JP2005298563A - Conductive composition, conductive coating, capacitor and method for manufacturing the same - Google Patents

Conductive composition, conductive coating, capacitor and method for manufacturing the same Download PDF

Info

Publication number
JP2005298563A
JP2005298563A JP2004113061A JP2004113061A JP2005298563A JP 2005298563 A JP2005298563 A JP 2005298563A JP 2004113061 A JP2004113061 A JP 2004113061A JP 2004113061 A JP2004113061 A JP 2004113061A JP 2005298563 A JP2005298563 A JP 2005298563A
Authority
JP
Japan
Prior art keywords
conductive
conductive polymer
polymer
capacitor
dielectric layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004113061A
Other languages
Japanese (ja)
Other versions
JP4308068B2 (en
Inventor
Kazuyoshi Yoshida
一義 吉田
Hiromichi Nei
太陸 寧
Yasushi Masahiro
泰 政広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd, Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Polymer Co Ltd
Priority to JP2004113061A priority Critical patent/JP4308068B2/en
Publication of JP2005298563A publication Critical patent/JP2005298563A/en
Application granted granted Critical
Publication of JP4308068B2 publication Critical patent/JP4308068B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)
  • Conductive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductive composition and a conductive coating capable of forming a layer excellent in conductivity and heat resistance in a simple process; to provide a capacitor capable of achieving low ESR, excellent in heat resistance and securing operation of a dielectric layer restoration capability; and to provide a method for manufacturing the capacitor easily and at a low cost. <P>SOLUTION: The conductive composition comprises a soluble conductive polymer and whiskers covered with the conductive polymer. The conductive coating comprises the conductive composition and water or an organic solvent. The conductive coating is coated and dried on a dielectric layer composed of an oxide film formed on an anode composed of a porous material of a valve metal to form a cathode containing the conductive composition on the surface of the dielectric layer to obtain the capacitor. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、導電性組成物、導電性塗料、コンデンサおよびその製造方法に関する。   The present invention relates to a conductive composition, a conductive paint, a capacitor, and a method for manufacturing the same.

近年、電子機器のデジタル化に伴い、これに用いられるコンデンサは高周波領域におけるインピーダンスを低下するように要求されてきている。従来から、この要求に対応すべく、アルミニウム、タンタル、ニオブなどの弁金属の多孔体からなる陽極と、前記弁金属の酸化皮膜からなる誘電体層と、この表面に形成されたピロール、チオフェンなどの導電性高分子からなる陰極とを有する、いわゆる機能性コンデンサが使用されている。   In recent years, with the digitization of electronic equipment, capacitors used for this have been required to reduce the impedance in the high frequency region. Conventionally, in order to meet this requirement, an anode made of a porous body of valve metal such as aluminum, tantalum, niobium, a dielectric layer made of an oxide film of the valve metal, pyrrole, thiophene, etc. formed on this surface A so-called functional capacitor having a cathode made of a conductive polymer is used.

この機能性コンデンサとしては、弁金属の多孔体からなる陽極と、前記弁金属の酸化皮膜からなる誘電体層と、この表面に積層された固体電解質層、カーボン層および銀層からなる陰極とを有するものが一般である(特許文献1)。この固体電解質に導電性高分子が使用されている。   The functional capacitor includes an anode made of a porous body of a valve metal, a dielectric layer made of an oxide film of the valve metal, and a cathode made of a solid electrolyte layer, a carbon layer and a silver layer laminated on the surface. What it has is common (patent document 1). A conductive polymer is used for the solid electrolyte.

導電性高分子からなる固体電解質層を誘電体層上に形成する方法としては、電解重合や化学重合が採用されている。
特許文献2で開示されるような電解重合では、弁金属の多孔体表面にマンガン酸化物からなる導電層を形成した後に、これを電極として導電性高分子の前駆体モノマーの電解重合を行う必要がある。しかしながら、導電層を形成後、固体電解質層を電解重合にて形成することは、非常に煩雑である上に、マンガン酸化物は導電性が低いため、高導電性の導電性高分子を使用する効果が薄れてしまっていた。
As a method for forming a solid electrolyte layer made of a conductive polymer on a dielectric layer, electrolytic polymerization or chemical polymerization is employed.
In the electropolymerization as disclosed in Patent Document 2, it is necessary to form a conductive layer made of manganese oxide on the surface of the porous body of the valve metal, and then perform electropolymerization of the precursor monomer of the conductive polymer using this as an electrode There is. However, it is very complicated to form a solid electrolyte layer by electrolytic polymerization after forming a conductive layer, and since manganese oxide has low conductivity, a highly conductive conductive polymer is used. The effect has faded.

また、特許文献3で開示されるような化学重合では、重合時間が長いため、コンデンサの生産効率が大きく低下した。その上、酸化剤の洗浄を十分にできないために、酸化剤により誘電体層表面が侵されて漏れ電流特性が低下したり、耐湿性が低下したりしていた。   Further, in the chemical polymerization as disclosed in Patent Document 3, the production time of the capacitor is greatly reduced because the polymerization time is long. In addition, since the oxidant cannot be sufficiently washed, the surface of the dielectric layer is eroded by the oxidant, and the leakage current characteristic is lowered or the moisture resistance is lowered.

導電性高分子を溶剤に溶解して塗料とし、これを誘電体層上に塗布することができれば、簡単な方法で固体電解質層を形成することができる。しかしながら、通常、導電性高分子は、不溶不融の粒子として生成し、溶剤には溶解しない。特許文献4に記載されているように、ピロールのβ位に長鎖のアルキル基が導入された、溶剤に溶解可能な導電性高分子が提案されている。しかしながら、この導電性高分子は、長鎖のアルキル基のせいで電気伝導度が低く、高電導度が要求されるコンデンサには応用できなかった。   If the conductive polymer is dissolved in a solvent to form a paint and can be applied on the dielectric layer, the solid electrolyte layer can be formed by a simple method. However, the conductive polymer is usually generated as insoluble and infusible particles and does not dissolve in the solvent. As described in Patent Document 4, a conductive polymer in which a long-chain alkyl group is introduced at the β-position of pyrrole and is soluble in a solvent has been proposed. However, this conductive polymer has a low electrical conductivity due to a long-chain alkyl group, and cannot be applied to a capacitor that requires a high electrical conductivity.

固体電解質層に用いられる導電性高分子には、コンデンサの低ESR(等価直列抵抗)化を図るために、高電導度が要求される。この高電導度を得るために、例えば特許文献5に示されるように、化学重合における重合条件を高度にコントロールすることが試みられている。しかしながら、この場合には、通常でも煩雑な工程をより複雑にすることが多く、工程の簡略化、低コスト化の障害となっていた。   The conductive polymer used for the solid electrolyte layer is required to have high conductivity in order to reduce the ESR (equivalent series resistance) of the capacitor. In order to obtain this high conductivity, for example, as shown in Patent Document 5, attempts have been made to highly control polymerization conditions in chemical polymerization. However, in this case, a complicated process is usually complicated even in the usual case, which is an obstacle to simplification of the process and cost reduction.

なお、固体電解質層に用いられる導電性高分子の役割は、多孔体内部にまで浸透し、より大面積の誘電体層と接触して高容量化を図ると共に、誘電体層の欠損した部分を導電性高分子で修復して誘電体層の欠損部からの漏れ電流を防止することにある。この導電性高分子による誘電体層の修復のメカニズムとしては、誘電体層の欠損部が生じた際の漏れ電流によって発生する部分的な高熱により、誘電体層の欠損部において導電性高分子の脱ドープまたは分解が起こり、導電性高分子が絶縁化して漏れ電流を防ぐことが考えられている。したがって、固体電解質層を省略してカーボン層や銀層を直接、誘電体層上に形成することはできない。
特開2003−37024号公報 特開昭63−158829号公報 特開昭63−173313号公報 特許第3024867号公報 特開平11−74157号公報
Note that the role of the conductive polymer used in the solid electrolyte layer is to penetrate into the porous body and contact with a larger area of the dielectric layer to increase the capacity and to remove the missing portion of the dielectric layer. The purpose is to prevent leakage current from a defect portion of the dielectric layer by repairing with a conductive polymer. As a mechanism for repairing the dielectric layer by the conductive polymer, a partial high heat generated by a leakage current when the defective portion of the dielectric layer is generated causes the conductive polymer in the defective portion of the dielectric layer. It is considered that dedoping or decomposition occurs and the conductive polymer is insulated to prevent leakage current. Therefore, it is not possible to form the carbon layer or the silver layer directly on the dielectric layer by omitting the solid electrolyte layer.
JP 2003-37024 A JP-A-63-158829 JP 63-173313 A Japanese Patent No. 3024867 Japanese Patent Laid-Open No. 11-74157

よって、本発明の目的は、塗布、乾燥といった簡単な工程で、導電性および耐熱性に優れた層を形成できる導電性組成物および導電性塗料を提供することにある。
また、本発明の目的は、低ESR化を図ることができ、耐熱性に優れ、誘電体層修復機能が確実に働くコンデンサ、およびこのコンデンサを容易に、かつ低コストで製造できる製造方法を提供することにある。
Accordingly, an object of the present invention is to provide a conductive composition and a conductive paint that can form a layer having excellent conductivity and heat resistance by a simple process such as coating and drying.
In addition, an object of the present invention is to provide a capacitor that can achieve low ESR, has excellent heat resistance, and has a reliable dielectric layer repair function, and a manufacturing method that can manufacture this capacitor easily and at low cost. There is to do.

すなわち、本発明の導電性組成物は、可溶性導電性高分子と、導電性高分子で被覆されたウィスカーとを含有することを特徴とするものである。
ここで、可溶性導電性高分子は、分子内にアニオン基および/または電子吸引性基を持つ高分子化合物と、導電性高分子とを含むものであることが望ましい。
さらに、本発明の導電性組成物は、ドーパントを含有することが望ましい。
That is, the conductive composition of the present invention is characterized by containing a soluble conductive polymer and a whisker coated with the conductive polymer.
Here, it is desirable that the soluble conductive polymer includes a polymer compound having an anion group and / or an electron-withdrawing group in the molecule and a conductive polymer.
Furthermore, the conductive composition of the present invention desirably contains a dopant.

また、ウィスカーは、表面にスルホ基および/またはカルボキシル基を有するものであることが望ましい。
可溶性導電性高分子における高分子化合物と導電性高分子との質量比は、5:95〜99:1であることが望ましい。
本発明の導電性塗料は、本発明の導電性組成物と、水または有機溶剤とを含有することを特徴とするものである。
Moreover, it is desirable for the whisker to have a sulfo group and / or a carboxyl group on the surface.
The mass ratio of the polymer compound to the conductive polymer in the soluble conductive polymer is preferably 5:95 to 99: 1.
The conductive paint of the present invention is characterized by containing the conductive composition of the present invention and water or an organic solvent.

本発明のコンデンサは、弁金属の多孔体からなる陽極と、前記弁金属の酸化皮膜からなる誘電体層と、本発明の導電性組成物を含む陰極とを有することを特徴とするものである。
また、本発明のコンデンサの製造方法は、弁金属の多孔体からなる陽極上に前記弁金属の酸化皮膜からなる誘電体層を形成し、該誘電体層上に請求項6に記載の導電性塗料を塗布、乾燥して、誘電体層表面に導電性組成物を含む陰極を形成することを特徴とする。
The capacitor of the present invention comprises an anode made of a porous body of valve metal, a dielectric layer made of an oxide film of the valve metal, and a cathode containing the conductive composition of the present invention. .
In the method for producing a capacitor of the present invention, a dielectric layer made of an oxide film of the valve metal is formed on an anode made of a porous body of the valve metal, and the conductive material according to claim 6 is formed on the dielectric layer. A coating material is applied and dried to form a cathode containing a conductive composition on the surface of the dielectric layer.

本発明の導電性組成物および導電性塗料によれば、塗布、乾燥といった簡単な工程で、導電性および耐熱性に優れた層を形成できる。
また、本発明のコンデンサは、低ESR化を図ることができ、耐熱性に優れ、誘電体層修復機能が確実に働く。
そして、本発明のコンデンサの製造方法によれば、低ESR化を図ることができ、耐熱性に優れ、誘電体層修復機能が確実に働くコンデンサを、容易に、かつ低コストで製造できる。
According to the conductive composition and conductive paint of the present invention, a layer excellent in conductivity and heat resistance can be formed by a simple process such as coating and drying.
In addition, the capacitor of the present invention can achieve low ESR, has excellent heat resistance, and the dielectric layer repair function works reliably.
According to the method for manufacturing a capacitor of the present invention, it is possible to easily and inexpensively manufacture a capacitor that can achieve low ESR, has excellent heat resistance, and functions reliably in a dielectric layer repair function.

以下、本発明を詳しく説明する。
<導電性組成物>
本発明の導電性組成物は、可溶性導電性高分子と、導電性高分子で被覆されたウィスカーとを含有するものである。
The present invention will be described in detail below.
<Conductive composition>
The conductive composition of the present invention contains a soluble conductive polymer and whiskers coated with the conductive polymer.

(可溶性導電性高分子)
本発明における可溶性導電性高分子とは、後述の水または有機溶剤への溶解性を有し、かつ導電性を有する高分子である。このような可溶性導電性高分子としては、単体で水または有機溶剤への溶解性を有するもの;および後述の分子内にアニオン基および/または電子吸引性基を持つ高分子化合物と、後述の導電性高分子とを混合することにより、導電性高分子のモノマー種、置換基に依存することなく、水または有機溶剤への高い溶解性を有するものが挙げられる。
(Soluble conductive polymer)
The soluble conductive polymer in the present invention is a polymer having solubility in water or an organic solvent described later and having conductivity. As such a soluble conductive polymer, those having solubility in water or an organic solvent alone; and a polymer compound having an anionic group and / or an electron-withdrawing group in the molecule described later; By mixing the conductive polymer, those having high solubility in water or an organic solvent can be mentioned without depending on the monomer type and substituent of the conductive polymer.

単体で水または有機溶剤への溶解性を有する可溶性導電性高分子としては、例えば、置換または無置換のポリアニリン;β位を炭素数4以上のアルキル基、エステル基、エーテル基によって置換したポリピロール、ポリチオフェン;これら導電性高分子の前駆体モノマーを2種類以上共重合した共重合体などが挙げられる。
これら可溶性導電性高分子の中でも、分子内にアニオン基および/または電子吸引性基を持つ高分子化合物と、導電性高分子とを含む可溶性導電性高分子が、導電性高分子の電気伝導度をあまり低下させずに、水または有機溶剤への溶解性を持たせることができることから、好適である。
Examples of the soluble conductive polymer having solubility alone in water or an organic solvent include, for example, substituted or unsubstituted polyaniline; polypyrrole substituted at the β-position by an alkyl group having 4 or more carbon atoms, an ester group, or an ether group, Polythiophene; and a copolymer obtained by copolymerizing two or more precursor monomers of these conductive polymers.
Among these soluble conductive polymers, a soluble conductive polymer containing a polymer compound having an anionic group and / or an electron-withdrawing group in the molecule and a conductive polymer is an electrical conductivity of the conductive polymer. Therefore, it is preferable that the solubility in water or an organic solvent can be imparted without significantly lowering.

(導電性高分子)
導電性高分子としては、例えば、置換あるいは無置換のポリアニリン、置換あるいは無置換のポリピロール、置換あるいは無置換のポリチオフェン、これら導電性高分子の前駆体モノマーを2種類以上共重合した共重合体などが挙げられる。中でも、ポリピロール、ポリチオフェン、ポリN−メチルピロール、ポリ3−メチルチオフェン、ポリ3−メトキシチオフェン、これら導電性高分子の前駆体モノマーを2種類以上共重合した共重合体が、抵抗値、コスト、反応性の点から好ましく用いられる。
特に、ポリN−メチルピロール、ポリ3−メチルチオフェンのようなアルキル置換化合物は、水または有機溶剤への溶解性を向上する効果が見られることからより好ましい。アルキル基の中では導電性に悪影響を与えることがないことから、メチル基が好ましい。
(Conductive polymer)
Examples of the conductive polymer include substituted or unsubstituted polyaniline, substituted or unsubstituted polypyrrole, substituted or unsubstituted polythiophene, and a copolymer obtained by copolymerizing two or more precursor monomers of these conductive polymers. Is mentioned. Among them, polypyrrole, polythiophene, poly N-methylpyrrole, poly-3-methylthiophene, poly-3-methoxythiophene, a copolymer obtained by copolymerizing two or more precursor monomers of these conductive polymers, resistance value, cost, It is preferably used from the viewpoint of reactivity.
In particular, alkyl-substituted compounds such as poly-N-methylpyrrole and poly-3-methylthiophene are more preferable because of the effect of improving the solubility in water or organic solvents. Among alkyl groups, a methyl group is preferred because it does not adversely affect conductivity.

(高分子化合物)
分子内にアニオン基および/または電子吸引性基を持つ高分子化合物は、導電性高分子を水または有機溶剤に溶解させる機能を有している。
分子内にアニオン基を持つ高分子化合物としては、例えば、ポリビニルスルホン酸、ポリスチレンスルホン酸、ポリアリルスルホン酸、ポリアクリルスルホン酸、ポリメタクリルスルホン酸、ポリ−2−アクリルアミド−2−メチルプロパンスルホン酸、ポリイソプレンスルホン酸、ポリアクリル酸等が挙げられる。
(Polymer compound)
A polymer compound having an anionic group and / or an electron-withdrawing group in the molecule has a function of dissolving the conductive polymer in water or an organic solvent.
Examples of the polymer compound having an anionic group in the molecule include polyvinyl sulfonic acid, polystyrene sulfonic acid, polyallyl sulfonic acid, polyacryl sulfonic acid, polymethacryl sulfonic acid, poly-2-acrylamido-2-methylpropane sulfonic acid. , Polyisoprene sulfonic acid, polyacrylic acid and the like.

分子内に電子吸引性基を持つ高分子化合物としては、シアノ基、ニトロ基、ホルミル基、カルボニル基、アセチル基等の電子吸引性基を持つ高分子化合物、例えば、ポリアクリロニトリル、ポリメタクリロニトリル、アクリロニトリル−スチレン樹脂、アクリロニトリル−ブタジエン樹脂、アクリロニトリル−ブタジエン−スチレン樹脂、水酸基あるいはアミノ基含有樹脂をシアノエチル化した樹脂(例えば、シアノエチルセルロース)、ポリビニルピロリドン、アルキル化ポリビニルピロリドン、ニトロセルロースなどが挙げられる。   Examples of the polymer compound having an electron-withdrawing group in the molecule include polymer compounds having an electron-withdrawing group such as a cyano group, a nitro group, a formyl group, a carbonyl group, and an acetyl group, such as polyacrylonitrile and polymethacrylonitrile. , Acrylonitrile-styrene resin, acrylonitrile-butadiene resin, acrylonitrile-butadiene-styrene resin, a resin obtained by cyanoethylation of a hydroxyl group or amino group-containing resin (for example, cyanoethylcellulose), polyvinylpyrrolidone, alkylated polyvinylpyrrolidone, nitrocellulose, and the like. .

高分子化合物は、分子内にアニオン基を持つモノマーを2種以上共重合させた共重合体;分子内に電子吸引性基を持つモノマーを2種以上共重合させた共重合体;分子内にアニオン基を持つモノマーおよび分子内に電子吸引性基を持つモノマーを共重合させた共重合体であってもよい。   A polymer compound is a copolymer obtained by copolymerizing two or more monomers having an anionic group in the molecule; a copolymer obtained by copolymerizing two or more monomers having an electron-withdrawing group in the molecule; It may be a copolymer obtained by copolymerizing a monomer having an anionic group and a monomer having an electron withdrawing group in the molecule.

さらに、高分子化合物には、他のビニル化合物が共重合されていてもよい。他のビニル化合物としては、例えば、スチレン、ブタジエン、アクリル酸、メタクリル酸、ヒドロキシアクリル酸、ヒドロキシメタクリル酸、アクリル酸エステル、メタクリル酸エステル、p−ビニルトルエンなどの重合性ビニル化合物が挙げられる。これら重合性ビニル化合物を共重合すれば、水または有機溶剤への溶解性をコントロールすることができる。   Further, the vinyl compound may be copolymerized with other vinyl compounds. Examples of the other vinyl compound include polymerizable vinyl compounds such as styrene, butadiene, acrylic acid, methacrylic acid, hydroxyacrylic acid, hydroxymethacrylic acid, acrylic acid ester, methacrylic acid ester, and p-vinyltoluene. By copolymerizing these polymerizable vinyl compounds, the solubility in water or an organic solvent can be controlled.

また、高分子化合物は、耐衝撃性を改良するための合成ゴム成分や、耐環境特性を向上させるための老化防止剤、酸化防止剤、紫外線吸収剤を含んでいてもよい。ただし、酸化防止剤としてのアミン化合物は、導電性高分子を重合によって得る際に用いる酸化剤の働きを阻害することがあるので、フェノール系酸化防止剤を用いてアミン系酸化防止剤を避けたり、重合後に混合したりするなど注意が必要である。   The polymer compound may contain a synthetic rubber component for improving impact resistance, an anti-aging agent, an antioxidant, and an ultraviolet absorber for improving environmental resistance. However, an amine compound as an antioxidant may inhibit the action of an oxidant used when a conductive polymer is obtained by polymerization. Therefore, an amine antioxidant may be avoided using a phenolic antioxidant. Care should be taken such as mixing after polymerization.

(ウィスカー)
本発明におけるウィスカーは、導電性高分子の耐熱性、被膜強度を向上させるものである。
ウィスカーとしては、例えば、チタン酸カリウムウィスカー、チタニアウィスカー、アルミナウィスカー、シリカウィスカー、アルミナ・シリカウィスカー、炭化ケイ素ウィスカー、窒化ケイ素ウィスカー、ムライトウィスカー、マグネシアウィスカー、ホウ酸マグネシウムウィスカー、ホウ酸アルミニウムウィスカー、酸化亜鉛ウィスカー、ホウ化チタンウィスカー等が挙げられる。特に、ウィスカーとしては、線径0.1〜5μm、繊維長3〜1000μmのものが好適に用いられる。
(Whisker)
The whisker in the present invention improves the heat resistance and film strength of the conductive polymer.
Examples of whiskers include potassium titanate whiskers, titania whiskers, alumina whiskers, silica whiskers, alumina / silica whiskers, silicon carbide whiskers, silicon nitride whiskers, mullite whiskers, magnesia whiskers, magnesium borate whiskers, aluminum borate whiskers, and oxidation. Zinc whiskers, titanium boride whiskers and the like can be mentioned. In particular, whiskers having a wire diameter of 0.1 to 5 μm and a fiber length of 3 to 1000 μm are preferably used.

また、ウィスカーは、その表面にスルホ基(スルホン酸基)および/またはカルボキシル基(カルボン酸基)を有していることが好ましい。表面にスルホ基またはカルボキシル基を有することによって、ウィスカーの導電性高分子中への分散性を向上させ、さらには導電性高分子へのドーパントとしても働き、かつ耐熱性に優れたドーパントとなる。ウィスカー表面へのスルホ基および/またはカルボキシル基の導入方法としては、特に限定はされないが、濃硫酸処理、過酸化物処理等の公知の表面処理方法が挙げられる。   Moreover, it is preferable that the whisker has a sulfo group (sulfonic acid group) and / or a carboxyl group (carboxylic acid group) on the surface thereof. By having a sulfo group or a carboxyl group on the surface, the dispersibility of the whisker in the conductive polymer is improved, and further, the dopant functions as a dopant to the conductive polymer and has excellent heat resistance. The method for introducing a sulfo group and / or a carboxyl group onto the whisker surface is not particularly limited, and examples thereof include known surface treatment methods such as concentrated sulfuric acid treatment and peroxide treatment.

ウィスカーの表面は、導電性高分子で被覆されていることが必要である。ウィスカーの表面が導電性高分子で覆われていれば、以下の理由から、導電性組成物の導電性の向上、導電性組成物からなる塗膜における導電パスの形成、導電性組成物の耐熱性の向上を図ることができる。
導電性高分子の水または有機溶剤への溶解性を高め、多孔体への浸透性を良好にしようとすると、導電性高分子の導電性は、不溶性の導電性高分子に比べ低下してしまう傾向にある。このような可溶性導電性高分子による導電性組成物の導電性の低下を補うため、導電性組成物に、表面が導電性のよい導電性高分子で被覆されたウィスカーを加える。これにより、多孔体への浸透性を高めつつ導電性組成物の導電性を向上させることができる。
また、長繊維のウィスカーを用いることで、導電性組成物からなる塗膜内に導電パスが形成されやすくなり、より導電性が向上する。ここで、ウィスカーの線径が小さい方が、ウィスカー全体の体積抵抗を抑えることができる。さらに、ウィスカーによる耐熱性向上の効果も同時に得られる。
The surface of the whisker needs to be coated with a conductive polymer. If the surface of the whisker is covered with a conductive polymer, for the following reasons, the conductivity of the conductive composition is improved, the formation of a conductive path in the coating film made of the conductive composition, the heat resistance of the conductive composition It is possible to improve the performance.
If the solubility of the conductive polymer in water or an organic solvent is increased to improve the permeability to the porous material, the conductivity of the conductive polymer will be lower than that of the insoluble conductive polymer. There is a tendency. In order to compensate for the decrease in conductivity of the conductive composition due to such a soluble conductive polymer, a whisker whose surface is coated with a conductive polymer having good conductivity is added to the conductive composition. Thereby, the electroconductivity of an electroconductive composition can be improved, improving the permeability to a porous body.
Further, by using long fiber whiskers, a conductive path is easily formed in the coating film made of the conductive composition, and the conductivity is further improved. Here, the smaller the diameter of the whisker, the volume resistance of the entire whisker can be suppressed. Furthermore, the effect of improving the heat resistance by whiskers can be obtained at the same time.

ウィスカー表面に被覆される導電性高分子としては、導電性の点から、不溶性の導電性高分子、すなわち、置換あるいは無置換のポリアニリン、置換あるいは無置換のポリピロール、置換あるいは無置換のポリチオフェン、これら導電性高分子の前駆体モノマーを2種類以上共重合した共重合体などが好ましい。中でも、ポリピロール、ポリチオフェン、ポリN−メチルピロール、ポリ3−メチルチオフェン、ポリ3−メトキシチオフェン、これら導電性高分子の前駆体モノマーを2種類以上共重合した共重合体が、抵抗値、コスト、反応性の点から好ましく用いられる。また、可溶性導電性高分子でも、高分子量の可溶性導電性高分子であれば、導電性が高いので、ウィスカー表面の被覆に用いることができる。   From the viewpoint of conductivity, the conductive polymer coated on the whisker surface is insoluble conductive polymer, that is, substituted or unsubstituted polyaniline, substituted or unsubstituted polypyrrole, substituted or unsubstituted polythiophene, A copolymer obtained by copolymerizing two or more kinds of conductive polymer precursor monomers is preferable. Among them, polypyrrole, polythiophene, poly N-methylpyrrole, poly-3-methylthiophene, poly-3-methoxythiophene, a copolymer obtained by copolymerizing two or more precursor monomers of these conductive polymers, resistance value, cost, It is preferably used from the viewpoint of reactivity. Moreover, even if it is a soluble conductive polymer, if it is a high molecular weight soluble conductive polymer, since it has high electroconductivity, it can be used for the coating of the whisker surface.

ウィスカー表面を導電性高分子で被覆する方法としては、いわゆる化学重合法が簡便である。化学重合法による被覆では、まず、ウィスカーを分散した溶媒中に、導電性高分子の前躯体モノマーと必要であればドーパントとを添加し、十分攪拌混合して混合液を調製する。そして、その混合液に酸化剤を滴下して重合を進行させた後、生成物から酸化剤、残留モノマー、副生成物を除去することによって、生成物を精製して、導電性高分子で表面が被覆されたウィスカーを得る。   As a method of coating the whisker surface with a conductive polymer, a so-called chemical polymerization method is simple. In the coating by the chemical polymerization method, first, a precursor monomer of a conductive polymer and a dopant, if necessary, are added to a solvent in which whiskers are dispersed, and the mixture is sufficiently mixed by stirring. Then, after dropping the oxidant into the mixed solution and proceeding the polymerization, the product is purified by removing the oxidant, residual monomers and by-products from the product, and the surface is made of conductive polymer. A whisker coated with is obtained.

また、高分子化合物と導電性高分子とを含む可溶性導電性高分子を溶媒に溶解した溶液でウィスカーを処理して、表面を可溶性導電性高分子で被覆してもよい。この場合、処理に用いる高分子化合物としては、導電性組成物を得るために別途配合する高分子化合物と極性の異なるものが好ましい。このようにしておけば、分散処理中にウィスカー表面の高分子化合物が溶解することを防止できる。   Alternatively, the whisker may be treated with a solution obtained by dissolving a soluble conductive polymer containing a polymer compound and a conductive polymer in a solvent, and the surface may be coated with the soluble conductive polymer. In this case, the polymer compound used for the treatment is preferably a polymer compound having a polarity different from that of a polymer compound added separately in order to obtain a conductive composition. If it does in this way, it can prevent that the high molecular compound of a whisker surface melt | dissolves during a dispersion process.

(ドーパント)
本発明の導電性組成物は、導電性と耐熱性とをともにより向上させるためにドーパントを含むことが好ましい。通常、ドーパントとしては、ハロゲン化合物、ルイス酸、プロトン酸などが用いられ、具体的には、有機カルボン酸、有機スルホン酸等の有機酸、有機シアノ化合物、フラーレン、水素化フラーレン、水酸化フラーレン、カルボン酸化フラーレン、スルホン酸化フラーレンなどが挙げられる。
(Dopant)
The conductive composition of the present invention preferably contains a dopant in order to improve both conductivity and heat resistance. Usually, a halogen compound, Lewis acid, proton acid, or the like is used as a dopant. Specifically, organic acids such as organic carboxylic acid and organic sulfonic acid, organic cyano compounds, fullerene, hydrogenated fullerene, fullerene hydroxide, Examples thereof include carboxylic acid fullerene and sulfonic acid fullerene.

有機酸としては、アルキルベンゼンスルホン酸、アルキルナフタレンスルホン酸、アルキルナフタレンジスルホン酸、ナフタレンスルホン酸ホルマリン重縮合物、メラミンスルホン酸ホルマリン重縮合物、ナフタレンジスルホン酸、ナフタレントリスルホン酸、ジナフチルメタンジスルホン酸、アントラキノンスルホン酸、アントラキノンジスルホン酸、アントラセンスルホン酸、ピレンスルホン酸などが挙げられ、これらはその金属塩も使用できる。
有機シアノ化合物としては、ジクロロジシアノベンゾキノン(DDQ)、テトラシアノキノジメタン、テトラシアノアザナフタレンなどが挙げられる。
Examples of organic acids include alkylbenzene sulfonic acid, alkyl naphthalene sulfonic acid, alkyl naphthalene disulfonic acid, naphthalene sulfonic acid formalin polycondensate, melamine sulfonic acid formalin polycondensate, naphthalene disulfonic acid, naphthalene trisulfonic acid, dinaphthylmethane disulfonic acid, Anthraquinone sulfonic acid, anthraquinone disulfonic acid, anthracene sulfonic acid, pyrene sulfonic acid and the like can be mentioned, and metal salts thereof can also be used.
Examples of the organic cyano compound include dichlorodicyanobenzoquinone (DDQ), tetracyanoquinodimethane, and tetracyanoazanaphthalene.

(導電性組成物の調製)
本発明の導電性組成物は、次のようにして調製することができる。
まず、高分子化合物を、これを溶解可能な溶媒に溶解し、その溶液に導電性高分子の前躯体モノマー、および必要であればドーパントを添加し、十分攪拌混合してモノマー含有溶液を調製する。次いで、そのモノマー含有溶液に酸化剤を滴下して重合を進行させた後、高分子化合物と導電性高分子の複合体から酸化剤、残留モノマー、副生成物を除去することによってこれを精製して、高分子化合物と導電性高分子とを含む可溶性導電性高分子を得る。なお、可溶性導電性高分子を得た後に、これにドーパントを添加し、可溶性導電性高分子をドープしてもよい。
(Preparation of conductive composition)
The conductive composition of the present invention can be prepared as follows.
First, the polymer compound is dissolved in a solvent that can dissolve the polymer compound, and the precursor monomer of the conductive polymer and, if necessary, a dopant are added to the solution, and the mixture is sufficiently stirred to prepare a monomer-containing solution. . Next, an oxidant is dropped into the monomer-containing solution to allow the polymerization to proceed, and then this is purified by removing the oxidant, residual monomers, and by-products from the polymer compound / conductive polymer complex. Thus, a soluble conductive polymer containing the polymer compound and the conductive polymer is obtained. In addition, after obtaining a soluble conductive polymer, a dopant may be added to this and a soluble conductive polymer may be doped.

そして、この可溶性導電性高分子に、導電性高分子で表面が被覆されたウィスカーを添加し、十分に混合、攪拌し、分散させて導電性組成物を得る。なお、ウィスカーは、可溶性導電性高分子の調製の際にあらかじめ添加しておいてもよい。すなわち、高分子化合物、前駆体モノマー、ドーパント、およびウィスカーを同時に溶剤に添加し、これに酸化剤を滴下して重合を進行させれば、可溶性導電性高分子の生成と同時に、ウィスカー表面に導電性高分子の被膜を形成することができる。
可溶性導電性高分子中の導電性高分子と、ウィスカーを被覆する導電性高分子とは、同一であっても、異なっていてもよい。
A whisker whose surface is coated with a conductive polymer is added to the soluble conductive polymer, and the mixture is thoroughly mixed, stirred, and dispersed to obtain a conductive composition. In addition, you may add a whisker beforehand in the case of preparation of a soluble conductive polymer. That is, if a polymer compound, a precursor monomer, a dopant, and a whisker are simultaneously added to a solvent and an oxidant is added dropwise to proceed with polymerization, a conductive polymer is formed on the whisker surface simultaneously with the formation of a soluble conductive polymer. A film of a conductive polymer can be formed.
The conductive polymer in the soluble conductive polymer and the conductive polymer covering the whisker may be the same or different.

導電性高分子の前駆体モノマーを重合する酸化剤としては、公知のものが使用でき、例えば、塩化第二鉄、三フッ化ホウ素、塩化アルミニウムなどの金属ハロゲン化合物;過酸化水素、過酸化ベンゾイルなどの過酸化物;過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウムなどの過硫酸塩;オゾン、酸素などが挙げられる。   As the oxidizing agent for polymerizing the precursor monomer of the conductive polymer, known ones can be used, for example, metal halogen compounds such as ferric chloride, boron trifluoride, and aluminum chloride; hydrogen peroxide, benzoyl peroxide Peroxides such as potassium persulfate, sodium persulfate and ammonium persulfate; ozone, oxygen and the like.

高分子化合物を溶解する溶媒としては、例えば、水、メタノール、エタノール、プロピレンカーボネート、N−メチルピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、シクロヘキサノン、アセトン、メチルエチルケトン、メチルイソブチルケトン、トルエンなどが挙げられる。これらは単独で、または2種以上を混合して用いることができる。   Examples of the solvent for dissolving the polymer compound include water, methanol, ethanol, propylene carbonate, N-methylpyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, cyclohexanone, acetone, methyl ethyl ketone, methyl isobutyl ketone, And toluene. These can be used alone or in admixture of two or more.

可溶性導電性高分子における高分子化合物と導電性高分子との質量比(高分子化合物:導電性高分子)は、5:95〜99:1であることが好ましい。導電性高分子がこの範囲より少ないと、十分な導電性が得られなくなることがあり、この範囲より多いと、水または有機溶剤への溶解性に乏しくなる傾向にある。   The mass ratio of the polymer compound to the conductive polymer in the soluble conductive polymer (polymer compound: conductive polymer) is preferably 5:95 to 99: 1. When the amount of the conductive polymer is less than this range, sufficient conductivity may not be obtained. When the amount is more than this range, the solubility in water or an organic solvent tends to be poor.

また、可溶性導電性高分子と、導電性高分子で表面が被覆されたウィスカーとの質量比(可溶性導電性高分子:導電性高分子で表面が被覆されたウィスカー)は、5:95〜99.9:0.1であることが好ましい。導電性高分子で表面が被覆されたウィスカーがこの範囲より少ないと、導電性が十分に向上しないことがあり、これより多いと製膜性が欠如することがある。   The mass ratio of the soluble conductive polymer to the whisker whose surface is coated with the conductive polymer (soluble conductive polymer: whisker whose surface is coated with the conductive polymer) is 5:95 to 99. .9: 0.1 is preferable. If the number of whiskers whose surface is covered with the conductive polymer is less than this range, the conductivity may not be sufficiently improved, and if it is more than this range, the film forming property may be lacking.

以上説明した導電性組成物にあっては、可溶性導電性高分子を含有しているので、水または有機溶剤によって塗料化することができる。よって、各種基材に塗布して導電性を有する層を形成することが可能になる。また、この導電性組成物は、導電性高分子で表面が被覆されたウィスカーを含有しているので、導電性組成物から形成される層の導電性が高くなるだけでなく、耐熱性、被膜強度も高くなる。   Since the conductive composition described above contains a soluble conductive polymer, it can be coated with water or an organic solvent. Therefore, it becomes possible to apply | coat to various base materials and to form the layer which has electroconductivity. In addition, since this conductive composition contains whiskers whose surfaces are coated with a conductive polymer, not only the conductivity of the layer formed from the conductive composition is increased, but also heat resistance, Strength also increases.

<導電性塗料>
本発明の導電性塗料は、上述した導電性組成物と、水または有機溶剤とを含有するものである。有機溶剤としては、上述した高分子化合物を溶解する溶剤のうち、水以外のものが挙げられる。
導電性塗料は、導電性組成物を水または有機溶剤に添加することで製造してもよいし、上述した導電性組成物の製造方法で得られた溶媒を含んだ導電性組成物をそのまま用いてもよい。
<Conductive paint>
The conductive paint of the present invention contains the above-described conductive composition and water or an organic solvent. As an organic solvent, things other than water are mentioned among the solvents which melt | dissolve the high molecular compound mentioned above.
The conductive paint may be produced by adding the conductive composition to water or an organic solvent, or the conductive composition containing the solvent obtained by the above-described method for producing a conductive composition is used as it is. May be.

<コンデンサ>
本発明のコンデンサは、弁金属の多孔体からなる陽極と、該陽極に隣接し、前記弁金属の酸化皮膜からなる誘電体層と、上記導電性組成物を含む陰極とを有するものである。
このコンデンサの陰極は、上記導電性組成物から形成されているため、コンデンサは性能が優れる上に、過酷な使用環境にも耐えられる。
ここで、弁金属としてはアルミニウム、タンタル、ニオブ、チタン、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマス、アンチモンなどが挙げられるが、このうちコンデンサ陽極に用いられるものとしてはアルミニウム、タンタル、ニオブが好適である。
<Capacitor>
The capacitor of the present invention has an anode made of a porous body of valve metal, a dielectric layer made of an oxide film of the valve metal adjacent to the anode, and a cathode containing the conductive composition.
Since the cathode of this capacitor is formed from the above conductive composition, the capacitor has excellent performance and can withstand harsh usage environments.
Here, examples of the valve metal include aluminum, tantalum, niobium, titanium, hafnium, zirconium, zinc, tungsten, bismuth, and antimony. Among these, aluminum, tantalum, and niobium are suitable for use in the capacitor anode. is there.

本発明のコンデンサの製造方法の一例について説明する。このコンデンサの製造方法の例では、まず、弁金属の多孔体からなる陽極上に、前記弁金属の酸化皮膜からなる誘電体層を形成してコンデンサ中間体を得る。ここで、コンデンサ中間体の製造方法としては、例えば、アルミニウム箔をエッチングして表面積を増加した後、その表面を酸化処理する方法や、タンタル粒子やニオブ粒子の焼結体表面を酸化処理しペレット化する方法などが挙げられる。
次いで、コンデンサ中間体に導電性塗料を浸漬法やスプレーコート法などの方法で塗布し、その後、乾燥して誘電体層表面に導電性組成物を含む陰極を形成してコンデンサを得る。
An example of the method for manufacturing a capacitor of the present invention will be described. In this example of the capacitor manufacturing method, first, a dielectric layer made of an oxide film of the valve metal is formed on an anode made of a porous body of the valve metal to obtain a capacitor intermediate. Here, as a method of manufacturing the capacitor intermediate, for example, after etching the aluminum foil to increase the surface area, the surface is oxidized, or the surface of the sintered body of tantalum particles and niobium particles is oxidized and pellets The method of making it.
Next, a conductive paint is applied to the capacitor intermediate by a method such as dipping or spray coating, and then dried to form a cathode containing the conductive composition on the surface of the dielectric layer to obtain a capacitor.

導電性塗料を浸漬法で塗布する場合には、例えば、コンデンサ中間体を導電性塗料に浸漬して多孔体内部にまで浸透させ、必要であれば浸漬時に超音波、振動、減圧、加熱などの操作を加えて多孔体内部への浸透を補助してもよい。また、繰り返し浸漬、乾燥を行って塗布厚みを調節してもよい。   When applying the conductive paint by the immersion method, for example, the capacitor intermediate is immersed in the conductive paint and penetrates into the porous body, and if necessary, ultrasonic waves, vibration, reduced pressure, heating, etc. An operation may be added to assist the penetration into the porous body. Further, the coating thickness may be adjusted by repeatedly dipping and drying.

以上説明したコンデンサにあっては、陰極に高電導度の可溶性導電性高分子と、導電性高分子で被覆されたウィスカーとを含んでいるので、低ESR化を図ることができる。また、陰極中に導電性高分子で表面が被覆されたウィスカーを含んでいるので、陰極の耐熱性が上がり、結果、コンデンサの耐熱性が向上する。また、可溶性導電性高分子が、水または有機溶剤とともに多孔体内部にまで浸透できるので、可溶性導電性高分子による誘電体層修復機能が確実に働く。   Since the capacitor described above includes a soluble conductive polymer having high conductivity and a whisker coated with the conductive polymer, the ESR can be reduced. Moreover, since the whisker whose surface is coated with a conductive polymer is included in the cathode, the heat resistance of the cathode is increased, and as a result, the heat resistance of the capacitor is improved. In addition, since the soluble conductive polymer can penetrate into the porous body together with water or an organic solvent, the dielectric layer repair function by the soluble conductive polymer works reliably.

そして、本発明のコンデンサの製造方法によれば、化学重合法や電解重合法によらず、誘電体層上に導電性塗料を塗布、乾燥するだけで、誘電体層表面に導電性組成物を含む陰極を形成することができるので、低ESR化を図ることができ、耐熱性に優れ、誘電体層修復機能が確実に働くコンデンサを、容易に、かつ低コストで製造できる。   According to the method for producing a capacitor of the present invention, the conductive composition is applied to the surface of the dielectric layer by simply applying a conductive paint on the dielectric layer and drying it, regardless of the chemical polymerization method or the electrolytic polymerization method. Since a cathode including the same can be formed, it is possible to reduce the ESR, and to easily and inexpensively manufacture a capacitor that is excellent in heat resistance and in which the function of repairing the dielectric layer is ensured.

以下、実施例により本発明をさらに詳しく説明する。
[実施例1]
(1)高分子化合物の製造:
アクリロニトリル50gとスチレン10gとをトルエン500ml中に溶解し、重合開始剤としてアゾビスイソブチロニトリルを1.5g添加し、50℃で5時間重合した。そして、重合により生成したポリマーをメタノールで洗浄して高分子化合物を得た。
Hereinafter, the present invention will be described in more detail with reference to examples.
[Example 1]
(1) Production of polymer compound:
Acrylonitrile (50 g) and styrene (10 g) were dissolved in 500 ml of toluene, 1.5 g of azobisisobutyronitrile was added as a polymerization initiator, and the mixture was polymerized at 50 ° C. for 5 hours. And the polymer produced | generated by superposition | polymerization was wash | cleaned with methanol, and the high molecular compound was obtained.

(2)導電性高分子で被覆されたウィスカーの製造:
チタン酸カリウムウィスカー(大塚化学(株)製、ティスモN)5gをアセトニトリル500mlに分散させ、これにピロール10gおよびオクタデシルナフタレンスルホン酸ナトリウム10gを加え、−20℃に冷却しながら1時間撹拌した。これに、塩化第二鉄250gをアセトニトリル1250mlに溶解した酸化剤溶液を、−20℃に保ちながら2時間かけて滴下し、さらに12時間撹拌を続けてピロールの重合を行った。
反応終了後、これにメタノール2000mlを加え、沈澱物をろ過し、ろ液が透明になるまでメタノールと純水で洗浄を行い、導電性高分子で被覆されたウィスカーを得た。
(2) Production of whisker coated with conductive polymer:
5 g of potassium titanate whisker (manufactured by Otsuka Chemical Co., Ltd., Tismo N) was dispersed in 500 ml of acetonitrile, 10 g of pyrrole and 10 g of sodium octadecylnaphthalenesulfonate were added thereto, and the mixture was stirred for 1 hour while cooling to −20 ° C. To this, an oxidant solution in which 250 g of ferric chloride was dissolved in 1250 ml of acetonitrile was dropped over 2 hours while maintaining at −20 ° C., and stirring was further continued for 12 hours to polymerize pyrrole.
After completion of the reaction, 2000 ml of methanol was added thereto, the precipitate was filtered, washed with methanol and pure water until the filtrate became transparent, and a whisker coated with a conductive polymer was obtained.

(3)可溶性導電性高分子の製造:
(1)で製造した高分子化合物10gをアセトニトリル90gに溶解し、これにピロール50gおよびオクタデシルナフタレンスルホン酸ナトリウム20gを加え、−20℃に冷却しながら1時間攪拌した。これに、塩化第二鉄250gをアセトニトリル1250mlに溶解した酸化剤溶液を、−20℃を保ちながら2時間かけて滴下し、さらに12時間攪拌を続けてピロールの重合を行った。
反応終了後、これにメタノール2000mlを加え、沈殿物をろ過し、ろ液が透明になるまでメタノールと純水を用いて洗浄を行い、可溶性導電性高分子を得た。
(3) Production of soluble conductive polymer:
10 g of the polymer compound produced in (1) was dissolved in 90 g of acetonitrile, 50 g of pyrrole and 20 g of sodium octadecylnaphthalenesulfonate were added thereto, and the mixture was stirred for 1 hour while cooling to -20 ° C. To this, an oxidant solution in which 250 g of ferric chloride was dissolved in 1250 ml of acetonitrile was dropped over 2 hours while maintaining −20 ° C., and stirring was further continued for 12 hours to polymerize pyrrole.
After completion of the reaction, 2000 ml of methanol was added thereto, the precipitate was filtered, and washed with methanol and pure water until the filtrate became transparent to obtain a soluble conductive polymer.

(4)導電性塗料の調製:
(3)で製造した可溶性導電性高分子をN,N−ジメチルアセトアミド(DMAc)に溶解して濃度5質量%の可溶性導電性高分子溶液を調製した。そして、この可溶性導電性高分子溶液の固形分100質量部に対して(2)で製造した導電性高分子で被覆されたウィスカー10質量部を加え、これらを混合し、攪拌して、導電性塗料を得た。
(4) Preparation of conductive paint:
The soluble conductive polymer produced in (3) was dissolved in N, N-dimethylacetamide (DMAc) to prepare a soluble conductive polymer solution having a concentration of 5% by mass. Then, 10 parts by weight of whisker coated with the conductive polymer produced in (2) is added to 100 parts by weight of the solid content of the soluble conductive polymer solution, and these are mixed, stirred, and made conductive. A paint was obtained.

得られた導電性塗料について以下の試験方法により電気伝導度(導電性)、耐熱性を評価した。その結果を表1に示す。
<試験方法>
(a)電気伝導度:
導電性塗料をPETフィルム上に塗布、乾燥して形成した厚さ2μmの塗膜の電気伝導度(単位S/cm)を、導電率計(商品名:ロレスタMCP−T600)を用いて測定した(表中、「初期」の欄)。
(b)耐熱性:
導電性塗料をPETフィルム上に塗布、乾燥して、厚さ10μmの塗膜を形成し、その後、125℃のオーブンに240時間放置し、240時間放置後における電気伝導度の変化を耐熱性の指標とした。
The obtained conductive paint was evaluated for electrical conductivity (conductivity) and heat resistance by the following test methods. The results are shown in Table 1.
<Test method>
(A) Electrical conductivity:
The electrical conductivity (unit: S / cm) of a 2 μm thick coating formed by applying and drying a conductive paint on a PET film was measured using a conductivity meter (trade name: Loresta MCP-T600). ("Initial" column in the table).
(B) Heat resistance:
A conductive coating is applied on a PET film and dried to form a 10 μm thick coating, and then left in an oven at 125 ° C. for 240 hours. It was used as an index.

[実施例2]
(1)可溶性導電性高分子の製造:
高分子化合物であるポリスチレンスルホン酸10gを水90gに溶解し、これにピロール50gおよびオクタデシルナフタレンスルホン酸ナトリウム20gを加え、0℃に冷却しながら1時間攪拌した。これに、塩化第二鉄250gを水1250mlに溶解した酸化剤溶液を、0℃を保ちながら2時間かけて滴下し、さらに12時間攪拌を続けてピロールの重合を行った。
反応終了後、得られた溶液を限外ろ過装置で処理して、溶液中の不要なイオンを除去し、濃度5質量%となるまで濃縮し、可溶性導電性高分子溶液を得た。
[Example 2]
(1) Production of soluble conductive polymer:
10 g of polystyrene sulfonic acid, which is a polymer compound, was dissolved in 90 g of water, 50 g of pyrrole and 20 g of sodium octadecylnaphthalene sulfonate were added thereto, and the mixture was stirred for 1 hour while cooling to 0 ° C. To this, an oxidant solution in which 250 g of ferric chloride was dissolved in 1250 ml of water was dropped over 2 hours while maintaining 0 ° C., and stirring was further continued for 12 hours to polymerize pyrrole.
After completion of the reaction, the resulting solution was treated with an ultrafiltration device to remove unnecessary ions in the solution and concentrated to a concentration of 5% by mass to obtain a soluble conductive polymer solution.

(2)導電性塗料の調製:
(1)で製造した可溶性導電性高分子溶液の固形分100質量部に対して実施例1の(2)で製造した導電性高分子で被覆されたウィスカー10質量部を加え、これらを混合し、攪拌して、導電性塗料を得た。
得られた導電性塗料について実施例1と同様に試験した。結果を表1に示す。
(2) Preparation of conductive paint:
To 100 parts by mass of the solid content of the soluble conductive polymer solution produced in (1), 10 parts by mass of whiskers coated with the conductive polymer produced in (2) of Example 1 were added, and these were mixed. The mixture was stirred to obtain a conductive paint.
The obtained conductive paint was tested in the same manner as in Example 1. The results are shown in Table 1.

[実施例3]
(1)導電性高分子で被覆されたウィスカーの製造:
ホウ酸アルミニウムウィスカー(四国化成工業(株)製、アルボレックス)5gを濃硫酸100mlに加え、90〜100℃で16時間還流し、ウィスカー表面をスルホ基で修飾した。スルホ基含有ウィスカー5gをアセトニトリル100mlに分散させ、これにピロール10gおよびp−トルエンスルホン酸5gを加え、−20℃に冷却しながら1時間撹拌した。これに、塩化第二鉄15gをアセトニトリル100mlに溶解した酸化剤溶液を、−20℃に保ちながら2時間かけて滴下し、さらに12時間撹拌を続けてピロールの重合を行った。
反応終了後、ウィスカーをろ過し、ろ液が透明になるまでメタノールと純水で洗浄を行い、導電性高分子で被覆されたウィスカーを得た。
[Example 3]
(1) Production of whisker coated with conductive polymer:
5 g of aluminum borate whisker (manufactured by Shikoku Kasei Kogyo Co., Ltd., Arbolex) was added to 100 ml of concentrated sulfuric acid and refluxed at 90 to 100 ° C. for 16 hours to modify the whisker surface with a sulfo group. 5 g of a sulfo group-containing whisker was dispersed in 100 ml of acetonitrile, 10 g of pyrrole and 5 g of p-toluenesulfonic acid were added thereto, and the mixture was stirred for 1 hour while being cooled to −20 ° C. To this, an oxidant solution in which 15 g of ferric chloride was dissolved in 100 ml of acetonitrile was dropped over 2 hours while maintaining at −20 ° C., and stirring was further continued for 12 hours to polymerize pyrrole.
After completion of the reaction, the whisker was filtered and washed with methanol and pure water until the filtrate became transparent to obtain a whisker coated with a conductive polymer.

(2)高分子化合物の製造:
アクリロニトリル30gとメタクリル酸メチル20gとをトルエン500ml中に溶解し、重合開始剤としてアゾビスイソブチロニトリルを1.5g添加し、50℃で5時間重合した。そして、重合により生成したポリマーをメタノールで洗浄して高分子化合物を得た。
(2) Production of polymer compound:
30 g of acrylonitrile and 20 g of methyl methacrylate were dissolved in 500 ml of toluene, 1.5 g of azobisisobutyronitrile was added as a polymerization initiator, and polymerization was carried out at 50 ° C. for 5 hours. And the polymer produced | generated by superposition | polymerization was wash | cleaned with methanol, and the high molecular compound was obtained.

(3)可溶性導電性高分子の製造:
(2)で製造した高分子化合物10gをアセトニトリル90gに溶解し、これにピロール50gおよびアントラキノンジスルホン酸ナトリウム20gを加え、−20℃に冷却しながら1時間攪拌した。これに、塩化第二鉄250gをアセトニトリル1250mlに溶解した酸化剤溶液を、−20℃を保ちながら2時間かけて滴下し、さらに12時間攪拌を続けてピロールの重合を行った。
反応終了後、これにメタノール2000mlを加え、沈殿物をろ過し、ろ液が透明になるまでメタノールと純水を用いて洗浄を行い、可溶性導電性高分子を得た。
(3) Production of soluble conductive polymer:
10 g of the polymer compound produced in (2) was dissolved in 90 g of acetonitrile, 50 g of pyrrole and 20 g of sodium anthraquinone disulfonate were added thereto, and the mixture was stirred for 1 hour while cooling to −20 ° C. To this, an oxidant solution in which 250 g of ferric chloride was dissolved in 1250 ml of acetonitrile was dropped over 2 hours while maintaining −20 ° C., and stirring was further continued for 12 hours to polymerize pyrrole.
After completion of the reaction, 2000 ml of methanol was added thereto, the precipitate was filtered, and washed with methanol and pure water until the filtrate became transparent to obtain a soluble conductive polymer.

(4)導電性塗料の調製:
(3)で製造した可溶性導電性高分子をN,N−ジメチルアセトアミド(DMAc)に溶解して濃度5質量%の可溶性導電性高分子溶液を調製した。そして、この可溶性導電性高分子溶液の固形分100質量部に対して(1)で製造した導電性高分子で被覆されたウィスカー15質量部を加え、これらを混合し、攪拌して、導電性塗料を得た。
得られた導電性塗料について実施例1と同様に試験した。結果を表1に示す。
(4) Preparation of conductive paint:
The soluble conductive polymer produced in (3) was dissolved in N, N-dimethylacetamide (DMAc) to prepare a soluble conductive polymer solution having a concentration of 5% by mass. Then, 15 parts by weight of whisker coated with the conductive polymer produced in (1) is added to 100 parts by weight of the solid content of the soluble conductive polymer solution, and these are mixed, stirred, and made conductive. A paint was obtained.
The obtained conductive paint was tested in the same manner as in Example 1. The results are shown in Table 1.

(比較例1)
アセトニトリル100mlに3−ヘキシルチオフェン10を溶解し、5℃に冷却しながら1時間攪拌した。これに、塩化第二鉄50gをアセトニトリル250mlに溶解した酸化剤溶液を、5℃を保ちながら2時間かけて滴下し、さらに12時間攪拌を続けて3−ヘキシルチオフェンの重合を行った。
反応終了後、これにメタノール2000mlを加え、沈殿物をろ過し、ろ液が透明になるまでメタノールと純水を用いて洗浄を行い、可溶性導電性高分子を得た。
この可溶性導電性高分子をN,N−ジメチルアセトアミド(DMAc)に溶解して濃度5質量%の可溶性導電性高分子溶液を調製し、これを導電性塗料とした。
得られた導電性塗料について実施例1と同様に試験した。結果を表1に示す。
(Comparative Example 1)
3-hexylthiophene 10 was dissolved in 100 ml of acetonitrile and stirred for 1 hour while cooling to 5 ° C. To this, an oxidizing agent solution in which 50 g of ferric chloride was dissolved in 250 ml of acetonitrile was dropped over 2 hours while maintaining 5 ° C., and stirring was further continued for 12 hours to polymerize 3-hexylthiophene.
After completion of the reaction, 2000 ml of methanol was added thereto, the precipitate was filtered, and washed with methanol and pure water until the filtrate became transparent to obtain a soluble conductive polymer.
This soluble conductive polymer was dissolved in N, N-dimethylacetamide (DMAc) to prepare a soluble conductive polymer solution having a concentration of 5% by mass, which was used as a conductive paint.
The obtained conductive paint was tested in the same manner as in Example 1. The results are shown in Table 1.

Figure 2005298563
Figure 2005298563

本発明の導電性組成物は、アルミ電解コンデンサ、タンタル電解コンデンサ、ニオブ電解コンデンサなどの機能性コンデンサの陰極材料に好適に用いることができるだけでなく、帯電防止コーティング、帯電防止包装材などの帯電防止材や、液晶画面やプラズマディスプレイ画面の電磁波遮蔽用の電磁波シールド材や、転写ベルト、現像ロール、帯電ロール、転写ロールなどの電子写真機器部品に用いることができる。
The conductive composition of the present invention can be suitably used as a cathode material for functional capacitors such as aluminum electrolytic capacitors, tantalum electrolytic capacitors, niobium electrolytic capacitors, as well as antistatic coatings such as antistatic coatings and antistatic packaging materials. It can be used for electrophotographic equipment parts such as materials, electromagnetic wave shielding materials for shielding electromagnetic waves on liquid crystal screens and plasma display screens, transfer belts, developing rolls, charging rolls, and transfer rolls.

Claims (8)

可溶性導電性高分子と、
導電性高分子で被覆されたウィスカーと
を含有することを特徴とする導電性組成物。
A soluble conductive polymer;
A conductive composition comprising a whisker coated with a conductive polymer.
可溶性導電性高分子が、分子内にアニオン基および/または電子吸引性基を持つ高分子化合物と、導電性高分子とを含むものであることを特徴とする請求項1記載の導電性組成物。   The conductive composition according to claim 1, wherein the soluble conductive polymer contains a polymer compound having an anionic group and / or an electron-withdrawing group in the molecule and a conductive polymer. さらに、ドーパントを含有することを特徴とする請求項1または請求項2記載の導電性組成物。   Furthermore, a dopant is contained, The electrically conductive composition of Claim 1 or Claim 2 characterized by the above-mentioned. ウィスカーが、表面にスルホ基および/またはカルボキシル基を有することを特徴とする請求項1ないし3いずれか一項に記載の導電性組成物。   The electrically conductive composition according to any one of claims 1 to 3, wherein the whisker has a sulfo group and / or a carboxyl group on a surface thereof. 可溶性導電性高分子における高分子化合物と導電性高分子との質量比が、5:95〜99:1であることを特徴とする請求項2ないし4いずれか一項に記載の導電性組成物。   5. The conductive composition according to claim 2, wherein a mass ratio of the polymer compound to the conductive polymer in the soluble conductive polymer is 5:95 to 99: 1. . 請求項1ないし5いずれか一項に記載の導電性組成物と、水または有機溶剤とを含有することを特徴とする導電性塗料。   A conductive paint comprising the conductive composition according to claim 1 and water or an organic solvent. 弁金属の多孔体からなる陽極と、
前記弁金属の酸化皮膜からなる誘電体層と、
請求項1ないし5いずれか一項に記載の導電性組成物を含む陰極と
を有することを特徴とするコンデンサ。
An anode made of a porous body of valve metal,
A dielectric layer comprising an oxide film of the valve metal;
A capacitor comprising: a cathode containing the conductive composition according to claim 1.
弁金属の多孔体からなる陽極上に前記弁金属の酸化皮膜からなる誘電体層を形成し、該誘電体層上に請求項6に記載の導電性塗料を塗布、乾燥して、誘電体層表面に導電性組成物を含む陰極を形成することを特徴とするコンデンサの製造方法。
A dielectric layer made of an oxide film of the valve metal is formed on an anode made of a porous body of the valve metal, and the conductive paint according to claim 6 is applied on the dielectric layer and dried to form a dielectric layer. A method for producing a capacitor, comprising forming a cathode containing a conductive composition on a surface.
JP2004113061A 2004-04-07 2004-04-07 Conductive composition, conductive paint, capacitor and method for producing the same Expired - Fee Related JP4308068B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004113061A JP4308068B2 (en) 2004-04-07 2004-04-07 Conductive composition, conductive paint, capacitor and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004113061A JP4308068B2 (en) 2004-04-07 2004-04-07 Conductive composition, conductive paint, capacitor and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005298563A true JP2005298563A (en) 2005-10-27
JP4308068B2 JP4308068B2 (en) 2009-08-05

Family

ID=35330510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004113061A Expired - Fee Related JP4308068B2 (en) 2004-04-07 2004-04-07 Conductive composition, conductive paint, capacitor and method for producing the same

Country Status (1)

Country Link
JP (1) JP4308068B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007184317A (en) * 2006-01-04 2007-07-19 Shin Etsu Polymer Co Ltd Method of manufacturing solid-state electrolytic capacitor
JP2007184318A (en) * 2006-01-04 2007-07-19 Shin Etsu Polymer Co Ltd Method of manufacturing solid-state electrolytic capacitor
JP2008285633A (en) * 2007-05-21 2008-11-27 Nitto Denko Corp Composite dielectric and use thereof
JP2019112499A (en) * 2017-12-21 2019-07-11 出光興産株式会社 Composition, conductive film, method for producing conductive film, and capacitor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007184317A (en) * 2006-01-04 2007-07-19 Shin Etsu Polymer Co Ltd Method of manufacturing solid-state electrolytic capacitor
JP2007184318A (en) * 2006-01-04 2007-07-19 Shin Etsu Polymer Co Ltd Method of manufacturing solid-state electrolytic capacitor
JP2008285633A (en) * 2007-05-21 2008-11-27 Nitto Denko Corp Composite dielectric and use thereof
JP2019112499A (en) * 2017-12-21 2019-07-11 出光興産株式会社 Composition, conductive film, method for producing conductive film, and capacitor
JP7020902B2 (en) 2017-12-21 2022-02-16 出光興産株式会社 Compositions, conductive films, methods for manufacturing conductive films, and capacitors

Also Published As

Publication number Publication date
JP4308068B2 (en) 2009-08-05

Similar Documents

Publication Publication Date Title
EP1634922B1 (en) Conductive composition, conductive coating material, conductive resin, capacitor, photo-electric converting element, and process for producing the same
TWI399774B (en) Conducting polymer composite and solid electrolytic capacitor using the same
JP5872872B2 (en) Method for producing conductive polymer composition, method for producing conductive polymer material, method for producing conductive substrate, method for producing electrode, and method for producing solid electrolytic capacitor
DE10237577A1 (en) Substituted poly (alkylenedioxythiophenes) as solid electrolytes in electrolytic capacitors
JP2012241068A (en) Conductive polymer suspension and production method thereof, conductive polymer material, and electrolytic condenser and production method thereof
JP2005158482A (en) Conductive composition, conductive coating, capacitor and manufacturing method of same
JP2009209259A (en) Electroconductive polymer and solid electrolytic capacitor using it
JP2005085947A (en) Solid electrolytic capacitor and its manufacturing method
JP2006185973A (en) Conductive polymer solution and its manufacturing method, conductor, capacitor, and its manufacturing method
JP4308068B2 (en) Conductive composition, conductive paint, capacitor and method for producing the same
KR20100039783A (en) Method for preparing organic solvent dispersion of conducting polymers using polymeric ionic liquid and the conducting polymer by prepared using the same
JP2007526925A (en) Method for producing an electrically conductive coating
JP5902926B2 (en) Conductive polymer composition, conductive polymer material, conductive substrate, electrode, and solid electrolytic capacitor
KR20000053593A (en) Method for producing a solid electrolytic capacitor
CN101486849A (en) Conductive paint, conductive composition and electronic component using the same
JP2605596B2 (en) Conductive polymer film and method for producing the same, conductive polymer compound solution, and solid electrolytic capacitor and method for producing the same
CN101303910B (en) Conductivity composite material and capacitor
JPH10251384A (en) Oxidizing agent solution for synthesis of heat resistant electroconductive polymer, and electroconductive polymer
JP2005206657A (en) Conductive composition, its preparation method, conductive paint, capacitor and its manufacturing method
JP4565522B2 (en) Method for producing conductive polymer dispersion, conductive polymer dispersion, conductive polymer and use thereof
CN104637689A (en) Electrolyte, preparation method thereof, composition for forming electrolyte and capacitor comprising electrolyte
JP6129569B6 (en) Conductive polymer solution and method for producing the same, conductive polymer material, and solid electrolytic capacitor
JP2006056034A (en) Antistatic laminate and its manufacturing method
JP4797784B2 (en) Solid electrolytic capacitor
JP2013157591A (en) Polyaniline solution for manufacturing solid electrolytic capacitor and method for manufacturing solid electrolytic capacitor using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090430

R150 Certificate of patent or registration of utility model

Ref document number: 4308068

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150515

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees