JP2005298934A - Film formation method - Google Patents

Film formation method Download PDF

Info

Publication number
JP2005298934A
JP2005298934A JP2004119243A JP2004119243A JP2005298934A JP 2005298934 A JP2005298934 A JP 2005298934A JP 2004119243 A JP2004119243 A JP 2004119243A JP 2004119243 A JP2004119243 A JP 2004119243A JP 2005298934 A JP2005298934 A JP 2005298934A
Authority
JP
Japan
Prior art keywords
furnace
heat treatment
tube
gas
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004119243A
Other languages
Japanese (ja)
Other versions
JP4175285B2 (en
Inventor
Masayuki Nagai
昌幸 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2004119243A priority Critical patent/JP4175285B2/en
Publication of JP2005298934A publication Critical patent/JP2005298934A/en
Application granted granted Critical
Publication of JP4175285B2 publication Critical patent/JP4175285B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a film formation method where, while gas produced from a degreasing residual material at the inside face of a metallic tube is exhausted from the inside of the tube, an oxide film for suppressing the elution of metal ions from the surface of the tube is formed. <P>SOLUTION: In the film formation method where an oxide film is formed on a metal tube subjected to cold working, after degreasing, using a continuous heat treatment furnace in which pressure changes into two or more stages in the furnace, an non-oxidizing gas is introduced into the continuous heat treatment furnace whose dew point is controlled to the range from -50°C to +50°C so as to form an oxide film. Desirably, the metallic tube is subjected to oil lubrication treatment, is then cold-rolled, is subjected to degreasing by alkali immersion and degreasing with warm water, and is thereafter heat-treated so as to form the oxide film. As the non-oxidizing gas, the one composed of hydrogen, or essentially composed of hydrogen, and comprising one or more kinds selected from nitrogen, helium and argon can be used. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、半導体製造、化学工業、食品産業、火力または原子力発電設備等の分野で広く用いられているステンレス鋼鋼管を始めとする金属管において、加熱による金属管表面からのガスの発生を防止するとともに、管表面からの金属イオンの溶出を抑制するための酸化被膜を形成する被膜形成方法に関する。   The present invention prevents the generation of gas from the surface of metal pipes due to heating in metal pipes such as stainless steel pipes widely used in the fields of semiconductor manufacturing, chemical industry, food industry, thermal power or nuclear power generation equipment, etc. In addition, the present invention relates to a film forming method for forming an oxide film for suppressing elution of metal ions from the tube surface.

クリーンな純粋物質を輸送する金属配管、異物質の混入により生じる管内通過物質の“物質汚染”が許されない配管等においては、配管表面からの塵や水分の放出、金属イオンの溶出、加熱による配管表面(正確には、配管の表面に存在する付着物)からのガス発生等があると、配管内を通過する物質の純度低下を招き、その物質を扱う設備の性能低下や、寿命の低下を来すという問題が生じる。   For pipes that transport clean pure materials, pipes that do not allow “substance contamination” of substances passing through the pipes caused by the inclusion of foreign substances, etc., pipes that release dust and moisture from the pipe surface, elute metal ions, and heat If there is gas generation from the surface (exactly, deposits present on the surface of the pipe), the purity of the substance passing through the pipe will be reduced, and the performance of the equipment handling the substance will be reduced, and the life of the equipment will be reduced. The problem of coming will arise.

金属配管(金属管)は、一般に、冷間加工後に熱処理を施され、製造されるが、冷間加工された金属管、例えば鋼管を熱処理する場合、冷間圧延時や抽伸時に塗布した冷間圧延油、潤滑剤を洗浄(脱脂)し、鋼管の内外表面の付着物を除去する。除去しきれずに鋼管表面に付着物が残留したままで熱処理を施すと、圧延油や潤滑剤に含まれる炭化水素系の成分や塩素(Cl)化合物等が分解、蒸発してガスが発生し、これらのガスが特に滞留しやすい鋼管内に残留する。残留したガスは温度が低下すると凝縮して管内表面に付着し、配管として使用する際に再びガス発生し、管内を通過する物質に汚染を生じさせる。   Metal pipes (metal pipes) are generally manufactured after being subjected to heat treatment after cold working, but when cold-worked metal pipes, such as steel pipes, are cold-applied during cold rolling or drawing. Wash (degrease) the rolling oil and lubricant to remove deposits on the inner and outer surfaces of the steel pipe. When heat treatment is performed with the deposit remaining on the surface of the steel pipe without being completely removed, hydrocarbon components and chlorine (Cl) compounds contained in the rolling oil and lubricant are decomposed and evaporated to generate gas. These gases remain in the steel pipe that is particularly liable to stay. The remaining gas condenses and adheres to the inner surface of the pipe when the temperature is lowered, and when the pipe is used as a pipe, the gas is generated again, causing contamination of substances passing through the pipe.

また、特に、原子力発電設備に設けられている給水加熱器用の伝熱管には、クロム(Cr)を含むステンレス鋼製の鋼管(以下、「ステンレス鋼管」という)が使用されているが、製造の過程で酸洗処理を施した管表面に酸化被膜が形成されていない伝熱管を使用すると、原子炉運転時に伝熱管の表面から多量のクロムが溶出する。クロムの溶出量が増加すると、炉水が原子炉内を循環する過程で中性子の照射を受け、炉水中に放射性核種であるコバルト60(60Co)イオンが増加するとともに、原子炉内の機器にクロムが付着して運転性能が低下する等の問題が生じる。 In particular, stainless steel pipes containing chromium (Cr) (hereinafter referred to as “stainless steel pipes”) are used as heat transfer pipes for feed water heaters installed in nuclear power generation facilities. If a heat transfer tube in which an oxide film is not formed on the surface of the tube that has been pickled in the process is used, a large amount of chromium is eluted from the surface of the heat transfer tube during operation of the nuclear reactor. When the amount of elution of chromium is increased, irradiated with neutrons in the process of the reactor water is circulated reactor, with cobalt 60 (60 Co) ions increases a radionuclide in the reactor water, the equipment in the reactor Problems such as deterioration of driving performance due to adhesion of chromium occur.

前記伝熱管の表面からのクロムの溶出等、管の表面からの金属イオンの溶出に起因する汚染を防止するためには、酸化被膜の形成が有効である。   In order to prevent contamination due to elution of metal ions from the surface of the tube, such as elution of chromium from the surface of the heat transfer tube, formation of an oxide film is effective.

例えば、特許文献1には、Ni基合金管内に、露点が−60℃から+20℃までの範囲内にある水素または水素とアルゴンの混合ガスからなる雰囲気ガスを供給しつつ管を連続式熱処理炉内に装入して、650〜1200℃で所定時間保持し、管内表面に高温水環境でNiの溶出を抑制する酸化皮膜を生成させる熱処理方法が記載されている。この場合、熱処理炉の出側(または、入側と出側)に被処理管の進行方向への移動が自在なように設けた2基のガス供給装置と、熱処理炉内を貫通するように配置されるガス導入管とを用いて雰囲気ガスの管内への供給を行う。   For example, Patent Document 1 discloses that a continuous heat treatment furnace is used in an Ni-based alloy tube while supplying an atmosphere gas composed of hydrogen or a mixed gas of hydrogen and argon having a dew point in the range of −60 ° C. to + 20 ° C. A heat treatment method is described in which a heat treatment method is performed in which an oxide film that is charged in the tube and held at a temperature of 650 to 1200 ° C. for a predetermined time to suppress elution of Ni in a high-temperature water environment is generated. In this case, two gas supply devices provided on the outlet side (or inlet side and outlet side) of the heat treatment furnace so that the pipe to be processed can move in the traveling direction and the heat treatment furnace so as to penetrate therethrough. The atmosphere gas is supplied into the pipe using the gas introduction pipe arranged.

また、特許文献2では、所定の化学組成を有する二相ステンレス鋼製の鋼材にH2濃度が実質的に100%で、かつ露点が−30℃以下のガス雰囲気中で1050℃以上に加熱保持する熱処理を施して、表面から少なくとも50μmにわたる表層がフェライト単相である高純度ガス用二相ステンレス鋼材の製造方法が提案されている。この二相ステンレス鋼材を10〜1000ppmの水蒸気を含む不活性ガス雰囲気中で500〜1000℃に加熱保持することにより、その表面にCr濃度の均一なCr酸化物を生成させることができるとしている。 Further, in Patent Document 2, a steel material made of a duplex stainless steel having a predetermined chemical composition is heated and maintained at 1050 ° C. or higher in a gas atmosphere having an H 2 concentration of substantially 100% and a dew point of −30 ° C. or lower. A method for producing a high-purity gas duplex stainless steel material in which the surface layer extending from the surface to at least 50 μm is a ferrite single phase is proposed. By heating and maintaining this duplex stainless steel material at 500 to 1000 ° C. in an inert gas atmosphere containing 10 to 1000 ppm of water vapor, a Cr oxide having a uniform Cr concentration can be generated on the surface.

しかし、特許文献1に記載される熱処理方法では、雰囲気ガスの管内への供給を、ガス供給装置とガス導入管とを用い、被処理管の進行に合わせて一方のガス供給装置から他方のガス供給装置へ切り替えながら行わなければならない。また、特許文献2に記載の二相ステンレス鋼材の製造方法では、熱処理とは別に酸化皮膜形成処理を行う必要があり、工程数の増大は避けられない。   However, in the heat treatment method described in Patent Document 1, the supply of the atmospheric gas into the pipe uses a gas supply apparatus and a gas introduction pipe, and from one gas supply apparatus to the other gas in accordance with the progress of the pipe to be processed. Must be done while switching to the feeder. Further, in the method for producing a duplex stainless steel material described in Patent Document 2, it is necessary to perform an oxide film forming treatment separately from the heat treatment, and an increase in the number of steps is inevitable.

一方、管内面の残留付着物からのガス発生に起因する管内通過物質の汚染を防止するためには、熱処理する際に、管内のガスを雰囲気ガスで完全に置換する方法が有効であり、従来から、そのための種々の対策が提案されている。   On the other hand, in order to prevent contamination of substances passing through the pipe due to gas generation from residual deposits on the inner surface of the pipe, it is effective to completely replace the gas in the pipe with an atmospheric gas during the heat treatment. Therefore, various countermeasures have been proposed.

例えば、特許文献3では、弾性パッドが対向部に設けられた一対の開閉扉をパージ室の入口部の上下に夫々上下動するように設け、搬入される直管を入口部にて一時停止させ、上下から開閉扉により挟んでパージ室の雰囲気ガスの圧力を高くすることにより、直管内を雰囲気ガスに置換するようにした管内ガスパージ装置が提案されている。   For example, in Patent Document 3, a pair of open / close doors provided with elastic pads at opposing portions are provided so as to move up and down above the inlet portion of the purge chamber, respectively, and the straight pipe to be carried in is temporarily stopped at the inlet portion. An in-pipe gas purging apparatus has been proposed in which the atmosphere gas in the purge chamber is increased from above and below by an open / close door to increase the pressure of the atmosphere gas in the purge chamber.

また、特許文献4に開示される熱処理装置では、直状管を雰囲気ガス中で熱処理するための熱処理炉の側方には、直状管の入口に向けて直状管を送り込む為の装入テーブルを配設し、この装入テーブルには、直状管の先端が上記熱処理炉内に入った状態において、その直状管の後端が位置する場所を負圧にする為の負圧手段を設けている。これにより、直状管内のパージ作業を極めて簡易に行えるとしている。   In addition, in the heat treatment apparatus disclosed in Patent Document 4, the side of a heat treatment furnace for heat-treating the straight tube in an atmospheric gas is charged to feed the straight tube toward the inlet of the straight tube. A negative pressure means is provided for placing a negative pressure at a position where the rear end of the straight pipe is located in a state where the front end of the straight pipe is in the heat treatment furnace. Is provided. As a result, the purging operation in the straight pipe can be performed very easily.

しかしながら、特許文献3で提案された装置では、パージ室の入口部でその都度直管の装入を停止させる必要があるため、熱処理能率が著しく低下すると同時に、加熱雰囲気での弾性パッドの品質劣化が激しく、要求性能が得られない場合や、頻繁に交換を要するという問題がある。また、特許文献4が開示する装置は、大容量の負圧手段を必要とするため、大がかりな設備投資を要し、鋼管製造コストが上昇するという問題がある。   However, in the apparatus proposed in Patent Document 3, since it is necessary to stop charging the straight pipe each time at the inlet of the purge chamber, the heat treatment efficiency is significantly reduced, and at the same time, the quality of the elastic pad is deteriorated in the heating atmosphere. However, there is a problem that required performance cannot be obtained or that frequent replacement is required. Moreover, since the apparatus disclosed in Patent Document 4 requires a large-capacity negative pressure means, there is a problem that a large-scale capital investment is required and the steel pipe manufacturing cost increases.

特開2003−239060号公報JP 2003-239060 A

特開平10−88288号公報Japanese Patent Laid-Open No. 10-88288 特開平5−320745号公報JP-A-5-320745 特開平6−128645号公報JP-A-6-128645

本発明は、このような状況に鑑みてなされたもので、加熱によりガスを発生する脱脂残留物の金属管内面への付着を防止するとともに、管表面からの金属イオンの溶出、特に、原子力発電設備等の給水加熱器において、伝熱管に使用されるクロム含有ステンレス鋼管の表面からのCrイオンの溶出を抑制するための酸化被膜を形成する被膜形成方法を提供することを目的としている。   The present invention has been made in view of such a situation, and prevents the degreasing residue that generates gas by heating from adhering to the inner surface of the metal tube, and elution of metal ions from the tube surface, in particular, nuclear power generation. It aims at providing the film formation method which forms the oxide film for suppressing the elution of Cr ion from the surface of the chromium containing stainless steel pipe used for a heat exchanger tube in feed water heaters, such as equipment.

本発明者は、上記の課題を解決するため、冷間加工された鋼管を洗浄(脱脂)した後、その表面に残留する付着物を除去し、管表面からの金属イオンの溶出を抑制する酸化被膜を形成するための被膜形成方法について種々の検討を行った。   In order to solve the above-mentioned problem, the present inventor cleaned (degreasing) a cold-worked steel pipe, and then removed the deposits remaining on the surface, thereby suppressing the elution of metal ions from the pipe surface. Various studies were conducted on the method of forming a film for forming a film.

その結果、炉内の圧力が階段状に変化する熱処理炉において、雰囲気ガスとして微量の水蒸気を含む非酸化性ガスを用いて熱処理することにより、管内表面の残留付着物の分解により生成するガス(すなわち、管内通過物質に汚染を生じさせる「汚染ガス」)を容易に雰囲気ガスに置換すると同時に、管表面からの金属イオンの溶出を抑制する酸化被膜を形成することが可能であることを知見した。すなわち、前記汚染ガスを排除しながら、冷間加工後の鋼管の熱処理と酸化被膜を形成するための処理(以下、「被膜処理」という)とを同時に行うことができる。   As a result, in the heat treatment furnace in which the pressure in the furnace changes stepwise, the gas generated by the decomposition of the residual deposits on the inner surface of the pipe by heat treatment using a non-oxidizing gas containing a small amount of water vapor as the atmospheric gas ( In other words, it was found that it is possible to easily form an oxide film that suppresses the elution of metal ions from the surface of the tube while at the same time replacing the “contaminating gas” that causes contamination of substances passing through the tube with atmospheric gas. . That is, heat treatment of the steel pipe after cold working and treatment for forming an oxide film (hereinafter referred to as “coating treatment”) can be performed simultaneously while eliminating the contaminated gas.

本発明は、上述の知見に基づいてなされたものであり、下記の被膜形成方法を要旨としている。
『冷間加工した金属管に酸化被膜を形成する被膜形成方法であって、脱脂した後、圧力が炉内で2段階以上に変化する連続熱処理炉を用い、露点を−50℃から+50℃の範囲内に調節した非酸化性ガスを連続熱処理炉内に導入して、酸化被膜を形成することを特徴とする被膜形成方法。』
前記被膜形成方法において、油潤滑処理を行って冷間加工し、アルカリに浸漬し温水で洗浄することにより脱脂した後、熱処理し酸化被膜を形成することとすれば、酸洗による脱脂の必要がなく、腐食により粗さが劣化せず、欠陥がなく薄くて密着した被膜が得られ、望ましい。
This invention is made | formed based on the above-mentioned knowledge, and makes the summary the following film formation method.
“A method for forming an oxide film on a cold-worked metal tube, using a continuous heat treatment furnace in which the pressure changes in two or more stages in the furnace after degreasing, with a dew point of −50 ° C. to + 50 ° C. A film forming method, wherein an oxide film is formed by introducing a non-oxidizing gas adjusted within a range into a continuous heat treatment furnace. ]
In the film forming method, oil lubrication is performed, cold working is performed, degreasing is performed by immersing in alkali and washing with warm water, and then heat treatment is performed to form an oxide film. It is desirable that the coating does not deteriorate in roughness due to corrosion, and has a thin and tight coating without defects.

前記被膜形成方法において、非酸化性ガスとして水素、または、水素を主成分とし、窒素、ヘリウム、アルゴンのうちの1種以上を含有するガスを用いることができる。   In the film forming method, hydrogen or a gas containing hydrogen as a main component and containing at least one of nitrogen, helium, and argon can be used as the non-oxidizing gas.

本発明の被膜形成方法によれば、冷間加工後の金属管を対象として、管内面の残留付着物から発生するガスを管内から排除しながら、熱処理と、管表面からの金属イオンの溶出を抑制するための酸化被膜を形成させる被膜処理とを同時に行うことが可能である。これにより、原子力発電設備を始めとする各種のプラントで使用する際に、金属の溶出や管内面の残留付着物からのガス発生等のない金属管を提供することができる。   According to the coating film forming method of the present invention, heat treatment and elution of metal ions from the tube surface are performed on a metal tube after cold working while excluding gas generated from residual deposits on the inner surface of the tube. It is possible to simultaneously perform a film treatment for forming an oxide film for suppression. As a result, when used in various plants such as nuclear power generation facilities, it is possible to provide a metal tube that is free from metal elution and gas generation from residual deposits on the inner surface of the tube.

前記のように、本発明の被膜形成方法は、『冷間加工した金属管に酸化被膜を形成する被膜形成方法であって、脱脂した後、圧力が炉内で2段階以上に変化する連続熱処理炉を用い、露点を−50℃から+50℃の範囲内に調節した非酸化性ガスを連続熱処理炉内に導入して、酸化被膜を形成する方法』である。すなわち、冷間加工した金属管を対象として、連続熱処理炉を用いて酸化被膜を形成する方法であって、管内面の残留付着物からの発生ガスを排除しながら、被膜処理と熱処理とを同時に行うことができる。   As described above, the film forming method of the present invention is “a film forming method for forming an oxide film on a cold-worked metal tube, and after degreasing, the continuous heat treatment in which the pressure changes in two or more stages in the furnace. A method of forming an oxide film by introducing a non-oxidizing gas having a dew point adjusted within a range of −50 ° C. to + 50 ° C. into a continuous heat treatment furnace using a furnace ”. That is, a method of forming an oxide film using a continuous heat treatment furnace for a cold-worked metal tube, and simultaneously performing the film treatment and the heat treatment while eliminating the generated gas from the residual deposits on the inner surface of the tube. It can be carried out.

図1は、本発明の被膜形成方法を適用した一般的なステンレス鋼管の製管工程例を示す図で、(a)は従来方式の熱処理を行う工程例、(b)と(c)は本発明の被膜形成方法を適用した工程例である。(b)図は1パスの冷間加工を行う場合、(c)図は2パス以上の冷間加工を行う場合である。   FIG. 1 is a diagram showing an example of a general stainless steel pipe manufacturing process to which the coating film forming method of the present invention is applied. (A) is an example of a conventional heat treatment process, and (b) and (c) of FIG. It is an example of a process to which the film forming method of the invention is applied. (B) The figure shows the case of performing cold working for one pass, and (c) the figure shows the case of performing cold working for two or more passes.

図1(b)または(c)に示すように、「熱間製管」で得られたステンレス鋼管素管は、「化成皮膜潤滑処理または油潤滑処理」された後、「冷間加工」に供され、続いて「脱脂」(または、「脱脂」後、さらに「酸洗」)処理される。なお、前記の「脱脂」処理は、通常は、アルカリに浸漬し温水で洗浄することにより行われる。   As shown in FIG. 1 (b) or (c), the stainless steel tube obtained by “hot pipe making” is subjected to “cold working” after being subjected to “chemical conversion film lubrication treatment or oil lubrication treatment”. Followed by “degreasing” (or “degreasing” followed by further “pickling”) treatment. The “degreasing” treatment is usually performed by immersing in an alkali and washing with warm water.

熱間製管後の素管は、スケールの生成に起因して表面粗さが粗く、かつ、バラツキも大きい。加えて、母材のCrがスケール層の形成に消費されており、母材表面はCr濃度が低い。結晶粒界はCrの拡散速度が大きいためCr濃度がさらに低く、しかもその影響は粒界に沿って深くまで及んでいる。   The raw pipe after hot pipe making has a rough surface roughness due to the generation of scale, and has a large variation. In addition, the base material Cr is consumed for forming the scale layer, and the surface of the base material has a low Cr concentration. Since the crystal grain boundary has a high Cr diffusion rate, the Cr concentration is further lowered, and the influence extends deeply along the grain boundary.

この素管の表面を平滑にし、かつ、Cr濃度を均一化するために、「化成皮膜潤滑処理または油潤滑処理」を施し、断面減少率がある程度以上の冷間加工を行う。   In order to smooth the surface of the raw tube and make the Cr concentration uniform, a “chemical conversion film lubrication treatment or an oil lubrication treatment” is performed, and a cold working with a cross-section reduction rate of a certain degree or more is performed.

化成皮膜潤滑処理は、化学反応により化成皮膜を形成させて潤滑性を付与する潤滑方法である。すなわち表面を腐食して粗くし、腐食生成物により表面を覆うものであり、密着性良く表面を覆い、潤滑性を付与させたものである。冷間加工時には工具と材料表面の間に皮膜が介在するため、摩擦せん断力は比較的弱くかつ皮膜が詰まった状態の表面凹部(ポケット)はすり潰され難い。また、潤滑膜(化成皮膜)の除去は困難で、冷間加工後は、アルカリ浸漬および温水洗浄に加え、「酸洗」による脱皮膜処理が必要になる(図1(a)参照)。このような処理の後も表面凹部には皮膜残存物があり、熱処理時に熱分解により発生するガスの増大を招く。   The chemical conversion film lubrication treatment is a lubrication method in which a chemical conversion film is formed by a chemical reaction to impart lubricity. That is, the surface is corroded and roughened, and the surface is covered with a corrosion product. The surface is covered with good adhesion, and lubricity is imparted. Since a film is interposed between the tool and the material surface during cold working, the frictional shear force is relatively weak and the surface recesses (pockets) in a state where the film is clogged are hardly crushed. Further, it is difficult to remove the lubricating film (chemical conversion film), and after cold working, in addition to alkali immersion and hot water cleaning, a film removal treatment by “pickling” is required (see FIG. 1A). Even after such treatment, there is a film residue on the surface recess, which causes an increase in gas generated by thermal decomposition during the heat treatment.

一方、油潤滑処理の場合は、潤滑剤(油)は管の表面に物理的に付着しているだけなので、表面粗さの劣化はなく、また、潤滑剤の除去の困難性は化成皮膜の除去の場合に比べて大きく軽減され、「酸洗」の工程を省略することができる。   On the other hand, in the case of oil lubrication treatment, the lubricant (oil) is only physically attached to the surface of the tube, so there is no deterioration of the surface roughness, and the difficulty of removing the lubricant is the difficulty of the chemical conversion film. Compared with the case of removal, the process is greatly reduced, and the “pickling” step can be omitted.

したがって、図1(b)に示した工程例における「冷間加工」の前の「化成皮膜潤滑処理または油潤滑処理」は、通常は、油潤滑処理とし、冷間加工後、アルカリに浸漬し温水で洗浄することにより脱脂する(すなわち、酸洗処理をしない「非酸洗脱脂」とする)のが望ましい。なお、アルカリによる脱脂は、通常用いられている方法で行えばよい。   Therefore, the “chemical conversion film lubrication treatment or oil lubrication treatment” before the “cold working” in the process example shown in FIG. 1B is usually an oil lubrication treatment, and after cold working, it is immersed in an alkali. It is desirable to perform degreasing by washing with warm water (that is, “non-pickling degreasing” without pickling treatment). In addition, what is necessary is just to perform the degreasing | defatting by an alkali by the method used normally.

また、図1(c)に示した工程例でも、仕上げパスは油潤滑処理で行い、酸洗を含まない非酸洗脱脂とするのが望ましい。さらに、すべてのパスを、油潤滑処理で行い、非酸洗脱脂を実施し、中間での熱処理も後述する圧力が炉内で2段階以上に変化する連続熱処理炉を適用して行うのが、より望ましい。   Also, in the process example shown in FIG. 1C, it is desirable that the finishing pass is performed by oil lubrication and is non-pickled and degreased without pickling. Furthermore, all passes are performed by oil lubrication treatment, non-pickling degreasing is performed, and intermediate heat treatment is performed by applying a continuous heat treatment furnace in which the pressure described later changes in two or more stages in the furnace. More desirable.

冷間加工は少なくとも1回実施する。冷間加工の加工率は断面減少率で20%以上とするのが望ましい。これによって、管の内外表面に新生面が創出され、管の表面が平滑化されるとともに、表面近傍におけるCr濃度が均一化される。   Cold work is performed at least once. The working rate of cold working is preferably 20% or more in terms of the cross-sectional reduction rate. As a result, a new surface is created on the inner and outer surfaces of the tube, the surface of the tube is smoothed, and the Cr concentration in the vicinity of the surface is made uniform.

加工方法は引抜き、圧延のいずれでもよく、引抜きと圧延を組み合わせてもよい。引抜きは管内に工具を挿入する芯金引きとする。空引きは、内面における新生面の生成が不十分であるため、望ましくない。   The processing method may be either drawing or rolling, and may be a combination of drawing and rolling. Pulling is performed with a cored bar that inserts a tool into the pipe. Emptying is not desirable because the generation of new surfaces on the inner surface is insufficient.

良好な新生面を得るためには、断面減少率を大きく取れる圧延を少なくとも1回実施するのが望ましい。   In order to obtain a good new surface, it is desirable to perform rolling at least once so that the reduction rate of the cross section can be increased.

「冷間加工」後、「脱脂」処理される。冷間加工前の潤滑処理が油潤滑処理の場合は、潤滑剤(油)が管表面に物理的に付着しているだけなので、「アルカリ浸漬→温水洗浄」により潤滑剤はほとんど除去される。したがって、「酸洗」処理を要しない。一方、化成皮膜潤滑処理の場合は、前述したように、潤滑膜(化成皮膜)の除去が困難で、「酸洗」による脱脂が必要になる。   After “cold processing”, “degreasing” is performed. When the lubrication treatment before the cold working is an oil lubrication treatment, the lubricant (oil) is only physically attached to the pipe surface, so that the lubricant is almost removed by “alkaline soaking → warm water washing”. Therefore, no “pickling” treatment is required. On the other hand, in the case of the chemical conversion film lubrication treatment, as described above, it is difficult to remove the lubricating film (chemical conversion film), and degreasing by “pickling” is necessary.

酸洗処理を行うと、結晶粒界が特に浸食され、表面粗さが劣化するとともに(後述する実施例の本発明例12参照)、母材と酸との反応で生成する反応膜が、被膜処理の際に、酸化被膜の生成に対して悪影響を及ぼす。   When the pickling treatment is performed, the crystal grain boundary is particularly eroded, the surface roughness is deteriorated (see Invention Example 12 in Examples described later), and the reaction film formed by the reaction between the base material and the acid is a film. During processing, it adversely affects the formation of oxide films.

前記「潤滑処理」、「冷間加工」および「脱脂」に続いて、金属管に「被膜処理」を施す。この処理においては、「圧力が炉内で2段階以上に変化する連続熱処理炉を用い、露点を−50℃から+50℃の範囲内に調節した非酸化性ガスを連続熱処理炉内に導入」する。   Subsequent to the “lubricating treatment”, “cold working” and “degreasing”, a “coating treatment” is applied to the metal tube. In this treatment, “a non-oxidizing gas whose dew point is adjusted within the range of −50 ° C. to + 50 ° C. is introduced into the continuous heat treatment furnace using a continuous heat treatment furnace whose pressure changes in two or more stages in the furnace”. .

「圧力が炉内で2段階以上に変化する連続熱処理炉」とは、例えば、入口帯、加熱帯、冷却帯および出口帯で構成される熱処理炉において、入口帯の内圧が、炉外圧以上で加熱帯の圧力以下となるように設定された(この場合は、2段階に変化する)熱処理炉である。   “A continuous heat treatment furnace in which the pressure changes in two or more stages in the furnace” means, for example, a heat treatment furnace composed of an inlet zone, a heating zone, a cooling zone, and an outlet zone, where the internal pressure of the inlet zone is equal to or higher than the external pressure of the furnace. It is a heat treatment furnace set so as to be equal to or lower than the pressure of the heating zone (in this case, it changes in two stages).

図2(イ)は、このような圧力が炉内で2段階に変化する連続熱処理炉の断面構成例を模式的に示す図であり、図2の(ロ)、(ハ)および(ニ)は、それぞれこの熱処理炉を用いた場合の金属管(例えば、ステンレス鋼管)の温度パターン、炉内圧力分布および管内面の残留付着物から発生するガスの排出効果を模式的に示す図である。図2の(ロ)〜(ニ)における横方向の長さはいずれも(イ)のそれに対応している。   FIG. 2 (a) is a diagram schematically showing a cross-sectional configuration example of a continuous heat treatment furnace in which such pressure changes in two stages in the furnace, and (b), (c) and (d) of FIG. These are figures which show typically the discharge effect of the gas generated from the temperature pattern of a metal pipe (for example, stainless steel pipe), the pressure distribution in the furnace, and the residual deposit on the inner surface of the pipe when this heat treatment furnace is used. The lengths in the horizontal direction in (B) to (D) in FIG. 2 correspond to those in (A).

図2(イ)に示す熱処理炉は、入口帯1、加熱帯2、冷却帯3および出口帯4を有しており、加熱帯2に雰囲気ガスを導入して、金属管をその軸方向に沿って入口帯1から連続的に炉内に装入し、所定の熱処理を施し、出口帯4から搬出する構造になっている。炉床には、金属管を搬送するための送管用ローラ(図示せず)が配置されている。   The heat treatment furnace shown in FIG. 2 (a) has an inlet zone 1, a heating zone 2, a cooling zone 3 and an outlet zone 4, and an atmosphere gas is introduced into the heating zone 2 so that the metal tube is in the axial direction. Along with this, the furnace is continuously charged from the inlet zone 1 into the furnace, subjected to a predetermined heat treatment, and carried out from the outlet zone 4. A pipe feeding roller (not shown) for conveying the metal pipe is disposed on the hearth.

入口帯1の入側と、加熱帯2の入側近傍および出口帯4の出側にそれぞれシールカーテン5a、5bおよび5cが取り付けられている。   Seal curtains 5a, 5b, and 5c are attached to the entrance side of the inlet zone 1, the vicinity of the entrance side of the heating zone 2, and the exit side of the exit zone 4, respectively.

図2(ハ)は、炉内の圧力分布で、前記のようにシールカーテン5a、5bおよび5cを取り付けることにより、シールカーテン5aを挟んで入口帯1と連続熱処理炉外との間で圧力差が生じ、シールカーテン5bを挟んで加熱帯2と入口帯1との間で圧力差が生じる。すなわち、炉内圧を炉外の圧力に対して入口帯1の部分と加熱帯2の部分とで2段階に変化させることができる。なお、シールカーテン5bとシールカーテン5cの間には圧力差はなく、シールカーテン5cを挟んで出口帯4と炉外との間に前記2段階分の圧力差が存在する。   FIG. 2 (c) shows the pressure distribution in the furnace. By attaching the seal curtains 5a, 5b and 5c as described above, the pressure difference between the inlet zone 1 and the outside of the continuous heat treatment furnace with the seal curtain 5a interposed therebetween. And a pressure difference is generated between the heating zone 2 and the inlet zone 1 across the seal curtain 5b. That is, the internal pressure of the furnace can be changed in two stages with respect to the pressure outside the furnace, in the inlet zone 1 and the heating zone 2. Note that there is no pressure difference between the seal curtain 5b and the seal curtain 5c, and there is a pressure difference of the two stages between the outlet belt 4 and the outside of the furnace across the seal curtain 5c.

図2(ロ)は、金属管の温度パターンである。金属管は、加熱帯2で加熱され、シールカーテン5bの手前で500℃に達し、さらに昇温して、固溶化熱処理温度で所定時間保持された後、冷却帯6で所定温度まで冷却され、その後は徐々に冷却される。なお、前記の500℃とは、後述する調査結果(図9参照)に基づくもので、残留付着物からのF、ClおよびS含有ガスの発生がこの温度までには終了する“ガス発生の上限温度”である。   FIG. 2B shows a temperature pattern of the metal tube. The metal tube is heated in the heating zone 2, reaches 500 ° C. before the seal curtain 5 b, further rises in temperature and is held at a solution heat treatment temperature for a predetermined time, and then cooled to a predetermined temperature in the cooling zone 6, After that, it is gradually cooled. The above-mentioned 500 ° C. is based on the investigation result (see FIG. 9) to be described later, and the generation of F, Cl and S-containing gas from the residual deposits is completed by this temperature. Temperature ".

図2(ニ)は、管内面の残留付着物から発生するガスの排出効果を説明するための図で、連続熱処理炉に装入された金属管が、金属管6aの位置から6eの位置まで炉内を搬送されていく間に、管内のガスが管外へ排出される状態を表している。金属管6aの全体、または管6bの後端側半分等の薄黒色を施した部分は、残留付着物から未だガスが発生していないか、発生していても、完全には排出されておらず、管内に滞留していることを表す。また、金属管6aから6eの先端および後端に記した薄黒色の矢印は、管内を流れる雰囲気ガスの流れの方向を示している。   FIG. 2 (d) is a diagram for explaining the effect of discharging the gas generated from the residual deposits on the inner surface of the pipe, and the metal pipe charged in the continuous heat treatment furnace is moved from the position of the metal pipe 6a to the position of 6e. This shows a state in which the gas in the pipe is discharged out of the pipe while being transported in the furnace. The entire metal tube 6a or the light black portion such as the rear half of the tube 6b has not been completely discharged even if gas has not yet been generated from the residual deposits. It means that it stays in the pipe. Moreover, the light black arrow described at the front-end | tip and the rear end of the metal pipes 6a-6e has shown the direction of the flow of the atmospheric gas which flows through the inside of a pipe | tube.

図2(ニ)において、金属管6aは、その先端側3/4程度が炉内に装入され、管の先端がシールカーテン5bに達する直前の状態にある。管の大部分がまだ加熱されておらず、先端部でも500℃に昇温していない。炉外と入口帯1との間には圧力差があるので雰囲気ガスは管の先端から後端に向かって流れてはいるが、管内面の残留付着物からのガス発生は管の先端近傍で始まったばかりで(後述するように、残留付着物からのガス発生は200℃から500℃までの温度範囲で認められる)、管の大部分では未だガス発生は起こっていない。   In FIG. 2 (d), the metal tube 6a is in a state immediately before its tip side 3/4 is inserted into the furnace and the tip of the tube reaches the seal curtain 5b. Most of the tube has not yet been heated, and the tip has not been heated to 500 ° C. Although there is a pressure difference between the outside of the furnace and the inlet zone 1, the atmospheric gas flows from the tip to the rear end of the tube, but gas generation from residual deposits on the inner surface of the tube is near the tip of the tube. It has just begun (as will be described later, gas generation from residual deposits is observed in the temperature range from 200 ° C. to 500 ° C.), and gas generation has not yet occurred in most of the tubes.

金属管6bは、管の先端が加熱帯2にあり、管の後端が入口帯1にある状態で、管の先端側の半分は既に500℃以上に昇温して残留付着物からのガス発生が終わっており、一方、管の先端と後端との間には圧力差があるので、雰囲気ガスは管の先端から後端に向かって流れ、管の先端側半分の発生ガスは管外へ排出される。金属管6cは、この管外への排出が更に進んだ状態を示している。   In the metal tube 6b, the tip of the tube is in the heating zone 2 and the rear end of the tube is in the inlet zone 1, and the half on the tip side of the tube has already been heated to 500 ° C. or higher, and the gas from the residual deposits On the other hand, since there is a pressure difference between the tip and the rear end of the tube, the atmospheric gas flows from the tip of the tube toward the rear end, and the generated gas in the tip half of the tube is outside the tube. Is discharged. The metal pipe 6c shows a state where the discharge to the outside of the pipe has further progressed.

金属管6dは、管全体が500℃以上に昇温して残留付着物からのガス発生が終わり、雰囲気ガスの管先端から後端への流れにより発生ガスが管外へ排出された状態を表している。そして、金属管6eは管の先端が炉外へ搬出された状態で、未だ炉内にある管の後端側の方が圧力が高いので、雰囲気ガスは逆に管の後端から先端へ流れる(薄黒色の矢印参照)。   The metal pipe 6d represents a state in which the entire pipe is heated to 500 ° C. or more and the gas generation from the residual deposits is finished, and the generated gas is discharged out of the pipe by the flow of the atmospheric gas from the front end to the rear end. ing. The metal tube 6e is in a state in which the tip of the tube is carried out of the furnace, and the pressure at the rear end side of the tube still in the furnace is higher, so the atmospheric gas flows from the rear end of the tube to the tip. (See light black arrow).

図3は、圧力が炉内で2段階に変化する他の連続熱処理炉の断面構成例(図3(イ))、この熱処理炉を用いた場合の金属管の温度パターン(同(ロ))、炉内圧力分布(同(ハ))および管内面の残留付着物から発生するガスの排出効果(同(ニ))を模式的に示す図である。図3の(ロ)〜(ニ)における横方向の長さはいずれも(イ)のそれに対応している。   FIG. 3 is a cross-sectional configuration example of another continuous heat treatment furnace in which the pressure changes in two stages in the furnace (FIG. 3 (a)), and the temperature pattern of the metal tube when this heat treatment furnace is used (same (b)). FIG. 3 is a diagram schematically showing the pressure distribution in the furnace (same (C)) and the effect of discharging the gas generated from the residual deposits on the inner surface of the pipe (same (D)). The lengths in the horizontal direction in (B) to (D) in FIG. 3 correspond to those in (A).

図3に示した熱処理炉と前記図2に示した炉との違いは、図3に示した熱処理炉においては、さらに、出口帯4の入側(換言すれば、冷却帯3の出側)にシールカーテン5dが取り付けられている点である。そのため、図3(ハ)に示すように、炉内の圧力分布が炉の出口帯4側でも2段階に変化している。   The difference between the heat treatment furnace shown in FIG. 3 and the furnace shown in FIG. 2 is that, in the heat treatment furnace shown in FIG. 3, the entry side of the exit zone 4 (in other words, the exit side of the cooling zone 3). The point is that a seal curtain 5d is attached. For this reason, as shown in FIG. 3C, the pressure distribution in the furnace changes in two stages even on the outlet zone 4 side of the furnace.

管内面の残留付着物から発生するガスの排出効果に関しては、図3(ニ)に示すように、前記図2に示した熱処理炉の場合と同等である。   As shown in FIG. 3D, the effect of discharging the gas generated from the residual deposits on the inner surface of the tube is the same as that in the heat treatment furnace shown in FIG.

図4は、圧力が炉内で2段階に変化するさらに他の連続熱処理炉の断面構成例(図4(イ))、この熱処理炉を用いた場合の金属管の温度パターン(同(ロ))、炉内圧力分布(同(ハ))および管内面の残留付着物から発生するガスの排出効果(同(ニ))を模式的に示す図で、(ロ)〜(ニ)における横方向の長さはいずれも(イ)のそれに対応している。   FIG. 4 shows a cross-sectional configuration example of still another continuous heat treatment furnace (FIG. 4 (a)) in which the pressure changes in two stages in the furnace, and the temperature pattern of the metal tube when this heat treatment furnace is used (same (b)). ), The pressure distribution in the furnace (same (c)) and the exhaust effect of the gas generated from the residual deposits on the inner surface of the tube (same (d)), in the horizontal direction in (b) to (d) The length of each corresponds to that of (A).

図4に示した熱処理炉と前記図2に示した炉との違いは、入口帯1のシールカーテンの取り付け位置で、図4に示した熱処理炉では、入口帯1の入側ではなく、後端にシールカーテン5a′が取り付けられている。そのため、図4(ハ)に示すように、炉内の圧力分布が若干相違し、炉内の1段目の圧力の範囲が狭くなっている。   The difference between the heat treatment furnace shown in FIG. 4 and the furnace shown in FIG. 2 is the attachment position of the seal curtain in the inlet zone 1, and in the heat treatment furnace shown in FIG. A seal curtain 5a 'is attached to the end. Therefore, as shown in FIG. 4C, the pressure distribution in the furnace is slightly different, and the first-stage pressure range in the furnace is narrow.

管内面の残留付着物からのガスの排出効果に関しては、図4(ニ)に示すように、前記図2に示した熱処理炉の場合と同じである。   As shown in FIG. 4 (d), the effect of discharging the gas from the residual deposits on the inner surface of the tube is the same as in the case of the heat treatment furnace shown in FIG.

図5は、圧力が炉内で2段階に変化するさらに他の連続熱処理炉の断面構成例(図5(イ))、この熱処理炉を用いた場合の金属管の温度パターン(同(ロ))、炉内圧力分布(同(ハ))および管内面の残留付着物から発生するガスの排出効果(同(ニ))を模式的に示す図で、(ロ)〜(ニ)における横方向の長さはいずれも(イ)のそれに対応している。   FIG. 5 is a sectional configuration example of another continuous heat treatment furnace in which the pressure changes in two stages in the furnace (FIG. 5 (a)), and the temperature pattern of the metal tube when this heat treatment furnace is used (the same (b)). ), The pressure distribution in the furnace (same (c)) and the exhaust effect of the gas generated from the residual deposits on the inner surface of the tube (same (d)), in the horizontal direction in (b) to (d) The length of each corresponds to that of (A).

図5に示した熱処理炉と前記図2に示した炉との違いは、入口帯1に予熱器7を設け、加熱帯2のシールカーテン5bを外して、入口帯1の後端にシールカーテン5a′を取り付けた点である。そのため、図5(ハ)に示すように、金属管の温度が500℃に到達する領域が入口帯1側へ移行するとともに、炉内の2段目の圧力の範囲が広くなっている。   The difference between the heat treatment furnace shown in FIG. 5 and the furnace shown in FIG. 2 is that a preheater 7 is provided in the inlet zone 1, the seal curtain 5 b of the heating zone 2 is removed, and the seal curtain at the rear end of the inlet zone 1. 5a 'is attached. Therefore, as shown in FIG. 5C, the region where the temperature of the metal tube reaches 500 ° C. moves to the inlet zone 1 side, and the range of the second-stage pressure in the furnace is widened.

その結果、管内面の残留付着物からのガスの排出効果に関しては、図4(ニ)に示すように、残留付着物からのガス発生が早期に起こるので、発生ガスの管外への排出が迅速に行われる。これによって、熱処理炉内への送管速度の上昇が可能となる。   As a result, as shown in FIG. 4 (d), the gas generation effect from the residual deposit on the inner surface of the pipe is early because gas generation from the residual deposit occurs. Done quickly. This makes it possible to increase the pipe feeding speed into the heat treatment furnace.

シールカーテンの材質、形状等について特に限定はなく、従来使用されている耐熱性のカーテンが使用できる。複数枚を重ね、更にそれを複数セットで使用すれば、シールカーテンの前後における圧力差の維持に効果的である。   There are no particular limitations on the material, shape, etc. of the seal curtain, and conventionally used heat-resistant curtains can be used. If a plurality of sheets are stacked and further used in a plurality of sets, it is effective for maintaining a pressure difference before and after the seal curtain.

前記の説明は、炉内の圧力が入口帯と加熱帯とで2段階に変化している例であるが、3段階以上に変化する炉を用いてもよい。   Although the above description is an example in which the pressure in the furnace changes in two stages in the inlet zone and the heating zone, a furnace that changes in three stages or more may be used.

これに対して、従来は、炉内の圧力の段階的な変化のない熱処理炉が用いられてきたが、本発明の被膜形成方法で使用する連続熱処理炉との比較のためにここで説明する。   In contrast, conventionally, a heat treatment furnace without a stepwise change in pressure in the furnace has been used, but here it will be described for comparison with a continuous heat treatment furnace used in the film forming method of the present invention. .

図6は、従来使用されてきた連続熱処理炉の断面構成例(図6(イ))、金属管の温度パターン(同(ロ))、炉内圧力分布(同(ハ))および管内面の残留付着物から発生するガスの排出効果(同(ニ))を模式的に示す図で、なお、図6の(ロ)〜(ニ)における横方向の長さはいずれも(イ)のそれに対応している。   FIG. 6 shows a cross-sectional configuration example (FIG. 6 (a)) of a conventionally used continuous heat treatment furnace, the temperature pattern of the metal pipe (same (b)), the pressure distribution in the furnace (same (c)), and the inner surface of the pipe. It is a figure which shows typically the discharge effect (the same (d)) of the gas which generate | occur | produces from a residual deposit, and all the horizontal length in (b)-(d) of FIG. It corresponds.

図6に示した熱処理炉と前記図2〜図5に示した熱処理炉との違いは、加熱帯2のシールカーテン5bと、入口帯1の後端におけるシールカーテン5a′の有無である。すなわち、図2〜図5に示した熱処理炉はシールカーテン5bまたはシールカーテン5a′を備えているので、炉内の圧力を2段階に変化させることが可能であるが、図6に示した従来の熱処理炉では、図6(ハ)に示すように、炉内の圧力分布は1段である。   The difference between the heat treatment furnace shown in FIG. 6 and the heat treatment furnace shown in FIGS. 2 to 5 is the presence or absence of the seal curtain 5 b in the heating zone 2 and the seal curtain 5 a ′ at the rear end of the inlet zone 1. That is, since the heat treatment furnace shown in FIGS. 2 to 5 includes the seal curtain 5b or the seal curtain 5a ′, the pressure in the furnace can be changed in two stages, but the conventional heat treatment furnace shown in FIG. In the heat treatment furnace, as shown in FIG. 6C, the pressure distribution in the furnace is one stage.

そのため、図6(ニ)に示すように、金属管全体が炉内に装入された状態(金属管6b、6c、6d)では、炉内雰囲気ガスの管先端から後端へ向かう流れは生じず、残留付着物から発生したガスが管内に滞留したままで被膜処理(固溶化熱処理)を受けることになるので、良好な被膜は形成されない。   Therefore, as shown in FIG. 6 (d), in the state where the entire metal tube is charged in the furnace (metal tubes 6b, 6c, 6d), the flow of the atmospheric gas from the furnace toward the rear end occurs. In addition, since the gas generated from the residual deposit remains in the pipe and is subjected to the coating treatment (solution heat treatment), a good coating is not formed.

金属管6eの状態になると管の先端部分が炉外に搬出されるので、管の後端から先端へ向かう雰囲気ガスの流れが生じるが、発生ガスが完全に排出(除去)される前に管全体が炉外へ搬出されると、発生ガスが一部管内に残留し、管内表面に凝縮、付着し、配管として使用する際に、管内を通過する物質に汚染を生じさせることになる。   When the state of the metal tube 6e is reached, the tip portion of the tube is carried out of the furnace, so that an atmosphere gas flows from the rear end of the tube to the tip, but before the generated gas is completely discharged (removed), When the whole is carried out of the furnace, a part of the generated gas remains in the pipe, condenses and adheres to the inner surface of the pipe, and causes contamination of substances passing through the pipe when used as piping.

本発明の被膜形成方法において、前記のように、圧力が炉内で2段階以上に変化する連続熱処理炉を用いるのは、以下の理由による。   In the film forming method of the present invention, as described above, the continuous heat treatment furnace in which the pressure changes in two or more stages in the furnace is used for the following reason.

冷間加工を行い、脱脂(非酸洗脱脂)処理した後の金属管の内外表面では、通常、脱脂剤(油潤滑処理に用いた潤滑油)は、見かけ上は除去されていると判断される。しかし、僅かではあるが残存(付着)しており、加熱すると残留付着物からガスが発生する。   It is judged that the degreasing agent (lubricating oil used in the oil lubrication treatment) is apparently removed on the inner and outer surfaces of the metal tube after cold working and degreasing (non-pickling degreasing) treatment. The However, a slight amount remains (attaches), and when heated, gas is generated from the remaining deposits.

金属加工用の潤滑油は一般的に油脂を主成分とし、それに添加されている極圧添加剤は、F、Cl、S、Pなどの化合物を含んでいる。脱脂後、除去されなかった僅かの残留潤滑油は管の内外面に付着しているが、被膜処理時には、管外面の付着物から発生したガスは炉内に飛散し、さらに、連続的に供給される雰囲気ガスで希釈されるので影響が少ない。しかし、管内面の残留付着物から発生したガスは管内に滞留しやすく、管内の内容積に対して無視できない量である。   Lubricating oils for metal processing generally contain oils and fats, and extreme pressure additives added to them contain compounds such as F, Cl, S, and P. A small amount of residual lubricating oil that has not been removed after degreasing adheres to the inner and outer surfaces of the pipe, but during coating treatment, the gas generated from the deposit on the outer surface of the pipe scatters into the furnace and is supplied continuously. Since it is diluted with atmospheric gas, it has little effect. However, the gas generated from the residual deposits on the inner surface of the pipe tends to stay in the pipe and is an amount that cannot be ignored with respect to the internal volume in the pipe.

雰囲気ガスとして水素を用いる従来の水素炉(「光輝炉」ともいう)において、ステンレス鋼管を熱処理した際の管内のガスを採取し、分析した結果、管内を十分に水素で置換した後に被処理材を炉内に装入して熱処理しているにもかかわらず、炭化水素、CO、CO2、N2、O2を主体とするガスが合わせて6〜10体積%(残部は、雰囲気ガスのH2)含まれていることが判明した。炭化水素、CO、CO2は、脱脂後の残留付着物から発生したガスであり、N2、O2は装入前の管内に存在していた空気に由来するものと考えられる。さらに、この結果から、微量ではあるが、極圧材に含まれるF、Cl、S等を含有するガス成分が残留付着物から発生し、管内に滞留することも予測される。なお、これらの成分は、管内通過物質に対する汚染という観点からは、微量でも問題となる成分である。 In a conventional hydrogen furnace that uses hydrogen as the atmospheric gas (also called “bright furnace”), the gas in the pipe when heat-treating the stainless steel pipe was collected and analyzed, and as a result, the pipe was sufficiently replaced with hydrogen, and the material to be treated In the furnace, the gas mainly composed of hydrocarbons, CO, CO 2 , N 2 , and O 2 is 6 to 10% by volume (the balance is atmospheric gas) H 2 ) was found to be included. Hydrocarbon, CO, and CO 2 are gases generated from residual deposits after degreasing, and N 2 and O 2 are considered to be derived from the air that was present in the pipe before charging. Furthermore, from this result, it is also predicted that a gas component containing F, Cl, S, etc. contained in the extreme pressure material is generated from the residual deposits and stays in the pipe although it is in a very small amount. Note that these components are problematic even in a minute amount from the viewpoint of contamination of substances passing through the pipe.

そこで、図7に示すように、円筒型加熱炉8を用いて、冷間加工および脱脂(非酸洗脱脂)処理した後のステンレス鋼管9を加熱し、残留付着物からのF、Cl、S等を含有するガスの発生特性を調査した。   Therefore, as shown in FIG. 7, a cylindrical heating furnace 8 is used to heat the stainless steel tube 9 after cold working and degreasing (non-pickling degreasing) treatment, and F, Cl, S from the residual deposits. The generation characteristics of gas containing etc. were investigated.

図8は、実験で用いたヒートパターンを模式的に示す図で、(a)は加熱炉内の温度を段階的に上昇させた場合(ヒートパターンA)、(b)は500℃まで急激に加熱した後、室温まで低下させ、その後段階的に上昇させた場合(ヒートパターンB)である。   FIG. 8 is a diagram schematically showing the heat pattern used in the experiment. (A) shows a case where the temperature in the heating furnace is raised stepwise (heat pattern A), and (b) shows a sudden increase to 500 ° C. After heating, the temperature is lowered to room temperature and then raised stepwise (heat pattern B).

表1に実験条件を示す。なお、表1の「管内水素流れ」の欄の「有り」とは、ステンレス鋼管9の加熱中、実炉における通常の流量(0.5Nm3/h)とほぼ同程度になるように水素を送通したことを、「なし」とは、水素の送通を行わなかったことを表す。 Table 1 shows the experimental conditions. “Yes” in the column “Hydrogen hydrogen flow” in Table 1 means that the hydrogen flow is approximately the same as the normal flow rate (0.5 Nm 3 / h) in the actual furnace during the heating of the stainless steel pipe 9. “None” means that no hydrogen was sent.

Figure 2005298934
Figure 2005298934

図9に調査結果を示す。図9中のテスト1(○印)、テスト2(●印)およびテスト3(×印)はそれぞれ表1のテスト1、テスト2およびテスト3に対応する。なお、発生したガスは管内に送通した水素とともに純水中に導いて溶解させ、その後、実施例で用いた方法により、F-、Cl-またはSO4 2-として定量し、図9の縦軸にそれらの総量で表示した。 FIG. 9 shows the survey results. Test 1 (◯ mark), test 2 (● mark), and test 3 (x mark) in FIG. 9 correspond to test 1, test 2 and test 3 in Table 1, respectively. The generated gas was introduced and dissolved in pure water together with hydrogen sent into the pipe, and then quantified as F , Cl or SO 4 2− by the method used in the examples, and the vertical direction of FIG. The total amount of them is displayed on the axis.

図9のテスト1は、加熱炉内の温度を段階的に上昇させて、各温度でのF、ClおよびSを含有するガスの発生量を調査した結果で、200℃を超えると管内の付着物からのガス発生が認められ、300℃を超えるとその発生量が次第に減少し、500℃以上では殆ど発生しなくなることがわかる。これらのガスは、雰囲気ガスに混入すると酸化被膜の生成に悪影響を及ぼすので、500℃以上で炉内の雰囲気ガスを管内に通気させ、管の温度が被膜処理温度に達する前に管内から完全に排出する必要がある。   Test 1 in FIG. 9 is a result of increasing the temperature in the heating furnace step by step and examining the generation amount of gas containing F, Cl and S at each temperature. It can be seen that gas generation from the kimono is observed, and the generated amount gradually decreases when the temperature exceeds 300 ° C., and hardly occurs at 500 ° C. or higher. When these gases are mixed in the atmosphere gas, they adversely affect the formation of the oxide film. Therefore, the atmosphere gas in the furnace is passed through the tube at 500 ° C or higher, and the tube is completely discharged from the tube before the tube temperature reaches the film processing temperature. It is necessary to discharge.

テスト3は、発生したガスが温度の低下により再度付着することを確認するために行ったもので、図8(b)に示すように、500℃まで加熱してガスを発生させても、室温まで低下させた後の段階的な温度の上昇により、テスト1の場合と類似のガス発生特性を示すことから、発生したガスが温度の低下により再度付着することがわかる。このような鋼管が配管として使用に供されると、温度上昇時に再度ガスが発生し、汚染が生じることになる。   Test 3 was performed in order to confirm that the generated gas reattached due to a decrease in temperature. As shown in FIG. 8B, even when the gas was generated by heating to 500 ° C., Since the gas generation characteristics similar to those in the test 1 are shown by the stepwise temperature increase after the temperature is lowered, it can be seen that the generated gas adheres again due to the temperature decrease. When such a steel pipe is used for piping, gas is generated again when the temperature rises, resulting in contamination.

そこで、図2〜図5に例示した連続熱処理炉を用いれば、鋼管内部に管の進行方向先端から後端に向かう雰囲気ガスの流れを自然に生じさせることができ、管内部の残留付着物から発生するガスを雰囲気ガスにより置換、排除しながら、被膜処理と熱処理(この例では、固溶化熱処理)とを同時に行うことができる。なお、前記図9に示したテスト2は、本発明の被膜形成方法を適用した場合の効果を確認するために、圧力が炉内で2段階に変化する連続熱処理炉で酸化被膜を形成させたステンレス鋼管を対象として加熱処理を行った結果で、管内の残留付着物から発生したガスは完全に排除され、管の冷却に伴う再付着が生じていないので、ガスの発生は認められなかった。   Therefore, if the continuous heat treatment furnace illustrated in FIG. 2 to FIG. 5 is used, a flow of atmospheric gas from the front end to the rear end of the pipe can be naturally generated in the steel pipe, and residual deposits inside the pipe can be generated. The coating treatment and the heat treatment (in this example, the solution heat treatment) can be performed simultaneously while replacing or removing the generated gas with the atmospheric gas. In Test 2 shown in FIG. 9, an oxide film was formed in a continuous heat treatment furnace in which the pressure changed in two stages in the furnace in order to confirm the effect when the film forming method of the present invention was applied. As a result of performing the heat treatment on the stainless steel pipe, the gas generated from the residual deposits in the pipe was completely eliminated, and no re-adhesion accompanying cooling of the pipe occurred, so no gas generation was observed.

図1(b)および(c)では、この被膜処理を兼ねる熱処理を「管内に雰囲気ガス通気のある光輝熱処理」と表示している。また、図1(a)に示した従来の工程例では、「大気炉熱処理」が行われているが、これは、炉内圧力の段階的な変化がなく、大気雰囲気下で行う熱処理である。図1(c)に示した本発明の工程例の1パス目で行われる「大気炉熱処理または光輝熱処理」の「光輝熱処理」は、同じく炉内圧力の段階的な変化がなく、水素または水素主体の雰囲気下で行う熱処理である。なお、図1(c)に示した工程例では、仕上げパスで圧力が炉内で2段階以上に変化する連続熱処理炉を適用した熱処理、すなわち、「管内に雰囲気ガス通気のある光輝熱処理」を行っているが、先に付言したように、仕上げパスだけでなく全てのパスでこの光輝熱処理を実施するのが、より望ましい。   In FIG. 1B and FIG. 1C, the heat treatment that also serves as the coating treatment is indicated as “bright heat treatment with atmospheric gas aeration in the tube”. In addition, in the conventional process example shown in FIG. 1A, “atmospheric furnace heat treatment” is performed, but this is a heat treatment performed in an air atmosphere without a stepwise change in the furnace pressure. . The “bright heat treatment” of “atmospheric furnace heat treatment or bright heat treatment” performed in the first pass of the process example of the present invention shown in FIG. This is a heat treatment performed in a main atmosphere. In the process example shown in FIG. 1 (c), heat treatment using a continuous heat treatment furnace in which the pressure changes in two or more stages in the furnace in the finishing pass, that is, “bright heat treatment with atmospheric gas ventilation in the tube” is performed. However, as mentioned above, it is more desirable to perform this bright heat treatment not only in the finishing pass but in all passes.

このように、本発明の被膜形成方法では、圧力が炉内で2段階以上に変化する連続熱処理炉を用いるのであるが、このとき、「露点を−50℃から+50℃の範囲内に調節した非酸化性ガスを連続熱処理炉内に導入」する。すなわち、被膜処理と熱処理とを同時に行えるように、操業上定められた熱処理条件(すなわち、加熱温度および時間)の下で適度な酸化被膜(欠陥のない密着した酸化被膜)が得られるような炉内雰囲気とする。具体的には、金属管表面の過剰な酸化を抑えるために非酸化性ガス雰囲気とし、これに、適度な酸化被膜を得るために水蒸気を加える。   Thus, in the film forming method of the present invention, a continuous heat treatment furnace in which the pressure changes in two or more stages in the furnace is used. At this time, “the dew point was adjusted within the range of −50 ° C. to + 50 ° C. Introduce non-oxidizing gas into continuous heat treatment furnace. That is, a furnace in which an appropriate oxide film (a close-contact oxide film without defects) can be obtained under the heat treatment conditions (that is, heating temperature and time) determined in operation so that the film treatment and the heat treatment can be performed simultaneously. The inside atmosphere. Specifically, a non-oxidizing gas atmosphere is used to suppress excessive oxidation on the surface of the metal tube, and water vapor is added thereto to obtain an appropriate oxide film.

水蒸気の混合量は、露点で管理し、露点が−50℃から+50℃の範囲内になるように調節する。被処理物の形状に応じ、熱処理温度と熱処理炉での加熱時間を考慮して、この範囲内で、所定の酸化被膜が得られる条件とする。例えば、ステンレス鋼管の熱処理では、外径、肉厚に応じて加熱昇温時間と冷却時間が異なり、小径薄肉管の場合は、加熱昇温時間が短時間で、管の送り速度が大きく在炉時間が短くなるので、雰囲気ガスの露点は、酸化雰囲気の強い高温側(+50℃側)に設定する。逆に、在炉時間の長い厚肉材の場合は、露点を酸化雰囲気の弱い低温側に設定するのがよい。なお、酸化被膜の厚さは、特に限定しない。欠陥がなく、薄く密着した、表面色むらの少ない酸化被膜であれば、管の表面からの金属イオンの溶出を抑制し、溶出に伴う汚染の防止に有効である。   The mixing amount of water vapor is controlled by the dew point, and is adjusted so that the dew point is in the range of −50 ° C. to + 50 ° C. In accordance with the shape of the object to be processed, the heat treatment temperature and the heating time in the heat treatment furnace are taken into consideration, and the conditions under which a predetermined oxide film is obtained within this range. For example, in heat treatment of stainless steel pipes, the heating temperature rise time and cooling time differ depending on the outer diameter and wall thickness. In the case of small diameter thin-walled pipes, the heating temperature rise time is short and the feed rate of the pipe is large. Since the time is shortened, the dew point of the atmospheric gas is set on the high temperature side (+ 50 ° C. side) where the oxidizing atmosphere is strong. Conversely, in the case of a thick material with a long in-furnace time, it is preferable to set the dew point on the low temperature side where the oxidizing atmosphere is weak. The thickness of the oxide film is not particularly limited. An oxide film having no defects, thin adhesion, and little surface color unevenness is effective in suppressing elution of metal ions from the surface of the tube and preventing contamination associated with elution.

非酸化性ガスとしては、水素を使用するのが一般的であるが、水素と不活性ガス(窒素を含む)を主体とするガスを用いることも可能である。例えば、水素を主成分とし、窒素、ヘリウム、アルゴンのうち少なくとも1種を含有するガスなどである。   As the non-oxidizing gas, hydrogen is generally used, but it is also possible to use a gas mainly composed of hydrogen and an inert gas (including nitrogen). For example, a gas mainly containing hydrogen and containing at least one of nitrogen, helium, and argon.

窒素は安価なガスで、コスト面では有利である。しかし、例えば、ステンレス鋼管の窒素含有レベルによっては、母材への浸透(窒化)または脱窒を生じるので、母材の窒素含有量に応じて0〜10体積%の範囲で調整するのがよい。   Nitrogen is an inexpensive gas and is advantageous in terms of cost. However, for example, depending on the nitrogen content level of the stainless steel pipe, penetration (nitriding) or denitrification occurs in the base material, and therefore it is preferable to adjust in the range of 0 to 10% by volume according to the nitrogen content of the base material. .

熱処理と被膜処理を兼ねた、圧力が炉内で2段階に変化する連続熱処理炉での処理を終了して金属管の内外表面に酸化被膜を形成させた後、図1に示すように、「精整」工程、「検査」工程で、常法に従って曲がり矯正、切断、管端仕上げ等の「精整」や「検査」を行い、さらに、必要に応じ、Uベンド加工と精整検査を行う。   After finishing the treatment in the continuous heat treatment furnace in which the pressure is changed in two stages in the furnace, which combines the heat treatment and the film treatment, and forming the oxide film on the inner and outer surfaces of the metal tube, as shown in FIG. In the "preparation" process and "inspection" process, "rectification" and "inspection" such as bending correction, cutting and pipe end finishing are performed according to conventional methods, and further, U-bend processing and finishing inspection are performed as necessary. .

以上、主としてステンレス鋼管について説明したが、本発明の被膜形成方法は、その他の合金鋼、あるいはNi基合金、その他の非鉄金属を素材とする金属管の製造にも適用することができる。   As mentioned above, although the stainless steel pipe was mainly demonstrated, the film formation method of this invention is applicable also to manufacture of the metal pipe which uses other alloy steel, Ni base alloy, and another nonferrous metal as a raw material.

SUS304(オーステナイト系ステンレス鋼)、SUS444(フェライト系ステンレス鋼)およびNCF690(ニッケルクロム鉄合金、Ni:60質量%、Cr:30質量%)をそれぞれ素材とするステンレス鋼管またはニッケルクロム鉄合金管(以下、単に「管」ともいう)を、前記図1(b)または(c)に例示した製管工程に準じた工程で製造し、表面粗さ、金属溶出量、被膜のバラツキおよび付着物(塩化物、硫化物)量を調査した。   Stainless steel pipe or nickel chrome iron alloy pipe (hereinafter referred to as SUS304 (austenite stainless steel), SUS444 (ferritic stainless steel) and NCF690 (nickel chrome iron alloy, Ni: 60 mass%, Cr: 30 mass%), respectively. , Which is also simply referred to as “pipe”), is manufactured in accordance with the pipe making process illustrated in FIG. 1 (b) or (c), and the surface roughness, metal elution amount, coating variation and deposits (salts) And sulfide) were investigated.

前記製造した管の寸法は、それぞれの管について、外径34mm、厚さ4.0mm(以下、寸法「A」と記す)、または、外径16mm、厚さ1.2mm(以下、寸法「B」と記す)とした。   The dimensions of the manufactured pipes are as follows. For each pipe, the outer diameter is 34 mm and the thickness is 4.0 mm (hereinafter referred to as dimension “A”), or the outer diameter is 16 mm and the thickness is 1.2 mm (hereinafter referred to as dimension “B”). ")".

評価方法は次のとおりである。
〔表面粗さ〕
管の内面3箇所の表面粗さを中心線平均粗さRa(μm)で表示し、その平均値が0.5μm以下であれば「◎印(極めて良好)」、0.5μm超え1μm以下であれば「○印(良好)」、1μm超えであれば「×印(不良)」とした。
The evaluation method is as follows.
〔Surface roughness〕
The surface roughness of the three inner surfaces of the tube is indicated by the centerline average roughness Ra (μm). If the average value is 0.5 μm or less, “◎ (very good)”, 0.5 μm to 1 μm or less If there was “◯ mark (good)”, if it exceeded 1 μm, it was marked “x mark (defect)”.

〔金属溶出量〕
管内に非脱気純水を封入し、215℃で100時間保持した後、封入水中のFe、CrおよびNiの量を誘導結合プラズマ発光分光分析装置(ICP−MS)で定量し、封入水量と管内の表面積から単位表面積当たり溶出量(mg/m2)を算出した。
[Elution amount of metal]
Non-degassed pure water is sealed in the tube and held at 215 ° C. for 100 hours, and then the amounts of Fe, Cr, and Ni in the sealed water are quantified with an inductively coupled plasma emission spectrometer (ICP-MS). The elution amount per unit surface area (mg / m 2 ) was calculated from the surface area in the tube.

Fe、CrおよびNiの溶出量の合計が5mg/m2以下であれば「◎印」、5mg/m2超え10mg/m2以下であれば「○印」、10mg/m2超えであれば「×印」とした。 If the total elution amount of Fe, Cr and Ni is 5 mg / m 2 or less, “◎”, if it exceeds 5 mg / m 2 and 10 mg / m 2 or less, “◯”, if it exceeds 10 mg / m 2 It was set as “x mark”.

〔被膜のバラツキ〕
被膜処理(熱処理)後の管について、炉幅方向3箇所(管の直径方向両端および中央)と長さ方向3箇所(管の先端、中央および後端)の計9箇所からサンプリングし、内外表面の色を目視にて観察した。
[Coating variation]
The tube after coating treatment (heat treatment) was sampled from a total of 9 locations, 3 locations in the furnace width direction (both ends and center in the diameter direction of the tube) and 3 locations in the length direction (end, center and rear end of the tube). The color of was observed visually.

先ず、酸化被膜の有無を調査し、前記9個のうちの過半数のサンプルにおいて酸化被膜が認められなければ、「被膜なし」とした。続いて、被膜が認められた場合、薄く密着した酸化被膜であるか否かを評価し、1個以上のサンプルにおいて、薄く密着した酸化被膜とは認められない場合は、「欠陥有り」とした。欠陥なしと判定された場合、さらに、酸化被膜表面の色のバラツキを評価し、表面色むらが小さければ「○印」、表面色むらが大きければ「×印」とした。   First, the presence or absence of an oxide film was investigated, and if no oxide film was observed in the majority of the nine samples, “no film” was determined. Subsequently, when a film was observed, it was evaluated whether it was a thinly adhered oxide film, and in one or more samples, when a thinly adhered oxide film was not recognized, it was determined as “defective”. . When it was determined that there was no defect, color variation on the surface of the oxide film was further evaluated. If the surface color unevenness was small, “◯” was indicated, and if the surface color unevenness was large, “X” was indicated.

〔付着物量(塩化物および硫化物量)〕
管内に純水を封入し、内面の付着物を溶出させた後、封入水中のClイオン、SO4イオンの濃度をイオンクロマトグラフィーにより求め、封入水量と管内の表面積から単位表面積当たりの塩化物量(mg/m2)、および硫化物量(mg/m2)を算出した。塩化物および硫化物の合計量が1mg/m2以下であれば「○印」、1mg/m2超えであれば「×印」とした。
[Amount of deposit (amount of chloride and sulfide)]
After the pure water is sealed in the tube and the deposits on the inner surface are eluted, the concentration of Cl ion and SO 4 ion in the sealed water is obtained by ion chromatography, and the amount of chloride per unit surface area is determined from the amount of sealed water and the surface area in the tube ( mg / m 2 ) and the amount of sulfide (mg / m 2 ) were calculated. When the total amount of chloride and sulfide was 1 mg / m 2 or less, “◯” was indicated, and when exceeding 1 mg / m 2 , “X” was indicated.

製管条件を表2に、調査結果を表3に示す。   The pipe making conditions are shown in Table 2, and the survey results are shown in Table 3.

Figure 2005298934
Figure 2005298934

Figure 2005298934
Figure 2005298934

表2において、「脱脂方法」の欄の「アルカリ」とは、「アルカリ浸漬→温水洗浄」処理を、「酸洗」とは、「酸洗→水洗」を意味する。   In Table 2, “alkali” in the column of “degreasing method” means “alkali soaking → hot water washing” treatment, and “pickling” means “pickling → water washing”.

表2の「炉の形式」の欄の「2段階炉内圧1」とは、炉内圧力が図2の(ハ)のような分布を示す炉であり、「2段階炉内圧2」とは、同じく図3の(ハ)、「2段階炉内圧3」とは、同じく図4の(ハ)、そして「2段階炉内圧4」とは、同じく図5の(ハ)のような炉内圧分布を示す炉である。また、比較例の「従来水素炉」とは、炉内の圧力の段階的な変化のない水素炉(光輝炉)である。また、「雰囲気ガス」の欄の「水素」は、H2が実質的に100体積%であることを意味する。 “Two-stage furnace pressure 1” in the column of “Type of furnace” in Table 2 is a furnace in which the furnace pressure has a distribution as shown in FIG. Similarly, (c) in FIG. 3 and “two-stage furnace pressure 3” are the same as (c) in FIG. 4 and “two-stage furnace pressure 4” are the furnace pressures as in (c) of FIG. It is a furnace showing the distribution. In addition, the “conventional hydrogen furnace” of the comparative example is a hydrogen furnace (bright furnace) in which the pressure in the furnace does not change stepwise. Further, “hydrogen” in the “atmosphere gas” column means that H 2 is substantially 100% by volume.

表2および表3から明らかなように、圧力が炉内で2段階に変化する熱処理炉(光輝炉)を用い、雰囲気ガスの露点を規定範囲内に調整した本発明例1〜11、13および14では、表面粗さRa、金属溶出量、付着物量および被膜のバラツキのいずれも良好であった。本発明例12で表面粗さRaが大きかったが、これは冷間加工前の潤滑処理に化成皮膜潤滑処理を行ったためである。しかし、これ以外の金属溶出量、付着物量および被膜のバラツキについては、良好な結果が得られた。   As is clear from Tables 2 and 3, Invention Examples 1-11, 13 and Inventive Examples 1 to 11, 13 in which the dew point of the atmospheric gas was adjusted within a specified range using a heat treatment furnace (bright furnace) in which the pressure changed in two stages in the furnace. In No. 14, the surface roughness Ra, the metal elution amount, the amount of deposits, and the coating variation were all good. In Example 12 of the present invention, the surface roughness Ra was large because the chemical conversion film lubrication treatment was performed on the lubrication treatment before cold working. However, good results were obtained with respect to other metal elution amounts, deposit amounts, and coating variations.

これに対して、「従来水素炉」を用いた比較例1、3では、管内面の残留付着物から発生するガスを完全に排出させることができず、管内に付着物が認められ、また、雰囲気ガスへの発生ガスの混入の影響で管内面に全長にわたり均一な酸化被膜が形成されず被膜のバラツキが大きかった。一方、雰囲気ガスの露点が本発明で規定する範囲から外れる比較例2、4では、「2段階炉内圧4」の熱処理炉を使用しているので管内に付着物は認められなかったが、被膜の状態は比較例1、3に比べてさらに悪かった。また、比較例1〜4全てにおいて、金属溶出量が大きかった。   On the other hand, in Comparative Examples 1 and 3 using the “conventional hydrogen furnace”, the gas generated from the residual deposits on the inner surface of the pipe cannot be completely discharged, and the deposits are recognized in the pipe. Due to the influence of the generated gas in the atmosphere gas, a uniform oxide film was not formed over the entire length on the inner surface of the tube, and the coating varied greatly. On the other hand, in Comparative Examples 2 and 4 in which the dew point of the atmospheric gas deviates from the range defined in the present invention, no deposits were observed in the pipe because a heat treatment furnace having a “two-stage furnace internal pressure 4” was used. The state was worse compared to Comparative Examples 1 and 3. In all of Comparative Examples 1 to 4, the metal elution amount was large.

本発明の被膜形成方法によれば、冷間加工後の金属管を対象として、管内面の残留付着物から発生するガスを排除しながら、熱処理と被膜処理を同時に行って、管の内外面に均一な酸化被膜を形成させることができる。したがって、本発明の被膜形成方法を適用した金属管は、金属の溶出や管内面の残留付着物からのガス発生等がなく、原子力発電設備を始めとする各種のプラントで利用することができる。   According to the coating film forming method of the present invention, heat treatment and coating treatment are simultaneously performed on the inner and outer surfaces of the tube while excluding gas generated from the residual deposits on the inner surface of the tube after subjecting the metal tube after cold working. A uniform oxide film can be formed. Therefore, the metal pipe to which the coating film forming method of the present invention is applied does not cause metal elution or gas generation from the residual deposit on the inner surface of the pipe, and can be used in various plants including nuclear power generation facilities.

本発明の被膜形成方法を適用した一般的なステンレス鋼管の製管工程例を示す図で、(a)は従来方式の熱処理を行う工程例、(b)と(c)は本発明の被膜形成方法を適用した工程例である。It is a figure which shows the example of a pipe making process of the general stainless steel pipe to which the film formation method of this invention is applied, (a) is a process example which performs the heat processing of a conventional system, (b) and (c) are the film formation of this invention. It is an example of a process to which the method is applied. 圧力が炉内で2段階に変化する連続熱処理炉の断面構成例(図2(イ))、金属管の温度パターン(同(ロ))、炉内圧力分布(同(ハ))および管内面の残留付着物から発生するガスの排出効果(同(ニ))を模式的に示す図である。Cross-sectional configuration example (Fig. 2 (a)) of a continuous heat treatment furnace in which the pressure changes in two stages in the furnace, the temperature pattern of the metal tube (same (b)), the pressure distribution in the furnace (same (c)) and the inner surface of the tube It is a figure which shows typically the discharge effect (the same (d)) of the gas which generate | occur | produces from the residual deposit of this. 圧力が炉内で2段階に変化する他の連続熱処理炉の断面構成例(図3(イ))、金属管の温度パターン(同(ロ))、炉内圧力分布(同(ハ))および管内面の残留付着物から発生するガスの排出効果(同(ニ))を模式的に示す図である。Cross-sectional configuration example of another continuous heat treatment furnace in which the pressure changes in two stages in the furnace (Fig. 3 (a)), metal tube temperature pattern (same (b)), furnace pressure distribution (same (c)) and It is a figure which shows typically the discharge effect (the same (d)) of the gas which generate | occur | produces from the residual deposit | attachment of a pipe inner surface. 圧力が炉内で2段階に変化するさらに他の連続熱処理炉の断面構成例(図4(イ))、金属管の温度パターン(同(ロ))、炉内圧力分布(同(ハ))および管内面の残留付着物から発生するガスの排出効果(同(ニ))を模式的に示す図である。Cross-sectional configuration example of another continuous heat treatment furnace in which the pressure changes in two stages in the furnace (FIG. 4 (a)), metal tube temperature pattern (same (b)), furnace pressure distribution (same (c)) It is a figure which shows typically the discharge effect (the same (d)) of the gas which generate | occur | produces from the residue deposit | attachment of a pipe inner surface. 圧力が炉内で2段階に変化するさらに他の連続熱処理炉の断面構成例(図5(イ))、金属管の温度パターン(同(ロ))、炉内圧力分布(同(ハ))および管内面の残留付着物から発生するガスの排出効果(同(ニ))を模式的に示す図である。Cross-sectional configuration example of another continuous heat treatment furnace in which the pressure changes in two stages in the furnace (FIG. 5 (a)), metal tube temperature pattern (same (b)), furnace pressure distribution (same (c)) It is a figure which shows typically the discharge effect (the same (d)) of the gas which generate | occur | produces from the residue deposit | attachment of a pipe inner surface. 従来使用されてきた連続熱処理炉の断面構成例(図6(イ))、金属管の温度パターン(同(ロ))、炉内圧力分布(同(ハ))および管内面の残留付着物から発生するガスの排出効果(同(ニ))を模式的に示す図である。From the cross-sectional configuration example of a continuous heat treatment furnace that has been used in the past (Fig. 6 (a)), the temperature pattern of the metal tube (same (b)), the pressure distribution in the furnace (same (c)) and the residual deposits on the inner surface of the tube It is a figure which shows typically the discharge effect (the same (d)) of the generated gas. 管内の残留付着物からのF、Cl、S等を含有するガスの発生特性の調査に使用した実験装置の要部の概略構成を示す図である。It is a figure which shows schematic structure of the principal part of the experimental apparatus used for the examination of the generation | occurrence | production characteristic of the gas containing F, Cl, S, etc. from the residual deposit in a pipe | tube. 管内の残留付着物からのF、Cl、S等を含有するガスの発生特性の調査で用いたヒートパターンを模式的に示す図で、(a)は加熱炉内の温度を段階的に上昇させた場合(ヒートパターンA)、(b)は500℃まで急激に加熱した後、室温まで低下させ、その後段階的に上昇させた場合(ヒートパターンB)である。It is a figure which shows typically the heat pattern used in the investigation of the generation characteristic of the gas containing F, Cl, S, etc. from the residual deposit in a pipe, and (a) raises the temperature in a heating furnace in steps. (Battery pattern A) and (b) are cases where the temperature is rapidly heated to 500 ° C., lowered to room temperature, and then raised stepwise (heat pattern B). 管内の残留付着物からのF、Cl、S等を含有するガスの発生特性の調査結果で、加熱温度とF-、Cl-およびSO4 2-の合計量との関係を示す図である。F from the residual deposits in the tube, Cl, in findings occurred properties of gas containing S or the like, the heating temperature and F -, Cl - is a diagram showing the relationship between and SO 4 2-of the total amount.

符号の説明Explanation of symbols

1:入口帯
2:加熱帯
3:冷却帯
4:出口帯
5a、5a′、5b、5c、5d:シールカーテン
6a、6b、6c、6d、6e:金属管
7:予熱器
8:円筒型加熱炉
9:ステンレス鋼管
1: Inlet zone 2: Heating zone 3: Cooling zone 4: Outlet zone 5a, 5a ', 5b, 5c, 5d: Seal curtain 6a, 6b, 6c, 6d, 6e: Metal pipe 7: Preheater 8: Cylindrical heating Furnace 9: Stainless steel pipe

Claims (4)

冷間加工した金属管に酸化被膜を形成する被膜形成方法であって、脱脂した後、圧力が炉内で2段階以上に変化する連続熱処理炉を用い、露点を−50℃から+50℃の範囲内に調節した非酸化性ガスを連続熱処理炉内に導入して、酸化被膜を形成することを特徴とする被膜形成方法。   A film forming method for forming an oxide film on a cold-worked metal tube using a continuous heat treatment furnace in which the pressure changes in two or more stages in the furnace after degreasing, and the dew point is in the range of −50 ° C. to + 50 ° C. A non-oxidizing gas adjusted inside is introduced into a continuous heat treatment furnace to form an oxide film. 油潤滑処理を行って冷間加工し、アルカリに浸漬し温水で洗浄することにより脱脂した後、熱処理し酸化被膜を形成することを特徴とする請求項1に記載の被膜形成方法。   The film forming method according to claim 1, wherein the film is cold-worked by oil lubrication, degreased by being immersed in an alkali and washed with warm water, and then heat-treated to form an oxide film. 非酸化性ガスが水素であることを特徴とする請求項1または2に記載の被膜形成方法。   The film forming method according to claim 1, wherein the non-oxidizing gas is hydrogen. 非酸化性ガスが水素を主成分とし、窒素、ヘリウム、アルゴンのうち少なくとも1種を含有することを特徴とする請求項3に記載の被膜形成方法。
The film forming method according to claim 3, wherein the non-oxidizing gas contains hydrogen as a main component and contains at least one of nitrogen, helium, and argon.
JP2004119243A 2004-04-14 2004-04-14 Film formation method Expired - Fee Related JP4175285B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004119243A JP4175285B2 (en) 2004-04-14 2004-04-14 Film formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004119243A JP4175285B2 (en) 2004-04-14 2004-04-14 Film formation method

Publications (2)

Publication Number Publication Date
JP2005298934A true JP2005298934A (en) 2005-10-27
JP4175285B2 JP4175285B2 (en) 2008-11-05

Family

ID=35330841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004119243A Expired - Fee Related JP4175285B2 (en) 2004-04-14 2004-04-14 Film formation method

Country Status (1)

Country Link
JP (1) JP4175285B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116970896A (en) * 2023-09-22 2023-10-31 成都先进金属材料产业技术研究院股份有限公司 Method for improving pre-oxidation effect of Ni-Cr electrothermal alloy product

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116970896A (en) * 2023-09-22 2023-10-31 成都先进金属材料产业技术研究院股份有限公司 Method for improving pre-oxidation effect of Ni-Cr electrothermal alloy product
CN116970896B (en) * 2023-09-22 2024-02-02 成都先进金属材料产业技术研究院股份有限公司 Method for improving pre-oxidation effect of Ni-Cr electrothermal alloy product

Also Published As

Publication number Publication date
JP4175285B2 (en) 2008-11-05

Similar Documents

Publication Publication Date Title
US7396597B2 (en) Ni-Cr-Fe alloy and Ni-Cr-Fe alloy pipe having resistance to carburization and coking
JP2996245B2 (en) Martensitic stainless steel with oxide scale layer and method for producing the same
JP4853515B2 (en) Stainless steel pipe manufacturing method
KR100567679B1 (en) METHOD FOR HEAT TREATING Ni BASE ALLOY PIPE
US20090123775A1 (en) Method for producing Cr containing nickel-base alloy tube and Cr containing nickel-base alloy tube
JP4978755B2 (en) Cr-containing austenitic alloy tube and manufacturing method thereof
JP3433452B2 (en) Internal oxidation treatment method for ferritic stainless steel pipe
JP4442331B2 (en) Stainless steel and stainless steel pipe with carburization and caulking resistance
WO2007013126A1 (en) Continuous heat treatment furnace and utilizing the same, metal pipe and method of heat treatment
JP4702096B2 (en) Method for producing Cr-containing nickel-base alloy tube
JP4100371B2 (en) Metal tube manufacturing method
JP4175285B2 (en) Film formation method
JP2004239505A (en) Continuous heating treatment furnace, steel pipe and heat treating method using the same
JP5309862B2 (en) Steel material excellent in chemical conversion treatment after member processing and manufacturing method thereof
JP4751603B2 (en) Stainless steel pipe manufacturing method
JP4720491B2 (en) Stainless steel pipe manufacturing method
JP5045819B2 (en) Cold drawing element tube, method for manufacturing the same, and method for manufacturing cold drawing tube
JPH11256308A (en) Formation of coating film on inner surface of stainless steel pipe
JP3864585B2 (en) Method of oxidizing the inner surface of stainless steel pipe
JP4702095B2 (en) Method for producing Cr-containing nickel-base alloy tube
JP4403815B2 (en) Continuous heat treatment furnace, steel pipe using the same, and heat treatment method
JPH1030160A (en) Production of pure titanium sheet excellent in formability and seizure resistance
RU2336133C1 (en) Method of chrome-containing steel hot working
JP2002256472A (en) Ferritic stainless steel-sheet and manufacturing method therefor
KR20080028454A (en) Continous heat treatment furnace and utilizing the same, metal pipe and method of heat treatment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080811

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4175285

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees