JP2005305235A - Deaerator - Google Patents

Deaerator Download PDF

Info

Publication number
JP2005305235A
JP2005305235A JP2004122908A JP2004122908A JP2005305235A JP 2005305235 A JP2005305235 A JP 2005305235A JP 2004122908 A JP2004122908 A JP 2004122908A JP 2004122908 A JP2004122908 A JP 2004122908A JP 2005305235 A JP2005305235 A JP 2005305235A
Authority
JP
Japan
Prior art keywords
gas
separation membrane
release valve
liquid separation
generating structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004122908A
Other languages
Japanese (ja)
Inventor
Takeshi Seto
毅 瀬戸
Kunihiko Takagi
邦彦 高城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2004122908A priority Critical patent/JP2005305235A/en
Publication of JP2005305235A publication Critical patent/JP2005305235A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem wherein the opening of an air releasing valve is inaccurate in a conventional deaerator because the opening is performed by time control or optical control and, as a result, the scaling-up of the deaerator is brought about. <P>SOLUTION: In the deaerator equipped with a revolving flow forming structure, an air-liquid separation membrane installed at the center of the revolving flow forming structure and a controllable air releasing valve installed on the air side of the air-liquid separation membrane, pressure sensors are provided in the revolving flow forming structure and a nearly isobaric flow channel. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、流路内の気泡除去装置に関し、特に電子機器の循環式液冷装置のように小型化が要求される用途であって、ダイアフラムによりポンプ室内の容積を変更して動作流体である液体の移動を行うポンプのように、吐出流路に圧力脈動を伴うポンプを流体駆動源とした流体システムの気泡除去装置に関する。   The present invention relates to a bubble removing device in a flow path, and particularly to an application that requires downsizing, such as a circulating liquid cooling device for electronic equipment, and is a working fluid by changing the volume in a pump chamber by a diaphragm. The present invention relates to a bubble removal device for a fluid system in which a pump with pressure pulsation in a discharge channel is used as a fluid drive source, such as a pump that moves liquid.

従来、気泡除去装置は、遠心ポンプ等、液体を動作流体とし気体がポンプ内部に滞留するとポンプ性能が悪化するポンプを流体駆動源とした流体システムの流路内に設けられる。(例えば、特許文献1参照)また、吸い込み側逆止弁を有する一方、吐出側には逆止弁の代わりに流体の慣性効果を発生する管路要素をポンプ室の直後に設けた高出力マイクロポンプが開発されている。(非特許文献1参照)
特開平11−333207号公報(第4頁、図1) 「流体の慣性効果を用いた高出力マイクロポンプ」 日本機械学会誌 2003.10 VOL.106 No.1019 (第823頁、図1〜図4)
2. Description of the Related Art Conventionally, a bubble removing device is provided in a flow path of a fluid system such as a centrifugal pump that uses a liquid as a working fluid and a pump whose performance deteriorates when gas stays inside the pump. (For example, refer to Patent Document 1) In addition, a high-output micro that has a suction-side check valve, and on the discharge side, a pipe element that generates an inertia effect of fluid instead of the check valve is provided immediately after the pump chamber. A pump has been developed. (See Non-Patent Document 1)
Japanese Patent Laid-Open No. 11-333207 (page 4, FIG. 1) "High-power micropump using inertial effect of fluid" Journal of the Japan Society of Mechanical Engineers 2003.10 VOL. 106 No. 1019 (page 823, FIGS. 1 to 4)

このような特許文献1では、ポンプで送出する液体を旋回流発生構造内を通過させる。旋回流発生構造内では、液体が旋回するため遠心力によって、動作流体である液体が液体に比して比重の軽い気体と分離され、気体は旋回流発生構造の中心部に集まる。   In such a patent document 1, the liquid sent out by the pump is passed through the swirl flow generating structure. In the swirl flow generating structure, since the liquid swirls, the liquid that is the working fluid is separated from the gas having a lighter specific gravity than the liquid by the centrifugal force, and the gas collects at the center of the swirl flow generating structure.

旋回流発生構造の中心部には気泡排出部があるが、気液分離膜によって液体を通さず気体のみを外部に排出する。気泡排出部の外部には気体開放弁があり、弁の開放により気体を流路外に排出していたが、気体開放弁の解放を自動的に行うには光学的検出法あるいは時間管理によっていた。しかしながら、光学的検出法では高精度検出のためには装置が大型化し、時間管理による方法では検出の精度が悪いという課題があった。   Although there is a bubble discharge part at the center of the swirl flow generating structure, only the gas is discharged outside without passing through the liquid by the gas-liquid separation membrane. There was a gas release valve outside the bubble discharge part, and gas was discharged out of the flow path by opening the valve, but the gas release valve was automatically released by optical detection method or time management . However, the optical detection method has a problem that the apparatus becomes large for high-accuracy detection, and the detection method is poor in the time management method.

また、前述の時間管理による方法では、弁開放の時間間隔を必要以上に短く設定すると不必要な弁開放が発生し、動作流体が蒸気として気液分離膜を通して放散されるため、動作流体が短期間に減少してしまい、特に動作流体を封入して循環させる循環式液冷装置では課題となっていた。   Further, in the above-described time management method, if the time interval for opening the valve is set to be shorter than necessary, unnecessary valve opening occurs, and the working fluid is diffused as vapor through the gas-liquid separation membrane. In particular, a circulation type liquid cooling apparatus that encloses and circulates a working fluid has been a problem.

本発明の目的は、特に電子機器の循環式液冷装置のように小型化が要求される用途であって、非特許文献1のようなダイアフラムによりポンプ室内の容積を変更して動作流体である液体の移動を行うポンプのように、吐出流路に圧力脈動を伴うポンプを流体駆動源とした流体システムにおいて、小型かつ高精度に気泡の発生を検出し、動作流体の不必要な放散も防止する気泡除去装置を提供することにある。   An object of the present invention is an application that requires a reduction in size, such as a circulating liquid cooling device for electronic equipment, and is a working fluid in which the volume in a pump chamber is changed by a diaphragm as in Non-Patent Document 1. In a fluid system that uses a pump with pressure pulsation in the discharge channel as a fluid drive source, such as a pump that moves liquid, the generation of bubbles is detected with small size and high accuracy, and unnecessary dissipation of the working fluid is prevented. An object of the present invention is to provide an air bubble removing device.

本発明の気泡除去装置は、旋回流発生構造と、前記旋回流発生構造の概中心に設置された気液分離膜と、前期気液分離膜の気体側に設置された制御可能な気体開放弁を具備した気泡除去装置において、旋回流発生構造と概等圧の流路内に圧力センサを備えたことを特徴とする。   The bubble removing device of the present invention includes a swirling flow generating structure, a gas-liquid separation membrane installed at the approximate center of the swirling flow generating structure, and a controllable gas release valve installed on the gas side of the previous gas-liquid separation membrane. In the bubble removing apparatus having the above-described configuration, a pressure sensor is provided in a flow path of approximately equal pressure with the swirling flow generating structure.

このような構成によれば、旋回流発生構造内に気泡が滞留した場合、液体と気体の圧縮性の違いにより圧力センサで検出される圧力波形が変化する。この変化を検出することで、小型で精度の高い気泡量の検出が可能になる。   According to such a configuration, when bubbles stay in the swirl flow generating structure, the pressure waveform detected by the pressure sensor changes due to the difference in compressibility between the liquid and the gas. By detecting this change, it is possible to detect the amount of bubbles with a small size and high accuracy.

また、本発明の気泡除去装置は、圧力センサの検出圧力の脈動状態によって、前記気体開放弁の開放を指示する制御装置を備えることが望ましい。   Moreover, it is preferable that the bubble removing device of the present invention includes a control device that instructs opening of the gas release valve according to a pulsation state of a pressure detected by a pressure sensor.

このような構成によれば、特にダイアフラムポンプのように、吐出流路に圧力脈動を伴うポンプを流体駆動源とした流体システムにおいては、その圧力脈動が旋回流発生構造内の気泡の有無によって大きく異なるため、気泡の発生を容易かつ高精度に検出が可能となり、必要な場合に弁を開放することが可能となる。   According to such a configuration, particularly in a fluid system in which a pump with pressure pulsation in the discharge flow path, such as a diaphragm pump, is used as a fluid drive source, the pressure pulsation is increased depending on the presence or absence of bubbles in the swirling flow generating structure. Since they are different, the generation of bubbles can be detected easily and with high accuracy, and the valve can be opened when necessary.

さらに、本発明の気泡除去装置は、前記制御可能な気体開放弁は形状記憶合金の加熱によって開閉することが望ましい。   Furthermore, in the bubble removing apparatus of the present invention, it is preferable that the controllable gas release valve is opened and closed by heating the shape memory alloy.

このような構成によれば、形状記憶合金バネとその加熱構造という簡単な弁構造で気泡除去装置を構成することができる。   According to such a configuration, the bubble removing device can be configured with a simple valve structure of a shape memory alloy spring and its heating structure.

さらに、本発明の気泡除去装置は、旋回流発生構造と、前記旋回流発生構造の概中心に設置された気液分離膜と、前期気液分離膜の気体側に設置された制御可能な気体開放弁を具備した気泡除去装置において、前記気体開放弁の開放頻度によって警報を発する警報装置を備えることが望ましい。   Furthermore, the bubble removing device of the present invention includes a swirling flow generating structure, a gas-liquid separation membrane installed at the approximate center of the swirling flow generating structure, and a controllable gas installed on the gas side of the previous gas-liquid separation membrane. It is desirable that the bubble removing apparatus provided with an open valve includes an alarm device that issues an alarm according to the frequency of opening the gas release valve.

例えば、電子機器の循環式液冷装置のように小型化が要求される用途では、循環流路内に封入できる動作流体量が少ないため、流路の傷等の異常が発生し気泡が混入しやすくなった場合、使用者に早く報知する必要がある。このような状況下では、気体開放弁の開放頻度が多くなるため、この頻度によって警報を発することで正確な警報を早めに発することが可能になるという効果がある。   For example, in applications where downsizing is required, such as circulating liquid cooling devices for electronic equipment, the amount of working fluid that can be enclosed in the circulation flow path is small, so abnormalities such as scratches on the flow path occur and bubbles are mixed in. When it becomes easy, it is necessary to notify the user early. Under such circumstances, since the frequency of opening the gas release valve increases, there is an effect that it is possible to issue an accurate alarm early by issuing an alarm according to this frequency.

以下、本発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1から図4は実施例1の気泡除去装置100が示されている。
図1及び図2は実施例1の旋回流路の軸に平行な断面図で図1は気体開放弁の閉鎖状態、図2は気体開放弁の開放状態を示している。図3は実施例1の旋回流路の軸に垂直な断面図である。図4はダイアフラムポンプ300への気泡除去装置100の取り付け状態を示している。
1 to 4 show a bubble removing device 100 of the first embodiment.
1 and 2 are cross-sectional views parallel to the axis of the swirl flow path of the first embodiment. FIG. 1 shows a closed state of the gas release valve, and FIG. 2 shows an opened state of the gas release valve. FIG. 3 is a cross-sectional view perpendicular to the axis of the swirl flow path of the first embodiment. FIG. 4 shows a state where the bubble removing device 100 is attached to the diaphragm pump 300.

図1から図3において、気泡除去装置の本体101内部には、略円形の旋回流発生構造である旋回流路104が形成され、流入流路103から流出流路102へ流体が流された場合、旋回流路104内では旋回流が発生する。動作流体が液体の場合、動作流体中に気泡が含まれている場合、動作流体との比重の違いから気体は旋回流路104の中央部に集まる。   1 to 3, when a swirl flow path 104 having a substantially circular swirl flow generation structure is formed inside the main body 101 of the bubble removing device, and a fluid flows from the inflow flow path 103 to the outflow flow path 102. A swirling flow is generated in the swirling flow path 104. When the working fluid is a liquid and the bubbles are included in the working fluid, the gas collects in the central portion of the swirl flow path 104 due to the difference in specific gravity from the working fluid.

旋回流路の中央部には、気液分離膜111があり気体のみを通過させる。気液分離膜111の旋回流路104の逆側には弁シャフト122で支持された気体開放弁121があり、通常は、形状記憶合金バネ123で、気液分離膜111を通過した気体を外部に逃がさないように閉鎖している。従って、動作流体自体が気化して気液分離膜を通過して放散することで、動作流体が減少するという不都合が無くなり、最小限の動作流体封入量で流体システムが構成可能となるため、電子機器冷却装置の冷却システムを小型に構成できるという効果がある。   There is a gas-liquid separation membrane 111 at the center of the swirl flow path, allowing only gas to pass through. There is a gas release valve 121 supported by a valve shaft 122 on the opposite side of the swirl flow path 104 of the gas-liquid separation membrane 111. Normally, the gas that has passed through the gas-liquid separation membrane 111 is externally passed by a shape memory alloy spring 123. It is closed so as not to escape. Therefore, since the working fluid itself is vaporized and dissipated through the gas-liquid separation membrane, there is no inconvenience that the working fluid is reduced, and a fluid system can be configured with a minimum amount of working fluid. There is an effect that the cooling system of the device cooling apparatus can be configured in a small size.

図2は、形状記憶合金バネ123が加熱手段で加熱されて収縮し、気体開放弁121が開放している状態を示している。形状記憶合金の加熱は、図示しない近傍のヒータ配線に電流を流すことによって簡単に行うことが可能である。この状態においては、旋回流路104の中心部に集まった気体は、気液分離膜111を通過し、気体開放弁121と本体101の隙間を経て、開放口105から排出される。   FIG. 2 shows a state in which the shape memory alloy spring 123 is heated and contracted by the heating means, and the gas release valve 121 is opened. The shape memory alloy can be easily heated by passing a current through a nearby heater wiring (not shown). In this state, the gas collected at the center of the swirl flow path 104 passes through the gas-liquid separation membrane 111 and is discharged from the opening 105 through the gap between the gas release valve 121 and the main body 101.

このように形状記憶合金の加熱によって開閉する弁を用いることで、小型かつ簡単な構造で気泡除去装置の気体開放弁が構成できるという効果がある。   Thus, by using the valve that opens and closes by heating the shape memory alloy, there is an effect that the gas release valve of the bubble removing device can be configured with a small and simple structure.

旋回流路104に対面した、本体101の内部には、圧力センサ131が組み込まれている。流路内に流体が流れると様々な圧力変動が発生する。この圧力変動は圧力センサ131によって検出可能であるが、旋回流路内に気泡が滞留すると、気泡の圧縮性により圧力変動値は、極めて小さいものになる。従って、圧力変動値の減少を検出することにより旋回流路内に気泡が滞留しているか否かの検出が可能になるのである。   A pressure sensor 131 is incorporated in the main body 101 facing the swirl flow path 104. When the fluid flows in the flow path, various pressure fluctuations occur. This pressure fluctuation can be detected by the pressure sensor 131. However, if bubbles remain in the swirl flow path, the pressure fluctuation value becomes extremely small due to the compressibility of the bubbles. Therefore, it is possible to detect whether or not bubbles are retained in the swirling flow path by detecting the decrease in the pressure fluctuation value.

図4に示すダイアフラムポンプ300は、非特許文献1に開示されている吸い込み側には逆止弁322を有する一方、吐出側管路325には逆止弁の代わりに流体の慣性効果を発生する管路要素325をポンプ室の直後に設けた高出力マイクロポンプである。   The diaphragm pump 300 shown in FIG. 4 has a check valve 322 on the suction side disclosed in Non-Patent Document 1, while generating an inertia effect of fluid in the discharge side pipe 325 instead of the check valve. A high-power micropump in which a pipe line element 325 is provided immediately after the pump chamber.

このようなポンプにおいては、圧電素子313の収縮により、強い脈動とともに動作流体が吐出されるが、その直後に気泡除去装置100を設けることにより、その圧力脈動が旋回流発生構造内の気泡の有無によって大きく異なり、また、圧力脈動のタイミングも、予め知ることが可能であるため、気泡の発生を容易かつ高精度に検出が可能となるのである。   In such a pump, the working fluid is discharged with strong pulsation due to the contraction of the piezoelectric element 313. By providing the bubble removing device 100 immediately after that, the pressure pulsation is caused by the presence or absence of bubbles in the swirl flow generating structure. Since the timing of pressure pulsation can be known in advance, the generation of bubbles can be detected easily and with high accuracy.

従って、特に電子機器の循環式液冷装置のように小型化が要求される用途であって、非特許文献1のようなダイアフラムによりポンプ室内の容積を変更して動作流体である液体の移動を行うポンプのように、吐出流路に圧力脈動を伴うポンプを流体駆動源とした流体システムにおいて、小型かつ高精度に気泡の発生を検出し、動作流体の不必要な放散も防止するという効果がある。   Therefore, it is an application that requires miniaturization, such as a circulating liquid cooling device for electronic equipment, and the volume of the pump chamber is changed by a diaphragm as in Non-Patent Document 1 to move the liquid as the working fluid. In a fluid system that uses a pump with pressure pulsation in the discharge channel as a fluid drive source, such as a pump that performs, it is possible to detect the generation of bubbles with a small size and high accuracy, and to prevent unnecessary dissipation of the working fluid is there.

本発明の別の実施例について図5を用いて説明する。図5は実施例2の制御ブロック図である。圧力センサ131の圧力脈動信号を制御装置が判断し、脈動値が小さくなると気泡が旋回流路内に滞留したと判断して弁駆動装置202を駆動し気体開放弁が開放される。   Another embodiment of the present invention will be described with reference to FIG. FIG. 5 is a control block diagram of the second embodiment. The control device determines the pressure pulsation signal of the pressure sensor 131, and when the pulsation value becomes small, it is determined that bubbles have accumulated in the swirl flow path, and the valve driving device 202 is driven to open the gas release valve.

この、気体開放弁の開放の頻度は、循環式冷却装置等の気密された装置においては、極めて少ない。しかし、流路に傷等の異常があると漏れた動作流体と入れ替わりに外気が流路内に混入するため、弁開放の頻度が通常と比較して多くなる。   The frequency of opening the gas release valve is very low in an airtight device such as a circulation type cooling device. However, if there is an abnormality such as a flaw in the flow path, the outside air is mixed in the flow path instead of the leaked working fluid, so the frequency of opening the valve is higher than usual.

予め設定された弁開放頻度を超えた場合、制御装置は警報装置に指示を送り警報が発せられる。このことにより、使用者は循環式冷却装置等の異常を早期に知ることができ、故障を最小限にとどめることができるのである。   When a preset valve opening frequency is exceeded, the control device sends an instruction to the alarm device to issue an alarm. As a result, the user can know the abnormality of the circulating cooling device or the like at an early stage, and can minimize the failure.

なお、前述の実施例ではセンサを圧力センサに限定していたが本実施例においてはセンサを限定するものではなく、また、気体開放弁の駆動方式においても形状記憶合金以外にも電磁弁、圧電素子を用いた弁等様々な弁駆動方式の適用が可能である。   In the above-described embodiment, the sensor is limited to the pressure sensor. However, in the present embodiment, the sensor is not limited. In addition to the shape memory alloy, the gas release valve driving method is not limited to the electromagnetic valve, piezoelectric. Various valve driving systems such as a valve using an element can be applied.

例えば、前述した実施例1および実施例2では、それぞれに最適な構造を示しているが、実施例の構造を組み合わせて採用することができる。   For example, in the first and second embodiments described above, the optimum structures are shown, but the structures of the embodiments can be used in combination.

本発明の気泡除去装置は、特に電子機器の循環式液冷装置のように小型化が要求される用途であって、ダイアフラムによりポンプ室内の容積を変更して動作流体である液体の移動を行うポンプのように、吐出流路に圧力脈動を伴うポンプを流体駆動源とした流体システムの気泡除去装置に利用できる。   The bubble removing device of the present invention is an application that requires miniaturization, particularly like a circulating liquid cooling device for electronic equipment, and moves a liquid as a working fluid by changing a volume in a pump chamber by a diaphragm. Like a pump, it can utilize for the bubble removal apparatus of the fluid system which used the pump with a pressure pulsation in a discharge flow path as a fluid drive source.

本発明の実施例1に係る気泡除去装置の旋回流路の軸に平行な断面図。Sectional drawing parallel to the axis | shaft of the turning flow path of the bubble removal apparatus which concerns on Example 1 of this invention. 本発明の実施例1に係る気泡除去装置の旋回流路の軸に平行な断面図。Sectional drawing parallel to the axis | shaft of the turning flow path of the bubble removal apparatus which concerns on Example 1 of this invention. 本発明の実施例1に係る気泡除去装置の旋回流路の軸に垂直な断面図。Sectional drawing perpendicular | vertical to the axis | shaft of the turning flow path of the bubble removal apparatus which concerns on Example 1 of this invention. 本発明の実施例1に係る気泡除去装置のポンプへの取りつけ状態図。The attachment state figure to the pump of the bubble removal apparatus which concerns on Example 1 of this invention. 本発明の実施例2に係る気泡除去装置の制御ブロック図。The control block diagram of the bubble removal apparatus which concerns on Example 2 of this invention.

符号の説明Explanation of symbols

100…気泡除去装置、101…本体、102…流出流路、103…流入流路、104…旋回流路、105…開放口、111…気液分離膜、121…気体開放弁、122…弁シャフト、123…形状記憶合金バネ、131…圧力センサ、142…圧力センサ、201…制御装置、202…弁駆動装置、203…ポンプ駆動回路、204…警報装置、300…ダイアフラムポンプ。
DESCRIPTION OF SYMBOLS 100 ... Bubble removal apparatus, 101 ... Main body, 102 ... Outflow channel, 103 ... Inflow channel, 104 ... Swirling channel, 105 ... Opening port, 111 ... Gas-liquid separation membrane, 121 ... Gas release valve, 122 ... Valve shaft , 123 ... shape memory alloy spring, 131 ... pressure sensor, 142 ... pressure sensor, 201 ... control device, 202 ... valve drive device, 203 ... pump drive circuit, 204 ... alarm device, 300 ... diaphragm pump.

Claims (4)

旋回流発生構造と、前記旋回流発生構造の概中心に設置された気液分離膜と、前期気液分離膜の気体側に設置された制御可能な気体開放弁を具備した気泡除去装置において、
旋回流発生構造と概等圧の流路内に圧力センサを備えた、ことを特徴とする気泡除去装置。
In the bubble removal device comprising a swirling flow generating structure, a gas-liquid separation membrane installed at the approximate center of the swirling flow generating structure, and a controllable gas release valve installed on the gas side of the previous gas-liquid separation membrane,
A bubble removing apparatus comprising a pressure sensor in a flow path having a substantially equal pressure with the swirling flow generating structure.
請求項1に記載の気泡除去装置において、
前記圧力センサの検出圧力の脈動状態によって、前記気体開放弁の開放を指示する制御装置を備えた、ことを特徴とする気泡除去装置。
The bubble removing apparatus according to claim 1, wherein
A bubble removing device comprising: a control device that instructs opening of the gas release valve according to a pulsation state of pressure detected by the pressure sensor.
請求項1または請求項2に記載の気泡除去装置において、
前記気体開放弁は形状記憶合金の加熱によって開閉する、ことを特徴とする気泡除去装置。
In the bubble removal apparatus according to claim 1 or 2,
The gas release valve is opened and closed by heating the shape memory alloy.
旋回流発生構造と、前記旋回流発生構造の概中心に設置された気液分離膜と、前期気液分離膜の気体側に設置された制御可能な気体開放弁を具備した気泡除去装置において、
前記気体開放弁の開放頻度によって警報を発する警報装置を備えた、ことを特徴とする気泡除去装置。
In the bubble removal device comprising a swirling flow generating structure, a gas-liquid separation membrane installed at the approximate center of the swirling flow generating structure, and a controllable gas release valve installed on the gas side of the previous gas-liquid separation membrane,
An air bubble removing device comprising an alarm device that issues an alarm according to an opening frequency of the gas release valve.
JP2004122908A 2004-04-19 2004-04-19 Deaerator Withdrawn JP2005305235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004122908A JP2005305235A (en) 2004-04-19 2004-04-19 Deaerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004122908A JP2005305235A (en) 2004-04-19 2004-04-19 Deaerator

Publications (1)

Publication Number Publication Date
JP2005305235A true JP2005305235A (en) 2005-11-04

Family

ID=35434612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004122908A Withdrawn JP2005305235A (en) 2004-04-19 2004-04-19 Deaerator

Country Status (1)

Country Link
JP (1) JP2005305235A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7600987B2 (en) 2005-04-14 2009-10-13 Seiko Epson Corporation Pump

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7600987B2 (en) 2005-04-14 2009-10-13 Seiko Epson Corporation Pump

Similar Documents

Publication Publication Date Title
US20110070110A1 (en) Piezoelectric micro blower
EP2096309A1 (en) Piezoelectric micro-blower
JP4791814B2 (en) Fluid separator, fluid introduction method, fluid flow control assembly, and fuel cell system
JP2019521326A5 (en)
JP2009250132A (en) Cooling device and electronic equipment
JP4533614B2 (en) Vacuum control system
JP2006316785A (en) Pump
WO1992007454A1 (en) Liquid cooling system employing air purging mechanism
JP2014179615A (en) Synthetic jet driven cooling device with increased volumetric flow
JP4445238B2 (en) Fluid control valve
JP4779126B2 (en) Valveless micro pump
JP5776447B2 (en) Control device and excision device used in connection with fluid ejection device for excising biological tissue by ejected fluid
JP2005305235A (en) Deaerator
US10302077B2 (en) Liquid supply system and method for controlling liquid supply system
JP2019529803A (en) Systems for commercial vehicles including screw compressors with common cooling devices and electric motors
JP2006194531A (en) Steam temperature decreasing device
JP2022010352A (en) Substance detection system
JP4768522B2 (en) Oil separator of oil-cooled compressor
JP5269407B2 (en) Steam ejector
JP6596704B2 (en) Diaphragm pump
CN108780332B (en) Flow rate control device
JP2007332860A (en) Steam ejector
JP2006063961A (en) Turbo pump
JP5010188B2 (en) Gas jet cooling system and projection display device
JP2019529802A (en) Systems for commercial vehicles, including compressors and electric motors

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070403

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070703