JP2005303116A - Optical module and method for manufacturing same - Google Patents

Optical module and method for manufacturing same Download PDF

Info

Publication number
JP2005303116A
JP2005303116A JP2004118824A JP2004118824A JP2005303116A JP 2005303116 A JP2005303116 A JP 2005303116A JP 2004118824 A JP2004118824 A JP 2004118824A JP 2004118824 A JP2004118824 A JP 2004118824A JP 2005303116 A JP2005303116 A JP 2005303116A
Authority
JP
Japan
Prior art keywords
semiconductor chip
electrode
flat plate
light emitting
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004118824A
Other languages
Japanese (ja)
Inventor
Hideo Kikuchi
秀雄 菊地
Junichi Sasaki
純一 佐々木
Teruhito Matsui
輝仁 松井
Katsumichi Itou
克通 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
NEC Corp
Panasonic Holdings Corp
Original Assignee
Mitsubishi Electric Corp
NEC Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, NEC Corp, Matsushita Electric Industrial Co Ltd filed Critical Mitsubishi Electric Corp
Priority to JP2004118824A priority Critical patent/JP2005303116A/en
Publication of JP2005303116A publication Critical patent/JP2005303116A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Light Receiving Elements (AREA)
  • Semiconductor Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical module in which all bump electrodes can be freely wired on the backside or surface of a chip even in the case of a compound semiconductor. <P>SOLUTION: As the basic configuration of an optical component 25, the optical component 25 is constituted of coupling a semiconductor chip 2 of a light emitting/receiving element only with a structure 1, and a light emitting/receiving part 5 in the semiconductor chip 2 of the light emitting/receiving element is covered with a plate 11 of the structure 1 so as to be protected. An element electrode pad 22 formed on the semiconductor chip 2 of the light emitting/receiving element is bonded with a metal layer 12 formed on the bottom of the plate 11 of the structure 1 to draw it out, and the semiconductor chip 2 of the light emitting/receiving element is fixed on the plate 11 by the junction point. The optical path 33 of the light emitting/receiving part 5 is transformed into an optical path 33 parallel with the surface of the semiconductor chip 2 of the light emitting/receiving element by a concave mirror 6 formed on the slant surface 15 of the plate 11 to obtain the optical component 25. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、主として、受発光部が配列された受発光素子の半導体チップに、構造体を接合して形成した光部品に関する。   The present invention mainly relates to an optical component formed by bonding a structure to a semiconductor chip of a light emitting / receiving element in which light emitting / receiving portions are arranged.

光モジュールにおいて受発光素子の半導体チップの受発光部と光伝送路を光結合する位置合わせ精度は、光伝送路がシングルモード光導波路の場合には、1μm以下の位置合わせ精度が必要とされている。   In the optical module, the alignment accuracy for optically coupling the light emitting / receiving portion of the semiconductor chip of the light emitting / receiving element and the optical transmission path is required to be 1 μm or less when the optical transmission path is a single mode optical waveguide. Yes.

この位置合わせ精度を緩和するためには、受発光素子の半導体チップと光学系統を有する構造体を組み合わせて成る光部品を形成し、その光部品と実装基板上の光伝送路の間を太い平行光で結合して成る光モジュールを構成する必要がある。   In order to relax this alignment accuracy, an optical component is formed by combining a semiconductor chip of a light emitting / receiving element and a structure having an optical system, and a large parallel is formed between the optical component and the optical transmission path on the mounting substrate. It is necessary to construct an optical module formed by coupling with light.

この構成により、光部品と光伝送路の位置合せは、平行光の太さの数分の1の位置合わせ誤差が許されるようになるからである。そのためには、受発光素子の半導体チップの受発光部からの広がり光を構造体の光学系統により平行光に変換して光部品から出射させるようにする必要がある。   This is because the alignment error between the optical component and the optical transmission path is allowed to be a fraction of the thickness of the parallel light. For this purpose, it is necessary to convert the spread light from the light receiving / emitting part of the semiconductor chip of the light receiving / emitting element into parallel light by the optical system of the structure and to emit it from the optical component.

一方、受発光部の光路はフォトダイオードではチップ面に垂直であり、面型発光レーザ(VCSEL)の光路もチップ面に垂直である。そのため、受発光素子の半導体チップを実装基板に平行に実装するフリップチップ実装では、構造体の光学系統として受発光部の光路を実装基板に平行にする光路の方向変換と太い平行光の作成を同時に行う凹面鏡が必要である。   On the other hand, the optical path of the light emitting / receiving unit is perpendicular to the chip surface in the photodiode, and the optical path of the surface emitting laser (VCSEL) is also perpendicular to the chip surface. Therefore, in flip chip mounting, in which the semiconductor chip of the light emitting / receiving element is mounted in parallel to the mounting substrate, the direction of the optical path that makes the optical path of the light receiving / emitting section parallel to the mounting substrate as an optical system of the structure and the creation of thick parallel light A concave mirror is required to be performed simultaneously.

従来の、受発光素子の半導体チップの受発光部と、実装基板の光伝送路を、構造体の凹面鏡を用いて光結合する構造は、第1の従来例として、特許文献1に開示されている。   A conventional structure for optically coupling a light emitting / receiving portion of a semiconductor chip of a light emitting / receiving element and an optical transmission path of a mounting substrate using a concave mirror of a structure is disclosed in Patent Document 1 as a first conventional example. Yes.

第1の従来例は、図8に示すように、1つの受発光部のみを有する受発光素子の半導体チップ2を、PMMA(メタクリル酸メチル樹脂)あるいはポリカーボネートなどの熱可塑性樹脂の射出成型で凹面鏡6を形成した構造体1に位置を合わせて設置し、コアの径が200μmから約1mmのPOF(プラスチック光ファイバ)あるいはPCF(ポリマークラッド光ファイバ)の光伝送路29からの光を凹面鏡6で折り返して受発光素子の半導体チップ2の受発光部に集光している。   In the first conventional example, as shown in FIG. 8, a semiconductor chip 2 of a light receiving and emitting element having only one light emitting and receiving part is formed by injection molding of a thermoplastic resin such as PMMA (methyl methacrylate resin) or polycarbonate, and a concave mirror. 6 is formed in alignment with the structure 1, and the light from the optical transmission path 29 of POF (plastic optical fiber) or PCF (polymer clad optical fiber) having a core diameter of 200 μm to about 1 mm is received by the concave mirror 6. The light is collected and condensed on the light receiving / emitting portion of the semiconductor chip 2 of the light receiving / emitting element.

また、第2の従来例は、特許文献2に開示されており、図9に示すように、実装基板27の表面に、超音波熱圧着の金接合により凹面鏡6を形成した構造体1を設置し、その構造体1の上方に受発光素子の半導体チップ2をフリップチップ実装し、その凹面鏡6で受発光素子の半導体チップ2の受発光部5の光路33を直角に折り返し、実装基板27に平行な光路33に変換し、実装基板に設置した光導波路である光伝送路29に入射している。   The second conventional example is disclosed in Patent Document 2, and as shown in FIG. 9, the structure 1 in which the concave mirror 6 is formed on the surface of the mounting substrate 27 by gold bonding by ultrasonic thermocompression bonding is installed. Then, the semiconductor chip 2 of the light receiving / emitting element is flip-chip mounted above the structure 1, and the optical path 33 of the light receiving / emitting part 5 of the semiconductor chip 2 of the light receiving / emitting element is folded at a right angle by the concave mirror 6. The light is converted into a parallel optical path 33 and is incident on an optical transmission path 29 which is an optical waveguide installed on the mounting substrate.

また、第3の従来例は、特許文献3に開示されており、図10に示すように、GaAs基板の上にVCSELなどの受発光素子の半導体チップ2と、その上の光導波路層と、その光導波路層の斜面の光フィルタから成る構造体1を一括して形成し、それから、1つの受発光部のみを有する受発光素子の半導体チップ2と構造体1から成る個々の光部品25を分割して形成し、各光部品25を実装基板27上に配置し、その後に、実装基板27上に光部品25と光結合する光導波路の光伝送路29を形成している。   A third conventional example is disclosed in Patent Document 3, and as shown in FIG. 10, a semiconductor chip 2 of a light emitting / receiving element such as a VCSEL on a GaAs substrate, an optical waveguide layer thereon, The structure 1 composed of the optical filter on the inclined surface of the optical waveguide layer is formed in a lump, and then the individual optical components 25 composed of the semiconductor chip 2 of the light emitting / receiving element having only one light emitting / receiving section and the structure 1 are formed. Each optical component 25 is formed on a mounting substrate 27, and then an optical transmission path 29 of an optical waveguide that is optically coupled to the optical component 25 is formed on the mounting substrate 27.

さらに、第4の従来例は、特許文献4に開示されており、図11に示すように、1つの受発光部のみを有する半導体チップ2を実装基板27上に設置し、受発光部の光路33を直角に変換する45度の斜面6に種々の曲面の鏡面を形成した構造体1を樹脂で形成することで鏡面付きの光部品25を得て、それをシート状の光伝送路に設置することで光結合して使用している。受発光素子の半導体チップ2は実装基板27上に設置することで実装基板電極パッド28を形成し、この実装基板電極パッド28により光部品25を他の実装基板27に電気接続するようにしている。   Further, a fourth conventional example is disclosed in Patent Document 4, and as shown in FIG. 11, a semiconductor chip 2 having only one light emitting / receiving unit is disposed on a mounting substrate 27, and an optical path of the light receiving / emitting unit is obtained. Optical structure 25 with a mirror surface is obtained by forming structure 1 in which various curved mirror surfaces are formed on 45-degree inclined surface 6 that converts 33 into a right angle with resin, and it is installed in a sheet-like optical transmission line It is used by optical coupling. The semiconductor chip 2 of the light emitting / receiving element is mounted on the mounting substrate 27 to form a mounting substrate electrode pad 28, and the optical component 25 is electrically connected to another mounting substrate 27 by the mounting substrate electrode pad 28. .

特開2003−167166号公報JP 2003-167166 A 特開2002−82244号公報JP 2002-82244 A 特開2001−274528号公報JP 2001-274528 A 特開2003−57468号公報JP 2003-57468 A

しかし、これらの従来技術には、以下に示すような問題点がある。   However, these conventional techniques have the following problems.

第1の従来例では、光伝送路29にPOFを用い、製造コストの低減のために受発光部と構造体1の凹面鏡6と光伝送路29の位置合わせ精度を緩くすることに対応して、POFのコアの直径を200μmから1mm程度に太くすることが推奨されている。しかし、POFのコア径を大きくしているため、POFが光伝送可能なために最低限必要な限界である曲げ曲率半径が大きくなり、POFの曲げが急な場合にはPOF内の光伝送が困難になる問題がある。   In the first conventional example, a POF is used for the optical transmission line 29, and the alignment accuracy of the light receiving / emitting part, the concave mirror 6 of the structure 1 and the optical transmission line 29 is reduced to reduce the manufacturing cost. It is recommended to increase the diameter of the POF core from 200 μm to about 1 mm. However, since the core diameter of the POF is increased, the bending radius of curvature, which is the minimum necessary for the POF to be able to transmit light, becomes large. When the POF is bent sharply, the optical transmission within the POF is reduced. There is a problem that becomes difficult.

また、第2の従来例では、受発光素子の半導体チップ2と構造体1を実装基板27に高い精度で位置合わせをして接合する必要があるため位置合わせコストが高価である問題がある。また、実装基板27へ高い温度で構造体1を接合する必要があるため、実装基板27が高温度に耐えられる材料に限定されるという問題がある。また、受発光素子の半導体チップ2の受発光部5が構造体1と衝突することで受発光部5が損傷する危険があった。   Further, in the second conventional example, there is a problem that the alignment cost is expensive because it is necessary to align and bond the semiconductor chip 2 of the light emitting / receiving element and the structure 1 to the mounting substrate 27 with high accuracy. Further, since it is necessary to bond the structure 1 to the mounting substrate 27 at a high temperature, there is a problem that the mounting substrate 27 is limited to a material that can withstand the high temperature. Further, there is a risk that the light emitting / receiving unit 5 may be damaged when the light receiving / emitting unit 5 of the semiconductor chip 2 of the light receiving / emitting element collides with the structure 1.

また、第3の従来例では、光部品25を高い位置合せ精度で実装基板27の光伝送路29に設置するために実装コストが高価になるという問題がある。   Further, the third conventional example has a problem that the mounting cost is high because the optical component 25 is installed in the optical transmission path 29 of the mounting substrate 27 with high alignment accuracy.

さらに、第4の従来例では、受発光素子の半導体チップを実装基板と一体化し、構造体の光学系統で変換し光部品から出射させる光路の光は平行光束ではないため、この出射光をシート状の光伝送路を伝達させると、伝送距離が長くなるにつれ光強度が弱くなるという問題欠点がある。   Further, in the fourth conventional example, since the semiconductor chip of the light receiving and emitting element is integrated with the mounting substrate, the light in the optical path that is converted by the optical system of the structure and is emitted from the optical component is not a parallel light flux, If the optical transmission line is transmitted, the light intensity becomes weaker as the transmission distance becomes longer.

また、この光部品25は、受発光素子の半導体チップ2を実装基板27上に設置することで実装基板電極パッド28を形成したため、実装基板27の厚さで光部品25が大きくなり光部品25を設置するために大きな空間を必要とするという問題がある。   Further, in this optical component 25, since the mounting substrate electrode pad 28 is formed by installing the semiconductor chip 2 of the light receiving and emitting element on the mounting substrate 27, the optical component 25 becomes larger due to the thickness of the mounting substrate 27, and the optical component 25. There is a problem that a large space is required to install.

また、光部品25が化合物半導体のチップに形成した面発光型レーザの場合、従来は、その光部品25の電極は、受発光素子の半導体チップ2の発光面側と裏面側に電極が分かれて形成されるか、受発光素子の半導体チップ2の発光面側に全ての電極を形成するかの2通りであり、受発光素子の半導体チップ2の裏面に全ての電極を形成した面発光レーザは商用化(実用化)されてはいなかった。その理由は、化合物半導体では、受発光素子の半導体チップ2の表裏を貫通する孔を開けることが困難なためである。   When the optical component 25 is a surface emitting laser formed on a compound semiconductor chip, conventionally, the electrode of the optical component 25 is divided into a light emitting surface side and a back surface side of the semiconductor chip 2 of the light receiving and emitting element. The surface-emitting laser in which all the electrodes are formed on the back surface of the semiconductor chip 2 of the light emitting / receiving element is formed in two ways, i.e., all the electrodes are formed on the light emitting surface side of the semiconductor chip 2 of the light receiving / emitting element. It was not commercialized. This is because it is difficult for a compound semiconductor to open a hole penetrating the front and back of the semiconductor chip 2 of the light emitting / receiving element.

このため、従来から、化合物半導体レーザの実装の自由度を増すために、全ての電極をチップの裏面にも低コストで配線できるようにすることが望まれていた。   For this reason, conventionally, in order to increase the degree of freedom of mounting of the compound semiconductor laser, it has been desired that all electrodes can be wired on the back surface of the chip at a low cost.

そこで、本発明は、上記従来技術の問題点に鑑みて成されたものであり、本発明の第1の目的は、チップサイズの光部品において、受発光素子の半導体チップの表面と裏面を接続する配線を加えることにより、化合物半導体であっても全てのバンプ電極をチップの裏面あるいは表面に自由に配線できるようにすることにある。   Accordingly, the present invention has been made in view of the above-described problems of the prior art, and a first object of the present invention is to connect the front and back surfaces of a semiconductor chip of a light emitting / receiving element in a chip-sized optical component. In other words, all the bump electrodes can be freely wired on the back surface or the front surface of the chip even if it is a compound semiconductor.

また、本発明の第2の目的は、光部品からの出射光を平行光とすることで光伝送路に伝送する光強度を弱めず、光部品の製造コスト及び光部品の実装基板への実装コストを低減することにある。   The second object of the present invention is to reduce the light intensity transmitted to the optical transmission line by making the emitted light from the optical component parallel light, and to reduce the manufacturing cost of the optical component and the mounting of the optical component on the mounting substrate. It is to reduce the cost.

さらに、本発明の第3の目的は、受発光素子の半導体チップの受発光部が異物で傷つけられ損傷する危険も少なくした光モジュールを提供することにある。   A third object of the present invention is to provide an optical module in which the light receiving / emitting part of the semiconductor chip of the light receiving / emitting element is less likely to be damaged and damaged by foreign matter.

そこで、本発明の光モジュールは、少なくとも一方の面に形成した金属層と他方の面を平坦に形成した平板部を有し、前記平板部の一方の面の金属層に電極部を形成し、一方の面に受発光部と素子電極パッドを有し他方の面に素子電極を有する受発光素子の半導体チップを有し、前記素子電極パッドに前記電極部を接続することで、前記平板部と前記受発光素子の半導体チップを接合して成る光部品であって、前記平板部の前記受発光部の上方に前記受発光素子の半導体チップの一方の面に対し所定の角度の傾きを有する斜面を設置し、前記斜面が受発光部の上面を覆い、前記斜面の金属層に凹面鏡が形成され、前記半導体チップの受発光部の光路を前記凹面鏡で前記半導体チップの面に平行な光路に折り曲げる構造を有し、
前記半導体チップの側面に電極金属スペーサを並べて設置し、前記電極金属スペーサに第1のバンプ電極を設置し、前記第1のバンプ電極と同一面側の前記半導体チップ面から引き出された電極パッドに第2のバンプ電極を設置し、
前記第1及び第2のバンプ電極を介して、前記光部品を光伝送路及び電気配線パターンを有する実装基板に接続したことを特徴とする。
Therefore, the optical module of the present invention has a metal layer formed on at least one surface and a flat plate portion formed flat on the other surface, and an electrode portion is formed on the metal layer on one surface of the flat plate portion, By having a semiconductor chip of a light emitting / receiving element having a light emitting / receiving portion and an element electrode pad on one surface and having an element electrode on the other surface, and connecting the electrode portion to the element electrode pad, An optical component formed by bonding a semiconductor chip of the light emitting / receiving element, an inclined surface having an inclination of a predetermined angle with respect to one surface of the semiconductor chip of the light receiving / emitting element above the light receiving / emitting part of the flat plate portion The inclined surface covers the upper surface of the light emitting / receiving unit, a concave mirror is formed on the metal layer of the inclined surface, and the optical path of the light receiving / emitting unit of the semiconductor chip is bent by the concave mirror into an optical path parallel to the surface of the semiconductor chip Has a structure,
An electrode metal spacer is arranged side by side on the side surface of the semiconductor chip, a first bump electrode is installed on the electrode metal spacer, and an electrode pad drawn from the semiconductor chip surface on the same side as the first bump electrode is provided. Install the second bump electrode,
The optical component is connected to a mounting substrate having an optical transmission line and an electric wiring pattern via the first and second bump electrodes.

また、前記電極部を平板部の一方の面に形成した凹部に形成し、前記電極部を前記素子電極パッドに溶接材で溶接することで、前記平板部と前記半導体チップを密着させたことを特徴とする。   In addition, the electrode portion is formed in a recess formed on one surface of the flat plate portion, and the electrode portion is welded to the element electrode pad with a welding material, thereby bringing the flat plate portion and the semiconductor chip into close contact with each other. Features.

また、前記半導体チップの配列と、前記平板部と前記電極金属スペーサとから成る構造体の配列を、前記電極部を前記素子電極パッドに接続した状態で複数の個片に分割することにより、前記半導体チップと構造体から成る光部品を形成することを特徴とする。   Further, by dividing the arrangement of the semiconductor chips and the arrangement of the structures composed of the flat plate portions and the electrode metal spacers into a plurality of pieces in a state where the electrode portions are connected to the element electrode pads, An optical component comprising a semiconductor chip and a structure is formed.

また、前記平板部の平坦な他方の面が前記半導体チップの全面を覆い、前記平板部の一方の面に、前記凹面鏡から斜面の法線ベクトルの受発光素子の半導体チップの面へ投影したベクトルの方向に、平板部の端部まで貫く空洞用凹部を有することを特徴とする。   Further, the other flat surface of the flat plate portion covers the entire surface of the semiconductor chip, and a vector projected onto the semiconductor chip surface of the light emitting / receiving element of the normal vector of the inclined surface from the concave mirror on one surface of the flat plate portion. It has the recessed part for cavities which penetrates to the edge part of a flat plate part in this direction.

また、前記空洞用凹部の端部が受発光素子の半導体チップの存在領域から突出するようにした平板部の突出部を有し、前記空洞用凹部の内径が光伝送路の外径とほぼ同じサイズに形成されていることを特徴とする。   In addition, the cavity recess has an end portion of a flat plate portion projecting from the region where the semiconductor chip of the light emitting / receiving element is projected, and the inner diameter of the cavity recess is substantially the same as the outer diameter of the optical transmission line It is characterized by being formed in size.

さらに、本発明の光モジュールの製造方法は、複数の構造体が設置された保持基板を用意し、
保持基板に設置された複数の構造体の配列の各電極部に溶接材を設置し、
前記溶接材の位置を一括で、受発光素子の半導体チップの配列の素子電極パッド群の上に仮に合せて構造体の配列を設置し、
溶接材を融点より高い温度まで加熱し再溶融させ、溶接材を平板部の電極部と半導体チップの素子電極パッドの間に広げ、溶融した溶接材の表面張力により、半導体チップの素子電極パッドの位置に、構造体の平板部の電極部の前後左右の位置を合せ、
溶接材を冷却固化させることで、構造体の配列と半導体チップの配列を接合させ、その後、構造体から保持基板を取り外し、
前記半導体チップの側面に電極金属スペーサを並べて設置し、前記半導体チップの表裏を電気接続し、
前記電極金属スペーサに第1のバンプ電極を設置し、前記第1のバンプ電極と同一面側の前記半導体チップ面から引き出された電極パッドに第2のバンプ電極を設置することで前記第1及び第2のバンプ電極を半導体チップの同一面側に引き出して設置し、
前記半導体チップの配列と複数の構造体の配列を結合した配列を分割し複数の光部品を形成し、
前記光部品を光伝送路を有する実装基板に設置することにより光モジュールを製造することを特徴とする。
Furthermore, the manufacturing method of the optical module of the present invention provides a holding substrate on which a plurality of structures are installed,
Welding material is installed on each electrode part of the array of multiple structures installed on the holding substrate,
The position of the welding material is collectively set up on the element electrode pad group of the array of semiconductor chips of the light receiving and emitting elements, and the arrangement of the structures is installed.
The welding material is heated to a temperature higher than the melting point and remelted, the welding material is spread between the electrode portion of the flat plate portion and the element electrode pad of the semiconductor chip, and the surface tension of the molten welding material causes the element electrode pad of the semiconductor chip to Align the position of the electrode part of the flat plate part of the structure to the position of the front and rear, left and right,
By cooling and solidifying the welding material, the array of structures and the array of semiconductor chips are joined, and then the holding substrate is removed from the structure,
Place side by side electrode metal spacers on the side of the semiconductor chip, electrically connect the front and back of the semiconductor chip,
A first bump electrode is disposed on the electrode metal spacer, and a second bump electrode is disposed on an electrode pad drawn from the semiconductor chip surface on the same surface side as the first bump electrode, whereby the first and second bump electrodes are disposed. The second bump electrode is drawn out and installed on the same side of the semiconductor chip,
A plurality of optical components are formed by dividing an array obtained by combining the array of the semiconductor chips and the array of the plurality of structures.
An optical module is manufactured by installing the optical component on a mounting substrate having an optical transmission path.

このように、本発明では、平板部と電極金属スペーサで構成する構造体を用いる。すなわち、小さな領域に複数の受発光素子の半導体チップが配列され、その素子電極パッドに、少なくとも下面に金属層を有する平板部の電極部を一括して位置合わせする。   Thus, in this invention, the structure comprised by a flat plate part and an electrode metal spacer is used. That is, a plurality of light receiving and emitting element semiconductor chips are arranged in a small area, and at least the flat plate electrode part having the metal layer on the lower surface is aligned with the element electrode pad.

平板部には、受発光素子の半導体チップの各受発光部に対応する位置に複数の凹面鏡を有する。この平板部を含む構造体の配列を受発光素子の半導体チップの配列に接合した配列を製造した後にそれを複数の光部品に分割することで個々の受発光部と凹面鏡の位置合わせコストを低減した小型の光部品を製造する。   The flat plate portion has a plurality of concave mirrors at positions corresponding to the light receiving and emitting portions of the semiconductor chip of the light receiving and emitting element. After manufacturing an array in which the array of structures including the flat plate part is joined to the array of semiconductor chips of the light emitting / receiving elements, it is divided into a plurality of optical components, thereby reducing the alignment cost of each light receiving / emitting part and concave mirror Small optical parts manufactured.

そして、その光部品を、そこから出射あるいは入射する光路を光伝送路に緩い位置合わせ精度で合わせ、実装基板に設置することで光部品の実装基板への実装コストを低減する。   Then, the optical path of the optical component emitted from or incident on the optical component is aligned with the optical transmission path with a loose alignment accuracy, and placed on the mounting substrate, thereby reducing the mounting cost of the optical component on the mounting substrate.

本発明は、以下のような効果を有する。   The present invention has the following effects.

本発明の光部品は、受発光素子の半導体チップの側面に配置した電極金属スペーサを用い表裏を配線することで、全ての電極を受発光素子の半導体チップの片面に形成したので、化合物半導体であっても、全てのバンプ電極を受発光素子の半導体チップの裏面にも表面にも低コストで配線できる。   In the optical component of the present invention, all the electrodes are formed on one side of the semiconductor chip of the light emitting / receiving element by wiring the front and back using electrode metal spacers arranged on the side surface of the semiconductor chip of the light receiving / emitting element. Even if it exists, all the bump electrodes can be wired at low cost on the back surface and the front surface of the semiconductor chip of the light emitting and receiving element.

そして、その反対面には、上面が平坦な平板部を設置したため、平板部の上面の平面をチップ保持具で保持することで受発光面を傷つけずに容易に受発光素子の半導体チップを実装基板に設置できる。   And on the opposite side, a flat plate part with a flat upper surface is installed, so the semiconductor chip of the light emitting / receiving element can be easily mounted without damaging the light emitting / receiving surface by holding the flat surface of the upper surface of the flat plate part with a chip holder Can be installed on the board.

また、受発光素子の半導体チップの素子電極パッドに金属層を有する平板部をその金属層で溶接し固定し、その平板部が金属層によりバンプ電極まで電気接続するとともに、平板部の斜面が受発光素子の半導体チップの受発光部の上部を覆い保護するため、受発光部に異物が衝突し損傷する恐れが無い。   In addition, a flat plate portion having a metal layer is welded and fixed to the element electrode pad of the semiconductor chip of the light emitting / receiving element, the flat plate portion is electrically connected to the bump electrode by the metal layer, and the inclined surface of the flat plate portion is received. Since the upper part of the light receiving / emitting part of the semiconductor chip of the light emitting element is covered and protected, there is no possibility of foreign matter colliding with the light receiving / emitting part and being damaged.

また、受発光部を配列して集積して形成した受発光素子の半導体チップと、それに対応して配列された平板部で、受発光素子の半導体チップの受発光部を向いた約45度の傾きの凹面鏡を有する平板部を配列して一括して結合した後に、その配列を個々の光部品に分割し製造するので、個々の平板部と受発光部の位置合わせのコストを低減した光部品を製造できる。   Further, the semiconductor chip of the light emitting / receiving element formed by arranging and integrating the light emitting / receiving parts and the flat plate part arranged correspondingly, and facing the light receiving / emitting part of the semiconductor chip of the light emitting / receiving element at about 45 degrees. After aligning flat plates with inclined concave mirrors and combining them together, the array is divided into individual optical components, so the optical components reduce the cost of aligning the individual flat plate portions with the light receiving and emitting portions. Can be manufactured.

さらに、受発光素子の半導体チップの受発光部の光路を凹面鏡で直角に折り曲げ受発光素子の半導体チップの面に平行な太い光路に変換した光部品を光伝送路に位置を合わせ、電気配線パターンを有する実装基板に設置した光モジュールを製造するため、光部品と光伝送路の位置合わせ許容公差が緩く、光部品の光モジュールへの実装コストが低減される。   Furthermore, the optical path of the light emitting / receiving portion of the semiconductor chip of the light emitting / receiving element is bent at a right angle with a concave mirror and converted into a thick optical path parallel to the surface of the semiconductor chip of the light receiving / emitting element, and the optical component is aligned with the optical transmission path. Since the optical module installed on the mounting substrate having the above is manufactured, the tolerance for alignment between the optical component and the optical transmission path is loose, and the mounting cost of the optical component to the optical module is reduced.

以下、本発明の実施の形態について図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(第1の実施の形態)
図1〜図3に、本発明の第1の実施の形態の構造体の一次元配列と受発光部が一次元配列で形成された受発光素子の半導体チップの接合方法による光モジュールの製造手順を示す。
(First embodiment)
1 to 3 show an optical module manufacturing procedure by a method of joining a semiconductor chip of a light emitting / receiving element in which a one-dimensional array of structures according to the first embodiment of the present invention and a light receiving / emitting section are formed in a one-dimensional array. Indicates.

(ステップ1)
図1(a)に示すように、PMMAやポリカーボネートなどの熱可塑性樹脂へ金型の形状を加圧プレスし樹脂成形型4を作成する。あるいは、ガラス型内に紫外線硬化樹脂を充填し、ガラスを通して紫外線を樹脂へ照射することで樹脂を硬化させガラス型の形状を転写することで樹脂成形型4を作成する。
(Step 1)
As shown in FIG. 1A, a resin mold 4 is prepared by press-pressing the shape of a mold onto a thermoplastic resin such as PMMA or polycarbonate. Alternatively, the resin mold 4 is created by filling the glass mold with an ultraviolet curable resin, curing the resin by irradiating the resin with ultraviolet rays through the glass, and transferring the shape of the glass mold.

ここで、樹脂成形型4には複数の構造体1の型を一次元に配列し形成し、受発光素子の半導体チップ2の受発光部5に対応する凹面鏡6の型を有する斜面7を形成した構造体1の型の一次元配列を得る。受発光部5が一次元配列で形成された受発光素子の半導体チップ2が一次元の面発光レーザアレイの場合、受発光部5のピッチが0.25mmであり、それに直角方向の幅が約0.25mmから0.5mmであり、厚さが約0.2mmであるが、その寸法程度の構造体1の型を一次元に配列した樹脂成形型4を製造する。   Here, in the resin mold 4, a plurality of structures 1 are formed in a one-dimensional array, and a slope 7 having a concave mirror 6 corresponding to the light emitting / receiving portion 5 of the semiconductor chip 2 of the light emitting / receiving element is formed. A one-dimensional array of the structure 1 types obtained is obtained. When the semiconductor chip 2 of the light emitting / receiving element in which the light emitting / receiving portions 5 are formed in a one-dimensional array is a one-dimensional surface emitting laser array, the pitch of the light emitting / receiving portions 5 is 0.25 mm, and the width in the direction perpendicular thereto is about The resin mold 4 is manufactured in which the molds of the structure 1 having a dimension of about 0.25 mm to 0.5 mm and a thickness of about 0.2 mm are arranged one-dimensionally.

また、樹脂成形型4には、斜面7の下の表面に、構造体1の電極部18の型として、25μmの深さで直径が約90μmの凹部8を形成する。すなわち、その凹部8の周囲は凹部8からの高さが約25μmで、幅が数μmから数十μmの外壁9を形成することで、凹部8が外壁9から25μmの深さを有するように形成する。また、外壁9は、その頂上の一部に他の頂上より高さの低い部分を形成する。   Further, in the resin mold 4, a recess 8 having a depth of 25 μm and a diameter of about 90 μm is formed on the surface below the inclined surface 7 as a mold of the electrode portion 18 of the structure 1. That is, the periphery of the recess 8 is formed with an outer wall 9 having a height from the recess 8 of about 25 μm and a width of several μm to several tens of μm so that the recess 8 has a depth of 25 μm from the outer wall 9. Form. Moreover, the outer wall 9 forms a part whose height is lower than that of the other top at a part of the top.

(ステップ2)
次に、その樹脂成形型4の表面にシリコーン離型剤あるいはフッ素系剥離剤などの離型剤をコーティングする。
(Step 2)
Next, a release agent such as a silicone release agent or a fluorine-based release agent is coated on the surface of the resin mold 4.

(ステップ3)
次に、図1(b)に示すように、受発光素子の半導体チップ2の厚さの金、銅、ニッケルなどの金属製の電極金属スペーサ10を、配列された受発光部5の数だけ、受発光部5が一次元配列で形成された受発光素子の半導体チップ2の側面の位置に対応する樹脂成形型4の所定位置に、受発光部5の一次元配列の並びに平行にその上面の高さを樹脂成形型4の斜面7の下面に合わせ設置する。
(Step 3)
Next, as shown in FIG. 1B, the electrode metal spacers 10 made of gold, copper, nickel or the like having the thickness of the semiconductor chip 2 of the light emitting / receiving element are provided by the number of the light emitting / receiving portions 5 arranged. The light emitting / receiving section 5 is formed in a one-dimensional array, and the upper surface of the light receiving / emitting section 5 is parallel to the predetermined position of the resin mold 4 corresponding to the position of the side surface of the semiconductor chip 2. Is set so as to match the lower surface of the slope 7 of the resin mold 4.

電極金属スペーサ10の厚さは受発光素子の半導体チップ2の厚さで形成するが、その厚さは0.05mmから0.5mm程度であり、電極金属スペーサ10の幅は後にバンプ電極24を設置できる縦横80μm以上の寸法に形成する。一例として、電極金属スペーサ10は、後に受発光素子の半導体チップ2に分割したチップの一辺に合せた長さの電極金属スペーサ10を複数設置する。   The thickness of the electrode metal spacer 10 is formed by the thickness of the semiconductor chip 2 of the light emitting / receiving element. The thickness is about 0.05 mm to 0.5 mm, and the width of the electrode metal spacer 10 is set to the bump electrode 24 later. It is formed to have a size of 80 μm or more that can be installed. As an example, the electrode metal spacer 10 is provided with a plurality of electrode metal spacers 10 having a length corresponding to one side of a chip that is later divided into the semiconductor chips 2 of the light receiving and emitting elements.

(ステップ4)
次に、図1(c)に示すように、樹脂成形型4の表面と、それと同じ高さの電極金属スペーサ10の表面に、50℃以下の温度で金、アルミニウムなどの金属を蒸着し、その蒸着金属上に金、銅、ニッケルなどの無電界金属めっきを厚さ0.5μmから2μmで形成する。ここで形成された金属膜のうち、外壁9の頂上の最高位置の部分の金属膜をエッチングで除去あるいは、機械的研磨で除去する。一方、外壁9の頂上の一部で他の頂上より高さの低い部分があるが、その部分には金属膜が残り、その金属膜により凹部8内の金属膜が外壁9の外の金属膜と連結されるようにする。
(Step 4)
Next, as shown in FIG.1 (c), metal, such as gold | metal | money and aluminum, is vapor-deposited at the temperature of 50 degrees C or less on the surface of the resin mold 4 and the surface of the electrode metal spacer 10 of the same height, Electroless metal plating such as gold, copper and nickel is formed on the deposited metal with a thickness of 0.5 μm to 2 μm. Of the metal film formed here, the metal film at the highest position on the top of the outer wall 9 is removed by etching or mechanical polishing. On the other hand, there is a part of the top of the outer wall 9 that is lower than the other tops, but a metal film remains on the part, and the metal film in the recess 8 is formed on the metal film outside the outer wall 9 by the metal film. To be concatenated with.

(ステップ5)
次に、金属膜上に形成する予定の平板部11を分離する位置をメッキレジストで被覆し、先に形成した金属膜をめっき電極とし、金、銅、ニッケルなどの電界めっきにより10μmから20μm程度の厚さの金属層12を形成する。
(Step 5)
Next, the position where the flat plate portion 11 to be formed on the metal film is separated is covered with a plating resist, and the previously formed metal film is used as a plating electrode, and about 10 μm to 20 μm by electroplating gold, copper, nickel or the like. A metal layer 12 having a thickness of 5 mm is formed.

(ステップ6)
次に、図1(d)に示すように、メッキマスク板13を設置し、図1(e)に示すように、金属層12に電流を通じ電解メッキを形成する。これにより、底面の凹凸を上面の高さに影響させず、上面を同じ高さの平面に揃えた電界めっきが形成された平板部11を製造する。この平板部11の厚さは、0.1mmから0.3mm程度である。
(Step 6)
Next, as shown in FIG. 1 (d), a plating mask plate 13 is installed, and as shown in FIG. 1 (e), electrolytic plating is formed on the metal layer 12 by passing an electric current. As a result, the flat plate portion 11 on which the electroplating is formed with the upper surface aligned to a flat surface having the same height without affecting the height of the upper surface is produced. The thickness of the flat plate portion 11 is about 0.1 mm to 0.3 mm.

以上の製造方法で、金属メッキにより形成した平板部11が、電極金属スペーサ10と一体にされた構造体1を形成する。平板部11は、上面が平坦に形成され、そして上面が受発光部5を有する受発光素子の半導体チップ2の全面を覆い、前記平板部11の底面側の面に後に結合する受発光素子の半導体チップ2の受発光部5の位置を向いた約45度の傾斜の斜面15を形成する。また、後に説明するように、凹面鏡6から、斜面15の法線ベクトルの受発光素子の半導体チップ2の面へ投影したベクトルの方向に、平板部11の端部まで貫く空洞用凹部14を形成する。   With the above manufacturing method, the flat plate portion 11 formed by metal plating forms the structure 1 integrated with the electrode metal spacer 10. The flat plate portion 11 is formed with a flat upper surface, and the upper surface covers the entire surface of the semiconductor chip 2 of the light emitting / receiving element having the light emitting / receiving portion 5. An inclined surface 15 having an inclination of about 45 degrees facing the position of the light emitting / receiving unit 5 of the semiconductor chip 2 is formed. Further, as will be described later, a cavity recess 14 is formed which penetrates from the concave mirror 6 to the end of the flat plate portion 11 in the direction of the vector projected onto the surface of the semiconductor chip 2 of the light emitting / receiving element having the normal vector of the slope 15. To do.

(ステップ7)
次に、図2(a)に示すように、メッキマスク板13とメッキレジストを除去し、ガラス転移点がAuSn共晶半田の融点の280℃以下で融点が300℃以上の材料、例えば、ポリイミド、PTFE(四ふっ化エチレン樹脂)、PEEK(ポリエーテルエーテルケトン)、液晶ポリマーなどから成る保持基板16を構造体1の配列の平板部11に接合する。
(Step 7)
Next, as shown in FIG. 2A, the plating mask plate 13 and the plating resist are removed, and a material having a glass transition point of 280 ° C. or lower and a melting point of 300 ° C. or higher of AuSn eutectic solder, for example, polyimide A holding substrate 16 made of PTFE (polytetrafluoroethylene resin), PEEK (polyetheretherketone), liquid crystal polymer, or the like is bonded to the flat plate portion 11 of the structure 1 array.

その後に、保持基板16に接合された構造体1を樹脂成形型4から離型する。離型の際に生じる静電気をイオン風を吹き付け除去する。ここで構造体1の離型は受発光素子の半導体チップ2が存在しない状態で行うので、離型の際に生じる静電気が受発光素子の半導体チップ2を損傷することが無い効果がある。次に、構造体1の表面に残った1μmの無電界金属めっきをクイックエッチングで除去し、保持基板16で保持した複数の構造体1を形成する。   Thereafter, the structure 1 bonded to the holding substrate 16 is released from the resin mold 4. Static electricity generated during mold release is removed by blowing ion wind. Here, the release of the structure 1 is performed in a state where the semiconductor chip 2 of the light receiving / emitting element is not present, and therefore, there is an effect that static electricity generated at the time of releasing does not damage the semiconductor chip 2 of the light receiving / emitting element. Next, the 1 μm electroless metal plating remaining on the surface of the structure 1 is removed by quick etching to form a plurality of structures 1 held by the holding substrate 16.

こうして、平板部11には、後に結合する受発光素子の半導体チップ2の受発光部5の位置を向いた所定の角度の傾斜の斜面15と、そこに形成した凹面鏡6が形成される。ここで、斜面15の所定の角度とは、好ましくは、30度から60度であり、より好ましくは、約45度である。更に、樹脂成型1の凹部8の位置に対応する金属層12に形成された凹部17に直径90μm程度の電極部18と、その周囲の溝19が形成される。このようにして、平板部11と、その底面に接続された電極金属スペーサ10を有する構造体1が製造される。   In this manner, the flat plate portion 11 is formed with the inclined surface 15 having a predetermined angle facing the position of the light emitting / receiving portion 5 of the semiconductor chip 2 of the light emitting / receiving device to be coupled later, and the concave mirror 6 formed there. Here, the predetermined angle of the slope 15 is preferably 30 to 60 degrees, and more preferably about 45 degrees. Furthermore, an electrode portion 18 having a diameter of about 90 μm and a surrounding groove 19 are formed in a recess 17 formed in the metal layer 12 corresponding to the position of the recess 8 of the resin molding 1. Thus, the structure 1 which has the flat plate part 11 and the electrode metal spacer 10 connected to the bottom face is manufactured.

ここで、凹部17の形状は、近くの平板部11の最高位置に比べ電極部18を形成する領域が25μm低ければ良く、近くに25μm高い領域が存在するだけでも良い。すなわち、凹部17の3方向程度に平板部11の最高位置が、例えば100μm程度隔たった島状に存在すれば、その間が凹部17である。   Here, the shape of the concave portion 17 may be as long as the region where the electrode portion 18 is formed is 25 μm lower than the highest position of the nearby flat plate portion 11, and there may be only a region 25 μm higher in the vicinity. That is, if the highest position of the flat plate portion 11 exists in an island shape separated by, for example, about 100 μm in the three directions of the concave portion 17, the concave portion 17 is provided therebetween.

凹部17の他の製造方法は、図3に示すように、平板部11の底面を平坦に形成し、底面の凹部17の領域以外の領域にポリイミドや液晶ポリマーなど耐熱性の高い熱可塑性樹脂膜から成る絶縁膜20を接着することで、絶縁膜20が無い部分を凹部17として形成できる。   As shown in FIG. 3, the other method of manufacturing the concave portion 17 is to form the bottom surface of the flat plate portion 11 flat, and a thermoplastic resin film having high heat resistance such as polyimide or liquid crystal polymer in a region other than the region of the concave portion 17 on the bottom surface. By bonding the insulating film 20 made of the material, a portion without the insulating film 20 can be formed as the recess 17.

また、この絶縁膜20は、後に平板部11を受発光素子の半導体チップ2に接合する加熱処理の際に、受発光素子の半導体チップ2に接着し、この加熱処理後の冷却の際に絶縁膜20が収縮し絶縁膜20が平板部11を受発光素子の半導体チップ2に引き付け、平板部11と受発光素子の半導体チップ2の結合を強める効果がある。   Further, the insulating film 20 is bonded to the semiconductor chip 2 of the light emitting / receiving element when the flat plate portion 11 is later bonded to the semiconductor chip 2 of the light emitting / receiving element, and is insulated during the cooling after the heat treatment. The film 20 contracts, and the insulating film 20 has an effect of attracting the flat plate portion 11 to the semiconductor chip 2 of the light emitting / receiving element and strengthening the bonding between the flat plate portion 11 and the semiconductor chip 2 of the light receiving / emitting device.

また、この平板部11の他の製造方法として、以下の製造方法を用いても良い。すなわち、予め加工された金属塊、シリコン基板、あるいはセラミックス基板の平板部11で、その底面にこの金属層12をメッキで形成し、あるいは、金属層12を構造体1に圧着、溶接、接着し形成する。そして、上面に平坦面を形成する。   Further, as another manufacturing method of the flat plate portion 11, the following manufacturing method may be used. That is, the metal layer 12 is formed by plating on the bottom surface of the flat plate portion 11 of a previously processed metal lump, silicon substrate, or ceramic substrate, or the metal layer 12 is bonded, welded, and bonded to the structure 1. Form. Then, a flat surface is formed on the upper surface.

平板部11の斜面15への凹面鏡6の形成は、ダイヤモンド圧子その他の硬い材料あるいは金属の圧子に超音波振動を加えて、斜面15に加熱加圧して形成する凹面の痕跡として凹面鏡6の窪みを形成する。圧子を用いると、滑らかな表面形状の凹面鏡6を短時間で形成できる利点がある。また、電極部18の周囲の溝19は、平板部11の底面の金属層12に鋭い刃型を押し当てることで形成しても良い。このようにして、平板部11を電極金属スペーサ10と一体化した構造体1を製造する。   The concave mirror 6 is formed on the inclined surface 15 of the flat plate part 11 by applying ultrasonic vibration to a diamond indenter or other hard material or metal indenter, and heating and pressurizing the inclined surface 15 to form a recess in the concave mirror 6. Form. When the indenter is used, there is an advantage that the concave mirror 6 having a smooth surface shape can be formed in a short time. Further, the groove 19 around the electrode portion 18 may be formed by pressing a sharp blade shape against the metal layer 12 on the bottom surface of the flat plate portion 11. In this way, the structure 1 in which the flat plate portion 11 is integrated with the electrode metal spacer 10 is manufactured.

(ステップ8)
次に、図2(b)に示すように、凹部17の溝19に、耐熱性が300℃以上の樹脂、例えば、PTFE、PEEK、液晶ポリマー、ポリイミド、シリコーンワニスなどの半田レジスト材を、溝19への加圧押し込みによるか、塗布、電着工法などで設置する。あるいは、溝19の内壁に酸化皮膜を形成し半田レジスト膜としても良い。
(Step 8)
Next, as shown in FIG. 2B, a resin having a heat resistance of 300 ° C. or higher, for example, a solder resist material such as PTFE, PEEK, liquid crystal polymer, polyimide, silicone varnish, etc. It is installed by pressing into 19 or by coating, electrodeposition method or the like. Alternatively, an oxide film may be formed on the inner wall of the groove 19 to form a solder resist film.

(ステップ9)
次に、平板部11の約25μmの深さの凹部17に直径が約90μm(面積が約6360平方μm)で形成された電極部18に、溶接材21として、厚さが約35μmで直径が約77μm(面積が約4660平方μm)のAuSn共晶半田の箔をプレス打ち抜き法で設置し、面積が電極パッドの約73%の箔を凹部17の深さの約1.4倍の厚さで設置する。
(Step 9)
Next, the electrode member 18 formed with a diameter of about 90 μm (area is about 6360 square μm) in the concave portion 17 having a depth of about 25 μm of the flat plate portion 11 is used as a welding material 21 with a thickness of about 35 μm and a diameter of A foil of AuSn eutectic solder having an area of about 77 μm (area of about 4660 square μm) is installed by press punching, and a foil having an area of about 73% of the electrode pad is about 1.4 times the depth of the recess 17. Install in.

すなわち、この箔の面積×厚さの値を、電極部18の面積×凹部17の深さの値とほぼ同じ値に設定する。ここで、プレス打ち抜き法の他にメッキ、蒸着、スパッタリング、半田ペースト印刷、転写バンプ方式を用いても良く、溶接材21はAuSn共晶半田以外の材料を用いても良い。また、平板部11を約220℃に加熱し、金のボールバンプを超音波熱圧着により圧子で平板部11の底面に押し付け接合し、これを溶接材21として用いても良い。平板部11の底面の金のボールバンプの設置位置以外の領域に絶縁膜を接着する。  That is, the value of the area × thickness of the foil is set to substantially the same value as the area of the electrode portion 18 × the depth of the recess 17. Here, in addition to the press punching method, plating, vapor deposition, sputtering, solder paste printing, and transfer bump method may be used, and the welding material 21 may be made of a material other than AuSn eutectic solder. Alternatively, the flat plate portion 11 may be heated to about 220 ° C., and a gold ball bump may be pressed and joined to the bottom surface of the flat plate portion 11 with an indenter by ultrasonic thermocompression bonding. An insulating film is bonded to a region other than the installation position of the gold ball bump on the bottom surface of the flat plate portion 11.

(ステップ10)
次に、図2(b)から(c)に示すように、VCSELあるいはフォトダイオードなどで、一辺が約80μmで面積が約6400平方μmであり、裏面と表面に素子電極を有する受発光部5が一次元配列で形成された受発光素子の半導体チップ2で、表面の素子電極パッド22が電極部18の面積とほぼ同じ面積を有する受発光素子の半導体チップ2を、対応する配置に配列された構造体1の一次元配列に接合する。
(Step 10)
Next, as shown in FIGS. 2 (b) to 2 (c), a light emitting / receiving unit 5 such as a VCSEL or a photodiode, having a side of about 80 μm and an area of about 6400 square μm, and device electrodes on the back and front surfaces. Is a semiconductor chip 2 of a light receiving / emitting element formed in a one-dimensional array, and the semiconductor chip 2 of the light receiving / emitting element having a surface element electrode pad 22 approximately the same area as the area of the electrode portion 18 is arranged in a corresponding arrangement. Bonded to a one-dimensional array of structures 1.

すなわち、先ず、保持基板16に一次元に配列された構造体1の配列の電極部18に設置した溶接材21を、一括で、受発光部5が一次元配列で形成された受発光素子の半導体チップ2の素子電極パッド22群の上に、仮に合せて構造体1の一次元配列を設置する。ここで、溶接材21と素子電極パッド22の位置合せ精度は特に高くする必要が無く、素子電極パッド22の1/4以内の精度があれば良い。   That is, first, the welding material 21 installed on the electrode portions 18 of the array of the structures 1 arranged in a one-dimensional manner on the holding substrate 16 is collected in a lump for the light emitting / receiving element in which the light emitting / receiving portions 5 are formed in a one-dimensional arrangement. A one-dimensional array of the structures 1 is installed on the group of element electrode pads 22 of the semiconductor chip 2 in a temporary manner. Here, the positioning accuracy of the welding material 21 and the element electrode pad 22 does not need to be particularly high, and it is sufficient if the accuracy is within 1/4 of the element electrode pad 22.

(ステップ11)
次に、溶接材21を構造体1の配列および保持基板16と一緒に、加熱ステージあるいは赤外線加熱器などでAuSnの融点の280℃より高い300℃まで加熱し、先ず、構造体1の保持基板16をガラス転移点以上の温度で軟化させて、そこに搭載した構造体1が左右に自由に移動できるようにする。そして、溶融前は平板部11から約10μm突出していた溶接材21を再溶融させ、溶接材21に平板部の電極部18の全面を濡らさせ、また、受発光素子の半導体チップ2の素子電極パッド22の全面を濡らさせ、両者の間隔を約26μmにまで引き付ける。
(Step 11)
Next, the welding material 21 is heated together with the arrangement of the structures 1 and the holding substrate 16 to 300 ° C., which is higher than the melting point of AuSn, 280 ° C., using a heating stage or an infrared heater. 16 is softened at a temperature equal to or higher than the glass transition point so that the structure 1 mounted thereon can freely move left and right. Then, the welding material 21 that has protruded by about 10 μm from the flat plate portion 11 before melting is remelted to wet the entire surface of the electrode portion 18 of the flat plate portion in the welding material 21, and the element electrode of the semiconductor chip 2 of the light receiving and emitting element The entire surface of the pad 22 is wetted, and the distance between the two is pulled to about 26 μm.

こうして、溶接材21が薄くなり平板部11からの突出が無くなるとともに、溶融した溶接材21の表面張力により、受発光素子の半導体チップ2の素子電極パッド22の位置に平板部11の電極部18の前後左右の位置が自動的に合わせられる。   In this way, the welding material 21 becomes thin and does not protrude from the flat plate portion 11, and the electrode portion 18 of the flat plate portion 11 is positioned at the position of the element electrode pad 22 of the semiconductor chip 2 of the light receiving and emitting element due to the surface tension of the molten welding material 21. The front, back, left and right positions of the are automatically adjusted.

(ステップ12)
次に、溶接材21を冷却固化させ、溶接材21が冷却固化により収縮し、受発光素子の半導体チップ2と構造体1を密着し接合させる。その後に、保持基板16をガラス転移点以上で、かつ、280℃以下の温度に加熱して軟化させ取り外す。
(Step 12)
Next, the welding material 21 is cooled and solidified, and the welding material 21 contracts by cooling and solidification, and the semiconductor chip 2 of the light emitting and receiving element and the structure 1 are brought into close contact with each other. Thereafter, the holding substrate 16 is heated to a temperature not lower than the glass transition point and not higher than 280 ° C. to be softened and removed.

また、ここまでの工程では、構造体1の平板部11と電極金属スペーサ10を分離しておき、平板部11を受発光素子の半導体チップ2へ溶接した後に電極金属スペーサ10も平板部11に溶接して接合することもできる。   Further, in the steps so far, the flat plate portion 11 and the electrode metal spacer 10 of the structure 1 are separated, and after the flat plate portion 11 is welded to the semiconductor chip 2 of the light receiving and emitting element, the electrode metal spacer 10 is also attached to the flat plate portion 11. It can also be joined by welding.

更に、溶接材21が、金のボールバンプを平板部11の底面の金属層12にボンディングすることで形成されている場合は、平板部11と受発光素子の半導体チップ2を約220℃に加熱して平板部11の金のボールバンプを受発光素子の半導体チップ2の素子電極パッド22に超音波熱圧着で接合する。   Further, when the welding material 21 is formed by bonding a gold ball bump to the metal layer 12 on the bottom surface of the flat plate portion 11, the flat plate portion 11 and the semiconductor chip 2 of the light emitting / receiving element are heated to about 220 ° C. Then, the gold ball bumps of the flat plate portion 11 are joined to the element electrode pads 22 of the semiconductor chip 2 of the light emitting / receiving element by ultrasonic thermocompression bonding.

(ステップ13)
次に、図2(d)に示すように、受発光素子の半導体チップ2の裏面と電極金属スペーサ10の裏面に、電極の設置領域以外の部分に半田レジストを印刷し、半田レジストから露出したチップ近傍の電極パッド23の領域に、金錫ハンダバンプやハンダボールなどのバンプ電極24を設置した光部品25を製造し、その後に、1つあるいは複数の受発光部5を有する受発光素子の半導体チップ2と構造体1が結合した複数の光部品25に分割する。
(Step 13)
Next, as shown in FIG. 2 (d), a solder resist was printed on the back surface of the semiconductor chip 2 of the light emitting / receiving element and the back surface of the electrode metal spacer 10 in a portion other than the electrode installation region and exposed from the solder resist. An optical component 25 in which bump electrodes 24 such as gold-tin solder bumps and solder balls are installed in the area of the electrode pad 23 in the vicinity of the chip is manufactured, and then a semiconductor of a light emitting / receiving element having one or a plurality of light emitting / receiving portions 5 The chip 2 and the structure 1 are divided into a plurality of optical components 25 combined.

次に、この光部品25を実装基板27へ設置し使用する例を示す。   Next, an example in which the optical component 25 is installed on the mounting substrate 27 and used will be described.

図4(a)及び(b)に、光部品25の実装基板27への実装方法と光部品25の側面図を示す。 4A and 4B show a method for mounting the optical component 25 on the mounting substrate 27 and a side view of the optical component 25. FIG.

図4(a)に示すように、実装基板27に、コア径が50μmの光ファイバあるいは光導波路などの光伝送路29を設置する。光伝送路29は、実装基板27の上に設置したスペーサ34の上に設置する。スペーサ34は受発光素子の半導体チップ2の厚さに応じて光伝送路29の高さを光路33に合わせるために設置する。この実装基板27に、光部品25をチップボンダのボンディングキャピラリあるいは部品マウンターの部品吸着具などのチップ保持具26で保持し、そのバンプ電極24を実装基板27の実装基板電極パッド28に溶接する。この光部品25は、受発光部5の光路33を凹面鏡6で空洞用凹部14を通る直径50μmの平行光束の光路33に変換し光結合している。   As shown in FIG. 4A, an optical transmission line 29 such as an optical fiber or an optical waveguide having a core diameter of 50 μm is installed on the mounting substrate 27. The optical transmission path 29 is installed on the spacer 34 installed on the mounting substrate 27. The spacer 34 is installed in order to match the height of the optical transmission path 29 with the optical path 33 according to the thickness of the semiconductor chip 2 of the light emitting / receiving element. The optical component 25 is held on the mounting substrate 27 by a chip holder 26 such as a bonding capillary of a chip bonder or a component adsorber of a component mounter, and the bump electrode 24 is welded to the mounting substrate electrode pad 28 of the mounting substrate 27. This optical component 25 is optically coupled by converting the optical path 33 of the light emitting / receiving section 5 into an optical path 33 of a parallel light flux having a diameter of 50 μm passing through the cavity recess 14 by the concave mirror 6.

このような使用方法が可能なのは、受発光素子の半導体チップ2の受発光部5が構造体1の平板部11で覆われることで保護されていて、その平板部11の上面が平坦に形成されているためである。このように、受発光素子の半導体チップ2の受発光部5が異物で傷つけられ損傷する危険が少ない効果がある。   Such a method of use is possible because the light emitting / receiving portion 5 of the semiconductor chip 2 of the light receiving / emitting element is protected by being covered with the flat plate portion 11 of the structure 1, and the upper surface of the flat plate portion 11 is formed flat. This is because. Thus, there is an effect that the light receiving / emitting part 5 of the semiconductor chip 2 of the light receiving / emitting element is less likely to be damaged and damaged by the foreign matter.

こうして、図4(b)に示すように、光部品25の空洞用凹部14の中を通る直径50μmの平行光束の光路33を光伝送路29の直径50μmのコアと光結合する場合は、光伝送路29と光部品25の位置合わせ精度が10μm程度の位置ずれが許容されるため、光部品25の設置が容易になり受発光素子の半導体チップ2の光伝送路29への位置合わせコストを低減できる効果がある。   Thus, as shown in FIG. 4B, when the optical path 33 of the parallel light flux having a diameter of 50 μm passing through the cavity recess 14 of the optical component 25 is optically coupled to the core of the optical transmission path 29 having the diameter of 50 μm, Since the positional accuracy of the alignment of the transmission path 29 and the optical component 25 is allowed to be about 10 μm, the installation of the optical component 25 is facilitated, and the alignment cost of the semiconductor chip 2 of the light emitting / receiving element to the optical transmission path 29 is reduced. There is an effect that can be reduced.

本実施の形態は、基本構造が、受発光素子の半導体チップ2の側面に、それと同じ厚さの電極金属スペーサ10を並べて設置し、受発光素子の半導体チップ2と電極金属スペーサ10の上面に、少なくとも下面に金属層12を有する平板部11を設置し、平板部11の下面の凹部17に金属層12による電極部18を形成し、電極部18を溶接材21で受発光素子の半導体チップ2の素子電極パッド22に溶接することで平板部11と受発光素子の半導体チップ2を密着させて接合した構造を有する。受発光素子の半導体チップ2の素子電極パッド22は構造体1の平板部11の底面の金属層12に接合することで外面に引出すとともに、受発光素子の半導体チップ2と平板部11をこの接合点で固定する役割を持つものである。   In the present embodiment, the basic structure is such that the electrode metal spacers 10 having the same thickness are arranged side by side on the side surface of the semiconductor chip 2 of the light emitting / receiving element, and the upper surfaces of the semiconductor chip 2 of the light receiving / emitting element and the electrode metal spacer 10 are arranged. The flat plate portion 11 having the metal layer 12 on at least the lower surface is installed, the electrode portion 18 made of the metal layer 12 is formed in the concave portion 17 on the lower surface of the flat plate portion 11, and the electrode portion 18 is welded to the semiconductor chip of the light emitting / receiving element. The flat plate portion 11 and the semiconductor chip 2 of the light emitting / receiving element are bonded to each other by welding to the two element electrode pads 22. The element electrode pad 22 of the semiconductor chip 2 of the light emitting / receiving element is pulled out to the outer surface by bonding to the metal layer 12 on the bottom surface of the flat plate part 11 of the structure 1, and the semiconductor chip 2 of the light receiving / emitting element and the flat plate part 11 are bonded together. It has a role of fixing with points.

また、平板部11の金属層12には電極金属スペーサ10を溶接し、素子電極パッド22から電極金属スペーサ10まで電気接続する。そして、平板部11の上面を平坦に形成するとともに、受発光素子の半導体チップ2および電極金属スペーサ10の下面にバンプ電極24を設置する。   In addition, the electrode metal spacer 10 is welded to the metal layer 12 of the flat plate portion 11 and is electrically connected from the element electrode pad 22 to the electrode metal spacer 10. And while forming the flat surface of the flat plate part 11 flatly, the bump electrode 24 is installed in the lower surface of the semiconductor chip 2 and the electrode metal spacer 10 of a light receiving and emitting element.

平板部11には、受発光素子の半導体チップ2の受発光部を向いた約45度の傾斜の斜面15を形成し、そこに形成した金属層12に凹面鏡6を形成する。こうして、受発光素子の半導体チップ2の受発光部5の光路33を前記凹面鏡6で折り曲げ、受発光素子の半導体チップ2の面に平行な光路33に変換し、平板部11に形成した空洞用凹部14を通過させる光部品25を構成する。   On the flat plate portion 11, an inclined surface 15 having an inclination of about 45 degrees facing the light emitting / receiving portion of the semiconductor chip 2 of the light emitting / receiving element is formed, and the concave mirror 6 is formed on the metal layer 12 formed there. In this way, the optical path 33 of the light receiving and emitting part 5 of the semiconductor chip 2 of the light receiving and emitting element is bent by the concave mirror 6 and converted into an optical path 33 parallel to the surface of the semiconductor chip 2 of the light receiving and emitting element, and for the cavity formed in the flat plate part 11 An optical component 25 that allows the recess 14 to pass therethrough is configured.

すなわち、凹面鏡6から、斜面15の法線ベクトルの受発光素子の半導体チップ2の面へ投影したベクトルの方向に、平板部11の端部まで貫く空洞用凹部14を有する。この光部品25を、平板部11の上面をチップ保持具26で保持し、そのバンプ電極24を実装基板27の実装基板電極パッド28にボンディング接続して設置する。   That is, the cavity has a cavity recess 14 penetrating from the concave mirror 6 to the end of the flat plate portion 11 in the direction of the vector projected onto the surface of the semiconductor chip 2 of the light emitting / receiving element having the normal vector of the inclined surface 15. The optical component 25 is installed by holding the upper surface of the flat plate portion 11 with a chip holder 26 and bonding the bump electrodes 24 to the mounting substrate electrode pads 28 of the mounting substrate 27.

こうして、受発光素子の半導体チップ2の側面に並べて設置した電極金属スペーサ10が、受発光素子の半導体チップ2の表裏を電気接続し、電極金属スペーサ10にバンプ電極24が設置された。   In this way, the electrode metal spacer 10 arranged side by side on the side surface of the semiconductor chip 2 of the light receiving / emitting element electrically connected the front and back of the semiconductor chip 2 of the light receiving / emitting element, and the bump electrode 24 was installed on the electrode metal spacer 10.

そして、このバンプ電極24と同一面側の前記受発光素子の半導体チップ2から引き出されたチップ近傍電極パッド23にバンプ電極24を設置することで、2つのバンプ電極24を受発光素子の半導体チップ2の同一面側に引き出した。本実施の形態では、光部品25の電極が、受発光素子の半導体チップ2の下面のチップ近傍電極パッド23に設置されたバンプ電極24と、電極金属スペーサ10の下面のバンプ電極24として配置された。   The bump electrode 24 is placed on the near-chip electrode pad 23 drawn out from the semiconductor chip 2 of the light emitting / receiving element on the same side as the bump electrode 24, whereby the two bump electrodes 24 are replaced with the semiconductor chip of the light emitting / receiving element. 2 on the same side. In the present embodiment, the electrodes of the optical component 25 are arranged as a bump electrode 24 installed on the chip vicinity electrode pad 23 on the lower surface of the semiconductor chip 2 of the light receiving and emitting element and a bump electrode 24 on the lower surface of the electrode metal spacer 10. It was.

こうして、チップサイズの光部品25において、受発光素子の半導体チップ2の表面と裏面を接続する電極金属スペーサ10を用いることにより、化合物半導体であっても、全てのバンプ電極24を受発光素子の半導体チップ2の裏面に低コストで配線できる効果がある。   Thus, in the chip-sized optical component 25, by using the electrode metal spacer 10 that connects the front surface and the back surface of the semiconductor chip 2 of the light emitting / receiving element, all the bump electrodes 24 can be connected to the light emitting / receiving element even in the case of a compound semiconductor. There is an effect that wiring on the back surface of the semiconductor chip 2 can be performed at low cost.

そして、その反対面の光モジュール3の受発光部5側の面は、その上の平板部11が受発光素子の半導体チップ2の全面を覆う平坦な平面であるため、平板部11の上面の平面をチップ保持具26で保持する際に受発光部5を傷つけずに受発光素子の半導体チップ2を実装基板27の実装基板電極パッド28にボンディング接続できる効果があり、受発光素子の半導体チップ2の実装基板27への設置が容易になる効果がある。   The surface on the light receiving / emitting part 5 side of the optical module 3 on the opposite surface is a flat flat surface on which the flat plate part 11 covers the entire surface of the semiconductor chip 2 of the light receiving / emitting element. When the plane is held by the chip holder 26, there is an effect that the semiconductor chip 2 of the light emitting / receiving element can be bonded to the mounting board electrode pad 28 of the mounting board 27 without damaging the light emitting / receiving section 5, and the semiconductor chip of the light receiving / emitting element. 2 is easy to install on the mounting board 27.

特に、受発光素子の半導体チップ2が面発光レーザの場合は、その素子電極を、受発光素子の半導体チップ2の表面と底面に分けて形成したものは低コストで製造できるが、本実施の形態の光部品25は、この構造の面発光レーザの受発光素子の半導体チップ2の表面側の電極を平板部11に接続し、平板部11を電極金属スペーサ10に接続し、その底面にバンプ電極24を設置し、一方、受発光素子の半導体チップ2の底面側の電極に他のバンプ電極24を設置した。   In particular, in the case where the semiconductor chip 2 of the light emitting / receiving element is a surface emitting laser, a device in which the element electrodes are formed separately on the surface and the bottom surface of the semiconductor chip 2 of the light emitting / receiving element can be manufactured at low cost. In the optical component 25 of the embodiment, the electrode on the surface side of the semiconductor chip 2 of the light emitting / receiving element of the surface emitting laser having this structure is connected to the flat plate portion 11, the flat plate portion 11 is connected to the electrode metal spacer 10, and the bottom surface is bumped On the other hand, another bump electrode 24 was placed on the bottom electrode of the semiconductor chip 2 of the light receiving and emitting element.

このように、本実施の形態では、受発光素子の半導体チップ2が化合物半導体の場合も、実装基板27を介さないチップサイズで、低コストに受発光素子の半導体チップ2の両電極をチップの底面側に揃えて引き出した構造の光部品25を製造できる効果がある。   As described above, in the present embodiment, even when the semiconductor chip 2 of the light emitting / receiving element is a compound semiconductor, both electrodes of the semiconductor chip 2 of the light receiving / emitting element are formed at a low cost with a chip size not via the mounting substrate 27. There is an effect that it is possible to manufacture the optical component 25 having a structure that is aligned on the bottom side.

また、本実施の形態では、受発光部5が発光する場合は、斜面15および凹面鏡6を受発光素子の半導体チップ2の表面から約45度傾けることで受発光部5の上方を斜面15で覆い、受発光部5から出射した光束の光路33を凹面鏡6で変換して受発光素子の半導体チップ2の表面に平行な光路33を得る。   In the present embodiment, when the light emitting / receiving unit 5 emits light, the inclined surface 15 and the concave mirror 6 are inclined by about 45 degrees from the surface of the semiconductor chip 2 of the light emitting / receiving element, so that the upper side of the light emitting / receiving unit 5 is the inclined surface 15. The optical path 33 of the light beam emitted from the light receiving / emitting unit 5 is converted by the concave mirror 6 to obtain an optical path 33 parallel to the surface of the semiconductor chip 2 of the light receiving / emitting element.

受発光部5が受光する場合は、斜面15を、受発光素子の半導体チップ2の表面に対して30度から60度の傾きに形成して受発光部5の上方を斜面15で覆うことで、受発光素子の半導体チップ2の表面に平行な光路33を凹面鏡6が受発光素子の半導体チップ2の表面に垂直な方向からプラスマイナス30度傾けた光路33に変換し受発光部5に集光する構造も可能である。特に、垂直な方向から傾けて受発光部5に光路を入射することは、受発光部5からの表面反射が光路33を逆戻りして光ノイズを生じることが避けられる効果がある。   When the light emitting / receiving unit 5 receives light, the inclined surface 15 is formed with an inclination of 30 to 60 degrees with respect to the surface of the semiconductor chip 2 of the light emitting / receiving element, and the upper side of the light emitting / receiving unit 5 is covered with the inclined surface 15. The optical path 33 parallel to the surface of the semiconductor chip 2 of the light emitting / receiving element is converted into an optical path 33 inclined by plus or minus 30 degrees from the direction perpendicular to the surface of the semiconductor chip 2 of the light receiving / emitting element. A light-emitting structure is also possible. In particular, tilting from the vertical direction and making the optical path incident on the light emitting / receiving unit 5 has the effect of avoiding the occurrence of optical noise due to the surface reflection from the light receiving / emitting unit 5 returning to the optical path 33.

本実施の形態の光部品25は、受発光素子の半導体チップ2の受発光部5の光路33を凹面鏡6で数十μmから百μm程度の比較的太い平行光束の光路33に変換し光結合するため、直径が125μmでコア径が10μmから60μmのガラス光ファイバ、直径が0.5mmから1mmでコア径が100μm程度のPOF、あるいはコア径が50μm程度のマルチモード光導波路などの光伝送路29に小さな結合損失で光接続することができる効果がある。   In the optical component 25 of the present embodiment, the optical path 33 of the light receiving / emitting part 5 of the semiconductor chip 2 of the light receiving / emitting element is converted by the concave mirror 6 into an optical path 33 of a relatively thick parallel light flux of about several tens μm to 100 μm. Therefore, an optical transmission line such as a glass optical fiber having a diameter of 125 μm and a core diameter of 10 μm to 60 μm, a POF having a diameter of 0.5 to 1 mm and a core diameter of about 100 μm, or a multimode optical waveguide having a core diameter of about 50 μm. 29 has an effect that optical connection can be made with a small coupling loss.

本実施の形態では、凹面鏡6の焦点距離を短かくすることで、受発光部5の光束を凹面鏡6で再び集光する光束に変換することで、シングルモード光ファイバの約十μmの直径のコア、あるいは高Δ光ファイバの数μmの直径のコア、あるいはフォトニッククリスタルが形成する光導波路の1μm以下のコアなどの小径の光伝送路29のコアと光結合することもできる。   In the present embodiment, by shortening the focal length of the concave mirror 6, the luminous flux of the light receiving / emitting unit 5 is converted into the luminous flux that is condensed again by the concave mirror 6, so that the diameter of the single mode optical fiber is about 10 μm. It can also be optically coupled to a core of a small-diameter optical transmission line 29 such as a core, a core having a diameter of several μm of a high Δ optical fiber, or a core of 1 μm or less of an optical waveguide formed by a photonic crystal.

(第2の実施の形態)
図5に本発明の第2の実施の形態の光部品の製造手順を示す。
(Second Embodiment)
FIG. 5 shows an optical component manufacturing procedure according to the second embodiment of the present invention.

(ステップ1)
図5(a)に示すように、保持板30で保持し二次元に配列させた複数の平板部11を製造する。この平板部11の二次元の配列は、受発光部5が二次元配列で形成された受発光素子の半導体チップ2の各受発光部5に対応させる。平板部11には、その受発光部5の位置を向いた約45度の傾斜の斜面15と、そこに形成した凹面鏡6と、凹面鏡6に光路33を導く空洞用凹部14と、反対面に凹部17と電極部18を形成する。そして、平板部11の電極部18に、AuSn共晶半田の箔を設置する。図5(a)では、説明の便宜のため、複数の平板部11のうち1つのみを図示した。
(Step 1)
As shown in FIG. 5A, a plurality of flat plate portions 11 held by a holding plate 30 and two-dimensionally arranged are manufactured. The two-dimensional arrangement of the flat plate portions 11 is made to correspond to each light emitting / receiving portion 5 of the semiconductor chip 2 of the light emitting / receiving element in which the light emitting / receiving portions 5 are formed in a two-dimensional arrangement. The flat plate portion 11 has an inclined surface 15 of about 45 degrees facing the position of the light emitting / receiving portion 5, a concave mirror 6 formed thereon, a cavity concave portion 14 for guiding the optical path 33 to the concave mirror 6, and an opposite surface. A recess 17 and an electrode portion 18 are formed. Then, an AuSn eutectic solder foil is placed on the electrode portion 18 of the flat plate portion 11. In FIG. 5A, for convenience of explanation, only one of the plurality of flat plate portions 11 is shown.

(ステップ2)
二次元配列で形成された受発光部5を有する受発光素子の半導体チップ2を保持板30で保持し、保持板30で保持した状態で受発光素子の半導体チップ2をダイシングし、後に個々の受発光部5毎の受発光素子の半導体チップ2に分割する切り込みを形成する。
(Step 2)
The semiconductor chip 2 of the light emitting / receiving element having the light emitting / receiving section 5 formed in a two-dimensional array is held by the holding plate 30, and the semiconductor chip 2 of the light receiving / emitting element is diced in a state of being held by the holding plate 30. A notch that is divided into the semiconductor chip 2 of the light receiving and emitting element for each light receiving and emitting unit 5 is formed.

(ステップ3)
次に、平板部11の配列を、受発光素子の半導体チップ2の配列に対向させ、図5(b)に示すように、両者を溶接材21で接合する。個々の平板部11は、図5(b)の平面図に示すように、個々の受発光素子の半導体チップ2の領域から突出した部分を有する。
(Step 3)
Next, the arrangement of the flat plate portions 11 is opposed to the arrangement of the semiconductor chips 2 of the light receiving and emitting elements, and both are joined by a welding material 21 as shown in FIG. Each flat plate portion 11 has a portion protruding from the region of the semiconductor chip 2 of each light emitting / receiving element, as shown in the plan view of FIG.

(ステップ4)
次に、図5(c)に示すように、二次元配列の受発光部5を有する受発光素子の半導体チップ2を保持板16と一緒に図の縦方向の配列の一次元の配列毎に分割する。
(Step 4)
Next, as shown in FIG. 5C, the semiconductor chip 2 of the light emitting / receiving element having the two-dimensional array of light emitting / receiving portions 5 is placed together with the holding plate 16 for each one-dimensional array in the vertical array in the figure. To divide.

(ステップ5)
次に、この分離した受発光部5の一次元の配列の受発光素子の半導体チップ2の領域から図の右側に平板部11が突出するが、その部分に、電極金属スペーサ10を受発光素子の半導体チップ2の側面に配置し、平板部11に溶接し電気接続する。
(Step 5)
Next, the flat plate portion 11 protrudes from the region of the semiconductor chip 2 of the light receiving / emitting element in the one-dimensional array of the separated light receiving / emitting portions 5 to the right side of the figure. The semiconductor chip 2 is disposed on the side surface and welded to the flat plate portion 11 for electrical connection.

(ステップ6)
次に、その受発光部5の一次元の配列の受発光素子の半導体チップ2の裏面と電極金属スペーサ10の裏面に、電極の設置領域以外の部分に半田レジストを印刷し、半田レジストから露出した電極の設置領域に、金錫ハンダバンプやハンダボールなどのバンプ電極24を設置する。
(Step 6)
Next, a solder resist is printed on the back surface of the semiconductor chip 2 and the back surface of the electrode metal spacer 10 of the light receiving / emitting element in a one-dimensional array of the light receiving / emitting unit 5 and exposed from the solder resist. A bump electrode 24 such as a gold-tin solder bump or a solder ball is installed in the electrode installation area.

(ステップ7)
次に、この受発光部5の一次元の配列の受発光素子の半導体チップ2と構造体1の一次元配列の結合した一次元配列を、更に、個々の受発光部5毎の受発光素子の半導体チップ2に分割し、その個片を光部品25とする。
(Step 7)
Next, a one-dimensional array obtained by combining the semiconductor chip 2 of the light-emitting / receiving elements in the one-dimensional array of the light-receiving / emitting unit 5 and the one-dimensional array of the structure 1 is further converted into a light-emitting / emitting element for each individual light-emitting / receiving unit 5. The semiconductor chip 2 is divided into individual optical chips 25.

本実施の形態は、受発光部5が二次元配列で形成された受発光素子の半導体チップ2に平板部11の二次元配列を一括して接合するため、より多くの受発光素子の半導体チップ2と平板部11を一括して製造できるため、個片の光部品25の製造コストを更に低減できる効果がある。   In the present embodiment, since the two-dimensional array of the flat plate portions 11 is collectively bonded to the semiconductor chip 2 of the light emitting / receiving element in which the light emitting / receiving units 5 are formed in a two-dimensional array, more semiconductor chips of the light receiving / emitting elements. 2 and the flat plate portion 11 can be manufactured in a lump, so that the manufacturing cost of the individual optical component 25 can be further reduced.

(第3の実施の形態)
図6に本発明の第3の実施の形態を示す。
(Third embodiment)
FIG. 6 shows a third embodiment of the present invention.

本実施の形態は、第2の実施の形態と同様に、受発光部5が二次元配列で形成された受発光素子の半導体チップ2に平板部11の二次元配列を一括して接合する。本実施の形態が第2の実施の形態と異なる点は、第1に、個々の平板部11が受発光素子の半導体チップ2の領域以内に存在する点である。第2に、受発光素子の半導体チップ2の裏面に、底面が受発光素子の半導体チップ2の全面に渡る平坦な平面に形成された第2の平板部31を接合する点である。第2の平板部31に受発光素子の半導体チップ2の側面に設置する電極金属スペーサ10が電気接続される。   In the present embodiment, as in the second embodiment, the two-dimensional array of flat plate portions 11 is collectively bonded to the semiconductor chip 2 of the light emitting / receiving element in which the light emitting / receiving units 5 are formed in a two-dimensional array. This embodiment is different from the second embodiment in that first, each flat plate portion 11 exists within the region of the semiconductor chip 2 of the light emitting / receiving element. Second, the second flat plate portion 31 having a bottom surface formed on a flat plane extending over the entire surface of the semiconductor chip 2 of the light emitting / receiving element is joined to the back surface of the semiconductor chip 2 of the light receiving / emitting element. The electrode metal spacer 10 installed on the side surface of the semiconductor chip 2 of the light emitting / receiving element is electrically connected to the second flat plate portion 31.

そして、平板部11の上面と電極金属スペーサ10の上面に、電極の設置領域を囲む半田レジストを印刷する。平板部11の上面で半田レジストで囲まれるチップ近傍電極パッド32に、ハンダボールのバンプ電極24を設置する。   Then, a solder resist surrounding the electrode installation region is printed on the upper surface of the flat plate portion 11 and the upper surface of the electrode metal spacer 10. A solder ball bump electrode 24 is placed on the near-chip electrode pad 32 surrounded by the solder resist on the upper surface of the flat plate portion 11.

本実施の形態においても、平板部11の斜面15が受発光部5の上面を覆うため、平板部11側を実装基板27に設置する際に受発光部5を傷つけない効果がある。   Also in the present embodiment, since the inclined surface 15 of the flat plate portion 11 covers the upper surface of the light emitting / receiving portion 5, there is an effect that the light receiving / emitting portion 5 is not damaged when the flat plate portion 11 side is installed on the mounting substrate 27.

結局、受発光素子の半導体チップ2の側面に並べて設置した電極金属スペーサ10が、受発光素子の半導体チップ2の表裏を電気接続し、電極金属スペーサ10に第1のバンプ電極24が設置された。そして、この第1のバンプ電極24と同一面側の、すなわち、表面側の、前記受発光素子の半導体チップ2面から引き出されたチップ近傍電極パッド32に第2のバンプ電極24を設置することで、両バンプ電極24を、受発光部5側の同一面側に表面側に引き出した。   Eventually, the electrode metal spacer 10 arranged side by side on the side surface of the semiconductor chip 2 of the light emitting / receiving element electrically connected the front and back of the semiconductor chip 2 of the light receiving / emitting element, and the first bump electrode 24 was installed on the electrode metal spacer 10. . Then, the second bump electrode 24 is disposed on the chip vicinity electrode pad 32 drawn from the surface of the semiconductor chip 2 of the light emitting / receiving element on the same side as the first bump electrode 24, that is, on the front side. Thus, both the bump electrodes 24 were drawn to the surface side on the same surface side of the light emitting / receiving section 5 side.

また、2つのバンプ電極24をこのように受発光素子の半導体チップ2の同一面側に配置し、その反対面の第2の平板部31の底面は受発光素子の半導体チップ2の全面に渡る平坦な平面であるため、本実施の形態の光部品25は、その底面を容易にチップ保持具26で保持することができる効果がある。   In addition, the two bump electrodes 24 are arranged on the same surface side of the semiconductor chip 2 of the light emitting / receiving element as described above, and the bottom surface of the second flat plate portion 31 on the opposite surface extends over the entire surface of the semiconductor chip 2 of the light receiving / emitting element. Since it is a flat plane, the optical component 25 of the present embodiment has an effect that its bottom surface can be easily held by the chip holder 26.

次に、第2の実施の形態と同様に、個々の受発光素子の半導体チップ2まで分割し光部品25を製造する。   Next, as in the second embodiment, the optical component 25 is manufactured by dividing the semiconductor chip 2 of each light emitting / receiving element.

本実施の形態では、光部品25を図6(a)の上下逆に裏返し、平板部11の上面側のバンプ電極24を実装基板電極パッド28に接合する。ここで、光伝送路29については、図6(b)に示すように、光ファイバーなどの光伝送路29を受発光素子の半導体チップ2の表面に設置し固定することで、光部品25の光路33に光伝送路29の光軸を合わせ、光伝送路29と光部品25を結合した光モジュール3を製造する。   In the present embodiment, the optical component 25 is turned upside down in FIG. 6A, and the bump electrode 24 on the upper surface side of the flat plate portion 11 is joined to the mounting substrate electrode pad 28. Here, with respect to the optical transmission path 29, as shown in FIG. 6B, the optical transmission path 29 such as an optical fiber is installed and fixed on the surface of the semiconductor chip 2 of the light receiving and emitting element, thereby fixing the optical path of the optical component 25. The optical module 3 is manufactured by aligning the optical axis of the optical transmission path 29 with 33 and coupling the optical transmission path 29 and the optical component 25 together.

本実施の形態の他の適用例としては、実装基板27の表面にスペーサ34を用いず光伝送路29を設置し、その光伝送路29の上に、光部品25の受発光素子の半導体チップ2の表面を突き当てることで光部品25の光路33と光伝送路29の光軸の高さを合わせた光モジュール3を製造する。   As another application example of the present embodiment, an optical transmission path 29 is installed on the surface of the mounting substrate 27 without using the spacer 34, and a semiconductor chip of a light receiving and emitting element of the optical component 25 is provided on the optical transmission path 29. The optical module 3 is manufactured by matching the heights of the optical paths of the optical path 25 of the optical component 25 and the optical transmission path 29 by abutting the surface of 2.

本実施の形態では、バンプ電極24の面から受発光素子の半導体チップ2の面までの間隔が、光伝送路29程度の寸法であるため、スペーサ34を用いず、光伝送路29を直接実装基板27の表面に設置しスペーサ34が省略できる効果がある。   In the present embodiment, since the distance from the surface of the bump electrode 24 to the surface of the semiconductor chip 2 of the light emitting / receiving element is about the size of the optical transmission path 29, the optical transmission path 29 is directly mounted without using the spacer 34. The spacer 34 can be omitted by being installed on the surface of the substrate 27.

(第4の実施の形態)
図7に本発明の第4の実施の形態を示す。
(Fourth embodiment)
FIG. 7 shows a fourth embodiment of the present invention.

本実施の形態が先の実施の形態と異なる点は、平板部11の凹面鏡6から受発光素子の半導体チップ2の面に平行に平板部11の端部まで至る光路33を通す空洞用凹部14の内径が、芯線の外径が125μmの光ファイバあるいは光導波路など、光伝送路29の外径とほぼ同じサイズに形成され、また、空洞用凹部14の端部が受発光素子の半導体チップ2の存在領域から突出するように、空洞用凹部14が形成された平板部11の端部を突出させている点である。   This embodiment is different from the previous embodiment in that the cavity recess 14 passes through the optical path 33 extending from the concave mirror 6 of the flat plate portion 11 to the end of the flat plate portion 11 in parallel to the surface of the semiconductor chip 2 of the light receiving and emitting element. Is formed to have substantially the same size as the outer diameter of the optical transmission line 29, such as an optical fiber or an optical waveguide having a core wire outer diameter of 125 μm, and the end of the cavity recess 14 is the semiconductor chip 2 of the light receiving and emitting element. That is, the end of the flat plate portion 11 in which the cavity concave portion 14 is formed is protruded so as to protrude from the existing region.

図7では、平板部11の電極金属スペーサ10の位置と反対側の部分に空洞用凹部14が設けられている。実装基板27に設置した光伝送路29の先端に、光部品25の空洞用凹部14の位置を合わせ、そのバンプ電極24を溶融させ、実装基板27の実装基板電極パッド28に接合させる。   In FIG. 7, a cavity recess 14 is provided in a portion of the flat plate portion 11 opposite to the position of the electrode metal spacer 10. The position of the cavity recess 14 of the optical component 25 is aligned with the tip of the optical transmission path 29 installed on the mounting substrate 27, and the bump electrode 24 is melted and bonded to the mounting substrate electrode pad 28 of the mounting substrate 27.

この際に、光部品25の空洞用凹部14が光伝送路29の先端を挟み込み、光モジュール3が降下しつつ、光部品25の位置が光伝送路29の位置に合うように水平面内を適切な位置に移動し位置を合わせ、その後にバンプ電極24が冷却し固化し、実装基板27の実装基板電極パッド28に溶接される。   At this time, the cavity concave portion 14 of the optical component 25 sandwiches the tip of the optical transmission path 29, and the optical module 3 is lowered while the optical component 25 is properly positioned in the horizontal plane so that the position of the optical component 25 matches the position of the optical transmission path 29. Then, the bump electrode 24 is cooled and solidified, and is welded to the mounting board electrode pad 28 of the mounting board 27.

本実施の形態は、このように空洞用凹部14に光伝送路29を鋏み込むため、光伝送路29と光部品25を精度良く位置合わせできる効果がある。   In this embodiment, the optical transmission path 29 is swallowed into the cavity recess 14 as described above, so that the optical transmission path 29 and the optical component 25 can be accurately aligned.

(a)〜(e)は、本発明の第1の実施の形態の光モジュールの製造手順を示す図である。(a)-(e) is a figure which shows the manufacture procedure of the optical module of the 1st Embodiment of this invention. (a)〜(d)は、本発明の第1の実施の形態の光モジュールの製造手順を示す図である。(a)-(d) is a figure which shows the manufacture procedure of the optical module of the 1st Embodiment of this invention. 本発明の第1の実施の形態の光部品の他の例を示す側面図である。It is a side view which shows the other example of the optical component of the 1st Embodiment of this invention. 本発明の第1の実施の形態の光モジュールの側面図である。It is a side view of the optical module of the 1st Embodiment of this invention. (a)〜(c)は、本発明の第2の実施の形態の光モジュールの製造手順を示す図である。(a)-(c) is a figure which shows the manufacture procedure of the optical module of the 2nd Embodiment of this invention. (a)〜(c)は、本発明の第3の実施の形態の光モジュールの構造を示す図である。(a)-(c) is a figure which shows the structure of the optical module of the 3rd Embodiment of this invention. (a)及び(b)は、本発明の第4の実施の形態の光モジュールの構造を示す図である。(a) And (b) is a figure which shows the structure of the optical module of the 4th Embodiment of this invention. 第1の従来例の断面図である。It is sectional drawing of the 1st prior art example. 第2の従来例の断面図である。It is sectional drawing of the 2nd prior art example. 第3の従来例の断面図である。It is sectional drawing of a 3rd prior art example. 第4の従来例の断面図である。It is sectional drawing of the 4th prior art example.

符号の説明Explanation of symbols

1 構造体
2 受発光素子の半導体チップ
3 光モジュール
4 樹脂成形型
5 受発光部
6 凹面鏡
7 斜面
8 凹部
9 外壁
10 電極金属スペーサ
11 平板部
12 金属層
13 メッキマスク板
14 空洞用凹部
15 斜面
16 保持基板
17 凹部
18 電極部
19 溝
20 絶縁膜
21 溶接材
22 素子電極パッド
23 チップ近傍電極パッド
24 バンプ電極
25 光部品
26 チップ保持具
27 実装基板
28 実装基板電極パッド
29 光伝送路
30 保持板
31 第2の平板部
32 チップ近傍電極パッド
33 光路
34 スペーサ
DESCRIPTION OF SYMBOLS 1 Structure 2 Semiconductor chip of light receiving / emitting element 3 Optical module 4 Resin mold 5 Light receiving / emitting part 6 Concave mirror 7 Slope 8 Recess 9 Outer wall 10 Electrode metal spacer 11 Flat plate 12 Metal layer 13 Plating mask plate 14 Cavity recess 15 Slope 16 Holding substrate 17 Recessed portion 18 Electrode portion 19 Groove 20 Insulating film 21 Welding material 22 Element electrode pad 23 Chip electrode pad 24 Bump electrode 25 Optical component 26 Chip holder 27 Mounting substrate 28 Mounting substrate electrode pad 29 Optical transmission path 30 Holding plate 31 Second flat plate portion 32 Chip vicinity electrode pad 33 Optical path 34 Spacer

Claims (6)

少なくとも一方の面に形成した金属層と他方の面を平坦に形成した平板部を有し、前記平板部の一方の面の金属層に電極部を形成し、一方の面に受発光部と素子電極パッドを有し他方の面に素子電極を有する受発光素子の半導体チップを有し、前記素子電極パッドに前記電極部を接続することで、前記平板部と前記受発光素子の半導体チップを接合して成る光部品であって、前記平板部の前記受発光部の上方に前記受発光素子の半導体チップの一方の面に対し所定の角度の傾きを有する斜面を設置し、前記斜面が受発光部の上面を覆い、前記斜面の金属層に凹面鏡が形成され、前記半導体チップの受発光部の光路を前記凹面鏡で前記半導体チップの面に平行な光路に折り曲げる構造を有し、
前記半導体チップの側面に電極金属スペーサを並べて設置し、前記電極金属スペーサに第1のバンプ電極を設置し、前記第1のバンプ電極と同一面側の前記半導体チップ面から引き出された電極パッドに第2のバンプ電極を設置し、
前記第1及び第2のバンプ電極を介して、前記光部品を光伝送路及び電気配線パターンを有する実装基板に接続したことを特徴とする光モジュール。
A metal layer formed on at least one surface and a flat plate portion formed flat on the other surface; an electrode portion is formed on the metal layer on one surface of the flat plate portion; A semiconductor chip of a light emitting / receiving element having an electrode pad and an element electrode on the other surface is connected, and the electrode part is connected to the element electrode pad to join the flat plate part and the semiconductor chip of the light receiving / emitting element. An inclined surface having a predetermined angle of inclination with respect to one surface of the semiconductor chip of the light emitting / receiving element is disposed above the light emitting / receiving portion of the flat plate portion, and the inclined surface receives and emits light. A concave mirror is formed on the sloped metal layer, and the optical path of the light receiving and emitting part of the semiconductor chip is bent by the concave mirror into an optical path parallel to the surface of the semiconductor chip,
An electrode metal spacer is arranged side by side on the side surface of the semiconductor chip, a first bump electrode is installed on the electrode metal spacer, and an electrode pad drawn from the semiconductor chip surface on the same side as the first bump electrode is provided. Install the second bump electrode,
An optical module, wherein the optical component is connected to a mounting substrate having an optical transmission line and an electric wiring pattern via the first and second bump electrodes.
前記電極部を平板部の一方の面に形成した凹部に形成し、前記電極部を前記素子電極パッドに溶接材で溶接することで、前記平板部と前記半導体チップを密着させたことを特徴とする請求項1に記載の光モジュール。   The electrode portion is formed in a recess formed on one surface of a flat plate portion, and the electrode portion is welded to the element electrode pad with a welding material, thereby bringing the flat plate portion and the semiconductor chip into close contact with each other. The optical module according to claim 1. 前記半導体チップの配列と、前記平板部と前記電極金属スペーサとから成る構造体の配列を、前記電極部を前記素子電極パッドに接続した状態で複数の個片に分割することにより、前記半導体チップと構造体から成る光部品を形成することを特徴とする請求項1に記載の光モジュール。   By dividing the arrangement of the semiconductor chips and the arrangement of the structures composed of the flat plate portions and the electrode metal spacers into a plurality of pieces with the electrode portions connected to the element electrode pads, 2. The optical module according to claim 1, wherein an optical component comprising a structure is formed. 前記平板部の平坦な他方の面が前記半導体チップの全面を覆い、前記平板部の一方の面に、前記凹面鏡から斜面の法線ベクトルの受発光素子の半導体チップの面へ投影したベクトルの方向に、平板部の端部まで貫く空洞用凹部を有することを特徴とする請求項1に記載の光モジュール。   The other flat surface of the flat plate portion covers the entire surface of the semiconductor chip, and the direction of the vector projected onto the one surface of the flat plate portion from the concave mirror to the semiconductor chip surface of the light emitting / receiving element of the normal vector of the inclined surface 2. The optical module according to claim 1, further comprising a cavity recess penetrating to an end portion of the flat plate portion. 前記空洞用凹部の端部が受発光素子の半導体チップの存在領域から突出するようにした平板部の突出部を有し、前記空洞用凹部の内径が光伝送路の外径とほぼ同じサイズに形成されていることを特徴とする請求項4に記載の光モジュール。   An end of the cavity recess has a flat plate protrusion that protrudes from the region where the semiconductor chip of the light emitting and receiving element is present, and the inner diameter of the cavity recess is substantially the same as the outer diameter of the optical transmission line. The optical module according to claim 4, wherein the optical module is formed. 複数の構造体が設置された保持基板を用意し、
保持基板に設置された複数の構造体の配列の各電極部に溶接材を設置し、
前記溶接材の位置を一括で、受発光素子の半導体チップの配列の素子電極パッド群の上に仮に合せて構造体の配列を設置し、
溶接材を融点より高い温度まで加熱し再溶融させ、溶接材を平板部の電極部と半導体チップの素子電極パッドの間に広げ、溶融した溶接材の表面張力により、半導体チップの素子電極パッドの位置に、構造体の平板部の電極部の前後左右の位置を合せ、
溶接材を冷却固化させることで、構造体の配列と半導体チップの配列を接合させ、その後、構造体から保持基板を取り外し、
前記半導体チップの側面に電極金属スペーサを並べて設置し、前記半導体チップの表裏を電気接続し、
前記電極金属スペーサに第1のバンプ電極を設置し、前記第1のバンプ電極と同一面側の前記半導体チップ面から引き出された電極パッドに第2のバンプ電極を設置することで前記第1及び第2のバンプ電極を半導体チップの同一面側に引き出して設置し、
前記半導体チップの配列と複数の構造体の配列を結合した配列を分割し複数の光部品を形成し、
前記光部品を光伝送路を有する実装基板に設置することにより光モジュールを製造することを特徴とする光モジュールの製造方法。

Prepare a holding substrate with multiple structures installed,
Welding material is installed on each electrode part of the array of multiple structures installed on the holding substrate,
The position of the welding material is collectively set up on the element electrode pad group of the array of semiconductor chips of the light receiving and emitting elements, and the arrangement of the structures is installed.
The welding material is heated to a temperature higher than the melting point and remelted, the welding material is spread between the electrode portion of the flat plate portion and the element electrode pad of the semiconductor chip, and the surface tension of the molten welding material causes the element electrode pad of the semiconductor chip to Align the position of the electrode part of the flat plate part of the structure to the position of the front and rear, left and right,
By cooling and solidifying the welding material, the array of structures and the array of semiconductor chips are joined, and then the holding substrate is removed from the structure,
Place side by side electrode metal spacers on the side of the semiconductor chip, electrically connect the front and back of the semiconductor chip,
A first bump electrode is disposed on the electrode metal spacer, and a second bump electrode is disposed on an electrode pad drawn from the semiconductor chip surface on the same surface side as the first bump electrode, whereby the first and second bump electrodes are disposed. The second bump electrode is drawn out and installed on the same side of the semiconductor chip,
A plurality of optical components are formed by dividing an array obtained by combining the array of the semiconductor chips and the array of the plurality of structures.
An optical module manufacturing method comprising manufacturing the optical module by installing the optical component on a mounting substrate having an optical transmission path.

JP2004118824A 2004-04-14 2004-04-14 Optical module and method for manufacturing same Pending JP2005303116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004118824A JP2005303116A (en) 2004-04-14 2004-04-14 Optical module and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004118824A JP2005303116A (en) 2004-04-14 2004-04-14 Optical module and method for manufacturing same

Publications (1)

Publication Number Publication Date
JP2005303116A true JP2005303116A (en) 2005-10-27

Family

ID=35334234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004118824A Pending JP2005303116A (en) 2004-04-14 2004-04-14 Optical module and method for manufacturing same

Country Status (1)

Country Link
JP (1) JP2005303116A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114784619A (en) * 2022-06-20 2022-07-22 深圳市埃尔法光电科技有限公司 Method for packaging VCSEL laser chip
CN115149394A (en) * 2022-09-05 2022-10-04 山东中清智能科技股份有限公司 Photoelectric device integrated packaging structure and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114784619A (en) * 2022-06-20 2022-07-22 深圳市埃尔法光电科技有限公司 Method for packaging VCSEL laser chip
CN114784619B (en) * 2022-06-20 2022-09-20 深圳市埃尔法光电科技有限公司 Method for packaging VCSEL laser chip
CN115149394A (en) * 2022-09-05 2022-10-04 山东中清智能科技股份有限公司 Photoelectric device integrated packaging structure and manufacturing method thereof
CN115149394B (en) * 2022-09-05 2022-11-15 山东中清智能科技股份有限公司 Photoelectric device integrated packaging structure and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP3731542B2 (en) Optical module and optical module mounting method
US9541715B2 (en) Optical module, manufacturing method of optical module, and optical device
JP3795877B2 (en) Optical semiconductor module and manufacturing method thereof
JP3566842B2 (en) Semiconductor light receiving device, method of manufacturing semiconductor light receiving device, bidirectional optical semiconductor device, and optical transmission system
TWI269086B (en) Optical assembly structure and manufacturing method thereof
JP5178650B2 (en) Photoelectric composite wiring module and manufacturing method thereof
WO2005091036A1 (en) Optical module and method for manufacturing the same
JP4704126B2 (en) Optical module
JPS63228113A (en) Optically coupling element and manufacture thereof
JP2011081071A (en) Optical module
TW201140179A (en) Bonding system for optical alignment
JPH09138325A (en) Optical fiber packaging structure and its production
US20110170831A1 (en) Optical module and manufacturing method of the module
KR102015132B1 (en) Multi-channel optical sub assembly and manufacturing method of the same
US6695492B2 (en) Optical module and production method therefor
JP2004012803A (en) Printed board unit for optical transmission, and mounting method
JP5130731B2 (en) OPTICAL MODULE, OPTICAL TRANSMISSION DEVICE, AND OPTICAL MODULE MANUFACTURING METHOD
JP4304717B2 (en) Optical module and manufacturing method thereof
JP3795869B2 (en) Optical module
JP2527054B2 (en) Optical module submount and manufacturing method thereof
JP2007187871A (en) Polymer optical waveguide and method for manufacturing same
JP5981145B2 (en) Circuit board and communication system
JP2005303116A (en) Optical module and method for manufacturing same
JP5982457B2 (en) Manufacturing method of optical module
JP2005340770A (en) Electric-optic conversion module and optic-electric conversion module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070222

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090323

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090708