法、結晶化解析方法、結晶の製造方法、結晶化装置の制御プログラム、記録媒体、及び結晶化装置
JP2013537235A (ja) * 2010-09-20 2013-09-30 アッヴィ・インコーポレイテッド 疑似移動床クロマトグラフィーを使用する抗体の精製
JP2014524581A (ja) * 2011-08-19 2014-09-22 マルバーン インストゥルメンツ リミテッド 微粒子のデュアルモード特徴付け
EP2958481A4 (en) * 2013-02-20 2017-03-08 Sloan-Kettering Institute for Cancer Research Wide field raman imaging apparatus and associated methods
JP2017072436A (ja) * 2015-10-06 2017-04-13 独立行政法人国立高等専門学校機構 結晶化分析装置及び結晶化分析方法
US10105456B2 (en) 2012-12-19 2018-10-23 Sloan-Kettering Institute For Cancer Research Multimodal particles, methods and uses thereof
US10322194B2 (en) 2012-08-31 2019-06-18 Sloan-Kettering Institute For Cancer Research Particles, methods and uses thereof
US10688202B2 (en) 2014-07-28 2020-06-23 Memorial Sloan-Kettering Cancer Center Metal(loid) chalcogen nanoparticles as universal binders for medical isotopes
US10912947B2 (en) 2014-03-04 2021-02-09 Memorial Sloan Kettering Cancer Center Systems and methods for treatment of disease via application of mechanical force by controlled rotation of nanoparticles inside cells
US10919089B2 (en) 2015-07-01 2021-02-16 Memorial Sloan Kettering Cancer Center Anisotropic particles, methods and uses thereof
CN112730334A (zh) * 2020-12-23 2021-04-30 之江实验室 基于电偶极旋转散射光探测的纳米微粒识别装置和方法

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006250655A (ja) * 2005-03-09 2006-09-21 Institute Of Physical & Chemical Research ラマン分光法によるタンパク質溶液結晶化過程の解析方法及び装置
JP2007248280A (ja) * 2006-03-16 2007-09-27 Nec Soft Ltd タンパク質の結晶化の判定方法、タンパク質結晶の結晶性判別方法、および該判別に用いる装置
JP2013537235A (ja) * 2010-09-20 2013-09-30 アッヴィ・インコーポレイテッド 疑似移動床クロマトグラフィーを使用する抗体の精製
JP2012127904A (ja) * 2010-12-17 2012-07-05 Institute Of National Colleges Of Technology Japan タンパク質結晶化分析装置及びタンパク質結晶化分析方法
JP2012255679A (ja) * 2011-06-08 2012-12-27 Kowa Co 生物由来の生理活性物質の測定方法及び測定装置
JP2014524581A (ja) * 2011-08-19 2014-09-22 マルバーン インストゥルメンツ リミテッド 微粒子のデュアルモード特徴付け
US9816922B2 (en) 2011-08-19 2017-11-14 Malvern Instruments Limited Dual-mode characterization of particulates
JP2013053053A (ja) * 2011-09-06 2013-03-21 Institute Of National Colleges Of Technology Japan 結晶化促進方法、結晶化解析方法、結晶の製造方法、結晶化装置の制御プログラム、記録媒体、及び結晶化装置
US10322194B2 (en) 2012-08-31 2019-06-18 Sloan-Kettering Institute For Cancer Research Particles, methods and uses thereof
US10105456B2 (en) 2012-12-19 2018-10-23 Sloan-Kettering Institute For Cancer Research Multimodal particles, methods and uses thereof
US10888227B2 (en) 2013-02-20 2021-01-12 Memorial Sloan Kettering Cancer Center Raman-triggered ablation/resection systems and methods
EP2958481A4 (en) * 2013-02-20 2017-03-08 Sloan-Kettering Institute for Cancer Research Wide field raman imaging apparatus and associated methods
US10912947B2 (en) 2014-03-04 2021-02-09 Memorial Sloan Kettering Cancer Center Systems and methods for treatment of disease via application of mechanical force by controlled rotation of nanoparticles inside cells
US10688202B2 (en) 2014-07-28 2020-06-23 Memorial Sloan-Kettering Cancer Center Metal(loid) chalcogen nanoparticles as universal binders for medical isotopes
US10919089B2 (en) 2015-07-01 2021-02-16 Memorial Sloan Kettering Cancer Center Anisotropic particles, methods and uses thereof
JP2017072436A (ja) * 2015-10-06 2017-04-13 独立行政法人国立高等専門学校機構 結晶化分析装置及び結晶化分析方法
CN112730334A (zh) * 2020-12-23 2021-04-30 之江实验室 基于电偶极旋转散射光探测的纳米微粒识别装置和方法
CN112730334B (zh) * 2020-12-23 2024-03-22 之江实验室 基于电偶极旋转散射光探测的纳米微粒识别装置和方法

Similar Documents

Publication Publication Date Title
JP2005306827A (ja) 生体高分子結晶迅速精製・計測の方法および装置
Etchegoin et al. New limits in ultrasensitive trace detection by surface enhanced Raman scattering (SERS)
Montalti et al. Local pH oscillations witness autocatalytic self-organization of biomorphic nanostructures
KR20160138143A (ko) 산란광(pta)을 이용한 입자 추적 분석 방법 및 모든 유형의 액체 내에서 나노미터 크기 오더의 입자를 검출 및 식별하기 위한 장치
Chowdhury et al. Kinetic trapping of metastable amino acid polymorphs
Ramakrishnan et al. Synchronous RNA conformational changes trigger ordered phase transitions in crystals
Koch et al. Label-free imaging and bending analysis of microtubules by ROCS microscopy and optical trapping
CN105043988B (zh) 基于扫描振镜的单点去卷积显微系统与成像方法
Mondal Temporal resolution in fluorescence imaging
JP5519506B2 (ja) 粒子プローブを用いた画像化方法およびその利用
Schwartz et al. In situ monitoring and control of lysozyme concentration during crystallization in a hanging drop
Lee et al. Solution electrostatic levitator for measuring surface properties and bulk structures of an extremely supersaturated solution drop above metastable zone width limit
CN112041660A (zh) 用于移动粒子三维成像的系统、装置与方法
JP2001264232A (ja) 微粒子測定方法およびその装置
DE102004008762A1 (de) Verfahren und Vorrichtung zur Detektion und zum Identifizieren von Biopartikeln
JP5453407B2 (ja) 組織化された材料のナノ構造を探索するための焦点容量の変調を伴うコヒーレント非線形顕微鏡法システム及び方法
Philippot et al. Fluorescent organic nanocrystal confined in sol–gel matrix for bio-imaging
TW201912562A (zh) 一種一維奈米材料的觀測裝置
Gu et al. Thinner and longer working distance light sheet illumination and microscopic imaging
Qi et al. High-throughput Raman and surface-enhanced Raman microscopy
Awada et al. Polarized second harmonic response of square, hexagonal and random arrays of gold metallic nanocylinders
Zeng et al. Optical patterning fullerene nanostructures with high purity and high surface quality
RU213288U1 (ru) Оптический измеритель численной концентрации наночастиц
CN113639890B (zh) 一种金刚石纳米晶的细胞内组装方法及其应用
Mouras et al. A multimodal multiphoton microscope for biological imaging