JP2005305459A - Method for working welded joint comprising weld metal having satisfactory low temperature toughness - Google Patents

Method for working welded joint comprising weld metal having satisfactory low temperature toughness Download PDF

Info

Publication number
JP2005305459A
JP2005305459A JP2004122239A JP2004122239A JP2005305459A JP 2005305459 A JP2005305459 A JP 2005305459A JP 2004122239 A JP2004122239 A JP 2004122239A JP 2004122239 A JP2004122239 A JP 2004122239A JP 2005305459 A JP2005305459 A JP 2005305459A
Authority
JP
Japan
Prior art keywords
weld metal
welded joint
heat treatment
toughness
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004122239A
Other languages
Japanese (ja)
Inventor
Yutaka Morimoto
裕 森本
Shigeru Okita
茂 大北
Yoshio Terada
好男 寺田
Takuya Hara
卓也 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004122239A priority Critical patent/JP2005305459A/en
Publication of JP2005305459A publication Critical patent/JP2005305459A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Arc Welding In General (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for working a welded joint comprising a weld metal having satisfactory low temperature toughness, after the performance of welding applied in the case an actual welded structure is produced, by forming a welded joint as well, thus suppressing the strain age hardening of a weld metal generated in a welded joint to be subjected to heat treatment, and reducing deterioration in its toughness caused thereby. <P>SOLUTION: In the method for working a welded joint comprising a weld metal having satisfactory low temperature toughness, a weld metal having a composition comprising, by mass, 0.03 to 0.09% C, 0.08 to 0.4% Si, 1.0 to 2.3% Mn, 0.005 to 3.3% Ni, 0.005 to 1.5% Cr and 0.005 to 2% Mo, and in which Pcw value defined by formula (1) satisfies 0.2 to 0.8, and the balance Fe with inevitable components is formed on the weld zone in a welded joint, the welded joint is subjected to heating treatment under the conditions satisfying a heating temperature of 50 to 450°C and a holding time of ≥1 s, and thereafter, the welded joint is formed, and is heat-treated. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、特に造船分野における船体の製造や鋼管分野における表面処理鋼管の製造等で用いられる溶接継手の成形及び熱処理の加工方法に関し、詳しくは低温靭性の良好な溶接金属を有する溶接継手の加工方法に関する。   The present invention relates to a method for forming and heat-treating a welded joint used particularly in the manufacture of hulls in the field of shipbuilding and the manufacture of surface-treated steel pipes in the field of steel pipes, and more specifically, processing of welded joints having a weld metal with good low-temperature toughness. Regarding the method.

一般に、接合部の板厚が1mm以上の鋼材を溶接して溶接継手を作製する場合には、接合部に溶接ワイヤ等の溶加材を加えて溶接する方法が用いられる。特に板厚が3〜5mm以上の比較的厚い鋼材を溶接する場合は、開先部を溶加材を用いてアーク溶接法などにより多層盛溶接する。   Generally, when welding a steel material having a thickness of 1 mm or more at the joint portion to produce a welded joint, a method of welding by adding a filler material such as a welding wire to the joint portion is used. In particular, when welding a relatively thick steel material having a plate thickness of 3 to 5 mm or more, the groove portion is subjected to multi-layer welding by an arc welding method or the like using a filler material.

また、板厚が10mm以上の鋼材を溶接するような、例えば、造船などの大型溶接構造物の建造時や、鋼管製造等の生産性が要求させる場合には、溶接効率の観点から溶接ワイヤを用いたMAG溶接、さらには、多電極サブマージアーク溶接等の大入熱高能率の溶接方法が適用される場合も多い。   Also, when welding steel materials with a plate thickness of 10 mm or more, for example, when building large welded structures such as shipbuilding, or when productivity such as steel pipe manufacturing is required, use welding wires from the viewpoint of welding efficiency. In many cases, a high heat input and high efficiency welding method such as the MAG welding used and the multi-electrode submerged arc welding is applied.

一方、実構造物を製造する場合には、溶接施工後、得られた溶接継手に、曲げ、圧縮、引張等の成形加工を行い、さらに、熱処理を伴う加工が施される場合が多い。例えば、造船などの大型溶接構造物の建造時には、溶接施工後に溶接継手の変形を矯正するために、溶接部を含む継手に引張又は曲げなどの成形加工を施した後、加工歪みに起因する残留応力を熱処理により除去する方法が用いられる。また、鋼管の製造時にはシーム部を溶接して得られた鋼管の真円度を高めるための拡管成形が行なわれる。さらに、この鋼管表面の耐食性向上を目的として熱硬化樹脂などを加熱しつつコーティング処理が施される場合がある。   On the other hand, in the case of manufacturing an actual structure, it is often the case that after welding, the obtained welded joint is subjected to forming processing such as bending, compression, and tension and further subjected to processing accompanied by heat treatment. For example, when building a large welded structure such as a shipbuilding, in order to correct the deformation of the welded joint after welding, the joint including the welded part is subjected to forming processing such as tension or bending, and then the residual due to processing strain A method of removing the stress by heat treatment is used. Moreover, at the time of manufacture of a steel pipe, pipe expansion molding is performed to increase the roundness of the steel pipe obtained by welding the seam portion. Furthermore, a coating process may be performed while heating a thermosetting resin or the like for the purpose of improving the corrosion resistance of the steel pipe surface.

このように溶接継手を成形加工後、溶接部を含む溶接継手に熱処理がともなう加工が施される場合は、熱処理において、成形加工により溶接部の溶接金属に生じた加工歪に起因する転位に炭素や窒素が固着しておこす歪み時効が容易に起こり、溶接金属が脆化し、靭性が低下する問題があった。特に、このような靭性低下の問題は、比較的強度の高い溶接金属を有する溶接継手で起こる傾向が高かった。   In this way, when a welded joint including a welded part is subjected to heat treatment after forming the welded joint, in the heat treatment, the dislocation caused by the work strain generated in the weld metal of the welded part by the forming process is carbonized. Further, there is a problem that strain aging caused by adhesion of nitrogen and nitrogen easily occurs, the weld metal becomes brittle, and toughness decreases. In particular, such a problem of toughness reduction tends to occur in a welded joint having a weld metal having a relatively high strength.

従来から溶接金属の成分組成の観点から溶接継手の溶接部靭性を向上する方法が種々提案されている。例えば、特許文献1では、溶接継手に形成する溶接金属の成分組成の炭素当量(Ceq)を規定し、さらにTi酸化物やB酸化物を溶接金属中に適正に分散させることにより、溶接金属の靭性を改善する方法が開示されている。また、特許文献2には、再熱脆化を考慮し、溶接時の溶接材料のC含有量を極低量に抑えることにより、溶接金属の靭性を改善する方法が開示されている。さらに、特許文献3には、母材の高強度化に伴い、溶接金属の化学組成をさらに規定することにより溶接金属の強度と靭性を確保している。   Conventionally, various methods for improving the weld joint toughness of the welded joint have been proposed from the viewpoint of the composition of the weld metal. For example, in Patent Document 1, the carbon equivalent (Ceq) of the component composition of the weld metal formed in the weld joint is defined, and further, Ti oxide and B oxide are appropriately dispersed in the weld metal, so A method for improving toughness is disclosed. Patent Document 2 discloses a method for improving the toughness of the weld metal by limiting the C content of the welding material during welding to an extremely low amount in consideration of reheat embrittlement. Furthermore, Patent Document 3 secures the strength and toughness of the weld metal by further defining the chemical composition of the weld metal with the increase in the strength of the base material.

一方、溶接継手を熱処理することにより溶接部靭性を改善する方法も提案されている。例えば、特許文献4では、継手の溶接部を一旦オーステナイト温度まで加熱した後、AC1変態温度直下で保持する方法が示されている。 On the other hand, a method for improving weld toughness by heat-treating a welded joint has also been proposed. For example, Patent Document 4 discloses a method in which a welded portion of a joint is once heated to an austenite temperature and then held immediately below the AC1 transformation temperature.

しかし、上記従来技術は何れも、溶接継手をそのまま使用する場合の溶接部靭性を改善する方法であり、溶接継手をさらに成形及び熱処理する加工が施される溶接継手に特有な問題である、溶接金属の歪み時効による靭性低下を抑制する方法ではない。   However, each of the above prior arts is a method for improving the weld joint toughness when using the welded joint as it is, and is a problem peculiar to a welded joint subjected to processing for further forming and heat-treating the welded joint. It is not a method for suppressing a decrease in toughness due to strain aging of metals.

特開昭62−40996号JP-A 62-40996 特開昭62−34694号JP 62-34694 A 特開2000−199036号JP 2000-199036 A 特開昭56−77334号JP 56-77334 A

本発明は、実際の溶接構造物を製造する場合に適用される溶接施工後、さらに、溶接継手を成形し、熱処理を施すような溶接継手で生じる溶接金属の歪時効硬化を抑制し、それに伴う靭性低下を低減することにより、低温靭性の良好な溶接金属を有する溶接継手の加工方法を提供することを目的とする。   The present invention further suppresses the strain age hardening of the weld metal that occurs in the welded joint after forming the welded joint and applying heat treatment after the welding applied to manufacture an actual welded structure. It aims at providing the processing method of the welded joint which has a weld metal with favorable low temperature toughness by reducing a toughness fall.

本発明者らは、溶接施工後、溶接継手を成形し、熱処理を施すような溶接継手で生じる溶接金属の歪時効硬化を抑制するために、溶接継手の溶接金属の成分組成を規定するともとに、溶接継手を成形加工する前に、所定条件で加熱処理することが、溶接金属の歪時効硬化を抑制し、靭性低下を低減する方法として有効であるとの知見を得た。本発明は、この知見を基になされたものであり、その本発明の要旨とするところは、以下のとおりである。   In order to suppress the strain age hardening of the weld metal that occurs in a welded joint that forms a welded joint and is subjected to a heat treatment after welding, the present inventors have prescribed the composition of the weld metal in the welded joint. In addition, it was found that heat treatment under a predetermined condition before forming the welded joint is effective as a method for suppressing strain age hardening of the weld metal and reducing toughness reduction. The present invention has been made based on this finding, and the gist of the present invention is as follows.

(1)溶接により作製した溶接継手を成形し、熱処理をする溶接継手の加工方法において、前記溶接において前記溶接継手の溶接部に、質量%で、C:0.03〜0.09%、Si:0.08〜0.4%、Mn:1.0〜2.3%、Ni:0.005〜3.3%、Cr:0.005〜1.5%、Mo:0.005〜2%を含有し、かつ下記(1)式で定義されるPcw値が0.2〜0.8を満足し、残部がFe及び不可避的成分からなる溶接金属を形成し、該溶接継手を加熱温度50〜450℃、保持時間1秒以上の条件で加熱処理をした後、前記溶接継手を成形し、熱処理をすることを特徴とする低温靭性の良好な溶接金属を有する溶接継手の加工方法。
Pcw=[C]+0.09×[Si]+0.08×[Mn]+0.06×[Ni]+0.11×[Cr]+0.14×[Mo] ・・・(1)
但し、上記[C]、[Si]、[Mn]、[Ni]、[Cr]、[Mo]は、それぞれC、Si、Mn、Ni、Cr、Moの含有量(質量%)を示す。
(1) In a welded joint processing method in which a welded joint produced by welding is molded and heat treated, the welded portion of the welded joint in the welding is mass%, C: 0.03 to 0.09%, Si : 0.08 to 0.4%, Mn: 1.0 to 2.3%, Ni: 0.005 to 3.3%, Cr: 0.005 to 1.5%, Mo: 0.005 to 2 %, And the Pcw value defined by the following formula (1) satisfies 0.2 to 0.8, with the balance forming a weld metal composed of Fe and inevitable components, and heating the welded joint to the heating temperature. A method for processing a welded joint having a weld metal with good low-temperature toughness, wherein the welded joint is molded and heat-treated after being subjected to heat treatment at 50 to 450 ° C and a holding time of 1 second or longer.
Pcw = [C] + 0.09 × [Si] + 0.08 × [Mn] + 0.06 × [Ni] + 0.11 × [Cr] + 0.14 × [Mo] (1)
However, said [C], [Si], [Mn], [Ni], [Cr], [Mo] show content (mass%) of C, Si, Mn, Ni, Cr, and Mo, respectively.

(2)前記溶接金属の引張強度が500〜1200MPaであることを特徴とする(1)記載の低温靭性の良好な溶接金属を有する溶接継手の加工方法。   (2) Tensile strength of said weld metal is 500-1200 MPa, The processing method of the welded joint which has a weld metal with favorable low-temperature toughness as described in (1) characterized by the above-mentioned.

本発明によれば、実際の溶接構造物を製造する場合に適用される溶接施工後、さらに、溶接継手を成形し、熱処理を施すような溶接継手で生じる溶接金属の歪時効硬化を抑制し、それに伴う靭性低下を低減することにより、低温靭性の良好な溶接金属を有する溶接継手の加工方法を提供することができる。その結果、造船などの大型溶接構造物や表面処理を施す鋼管などの製造分野において溶接部の品質及び信頼性を高めることができ、産業上貢献するところは大である。   According to the present invention, after welding construction applied when manufacturing an actual welded structure, further, forming a welded joint, suppressing the strain age hardening of the weld metal that occurs in the welded joint such as heat treatment, By reducing the accompanying decrease in toughness, it is possible to provide a method for processing a welded joint having a weld metal with good low-temperature toughness. As a result, it is possible to improve the quality and reliability of welded parts in the field of manufacturing large welded structures such as shipbuilding and steel pipes subjected to surface treatment, and there is a significant industrial contribution.

本発明の実施形態について説明する。   An embodiment of the present invention will be described.

はじめに、本発明の技術思想について説明する。   First, the technical idea of the present invention will be described.

本発明者等は、実際の溶接構造物を製造する場合に適用される溶接施工後、さらに、溶接継手を成形し、熱処理を施すような溶接継手で生じる溶接金属の歪時効硬化を抑制し、それに伴う靭性低下を低減する方法について検討した。   The inventors of the present invention, after welding construction applied when producing an actual welded structure, further suppresses the strain age hardening of the weld metal that occurs in the welded joint such as forming a welded joint and applying heat treatment, The method of reducing the accompanying toughness reduction was examined.

上記溶接金属の歪時効硬化及びそれに伴う靭性低下は、溶接継手を成形し、熱処理する際に、加工歪に起因する転位の周囲に、NやCが固着し、硬化することが原因であると考えられる。特に溶接により形成された溶接金属の冷却速度は非常に速く、溶接金属中のN及びCは、過剰な固溶Nや固溶Cとして存在するため、これらが上記転位周辺への集積を容易にし、上記歪時効硬化による靭性低下の大きな原因であると考えられる。   The strain age hardening of the weld metal and the accompanying decrease in toughness are caused by the fact that N and C are fixed and hardened around the dislocations caused by the work strain when the welded joint is formed and heat-treated. Conceivable. In particular, the cooling rate of the weld metal formed by welding is very fast, and N and C in the weld metal exist as excessive solute N or solute C, which facilitates the accumulation around the dislocations. It is considered that this is a major cause of the decrease in toughness due to the strain age hardening.

上記歪時効硬化を抑制するために、溶接金属の成分組成の観点からNやCの含有量を低減することが考えられる。しかし、Nは、通常、低合金成分系の溶接金属において脆化させる元素として知られ、不可避的不純物成分として溶接材料中で制限される成分である。
一方、Cは溶接後に溶融金属が凝固し、変態する過程で組織生成と械的特性発現のために作用し、特に溶接金属の焼入れ性を向上し強度を確保するために必須の元素である。特に引張強度が500MPa以上の溶接金属を形成するためには、その含有量を低減するには限界がある。
In order to suppress the strain age hardening, it is conceivable to reduce the content of N or C from the viewpoint of the component composition of the weld metal. However, N is usually known as an element that causes embrittlement in a low alloy component based weld metal, and is a component that is limited in the welding material as an unavoidable impurity component.
On the other hand, C is an essential element for improving the hardenability and ensuring strength of the weld metal in the process of melting and solidifying and transforming the molten metal after welding. In particular, in order to form a weld metal having a tensile strength of 500 MPa or more, there is a limit in reducing its content.

そこで、本発明者らは、溶接金属の強度を確保するために必須ではあるが、上記歪時効硬化による靭性低下の大きな原因となる溶接金属中に過剰な固溶CとしているCを固定、均一分散などにより無害化させる方法を種々の実験により検討した。   Therefore, the present inventors are indispensable to ensure the strength of the weld metal, but fix and uniformly fix C that is excessively dissolved C in the weld metal, which is a major cause of the decrease in toughness due to strain age hardening. The method of detoxifying by dispersion etc. was examined by various experiments.

その結果、溶接施工後、溶接継手を成形する前に、溶接継手の加熱処理を行うことにより溶接金属中に過剰の固溶Cとして存在するCを固定又は均一化し、上記歪時効硬化による靭性低下を抑制できることを見いだした。   As a result, after forming the welded joint and before forming the welded joint, heat treatment of the welded joint fixes or homogenizes the C present as excessive solid solution C in the weld metal, and lowers the toughness due to strain age hardening. It was found that it can be suppressed.

図1は、従来技術と本発明の実施形態との溶接継手の加工工程を示す図である。   FIG. 1 is a diagram showing a welding joint processing step between the prior art and an embodiment of the present invention.

従来は、通常、溶接により作製した溶接継手をそのまま成形し、熱処理する加工方法が行なわれていた。なお、成形工程としては、従来から溶接施工後に溶接継手の変形を矯正するために行なわれているプレス成形などや、鋼管のシーム溶接後に、真円度を高めるための拡管などが挙げられる。また、溶接継手を成形した後に施される熱処理工程としては、従来から鋼管などの鋼材表面の耐食性向上のために行われている熱硬化樹脂や焼付塗装等の表面処理や、溶接継手の変形を矯正する際に生じた残留歪みを除去するために行なわれる熱処理などが挙げられる。   Conventionally, a processing method in which a welded joint produced by welding is formed as it is and heat-treated has been performed. In addition, as a shaping | molding process, the press forming etc. which were conventionally performed in order to correct the deformation | transformation of a welded joint after welding construction, the pipe expansion for raising roundness after the seam welding of a steel pipe, etc. are mentioned. In addition, as a heat treatment process performed after forming a welded joint, surface treatment such as thermosetting resin and baking coating, which has been conventionally performed to improve the corrosion resistance of steel materials such as steel pipes, and deformation of welded joints are performed. For example, a heat treatment performed to remove residual strain generated during correction is included.

これに対して、本発明の実施形態は、後述する所定成分組成の溶接金属を有する溶接継手を用いて、従来の成形工程の前に、後述する所定条件で加熱処理工程を実施する点を特徴とする。   On the other hand, the embodiment of the present invention is characterized in that a heat treatment process is performed under a predetermined condition described later before a conventional forming process using a welded joint having a weld metal having a predetermined component composition described later. And

以下に本発明の加熱処理条件および溶接継手に形成する溶接金属について説明する。   The heat treatment conditions of the present invention and the weld metal formed on the welded joint will be described below.

まず、本発明における溶接継手の成形加工前の加熱処理条件の限定理由について説明する。   First, the reasons for limiting the heat treatment conditions before forming the welded joint in the present invention will be described.

なお、以下の説明において、便宜上、溶接継手の成形する前の加熱処理を「1次加熱処理」、前記成形後の熱処理を「2次加熱処理」という場合がある。   In the following description, for convenience, the heat treatment before forming the welded joint may be referred to as “primary heat treatment”, and the heat treatment after the formation may be referred to as “secondary heat treatment”.

本発明の特徴である1次加熱処理の加熱温度の限定理由について説明する。   The reason for limiting the heating temperature of the primary heat treatment, which is a feature of the present invention, will be described.

図2および図3は溶接継手の1次加熱処理時の加熱温度と、2次加熱処理前後における各溶接金属の靭性(−30℃でのシャルピー吸収エネルギー)との関係を示すグラフである。また、図4および図5は溶接継手の1次加熱処理時の加熱温度と、2次加熱処理前後における各溶接金属の引張強度との関係示すグラフである。なお、図2および図4は1次加熱処理時の保持時間が60秒、図3および図5はその保持時間が1200秒の条件ある。また、図2〜5の2次加熱処理条件は何れも加熱温度が300℃、その保持時間が60秒である。   2 and 3 are graphs showing the relationship between the heating temperature during the primary heat treatment of the welded joint and the toughness (Charpy absorbed energy at −30 ° C.) of each weld metal before and after the secondary heat treatment. 4 and 5 are graphs showing the relationship between the heating temperature during the primary heat treatment of the welded joint and the tensile strength of each weld metal before and after the secondary heat treatment. 2 and 4 show the condition that the holding time during the primary heat treatment is 60 seconds, and FIGS. 3 and 5 show that the holding time is 1200 seconds. Moreover, as for the secondary heat processing conditions of FIGS. 2-5, heating temperature is 300 degreeC and the holding time is 60 second in all.

溶接継手は、長さ1000mm×幅150mm×厚さ12mmの引張強度が1000MPa級の高強度鋼板にベベル角45度の開先を加工し、開先角度90度のV開先を形成し、片面1層の3電極サブマージアーク溶接により作成した。溶接ワイヤは市販の1000MPaの溶接ワイヤ、フラックスも市販のメルトタイプのものを使用した。母材の化学組成、溶接条件、溶接金属の機械的特性を表1〜3に示す。   Welded joints are made by processing a groove with a bevel angle of 45 degrees on a high-strength steel plate having a length of 1000 mm, a width of 150 mm, and a thickness of 12 mm, and a tensile strength of 1000 MPa, forming a V groove with a groove angle of 90 degrees. It was prepared by one-layer three-electrode submerged arc welding. The welding wire used was a commercially available 1000 MPa welding wire, and the flux was also a commercially available melt type. Tables 1 to 3 show the chemical composition of the base metal, the welding conditions, and the mechanical properties of the weld metal.

Figure 2005305459
Figure 2005305459

Figure 2005305459
Figure 2005305459

Figure 2005305459
Figure 2005305459

溶接継手の成形加工は、溶接金属の溶接線と直角方向に0.5%の歪みを付加するように変形させた。成形加工前の1次加熱処理、及び成形加工後の2次加熱処理は、何れも熱処理炉を用いて加熱した。溶接継手の溶接金属シャルピー衝撃試験及び引張試験用の試験片は図6に示す様に、1/2板厚の位置から、溶接金属引張試験片1は溶接方向と平行に、衝撃試験片2は溶接方向と垂直方向に採取した。また、衝撃試験片は2mmVノッチ(開先)3のノッチ位置は図6に示すように、溶接金属中央部から採取した。   The forming process of the welded joint was deformed so as to add a strain of 0.5% in a direction perpendicular to the weld line of the weld metal. Both the primary heat treatment before the molding process and the secondary heat treatment after the molding process were heated using a heat treatment furnace. As shown in FIG. 6, the weld metal Charpy impact test and tensile test specimen of the welded joint are from a 1/2 plate thickness position, the weld metal tensile test specimen 1 is parallel to the welding direction, and the impact test specimen 2 is The samples were taken in the direction perpendicular to the welding direction. Further, the impact test piece was sampled at the notch position of 2 mmV notch (groove) 3 from the center of the weld metal as shown in FIG.

図2及び図3から、1次加熱処理時の保持時間が60秒及び1200秒の何れの条件においても、その加熱温度が50℃未満の場合には、1次加熱処理の作用効果が得られず、2次加熱処理後の溶接継手の溶接金属靭性は、−30℃でのシャルピー吸収エネルギーの平均値で約130J以下に低下(2次加熱処理前の靭性に対する低下率で約20〜25%)する。また、1次加熱処理時の加熱温度が450℃を超える条件では特に保持時間が長い条件(保持時間:1200秒、図3、参照)では1次加熱後で既に−30℃でのシャルピー吸収エネルギーの低下が生じる。これは、1次加熱処理時の加熱温度および保持時間の増加に伴って溶接金属中の炭化物や窒化物などの析出物の過度な増加及び粗大化により靭性が低下するためである。   2 and 3, the effect of the primary heat treatment can be obtained when the heating temperature is less than 50 ° C., regardless of whether the holding time during the primary heat treatment is 60 seconds or 1200 seconds. In addition, the weld metal toughness of the welded joint after the secondary heat treatment is reduced to about 130 J or less by the average value of Charpy absorbed energy at −30 ° C. (about 20 to 25% as a reduction rate with respect to the toughness before the secondary heat treatment) ) In the condition where the heating temperature during the primary heat treatment exceeds 450 ° C., the Charpy absorbed energy at −30 ° C. is already obtained after the primary heating under the condition where the holding time is particularly long (holding time: 1200 seconds, see FIG. 3). Decrease. This is because the toughness decreases due to excessive increase and coarsening of precipitates such as carbides and nitrides in the weld metal as the heating temperature and holding time during the primary heat treatment increase.

これに対して、1次加熱処理時の加熱温度が50℃以上450℃以下の条件では、−30℃でのシャルピーエネルギーの平均値で約150J以上の靭性を確保2次加熱処理前の靭性に対する低下率で約10%)でき、良好な靭性が得られる。   On the other hand, when the heating temperature at the time of the primary heat treatment is 50 ° C. or higher and 450 ° C. or lower, a toughness of about 150 J or more is ensured with an average value of Charpy energy at −30 ° C. against the toughness before the secondary heat treatment. The reduction rate is about 10%) and good toughness is obtained.

本発明の1次加熱処理により、2次加熱後の溶接金属の靭性低下を抑制できる理由は以下のように考えられる。   The reason why the primary heat treatment of the present invention can suppress a decrease in toughness of the weld metal after secondary heating is considered as follows.

つまり、本発明の溶接継手の成形加工前に行なわれる1次加熱により溶接金属中の過剰の固溶Cや固溶Nを炭化物や窒化物等(以後、炭化物等と表現する)の析出物として固定し、又は偏析している固溶C或いは固溶Nを分散し均質化させる作用効果が得られる。その結果、溶接継手の成形加工後の2次加熱における溶接金属中の転位への固溶Cや固溶Nの集積を抑制し、転位の動きを固定し硬化することに起因する靭性低下を低減することができるためである。   In other words, excessive solid solution C or solid solution N in the weld metal is formed as a precipitate of carbide, nitride, etc. (hereinafter referred to as carbide, etc.) by primary heating performed before forming the welded joint of the present invention. The effect of dispersing and homogenizing the solid solution C or solid solution N that is fixed or segregated is obtained. As a result, the accumulation of solute C and solute N to dislocations in the weld metal during secondary heating after forming the welded joint is suppressed, and the reduction in toughness caused by fixing and hardening the dislocation movement is reduced. This is because it can be done.

一方、図4及び図5から、1次加熱処理時の加熱温度が450℃以下の条件では溶接金属の引張強度の低下はほとんど見られず(5%未満)、加熱による強度低下のない良好な引張強度を確保できる。しかし、その加熱温度が450℃を超える条件では、1次加熱後の溶接金属の引張強度低下が著しくなる。特に保持時間が長い条件(保持時間:1200秒、図5、参照)で加熱温度が450℃を超える条件での溶接金属の引張強度の低下が大きくなる傾向にある。溶接金属の引張強度を確保するためには、溶接金属中のC、Mn、Cr等の焼き入れ性元素による硬化組織の形成と固溶Cによる固溶強化が必要となる。加熱温度が450℃を超える高温条件及び保持時間が長い条件における引張強度の低下は、過飽和固溶Cの炭化物の析出量増加による強化に寄与する固溶Cの減少と、析出物の粗大化のためであると考えられる。   On the other hand, from FIGS. 4 and 5, under the condition where the heating temperature during the primary heat treatment is 450 ° C. or less, there is almost no decrease in the tensile strength of the weld metal (less than 5%), and there is no deterioration in strength due to heating. Tensile strength can be secured. However, when the heating temperature exceeds 450 ° C., the tensile strength of the weld metal after primary heating is significantly reduced. In particular, when the holding time is long (holding time: 1200 seconds, see FIG. 5), the tensile strength of the weld metal tends to decrease greatly when the heating temperature exceeds 450 ° C. In order to ensure the tensile strength of the weld metal, it is necessary to form a hardened structure by a hardenable element such as C, Mn, Cr, etc. in the weld metal and to strengthen the solution by solid solution C. The decrease in tensile strength under high temperature conditions where the heating temperature exceeds 450 ° C. and the holding time is long, the decrease in solid solution C contributes to strengthening due to the increase in the precipitation amount of carbide in supersaturated solid solution C, and the coarsening of the precipitate. This is probably because of this.

以上の知見を基に、本発明において溶接継手を成形後、2次加熱処理する際の溶接金属の歪時効硬化に起因する靭性の低下を抑制し、良好な溶接金属の引張強度及び靭性を得るために、溶接継手の1次加熱処理、つまり成形加工前に行なわれる加熱処理における加熱温度を50〜450℃とした。この加熱温度が50℃未満及び450℃を超えるいずれの場合にも、溶接金属の靭性低下が起こるため好ましくない。また、その加熱温度が450℃を超える場合には、溶接金属の引張強度も低下するため、好ましくない。   Based on the above knowledge, after forming the welded joint in the present invention, the deterioration of toughness due to strain age hardening of the weld metal during secondary heat treatment is suppressed, and good tensile strength and toughness of the weld metal are obtained. Therefore, the heating temperature in the primary heat treatment of the welded joint, that is, the heat treatment performed before forming is set to 50 to 450 ° C. In any case where the heating temperature is less than 50 ° C. or exceeds 450 ° C., the toughness of the weld metal is lowered, which is not preferable. Moreover, when the heating temperature exceeds 450 degreeC, since the tensile strength of a weld metal also falls, it is unpreferable.

次に、1次加熱処理における保持時間の限定理由について説明する。   Next, the reason for limiting the holding time in the primary heat treatment will be described.

図7および図8は溶接継手の1次加熱処理時の保持時間と、2次加熱処理前後における各溶接金属の靭性(−30℃でのシャルピー吸収エネルギー)との関係を示したグラフである。また、図9および図10は、溶接継手の1次加熱処理時の保持時間と、2次加熱処理前後における各溶接金属の引張強度との関係を示すグラフである。なお、図7及び図9は、1次加熱処理時の加熱温度が50℃であり上記本発明が規定する加熱温度の下限値に相当する条件である。図8及び図10はその加熱温度が450℃であり、上記本発明が規定する加熱温度の上限値に相当する条件である。また、図8〜10の2次加熱処理条件は何れも加熱温度が300℃、その保持時間が60秒である。   7 and 8 are graphs showing the relationship between the holding time during the primary heat treatment of the welded joint and the toughness (Charpy absorbed energy at −30 ° C.) of each weld metal before and after the secondary heat treatment. 9 and 10 are graphs showing the relationship between the holding time during the primary heat treatment of the welded joint and the tensile strength of each weld metal before and after the secondary heat treatment. 7 and 9 are conditions corresponding to the lower limit value of the heating temperature defined by the present invention, in which the heating temperature during the primary heat treatment is 50 ° C. FIGS. 8 and 10 show that the heating temperature is 450 ° C. and corresponds to the upper limit value of the heating temperature defined by the present invention. Also, in all of the secondary heat treatment conditions of FIGS. 8 to 10, the heating temperature is 300 ° C. and the holding time is 60 seconds.

図7及び図8から、1次加熱処理時の保持時間が1秒未満の条件では、2次加熱処理後の溶接継手の溶接金属の靭性は、−30℃でのシャルピー吸収エネルギーの平均値で120J以下に低下(2次加熱処理前の靭性に対する低下率で約20〜25%)する。これは、1次加熱処理時に溶接金属中の過剰な固溶C、固溶N等を析出させ、または、偏析した固溶C、固溶N等を分散、均質化し、2次加熱時の靭性低下を充分に抑制するためには、最低1秒以上の保持時間が必要であるためである。また、炭化物や窒化物などの析出量は加熱温度で決まるため、保持時間の長時間側では析出は飽和するが、溶接金属の靭性低下を抑制する作用にそれほど大きく影響は与えない。   From FIGS. 7 and 8, the toughness of the weld metal of the welded joint after the secondary heat treatment is the average value of Charpy absorbed energy at −30 ° C. under the condition that the holding time during the primary heat treatment is less than 1 second. It is reduced to 120 J or less (about 20 to 25% in terms of the reduction rate with respect to toughness before the secondary heat treatment). This is because excessive solid solution C, solid solution N, etc. in the weld metal are precipitated during the primary heat treatment, or segregated solid solution C, solid solution N, etc. are dispersed, homogenized, and toughness during secondary heating. This is because a holding time of at least 1 second or more is necessary to sufficiently suppress the decrease. Moreover, since the precipitation amount of carbides, nitrides, and the like is determined by the heating temperature, the precipitation is saturated on the long side of the holding time, but does not significantly affect the action of suppressing the toughness deterioration of the weld metal.

図9及び図1から、2次加熱処理後の溶接継手の溶接金属の引張強度は、1次加熱処理時の加熱温度が450℃の条件(図10、参照)では、その保持時間が1秒を超えると引張強度が除々に低下するものの、引張強度が900MPa以上と良好な溶接金属の引張強度が維持でき、強度低下はみられない。   9 and 1, the tensile strength of the weld metal of the welded joint after the secondary heat treatment is 1 second when the heating temperature during the primary heat treatment is 450 ° C. (see FIG. 10). However, the tensile strength of 900 MPa or more can be maintained at a satisfactory tensile strength, but no reduction in strength is observed.

以上の知見を基に、本発明において溶接継手を成形加工後、2次加熱処理する際の溶接金属の歪時効硬化に起因する靭性の低下を抑制し、良好な溶接金属の引張強度及び靭性を得るために、溶接継手の1次加熱処理、つまり成形加工前に行なわれる加熱処理における保持時間の下限を1秒とした。この保持時間が1秒未満となる場合には、溶接金属の靭性低下が起こるため好ましくない。また、この保持時間上限は、溶接金属の強度及び靭性などの機械的特性の観点からは特に定める必要はないが保持時間が過度に長くなると溶接継手の加熱処理効率を低下させるため、好ましくは、1時間程度を上限とするのが望ましい。   Based on the above knowledge, after forming the welded joint in the present invention, it suppresses the decrease in toughness due to strain age hardening of the weld metal when the secondary heat treatment is performed, and provides good weld metal tensile strength and toughness. In order to obtain this, the lower limit of the holding time in the primary heat treatment of the welded joint, that is, the heat treatment performed before the forming process, was set to 1 second. When this holding time is less than 1 second, the toughness of the weld metal is lowered, which is not preferable. Further, the upper limit of the holding time is not particularly required from the viewpoint of mechanical properties such as the strength and toughness of the weld metal, but since the heat treatment efficiency of the welded joint is lowered when the holding time is excessively long, The upper limit is preferably about one hour.

本発明において溶接継手に形成される溶接金属の引張強度は、500〜1200MPaをするのが好ましい。その引張強度が500MPa未満の場合には、溶接金属の焼入性及び強度の向上のために添加するC含有量が少ないため、もともと2次加熱処理で問題となる、溶接金属中の固溶C量などに起因する歪時効硬化及びそれによる溶接金属の靱性の低下度合いが小さい。そのため、本発明の効果をより得るためには溶接金属の引張強度が500MPa以上の高強度溶接金属に適用することが望ましい。一方、溶接金属の引張強度が1200MPaを超える場合には、溶接金属組織がマルテンサイト組織主体となり、溶接金属の靱性が低くなるため好ましくない。   In the present invention, the tensile strength of the weld metal formed on the weld joint is preferably 500 to 1200 MPa. When the tensile strength is less than 500 MPa, the amount of C added for improving the hardenability and strength of the weld metal is small, so that the solid solution C in the weld metal is originally a problem in the secondary heat treatment. Strain age hardening due to the amount and the like, and the degree of decrease in the toughness of the weld metal due thereto is small. Therefore, in order to obtain the effect of the present invention more, it is desirable to apply to a high strength weld metal having a tensile strength of 500 MPa or more. On the other hand, when the tensile strength of the weld metal exceeds 1200 MPa, the weld metal structure is mainly a martensite structure and the toughness of the weld metal is lowered, which is not preferable.

次に、本発明の溶接継手に形成する溶接金属の成分組成の限定理由について説明する。
なお、以下の説明において「%」は、特に説明がない限り「質量%」を意味するものとする。
Next, the reasons for limiting the component composition of the weld metal formed in the weld joint of the present invention will be described.
In the following description, “%” means “mass%” unless otherwise specified.

本発明において溶接継手に形成する良好な溶接金属の引張強度及び靭性を得るためには、特に以下の化学組成およびPcw値による化学組成の規定が必要である。   In order to obtain good tensile strength and toughness of the weld metal formed on the welded joint in the present invention, it is particularly necessary to define the chemical composition by the following chemical composition and Pcw value.

C :0.03%以上0.09%以下
Cは、溶接金属の引張強度を十分に向上するために有効な元素であるため、その含有量の下限を0.03%とする。しかし、Cを過剰に含有させると溶接金属の硬度が高くなりすぎて必要な靱性が得られなく、また、低温割れ発生する危険性も高くなるため、その含有量の上限を0.09%とした。
C: 0.03% or more and 0.09% or less C is an element effective for sufficiently improving the tensile strength of the weld metal, so the lower limit of its content is 0.03%. However, if C is contained excessively, the hardness of the weld metal becomes too high to obtain the necessary toughness, and the risk of cold cracking also increases, so the upper limit of the content is 0.09%. did.

Si:0.08%以上0.4%以下
Siは、溶接金属の脱酸作用によりブローホール発明を防止する観点から、0.08%以上を含有させる必要があるが、Siを過剰に含有させると、溶接金属の靱性を低下させるため、その含有量の上限を0.40%とした。
Si: 0.08% or more and 0.4% or less Si is required to contain 0.08% or more from the viewpoint of preventing the blowhole invention by the deoxidation action of the weld metal, but contains Si excessively. In order to reduce the toughness of the weld metal, the upper limit of its content was made 0.40%.

Mn:1.0%以上、2.3%以下
Mnは溶接金属の焼き入れ性を向上し引張強度を向上させる上では重要な元素であるため、その含有量の下限を1.0%をした。一方、2.3%を超える場合は、溶接金属の靭性低下をまねくため、その含有量の上限を2.3%とした。
Mn: 1.0% or more, 2.3% or less Since Mn is an important element in improving the hardenability of weld metal and improving tensile strength, the lower limit of its content is set to 1.0%. . On the other hand, when it exceeds 2.3%, the toughness of the weld metal is lowered, so the upper limit of its content is set to 2.3%.

Ni:0.005%以上3.3%以下
Ni量は、溶接金属の焼き入れ性を向上させ、引張強度を向上させるため、また、靱性を向上させるために必要な元素の一つである。これらの効果を十分に得るためには、その含有量の下限を0.005%とする。しかし、過剰なNi添加は溶接金属の高温割れを起こしやすくするため、その含有量の上限を3.3%とした。
Ni: 0.005% or more and 3.3% or less The amount of Ni is one of the elements necessary for improving the hardenability of the weld metal, improving the tensile strength, and improving the toughness. In order to obtain these effects sufficiently, the lower limit of the content is made 0.005%. However, excessive Ni addition tends to cause hot cracking of the weld metal, so the upper limit of its content was made 3.3%.

Cr:0.005%以上1.5%以下
Crは、溶接金属の焼き入れ性を向上させ、引張強度向上のため、0.005%以上含有させる必要がある。しかし、過剰のCr添加は溶接金属の靱性低下を招くためその含有量の上限を1.5%とした。
Cr: 0.005% or more and 1.5% or less Cr is required to be contained in an amount of 0.005% or more in order to improve the hardenability of the weld metal and improve the tensile strength. However, excessive addition of Cr causes a reduction in the toughness of the weld metal, so the upper limit of its content was made 1.5%.

Mo:0.005%以上2%以下
Moは、Crと同様に溶接金属の焼き入れ性を向上させ引張強度を高めるために必要な元素であるため、0.005%以上含有させる必要があり。しかし、Moの過剰添加は、溶接金属の引張強度が過度に高くなり、靱性低下を招くため、その含有量の上限を2%以下とした。
Mo: 0.005% or more and 2% or less Mo, like Cr, is an element necessary for improving the hardenability of the weld metal and increasing the tensile strength, so it is necessary to contain 0.005% or more. However, excessive addition of Mo causes the tensile strength of the weld metal to become excessively high, leading to a decrease in toughness, so the upper limit of its content was made 2% or less.

さらに、本発明では、良好な溶接金属の引張強度及び靭性を確保するために、上記成分含有量の規定と共に、上記成分含有量が下記(1)式で定義されるPcwを0.2以上0.8以下の範囲を満足するようにに限定する必要がある。このPcw値が0.2未満の場合には、溶接金属の引張強度が低くなるため好ましくない。一方このPcw値が0.8を超える場合には、溶接金属の強度が高くなりすぎ、十分な溶接金属の靭性が得られなくなるため好ましくない。
Pcw=[C]+0.09×[Si]+0.08×[Mn]+0.06×[Ni]+0.11×[Cr]+0.14×[Mo] ・・・(1)
但し、上記[C]、[Si]、[Mn]、[Ni]、[Cr]、[Mo]は、それぞれC、Si、Mn、Ni、Cr、Moの含有量(質量%)を示す。
Furthermore, in the present invention, in order to ensure good tensile strength and toughness of the weld metal, in addition to the definition of the component content, the component content is 0.2 or more and 0 as defined by the following formula (1). It is necessary to limit so as to satisfy the range of .8 or less. When this Pcw value is less than 0.2, the tensile strength of the weld metal is lowered, which is not preferable. On the other hand, if this Pcw value exceeds 0.8, the strength of the weld metal becomes too high, and sufficient toughness of the weld metal cannot be obtained.
Pcw = [C] + 0.09 × [Si] + 0.08 × [Mn] + 0.06 × [Ni] + 0.11 × [Cr] + 0.14 × [Mo] (1)
However, said [C], [Si], [Mn], [Ni], [Cr], [Mo] show content (mass%) of C, Si, Mn, Ni, Cr, and Mo, respectively.

以下に本発明の効果を実施例を基に説明する。   The effects of the present invention will be described below based on examples.

表4に示す成分組成、引張強度、板厚等サイズの鋼板を、表5に示す継手、溶接条件でCO2溶接又はサブマージアーク溶接を行った後、表6に示す条件で1次加熱処理、成形加工、2次加熱処理を行った。溶接時に用いた溶接ワイヤの成分組成を表8に示す。サブマージアーク溶接は、溶け落ちを防ぐため1000MPa級溶接ワイヤを用いてCO2溶接により仮付け溶接をした後、その上から引き続きサブマージアーク溶接により本溶接を行なった。サブマージアーク溶接用のフラックスとしては、溶融形フラックスを用いた。 After performing CO 2 welding or submerged arc welding on the steel sheet having the component composition, tensile strength, sheet thickness and the like shown in Table 4 under the joints and welding conditions shown in Table 5, primary heat treatment is performed under the conditions shown in Table 6. Molding and secondary heat treatment were performed. Table 8 shows the component composition of the welding wire used at the time of welding. In the submerged arc welding, tack welding was performed by CO 2 welding using a 1000 MPa class welding wire in order to prevent burn-off, and then main welding was subsequently performed by submerged arc welding. As the flux for submerged arc welding, a molten flux was used.

Figure 2005305459
Figure 2005305459

Figure 2005305459
Figure 2005305459

Figure 2005305459
Figure 2005305459

得られた溶接継手の溶接金属の機械的特性を測定するために溶接部から試験片を採取し、シャルピー衝撃試験及び引張試験をそれぞれ行った。溶接継手が板継手の場合は、図6に示すように1/2板厚から溶接線と直角方向にシャルピー衝撃試験片を、溶接線方向に溶接金属引張試験片を採取した。溶接継手がUO鋼管の場合は、図11に示すようにX開先4の内面溶接金属と外面溶接金属の溶融線の交点が衝撃試験片の中心線と交わるように衝撃試験片2を、外面溶接部から溶接金属引張試験片1を採取した。溶接金属の30℃でのシャルピー衝撃値(靭性)及び引張強度を溶接金属の成分組成とともに表7に示す。   In order to measure the mechanical properties of the weld metal of the obtained welded joint, a test piece was taken from the weld and subjected to a Charpy impact test and a tensile test, respectively. When the welded joint was a plate joint, as shown in FIG. 6, Charpy impact test pieces were collected from the 1/2 plate thickness in the direction perpendicular to the weld line, and weld metal tensile test pieces were taken in the weld line direction. When the welded joint is a UO steel pipe, as shown in FIG. 11, the impact test piece 2 is placed on the outer surface so that the intersection of the fusion line of the inner weld metal of the X groove 4 and the outer weld metal intersects the center line of the impact test piece. A weld metal tensile test piece 1 was collected from the weld. Table 7 shows the Charpy impact value (toughness) and tensile strength of the weld metal at 30 ° C. together with the composition of the weld metal.

Figure 2005305459
Figure 2005305459

Figure 2005305459
Figure 2005305459

表6及び7に示す発明例1、2及び3は、鋼板の片面をCO2溶接により多層盛溶接し、発明例4は鋼板をCO2溶接により仮付溶接した後、その片面の2層をサブマージアーク溶接し、発明例5は鋼管シーム部をCO2溶接により仮付溶接した後、内外面の各1層をサブマージアーク溶接した。その後、得られた各溶接継手は、本発明が規定する範囲内の条件で1次加熱処理を行い、その後、成形加工及び2次加熱処理を行った。なお、各溶接継手の成形加工は、発明例1〜4では溶接継手の面外変形のプレス矯正処理、発明例5ではシーム溶接した鋼管の円真度向上を目的とした拡管処理をそれぞれ行った。また、各溶接継手の2次加熱処理は、発明例1では焼き付け温度250℃での塗料の焼き付け塗布処理、発明例2では焼き付け温度300℃での塗料の焼き付け塗布処理を、発明例3では焼き付け温度350℃の焼き付け塗布処理を、発明例4では、保持温度300℃での樹脂コーティング処理、発明例5では、温度250℃、保持時間1分での塗装処理をそれぞれ行った。発明例1〜5、いずれの場合も、1次加熱処理の加熱温度や保持時間、溶接金属の成分組成及びPcw値が本願発明が規定する範囲内であるため、溶接継手を加工処理後に2次加熱処理を行った後の−30℃のシャルピー吸収エネルギーは、表7の2次加熱後の溶接直後に対する靭性低下率が示すように2次加熱後でも殆ど変化せず良好な靭性が得られた。また、溶接金属の引張強度も全溶着金属と同程度の値が得られた。 Inventive Examples 1, 2 and 3 shown in Tables 6 and 7 are multilayer prime welding of one side of a steel plate by CO 2 welding, and in Inventive Example 4, two layers on one side of the steel plate are temporarily welded by CO 2 welding. Submerged arc welding was performed. In invention example 5, the steel pipe seam portion was tack welded by CO2 welding, and then each layer of the inner and outer surfaces was submerged arc welded. Thereafter, each of the obtained welded joints was subjected to primary heat treatment under conditions within the range defined by the present invention, and then subjected to molding and secondary heat treatment. In addition, as for the forming process of each welded joint, in Examples 1-4, the press straightening process of the out-of-plane deformation of the welded joint was performed, and in Inventive Example 5, the pipe expanding process was performed for the purpose of improving the roundness of the seam-welded steel pipe. . Further, the secondary heat treatment of each welded joint is performed by baking the paint at a baking temperature of 250 ° C. in Invention Example 1, baking the paint at a baking temperature of 300 ° C. in Invention Example 2, and baking in the Invention Example 3. A baking coating treatment at a temperature of 350 ° C. was performed in the invention example 4 with a resin coating treatment at a holding temperature of 300 ° C., and in the invention example 5 with a coating treatment at a temperature of 250 ° C. and a holding time of 1 minute. In any case of Invention Examples 1 to 5, since the heating temperature and holding time of the primary heat treatment, the component composition of the weld metal, and the Pcw value are within the range defined by the present invention, the welded joint is subjected to secondary treatment after processing. The Charpy absorbed energy at −30 ° C. after the heat treatment was almost unchanged even after the secondary heating, as shown by the toughness reduction rate immediately after welding after the secondary heating in Table 7, and good toughness was obtained. . Also, the tensile strength of the weld metal was comparable to that of all the weld metal.

一方、比較例1〜4は、1次加熱処理の加熱温度、保持時間、溶接金属の成分組成及びPcw値の何れかが本願発明が規定する範囲から外れた実施例である。   On the other hand, Comparative Examples 1 to 4 are examples in which any of the heating temperature, the holding time, the component composition of the weld metal, and the Pcw value of the primary heat treatment is out of the range defined by the present invention.

比較例1、2、3および4は各々、発明例1、2、3および4と同じ溶接継手を用いて、溶接後の処理条件を変えたものである。   In Comparative Examples 1, 2, 3 and 4, the same welded joints as in Invention Examples 1, 2, 3 and 4 were used, and the processing conditions after welding were changed.

比較例1は1次加熱処理を行わない点以外は、発明例1と同じである。2次加熱前と比較すると、1次加熱がないため2次加熱により溶接金属の靭性は、平均179Jと20%程度低下している。   Comparative Example 1 is the same as Invention Example 1 except that the primary heat treatment is not performed. Since there is no primary heating compared to before the secondary heating, the toughness of the weld metal is reduced by about 20% to 179J on average due to the secondary heating.

比較例2は発明例1次加熱処理の保持時間が0.5秒の条件で、それ以外の条件は発明例2と同じである。   Comparative Example 2 is the same as that of Invention Example 2 except that the holding time of the primary heat treatment of Invention Example is 0.5 seconds.

本発明が規定する溶接後の継手の1次加熱処理の保持時間が短いため溶接継手のプレス矯正処理後の300℃での塗料の焼き付け塗布処理した後の。溶接金属の−30℃の吸収エネルギーは平均で169Jと溶接直後の靭性と比較するとて約22%程度靭性が低下した。   Since the holding time of the primary heat treatment of the joint after welding specified by the present invention is short, after the baking correction treatment of the paint at 300 ° C. after the press straightening treatment of the weld joint. The average absorbed energy at −30 ° C. of the weld metal was 169 J, which was about 22% lower than the toughness immediately after welding.

比較例3は発明例3と1次加処理の条件が30℃で60秒であること以外は、発明例3と同じ条件である。   Comparative Example 3 is the same as Inventive Example 3 except that the condition of the primary addition treatment with Inventive Example 3 is 30 seconds at 30 ° C.

本発明が規定する溶接後の継手の1次加熱処理温度が低いため、時間は60秒と本発明の範囲内であるが、、溶接継手のプレス矯正処理後の300℃での塗料の焼き付け塗布処理後、溶接金属の−30℃における吸収エネルギーの平均値は143Jであり、2次加熱前の溶接金属の靭性とと比較すると約24%程度靭性が低下した。
比較例4は発明例4と1次加熱処理条件以外は同じ条件である。
Since the primary heat treatment temperature of the joint after welding specified by the present invention is low, the time is within the range of the present invention of 60 seconds. However, the paint is baked and applied at 300 ° C. after the press straightening treatment of the welded joint. After the treatment, the average value of the absorbed energy at −30 ° C. of the weld metal was 143 J, and the toughness was reduced by about 24% as compared with the toughness of the weld metal before the secondary heating.
Comparative Example 4 is the same as Invention Example 4 except for the primary heat treatment conditions.

比較例3は、1次加熱処理の温度が本願発明で規定する上限を越える温度であるため、溶接金属の靭性は低下した。溶接金属の引張強度も本願発明の範囲以上の高温での1次熱処理により低下している。これは発明例4では同じ2次加熱温度でも溶接金属の引張強度がそれほど低下していないことから、高温での1次加熱が原因とわかる。
比較例5は発明例4と母材は同じであるが1次加熱処理を全く行なわない点、および溶接材料を1200MPa級の高強度のものを使用し溶接金属の成分組成及びPcw値を変えたものである。比較例5は、溶接金属のC、NiおよびCrの各含有量が本願発明の規定範囲から高く外れるため、溶接金属の靱性は、溶接直後でも平均で72Jと低く実用に適さない。
In Comparative Example 3, the toughness of the weld metal was lowered because the temperature of the primary heat treatment exceeded the upper limit specified in the present invention. The tensile strength of the weld metal is also lowered by the primary heat treatment at a high temperature exceeding the range of the present invention. In Invention Example 4, it can be understood that the primary heating at a high temperature is the cause because the tensile strength of the weld metal does not decrease so much even at the same secondary heating temperature.
In Comparative Example 5, the base material is the same as that of Invention Example 4, but the primary heat treatment is not performed at all, and the weld metal component composition and the Pcw value are changed by using a welding material having a high strength of 1200 MPa class. Is. In Comparative Example 5, since the contents of C, Ni and Cr in the weld metal deviate from the specified range of the present invention, the toughness of the weld metal is 72 J on average even immediately after welding, which is not suitable for practical use.

溶接金属の成分が、C、NiおよびCrが本願発明の規定範囲より高い、ため、溶接金属の引張強度が溶接直後でも1235MPaと高すぎた。これが1次加熱処理を実施しないことに加えて、2次加熱後さらに靭性が低下した原因となった。   Since the components of the weld metal were C, Ni and Cr higher than the specified range of the present invention, the tensile strength of the weld metal was too high at 1235 MPa even immediately after welding. In addition to not performing the primary heat treatment, this caused the toughness to further decrease after the secondary heating.

比較例6は発明例5と同じ母材であるが、1200MPa級の高強度溶接材料を使用したもので、溶接金属の成分組成及びPcw値が異なる。比較例6は、溶接金属のMn、Ni、Cr、Moの各含有量およびPcw値が本願発明の規定範囲から高く外れるため、溶接金属の靱性は、溶接直後でも平均で54Jと低く実用に適さない。   Comparative Example 6 is the same base material as Invention Example 5, but uses a high-strength welding material of 1200 MPa class, and the component composition and Pcw value of the weld metal are different. In Comparative Example 6, since the contents of Mn, Ni, Cr, and Mo and the Pcw value of the weld metal deviate from the specified range of the present invention, the toughness of the weld metal is as low as 54 J on average even immediately after welding, and is suitable for practical use. Absent.

溶接金属の成分が、Mn、Ni、Cr、Moが本願発明の規定範囲より高く、Pcwは0.980で本願発明の規定範囲より高いため、溶接金属の引張強度が溶接直後でも1350MPaと高すぎた。これが1次加熱処理を実施しないことに加えて、2次加熱後の靭性が低い原因となった。  Since the components of the weld metal are Mn, Ni, Cr, and Mo are higher than the specified range of the present invention, and Pcw is 0.980, which is higher than the specified range of the present invention, the tensile strength of the weld metal is too high at 1350 MPa even immediately after welding. It was. This caused the low toughness after the secondary heating in addition to not performing the primary heat treatment.

比較例7は発明例2と同じ母材を用いて、1200MPa級の高強度溶接材料を使用したものである。比較例7は、溶接金属の組成は本願発明の規定範囲に入っているが、Pcwが高くはずれているため、溶接金属の靱性は、溶接直後でも平均で75Jと低く実用に適さない。   Comparative Example 7 uses the same base material as that of Invention Example 2 and uses a 1200 MPa class high-strength welding material. In Comparative Example 7, the composition of the weld metal is within the specified range of the present invention, but since Pcw is not high, the toughness of the weld metal is as low as 75 J on average even immediately after welding and is not suitable for practical use.

溶接金属の成分は範囲内でもPcwが0.814で本願発明の規定範囲より高いため、溶接金属の引張強度が溶接直後でも1230MPaと高すぎた。これが1次加熱処理を実施しないことに加えて、2次加熱後の靭性が低い原因となった。   Even within the range, the weld metal component had a Pcw of 0.814, which is higher than the specified range of the present invention, and thus the tensile strength of the weld metal was too high at 1230 MPa even immediately after welding. This caused the low toughness after the secondary heating in addition to not performing the primary heat treatment.

比較例8は発明例1と同じ母材を用いて、軟鋼用の低強度市販溶材を使用し、CO2溶接したものである。そのため、Pcwが0.152と低くまた、Ni、CrおよびMoが本発明の範囲より低く、溶接金属の強度は470MPaと低い。そのため、溶接金属の靭性は1次加熱の有無によらず良好で、2次加熱による靭性低下もみられない。   In Comparative Example 8, the same base material as that of Invention Example 1 was used, and a low-strength commercial molten material for mild steel was used and CO2 welded. Therefore, Pcw is as low as 0.152, Ni, Cr and Mo are lower than the range of the present invention, and the strength of the weld metal is as low as 470 MPa. Therefore, the toughness of the weld metal is good regardless of the presence or absence of primary heating, and no toughness reduction due to secondary heating is observed.

従来技術と本発明の実施形態との溶接継手の加工工程を示す図である。It is a figure which shows the manufacturing process of the weld joint of a prior art and embodiment of this invention. 溶接継手の1次加熱処理時の加熱温度(保持時間:60秒)と2次加熱処理前後における各溶接金属の靭性との関係を示すグラフである。It is a graph which shows the relationship between the heating temperature at the time of the primary heat processing of a welded joint (holding time: 60 seconds), and the toughness of each weld metal before and after secondary heat processing. 溶接継手の1次加熱処理時の加熱温度(保持時間:1200秒)と2次加熱処理前後における各溶接金属の靭性との関係を示すグラフである。It is a graph which shows the relationship between the heating temperature (holding time: 1200 second) at the time of the primary heat processing of a welded joint, and the toughness of each weld metal before and after secondary heat processing. 溶接継手の1次加熱処理時の加熱温度(保持時間:60秒)と2次加熱処理前後における各溶接金属の引張強度との関係示すグラフである。It is a graph which shows the relationship between the heating temperature at the time of the primary heat processing of a welded joint (holding time: 60 seconds), and the tensile strength of each weld metal before and after secondary heat processing. 溶接継手の1次加熱処理時の加熱温度(保持時間:1200秒)と2次加熱処理前後における各溶接金属の引張強度との関係示すグラフである。It is a graph which shows the relationship between the heating temperature at the time of the primary heat treatment of a welded joint (holding time: 1200 seconds) and the tensile strength of each weld metal before and after the secondary heat treatment. V開先の溶接継手における機械試験片の採取要領を示す図である。It is a figure which shows the sampling procedure of the mechanical test piece in the weld joint of V groove | channel. 溶接継手の1次加熱処理時の保持時間(加熱温度:50℃)と2次加熱処理前後における各溶接金属の靭性との関係を示したグラフである。It is the graph which showed the relationship between the retention time (heating temperature: 50 degreeC) at the time of the primary heat processing of a welded joint, and the toughness of each weld metal before and after secondary heat processing. 溶接継手の1次加熱処理時の保持時間(加熱温度:450℃)と2次加熱処理前後における各溶接金属の靭性との関係を示したグラフである。It is the graph which showed the relationship between the retention time (heating temperature: 450 degreeC) at the time of the primary heat processing of a welded joint, and the toughness of each weld metal before and after secondary heat processing. 溶接継手の1次加熱処理時の保持時間(加熱温度50℃)と2次加熱処理前後における各溶接金属の引張強度との関係を示すグラフである。It is a graph which shows the relationship between the retention time (heating temperature 50 degreeC) at the time of the primary heat processing of a welded joint, and the tensile strength of each weld metal before and after secondary heat processing. 溶接継手の1次加熱処理時の保持時間(加熱温度450℃)と2次加熱処理前後における各溶接金属の引張強度との関係を示すグラフである。It is a graph which shows the relationship between the retention time (heating temperature 450 degreeC) at the time of the primary heat processing of a welded joint, and the tensile strength of each weld metal before and after secondary heat processing. X開先の溶接継手における機械試験片の採取要領を示す図である。It is a figure which shows the sampling procedure of the mechanical test piece in the weld joint of X groove | channel.

符号の説明Explanation of symbols

1 溶接金属引張試験片
2 衝撃試験片
3 V開先
4 X開先
1 weld metal tensile test piece 2 impact test piece 3 V groove 4 X groove

Claims (2)

溶接により作製した溶接継手を成形し、熱処理をする溶接継手の加工方法において、前記溶接において前記溶接継手の溶接部に、質量%で、C:0.03〜0.09%、Si:0.08〜0.4%、Mn:1.0〜2.3%、Ni:0.005〜3.3%、Cr:0.005〜1.5%、Mo:0.005〜2%を含有し、かつ下記(1)式で定義されるPcw値が0.2〜0.8を満足し、残部がFe及び不可避的成分からなる溶接金属を形成し、該溶接継手を加熱温度50〜450℃、保持時間1秒以上の条件で加熱処理をした後、前記溶接継手を成形し、熱処理をすることを特徴とする低温靭性の良好な溶接金属を有する溶接継手の加工方法。
Pcw=[C]+0.09×[Si]+0.08×[Mn]+0.06×[Ni]+0.11×[Cr]+0.14×[Mo] ・・・(1)
但し、上記[C]、[Si]、[Mn]、[Ni]、[Cr]、[Mo]は、それぞれC、Si、Mn、Ni、Cr、Moの含有量(質量%)を示す。
In the method for processing a welded joint in which a welded joint produced by welding is formed and subjected to heat treatment, C: 0.03 to 0.09%, Si: 0.00% in the welded portion of the welded joint in the welding. Contains 08 to 0.4%, Mn: 1.0 to 2.3%, Ni: 0.005 to 3.3%, Cr: 0.005 to 1.5%, Mo: 0.005 to 2% And the Pcw value defined by the following formula (1) satisfies 0.2 to 0.8, the remainder forms a weld metal composed of Fe and inevitable components, and the weld joint is heated to a heating temperature of 50 to 450. A method for processing a welded joint having a weld metal with good low-temperature toughness, wherein the welded joint is molded and heat-treated after heat treatment under the conditions of ° C and a holding time of 1 second or longer.
Pcw = [C] + 0.09 × [Si] + 0.08 × [Mn] + 0.06 × [Ni] + 0.11 × [Cr] + 0.14 × [Mo] (1)
However, said [C], [Si], [Mn], [Ni], [Cr], [Mo] show content (mass%) of C, Si, Mn, Ni, Cr, and Mo, respectively.
前記溶接金属の引張強度が500〜1200MPaであることを特徴とする請求項1記載の低温靭性の良好な溶接金属を有する溶接継手の加工方法。   2. The method for processing a welded joint having a weld metal with good low temperature toughness according to claim 1, wherein the weld metal has a tensile strength of 500 to 1200 MPa.
JP2004122239A 2004-04-16 2004-04-16 Method for working welded joint comprising weld metal having satisfactory low temperature toughness Pending JP2005305459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004122239A JP2005305459A (en) 2004-04-16 2004-04-16 Method for working welded joint comprising weld metal having satisfactory low temperature toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004122239A JP2005305459A (en) 2004-04-16 2004-04-16 Method for working welded joint comprising weld metal having satisfactory low temperature toughness

Publications (1)

Publication Number Publication Date
JP2005305459A true JP2005305459A (en) 2005-11-04

Family

ID=35434817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004122239A Pending JP2005305459A (en) 2004-04-16 2004-04-16 Method for working welded joint comprising weld metal having satisfactory low temperature toughness

Country Status (1)

Country Link
JP (1) JP2005305459A (en)

Similar Documents

Publication Publication Date Title
JP4948998B2 (en) Ferritic stainless steel and welded steel pipe for automotive exhaust gas flow path members
JP5200932B2 (en) Bend pipe and manufacturing method thereof
JP4761993B2 (en) Manufacturing method of ferritic stainless steel welded pipe for spinning
JP4655670B2 (en) Manufacturing method of high strength welded steel pipe with low yield ratio and excellent weld toughness
JPS629646B2 (en)
WO2013051249A1 (en) Welded steel pipe with excellent welding heat-affected zone toughness, and process for producing same
JP2007260715A (en) Method for producing superhigh strength welded steel pipe
KR20170128574A (en) Thick steel sheet for structural pipe, method for manufacturing thick steel sheet for structural pipe, and structural pipe
JP2007260716A (en) Method for producing ultrahigh strength welded steel pipe having excellent deformability
WO2016152171A1 (en) Steel plate for structural pipe, method for producing steel plate for structural pipe, and structural pipe
JP2016216819A (en) Thick steel plate and welded joint
JP5028761B2 (en) Manufacturing method of high strength welded steel pipe
JP4016800B2 (en) Thick large-diameter straight UOE steel pipe that satisfies the strict toughness requirements of both the inner weld metal and the reheated part, and its manufacturing method
JP5362825B2 (en) Ferritic stainless steel excellent in workability of welded portion, welded steel pipe using the same, and manufacturing method thereof
JPH06235044A (en) High tensile strength steel for welding structure excellent in fatigue strength and toughness at weld heat-affected zone
JP2002239722A (en) Lap fillet welding method for steel sheet excellent in fatigue strength of weld zone
JP2010077531A (en) Clad steel sheet excellent in characteristic of stopping initiation of fatigue crack and characteristic of stopping propagation thereof and method for producing the same
JP2005305459A (en) Method for working welded joint comprising weld metal having satisfactory low temperature toughness
JP2827839B2 (en) Method of manufacturing high strength, thick wall, high toughness bend steel pipe
JP4424484B2 (en) Welded joints with excellent cold cracking resistance and steel for welding materials
JP2007246933A (en) High strength steel pipe with excellent weld zone toughness, and its manufacturing method
JP4264298B2 (en) Large section flash butt welded structure with high toughness in the weld zone
JPH06142931A (en) Fatigue strength improvement welding method for carbon steel or low alloy steel welded joint
JP2005288504A (en) Welded joint excellent in fatigue strength and its welding method
JP3820910B2 (en) Laser welding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060907

A977 Report on retrieval

Effective date: 20080710

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080722

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081202