JP2005298553A - Method for mixing resin material with carbon nano material and device for mixing them - Google Patents

Method for mixing resin material with carbon nano material and device for mixing them Download PDF

Info

Publication number
JP2005298553A
JP2005298553A JP2004112480A JP2004112480A JP2005298553A JP 2005298553 A JP2005298553 A JP 2005298553A JP 2004112480 A JP2004112480 A JP 2004112480A JP 2004112480 A JP2004112480 A JP 2004112480A JP 2005298553 A JP2005298553 A JP 2005298553A
Authority
JP
Japan
Prior art keywords
resin material
mixing
container
temperature
carbon nanomaterial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004112480A
Other languages
Japanese (ja)
Other versions
JP4838496B2 (en
JP2005298553A5 (en
Inventor
Yoshitoshi Yamagiwa
佳年 山極
Yukihiko Takahashi
幸彦 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissei Plastic Industrial Co Ltd
Original Assignee
Nissei Plastic Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissei Plastic Industrial Co Ltd filed Critical Nissei Plastic Industrial Co Ltd
Priority to JP2004112480A priority Critical patent/JP4838496B2/en
Publication of JP2005298553A publication Critical patent/JP2005298553A/en
Publication of JP2005298553A5 publication Critical patent/JP2005298553A5/ja
Application granted granted Critical
Publication of JP4838496B2 publication Critical patent/JP4838496B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mixing technology for mixing a resin material with a carbon nano material, without requiring pelletization and capable of shortening the number of processes. <P>SOLUTION: A device 20 for mixing the resin material with carbon nano material consists of a hopper-formed container 24, a heater 25 pasted on the container 24, a heat-insulating material 26 covering the heater 25, a temperature sensor 27 installed at the container 24 for measuring the inside temperature of the container 24, a temperature-controlling part 28 for regulating the output of the heater 25 so that the temperature detected by the temperature sensor 27 becomes a prescribed temperature, and an agitating means 30 for agitating the materials in the container 24. Thereby, since the carbon nano material adheres to the surrounding of the resin material, there is no fear of the aggregation of the carbon nano material each other, and as a result, it is possible to disperse the carbon nano material uniformly in the resin material. Since the treatment is performed by substantially one process of mixing while heating, the cost of mixing can be reduced remarkably. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、樹脂材料とカーボンナノ材料との混合技術に関するものである。   The present invention relates to a mixing technique of a resin material and a carbon nanomaterial.

近年、カーボンナノ材料と称する特殊な炭素繊維を、プラスチックに混入することで導電性プラスチックにすることや、溶融金属に混入することで繊維強化金属にする技術が注目を浴びている。   In recent years, attention has been focused on a technique for making a special carbon fiber called a carbon nanomaterial into a conductive plastic by mixing it into plastic, or a fiber reinforced metal by mixing it into molten metal.

図7はカーボンナノファイバのモデル図であり、カーボンナノ材料の1種であるカーボンナノファイバ110は、六角網目状に配列した炭素原子のシートを筒状に巻いた形態のものであり、直径Dが1.0nm(ナノメートル)〜150nmであり、ナノレベルであるため、カーボンナノ材料と呼ばれる。なお、長さLは数μm〜100μmである。   FIG. 7 is a model diagram of a carbon nanofiber. A carbon nanofiber 110, which is a kind of carbon nanomaterial, has a shape in which a sheet of carbon atoms arranged in a hexagonal network is wound in a cylindrical shape and has a diameter D Is 1.0 nm (nanometers) to 150 nm and is at the nano level, so it is called a carbon nanomaterial. The length L is several μm to 100 μm.

炭素原子が立方格子状に並んだものがダイヤモンドであって、ダイヤモンドは極めて硬い物質である。カーボンナノファイバ110は、ダイヤモンドと同様に規則的な結晶構造を有するために機械的強度は大きい。また、炭素は電気をよく通すため、電極などに用いられる。   A diamond is a very hard substance in which carbon atoms are arranged in a cubic lattice. Since the carbon nanofiber 110 has a regular crystal structure like diamond, the mechanical strength is large. Carbon is used for electrodes and the like because it conducts electricity well.

しかし、上述したとおりにカーボンナノ材料は超微細であるために、ミクロンオーダーのカーボン粉末と比較すると、凝集しやすくて分散しにくいという特性があるため、取扱いが難しい。
そこで、ペレット化し、このペレットを用いて射出成形する技術が提案されている(例えば、特許文献1参照。)。
特開2003−319488公報(段落番号[0035]、段落番号[0036])
However, as described above, since the carbon nanomaterial is ultrafine, it has a characteristic that it is easy to aggregate and difficult to disperse as compared with a micron-order carbon powder, so that it is difficult to handle.
Then, the technique of pelletizing and inject-molding using this pellet is proposed (for example, refer patent document 1).
JP 2003-319488 A (paragraph number [0035], paragraph number [0036])

特許文献1の段落番号[0035]第3行〜第6行に「・・・、初めに接着性の良い樹脂にカーボンナノチューブを二軸混練機で一様に分散させたペレットを作製後、ポリプロピレンに所定量添加し、一様に分散して成形材料にする。・・・」、段落番号[0036]に「このようにして得られたペレットを一般に用いられる射出成形法、押出成形法等によって本発明の振動板を成形することができる。」と記載されている。   In paragraph No. [0035], lines 3 to 6, of Patent Document 1, “..., first, pellets in which carbon nanotubes are uniformly dispersed in a biaxial kneader in a resin having good adhesiveness are prepared, and then polypropylene. In a paragraph number [0036], “Pellets obtained in this way are generally used by an injection molding method, an extrusion molding method, etc.” The diaphragm of the present invention can be molded. "

これらの記載から、特許文献1の発明は、材料準備→混練→ペレット→ポリプロピレン添加→射出又は押出成形の工程を経て成形品を製造する技術であることが分かる。
一旦、ペレット化することで、カーボンナノ材料の取扱いを容易にし、ペレットを運搬し、ストックすることで、必要なときにペレットを出発材料にして射出成形又は押出成形を実行することができるという、利点はある。
From these descriptions, it can be seen that the invention of Patent Document 1 is a technique for manufacturing a molded product through the steps of material preparation → kneading → pellet → polypropylene addition → injection or extrusion molding.
Once pelletized, the handling of the carbon nanomaterial is facilitated, and the pellets are transported and stocked, so that when necessary, the pellets can be used as a starting material for injection molding or extrusion molding. There are advantages.

しかし、工程数が多いため、製造コストが嵩む。
また、ストックしたペレットにおけるカーボンナノ材料含有率と、成形品に求められるカーボンナノ材料含有率とに、差が出ることは頻繁に起こる。この場合には、ペレットにカーボンナノ材料又は樹脂材料を混合した状態で、成形機へ供給することになる。これでは、カーボンナノ材料又は樹脂材料をペレットに均一に分散させることが難しく、成形品の品質に悪影響を及ぼす。
However, since there are many processes, manufacturing cost increases.
In addition, a difference frequently occurs between the carbon nanomaterial content in the stocked pellets and the carbon nanomaterial content required for the molded product. In this case, the carbon nanomaterial or the resin material is mixed in the pellet and supplied to the molding machine. This makes it difficult to uniformly disperse the carbon nanomaterial or resin material in the pellets, which adversely affects the quality of the molded product.

したがって、工程数が短く、ペレット化が不要である混合技術が必要となる。   Therefore, a mixing technique that requires a short number of steps and does not require pelletization is required.

本発明は、樹脂材料とカーボンナノ材料とを混合する混合技術において、ペレット化が不要であって、工程数を短縮することができる技術を提供することを課題とする。   An object of the present invention is to provide a technique capable of reducing the number of steps without requiring pelletization in a mixing technique of mixing a resin material and a carbon nanomaterial.

請求項1に係る発明は、樹脂材料とカーボンナノ材料とを混合する混合方法において、前記樹脂材料並びにカーボンナノ材料を、前記樹脂材料の表面全体が軟化する温度に保ち、混合することで樹脂材料の表面にカーボンナノ材料を付着させることを特徴とする。   The invention according to claim 1 is a mixing method in which a resin material and a carbon nanomaterial are mixed, and the resin material and the carbon nanomaterial are mixed and maintained at a temperature at which the entire surface of the resin material is softened. It is characterized in that a carbon nanomaterial is attached to the surface of the film.

請求項2に係る発明は、樹脂材料とカーボンナノ材料とを混合する混合装置において、この混合装置は、前記樹脂材料並びにカーボンナノ材料を入れる容器と、この容器の内部温度を前記樹脂材料の表面全体が軟化する温度に保つヒータ及び温度制御部と、容器内の材料を撹拌する撹拌手段と、からなることを特徴とする。   According to a second aspect of the present invention, there is provided a mixing apparatus for mixing a resin material and a carbon nanomaterial, wherein the mixing apparatus includes a container for storing the resin material and the carbon nanomaterial, and an internal temperature of the container for the surface of the resin material. It is characterized by comprising a heater and a temperature control unit that maintain a temperature at which the whole is softened, and stirring means for stirring the material in the container.

請求項3に係る発明では、混合装置は、射出機構のホッパーであることを特徴とする   The invention according to claim 3 is characterized in that the mixing device is a hopper of an injection mechanism.

請求項1に係る発明では、樹脂材料並びにカーボンナノ材料を、樹脂材料の表面全体が軟化する温度に保ち、樹脂材料の表面に粘着性を付与する。そして、樹脂材料の表面にカーボンナノ材料を付着させる。   In the invention according to claim 1, the resin material and the carbon nanomaterial are maintained at a temperature at which the entire surface of the resin material is softened, and the surface of the resin material is imparted with adhesiveness. Then, a carbon nanomaterial is attached to the surface of the resin material.

樹脂材料の周囲にカーボンナノ材料が付着するため、カーボンナノ材料同士が凝集する虞がなく、結果的にカーボンナノ材料を均一に樹脂材料に分散させることができる。
加熱しつつ混合するという、実質的に1つの工程で処理することができるため、混合費用を大幅に低減させることができる。
すなわち、ペレット化工程を要することなく、一工程で樹脂材料とカーボンナノ材料との混合物を得ることができ、工程数を大幅に短縮することができる。
Since the carbon nanomaterial adheres around the resin material, there is no possibility that the carbon nanomaterials aggregate with each other, and as a result, the carbon nanomaterial can be uniformly dispersed in the resin material.
Since it can process by one process of mixing while heating, mixing cost can be reduced significantly.
That is, a mixture of a resin material and a carbon nanomaterial can be obtained in one step without requiring a pelletizing step, and the number of steps can be greatly reduced.

請求項2に係る発明では、容器と、ヒータ及び温度制御部と、撹拌手段とで混合装置を構成する。装置構成が極く単純であり、装置費用を圧縮することができる。   In the invention which concerns on Claim 2, a mixing apparatus is comprised with a container, a heater and a temperature control part, and a stirring means. The device configuration is very simple and the device cost can be reduced.

請求項3に係る発明では、混合装置は、射出機構のホッパーであることを特徴とし、ホッパーの位置に本発明の混合装置に置き換えるだけで、既存の射出機構で、樹脂材料及びカーボンナノ材料の混合物を射出させることができる。   The invention according to claim 3 is characterized in that the mixing device is a hopper of an injection mechanism, and the resin material and the carbon nanomaterial can be replaced with the existing injection mechanism only by replacing the mixing device of the present invention at the position of the hopper. The mixture can be injected.

本発明を実施するための最良の形態を添付図に基づいて以下に説明する。なお、図面は符号の向きに見るものとする。
図1は本発明に係る製造フロー図であり、ST××はステップ番号を示す。
ST01:先ず、樹脂材料及びカーボンナノ材料を所定量準備する。樹脂材料は、粉末や粒状物など表面積が大きな形態の材料が望ましい。
ST02:樹脂材料及びカーボンナノ材料を混合器に入れ、樹脂材料の表面全体が軟化する温度に保ちつつ混合する。
これで、混合物を得ることができる。
The best mode for carrying out the present invention will be described below with reference to the accompanying drawings. The drawings are viewed in the direction of the reference numerals.
FIG. 1 is a manufacturing flow diagram according to the present invention, where STxx indicates a step number.
ST01: First, a predetermined amount of resin material and carbon nanomaterial are prepared. The resin material is desirably a material having a large surface area such as powder or granular material.
ST02: The resin material and the carbon nanomaterial are put into a mixer and mixed while maintaining a temperature at which the entire surface of the resin material is softened.
Thus, a mixture can be obtained.

樹脂材料の表面全体が軟化する温度は、樹脂材料がポリプロピレンであれば、その融点温度は160〜170℃であり、加熱温度は140〜160℃とする。また、樹脂材料がPET(ポリエチレンテレフタレート)であれば、その融点温度は253〜265℃であり、加熱温度は200〜210℃とすることが望ましい。   If the resin material is polypropylene, the temperature at which the entire surface of the resin material softens is 160 to 170 ° C., and the heating temperature is 140 to 160 ° C. Further, if the resin material is PET (polyethylene terephthalate), the melting point temperature is preferably 253 to 265 ° C, and the heating temperature is preferably 200 to 210 ° C.

図2は本発明方法で得た混合物の模式図であり、混合物10は、樹脂材料11の表面に無数のカーボンナノ材料12が付着したものである。
例えば、きな粉餅の「餅」が樹脂材料11に相当し、「きな粉」がカーボンナノ材料12に相当し、餅の表面の粘着力できな粉を付着させたことが、本発明の混合物10の構造に類似する。
FIG. 2 is a schematic view of a mixture obtained by the method of the present invention. The mixture 10 is a resin material 11 with a myriad of carbon nanomaterials 12 attached to the surface thereof.
For example, it is the structure of the mixture 10 according to the present invention that the “koji” of the kana powder koji corresponds to the resin material 11 and the “kinako” corresponds to the carbon nanomaterial 12, and the non-adhesive powder on the koji surface is adhered. Similar to.

以上に述べた本発明方法を実現するために好適な混合装置を次に説明する。
図3は本発明に係る混合装置の断面図であり、混合装置20は、樹脂材料11の投入口21並びにカーボンナノ材料12の投入口22を備えた蓋23を有するホッパ形状の容器24と、この容器24に貼り付けたヒータ25・・・(・・・は複数を示す。以下同じ。)と、これらのヒータ25・・・に被せた保温材26と、容器24の内部温度を計測するために容器24に設けた温度センサ27と、この温度センサ27で検出した温度が所定温度になるようにヒータ25・・・の出力を制御する温度制御部28と、容器24内の材料を撹拌して混合する撹拌手段30(詳細後述)と、からなる。
A mixing apparatus suitable for realizing the above-described method of the present invention will be described below.
FIG. 3 is a cross-sectional view of the mixing apparatus according to the present invention. The mixing apparatus 20 includes a hopper-shaped container 24 having a lid 23 provided with a charging port 21 for the resin material 11 and a charging port 22 for the carbon nanomaterial 12. The heaters 25 attached to the container 24 (... indicates a plurality; the same applies hereinafter), the heat insulating material 26 covered with the heaters 25, and the internal temperature of the container 24 are measured. Therefore, the temperature sensor 27 provided in the container 24, the temperature control unit 28 for controlling the output of the heaters 25 ... so that the temperature detected by the temperature sensor 27 becomes a predetermined temperature, and the material in the container 24 are agitated. And mixing means 30 (details will be described later).

容器24の材質は、耐食性を考慮すると、炭素鋼よりはステンレス鋼が好ましい。   In consideration of corrosion resistance, the material of the container 24 is preferably stainless steel rather than carbon steel.

撹拌手段30は、蓋23にモータ軸31が下向きになるように取付けた撹拌モータ32と、蓋23に設けた軸受リング33に下から挿入する回転軸34と、この回転軸34の途中に設けたボス35、35と、ボス35から放射方向へ突出した撹拌羽根36・・・と、容器24の底部を撹拌する下部撹拌羽根38、38と、回転軸34の下端を回転自在に支持するために容器24から延ばした軸支持ブラケット37とからなる。50は断熱構造体(詳細後述)であり、必須要素ではないが、回転軸34に介在させることが望ましい。   The stirring means 30 includes a stirring motor 32 attached to the lid 23 so that the motor shaft 31 faces downward, a rotating shaft 34 inserted from below into a bearing ring 33 provided on the lid 23, and provided in the middle of the rotating shaft 34. Bosses 35, 35, agitating blades 36 projecting radially from the boss 35, lower agitating blades 38, 38 for agitating the bottom of the container 24, and a lower end of the rotating shaft 34 for rotatably supporting And a shaft support bracket 37 extending from the container 24. Reference numeral 50 denotes a heat insulating structure (details will be described later), which is not an essential element, but is preferably interposed on the rotating shaft 34.

以上の構成からなる混合装置20の作用を次に述べる。
先ず、ヒータ25・・・に通電し、温度制御部28で制御することで、容器24の内部温度を樹脂材料の表面全体が軟化する温度に保つ。
この状態で、撹拌モータ32を始動し、回転軸34、撹拌羽根36・・・及び下部撹拌羽根38・・・を所定の速度で連続的に回す。弁41、42、43は閉じておく。
The operation of the mixing apparatus 20 having the above configuration will be described next.
First, the heaters 25... Are energized and controlled by the temperature control unit 28 to keep the internal temperature of the container 24 at a temperature at which the entire surface of the resin material is softened.
In this state, the stirring motor 32 is started, and the rotating shaft 34, the stirring blades 36, and the lower stirring blades 38 are continuously rotated at a predetermined speed. The valves 41, 42 and 43 are closed.

弁41を開いて投入口21から所定量の樹脂材料11を投入し、弁42を開いて投入口22から所定量のカーボンナノ材料12を投入し、弁41、42を閉じる。
撹拌羽根36・・・及び下部撹拌羽根38・・・で撹拌しつつ、ヒータ25・・・で加熱することで、樹脂材料11の表面が軟化し、粘着性が増す。すると、カーボンナノ材料12が樹脂材料11の表面に付着する。必要に応じて、弁43を開けば、混合物10を落下させることができる。
The valve 41 is opened, a predetermined amount of the resin material 11 is introduced from the inlet 21, the valve 42 is opened, the predetermined amount of the carbon nanomaterial 12 is introduced from the inlet 22, and the valves 41, 42 are closed.
While stirring with the stirring blades 36... And the lower stirring blades 38... And heating with the heaters 25. Then, the carbon nanomaterial 12 adheres to the surface of the resin material 11. If necessary, the mixture 10 can be dropped by opening the valve 43.

図4は本発明に係る断熱構造体の拡大図であり、断熱構造体50は、回転軸34をごく短い上部軸44と長い下部軸45とに熱的に縁切りする部材であって、上部フランジ51、断熱板52、下部フランジ53及びボルト・ナット54・・・とからなる。   FIG. 4 is an enlarged view of the heat insulating structure according to the present invention. The heat insulating structure 50 is a member that thermally cuts the rotary shaft 34 into a very short upper shaft 44 and a long lower shaft 45, and includes an upper flange. 51, a heat insulating plate 52, a lower flange 53, and bolts / nuts 54.

回転軸34、撹拌羽根36・・・及び下部撹拌羽根38・・・は、強度の点から炭素鋼やステンレス鋼などの金属部材とする。金属は熱伝導率が、セラミックスや樹脂に比較して大きいため、熱がモータ軸31を介して上方へ逃げ、その結果、容器24(図3参照)の中央が低温になる虞がある。
このときに、断熱構造体50を採用すれば、下部軸45から上部軸44への熱伝導を遮断することができる。この結果、容器24内部の温度を均一にすることができる。
The rotating shaft 34, the stirring blades 36, and the lower stirring blades 38 are metal members such as carbon steel and stainless steel from the viewpoint of strength. Since metal has a higher thermal conductivity than ceramics or resin, heat escapes upward via the motor shaft 31, and as a result, the center of the container 24 (see FIG. 3) may become cold.
At this time, if the heat insulating structure 50 is employed, heat conduction from the lower shaft 45 to the upper shaft 44 can be blocked. As a result, the temperature inside the container 24 can be made uniform.

図3に戻って、回転軸34、撹拌羽根36・・・及び下部撹拌羽根38・・・を、炭素鋼より熱伝導率の大きなアルミニウム合金や銅合金で構成することが望ましい。ヒータ25・・・で発生した熱を速やかに容器24の中心へ伝えることができるからである。
しかし、ヒータ25・・・から容器24の中心へ熱が移動する限りは、容器24の中心が最も低温になる。これを解消するには次に述べる構造が有効となる。
Returning to FIG. 3, it is desirable that the rotating shaft 34, the stirring blades 36, and the lower stirring blades 38 are made of an aluminum alloy or a copper alloy having a thermal conductivity higher than that of carbon steel. This is because the heat generated by the heaters 25 can be quickly transmitted to the center of the container 24.
However, as long as heat moves from the heaters 25 to the center of the container 24, the center of the container 24 has the lowest temperature. In order to solve this problem, the following structure is effective.

図5は本発明に係る回転軸の別実施例図であり、回転軸34の下部軸45に棒状ヒータ55を内蔵し、この棒状ヒータ55への給電線56、57を給電リング58、59に結合し、これらの給電リング58、59を下部軸45に嵌める。一方、容器側から延ばしたブラケット61に給電ブラシ62、63を設け、これらの給電ブラシ62、63を給電リング58、59に摺触させることで、回転軸34に給電することができる。なお、棒状ヒータ55は金属管に絶縁材を充填し、この絶縁材に紐状の発熱体を埋設した金属管ヒータであって、絶縁処理は不要である。   FIG. 5 is a diagram showing another embodiment of the rotating shaft according to the present invention. A rod-shaped heater 55 is built in the lower shaft 45 of the rotating shaft 34, and feeding lines 56, 57 to the rod-shaped heater 55 are connected to feeding rings 58, 59. These power supply rings 58 and 59 are fitted to the lower shaft 45. On the other hand, power supply brushes 62 and 63 are provided on the bracket 61 extending from the container side, and the power supply brushes 62 and 63 are slidably contacted with the power supply rings 58 and 59 so that power can be supplied to the rotating shaft 34. The rod heater 55 is a metal tube heater in which a metal tube is filled with an insulating material, and a string-like heating element is embedded in the insulating material, and does not require an insulation treatment.

この棒状ヒータ55で回転軸34を加熱すれば、図3において容器24の中心と外周で同時に加熱することができ、容器24の内部温度を容易に均一にすることができる。この場合であっても、回転軸34、ボス35、35、撹拌羽根36・・・及び下部撹拌羽根38・・・が、銅合金などの良熱伝導材で構成することは望ましい。そうすれば、樹脂材料並びにカーボンナノ材料をより均一な温度で混合することができる。   If the rotary shaft 34 is heated by the rod heater 55, the center and the outer periphery of the container 24 in FIG. 3 can be heated simultaneously, and the internal temperature of the container 24 can be easily made uniform. Even in this case, it is desirable that the rotating shaft 34, the bosses 35 and 35, the stirring blades 36, and the lower stirring blades 38 are made of a good heat conductive material such as a copper alloy. Then, the resin material and the carbon nanomaterial can be mixed at a more uniform temperature.

なお、回転軸34を加熱するヒータ55は、棒状ヒータの他、面ヒータやリボンヒータでもよく、形状、構造は任意であり、要は、回転軸34を直接的に加熱することができる手段であればよい。
また、回転軸34の上部に断熱構造体50を介設したときには、下方の軸支持ブラケット37のうち、直接的に回転軸34の下端を支持する軸受部64は、セラミックス化して、断熱構造にすることが望ましい。
The heater 55 that heats the rotating shaft 34 may be a surface heater or a ribbon heater in addition to a rod heater, and may have any shape and structure. In short, it is a means that can directly heat the rotating shaft 34. I just need it.
In addition, when the heat insulating structure 50 is interposed on the upper portion of the rotating shaft 34, the bearing portion 64 that directly supports the lower end of the rotating shaft 34 in the lower shaft support bracket 37 is converted into ceramics to have a heat insulating structure. It is desirable to do.

図6は本発明の混合装置を射出機構に適用した例を示す図であり、樹脂の射出機構には各種あるが、その一つが予備可塑化(一般にプリプラと呼ぶ)方式の射出機構である。
プリプラ式射出機構70は、プリプラ筒体71にプリプラスクリュー72を内蔵したプリプラ部73と、射出筒74にプランジャ75を内蔵し、このプランジャ75を射出ラム76で前後進させるようにした射出部77とからなり、予めプリプラ部73で可塑化処理した材料を、射出部77で射出することができる射出機である。
FIG. 6 is a diagram showing an example in which the mixing apparatus of the present invention is applied to an injection mechanism. There are various types of resin injection mechanisms, one of which is a preliminary plasticization (generally referred to as pre-plastic) type injection mechanism.
The pre-plastic injection mechanism 70 includes a pre-plastic portion 73 in which a pre-plastic screw 72 is incorporated in a pre-plastic cylinder 71 and a plunger 75 in an injection cylinder 74. The injection machine is capable of injecting the material plasticized in advance in the pre-plastic part 73 by the injection part 77.

プリプラ筒体71の基部に本発明の混合装置20を装着することで、樹脂材料11にカーボンナノ材料12を付着させた混合物(図2参照)を、直接的に射出機構70へ供給することができる。なお、射出機構70は、プリプラ式射出機構の他、スクリュー式射出機構であってもよく、樹脂の射出成形に使用される射出機構であれば、種類は問わない。   By mounting the mixing device 20 of the present invention on the base of the pre-plastic cylinder 71, the mixture (see FIG. 2) in which the carbon nanomaterial 12 is adhered to the resin material 11 can be directly supplied to the injection mechanism 70. it can. The injection mechanism 70 may be a screw-type injection mechanism in addition to the pre-plastic injection mechanism, and may be of any type as long as it is an injection mechanism used for resin injection molding.

尚、本発明の混合装置は、射出機構に搭載する他、単体として混合体を製造する装置として活用することができ、その用途は、格別に限定するものではない。   In addition, the mixing apparatus of this invention can be utilized as an apparatus which manufactures a mixture as a single unit besides mounting in an injection mechanism, The use is not specifically limited.

本発明は、樹脂材料にカーボンナノ材料を混合する混合装置に好適である。   The present invention is suitable for a mixing apparatus for mixing a carbon nanomaterial with a resin material.

本発明に係る製造フロー図である。It is a manufacturing flow figure concerning the present invention. 本発明方法で得た混合物の模式図である。It is a schematic diagram of the mixture obtained by the method of the present invention. 本発明に係る混合装置の断面図である。It is sectional drawing of the mixing apparatus which concerns on this invention. 本発明に係る断熱構造体の拡大図である。It is an enlarged view of the heat insulation structure which concerns on this invention. 本発明に係る回転軸の別実施例図である。It is another Example figure of the rotating shaft which concerns on this invention. 本発明の混合装置を射出機構に適用した例を示す図である。It is a figure which shows the example which applied the mixing apparatus of this invention to the injection mechanism. カーボンナノファイバのモデル図である。It is a model figure of a carbon nanofiber.

符号の説明Explanation of symbols

10…混合物、11…樹脂材料、12…カーボンナノ材料、20…混合装置、24…容器、25…ヒータ、27…温度センサ、28…温度制御部、30…撹拌手段、34…回転軸、36…撹拌羽根、38…下部撹拌羽根。   DESCRIPTION OF SYMBOLS 10 ... Mixture, 11 ... Resin material, 12 ... Carbon nanomaterial, 20 ... Mixing device, 24 ... Container, 25 ... Heater, 27 ... Temperature sensor, 28 ... Temperature control part, 30 ... Stirring means, 34 ... Rotating shaft, 36 ... stirring blade, 38 ... lower stirring blade.

Claims (3)

樹脂材料とカーボンナノ材料とを混合する混合方法において、
前記樹脂材料並びにカーボンナノ材料を、前記樹脂材料の表面全体が軟化する温度に保ち、混合することで樹脂材料の表面にカーボンナノ材料を付着させることを特徴とする樹脂材料とカーボンナノ材料との混合方法。
In a mixing method of mixing a resin material and a carbon nanomaterial,
The resin material and the carbon nanomaterial are maintained at a temperature at which the entire surface of the resin material is softened and mixed to adhere the carbon nanomaterial to the surface of the resin material. Mixing method.
樹脂材料とカーボンナノ材料とを混合する混合装置において、
この混合装置は、前記樹脂材料並びにカーボンナノ材料を入れる容器と、この容器の内部温度を前記樹脂材料の表面全体が軟化する温度に保つヒータ及び温度制御部と、容器内の材料を撹拌する撹拌手段と、からなることを特徴とする樹脂材料とカーボンナノ材料との混合装置。
In a mixing device that mixes resin materials and carbon nanomaterials,
The mixing apparatus includes a container for storing the resin material and the carbon nanomaterial, a heater and a temperature control unit for maintaining the internal temperature of the container at a temperature at which the entire surface of the resin material is softened, and stirring for stirring the material in the container. And a mixing device of the resin material and the carbon nanomaterial.
前記混合装置は、射出機構のホッパーであることを特徴とする請求項2記載の樹脂材料とカーボンナノ材料との混合装置。   The mixing device for a resin material and a carbon nanomaterial according to claim 2, wherein the mixing device is a hopper of an injection mechanism.
JP2004112480A 2004-04-06 2004-04-06 Method and apparatus for mixing resin material and carbon nanomaterial Expired - Fee Related JP4838496B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004112480A JP4838496B2 (en) 2004-04-06 2004-04-06 Method and apparatus for mixing resin material and carbon nanomaterial

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004112480A JP4838496B2 (en) 2004-04-06 2004-04-06 Method and apparatus for mixing resin material and carbon nanomaterial

Publications (3)

Publication Number Publication Date
JP2005298553A true JP2005298553A (en) 2005-10-27
JP2005298553A5 JP2005298553A5 (en) 2005-12-08
JP4838496B2 JP4838496B2 (en) 2011-12-14

Family

ID=35330503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004112480A Expired - Fee Related JP4838496B2 (en) 2004-04-06 2004-04-06 Method and apparatus for mixing resin material and carbon nanomaterial

Country Status (1)

Country Link
JP (1) JP4838496B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009091439A (en) * 2007-10-05 2009-04-30 Nissin Kogyo Co Ltd Method for producing composite material, composite material, method for producing carbon fiber composite material, and carbon fiber composite material
JP2010265387A (en) * 2009-05-14 2010-11-25 Nissei Plastics Ind Co Method for producing carbon nano composite resin material
KR101074145B1 (en) 2009-07-24 2011-10-17 글로벌 자원순환(주) Pre-heating apparatus
CN107720337A (en) * 2017-10-18 2018-02-23 江苏瑞德斯环保科技有限公司 It is a kind of to preheat stand material machine and the equipment with stand material machine
CN111037774A (en) * 2019-12-06 2020-04-21 联塑科技发展(武汉)有限公司 Mixing control method for preplasticizing plastic powder
CN111421696A (en) * 2020-05-16 2020-07-17 合肥新胜塑料科技有限公司 Automatic granulation processing system of plastics regeneration
CN107720337B (en) * 2017-10-18 2024-06-21 江苏瑞德斯环保科技有限公司 Preheating spreading machine and equipment with same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009091439A (en) * 2007-10-05 2009-04-30 Nissin Kogyo Co Ltd Method for producing composite material, composite material, method for producing carbon fiber composite material, and carbon fiber composite material
JP2010265387A (en) * 2009-05-14 2010-11-25 Nissei Plastics Ind Co Method for producing carbon nano composite resin material
KR101074145B1 (en) 2009-07-24 2011-10-17 글로벌 자원순환(주) Pre-heating apparatus
CN107720337A (en) * 2017-10-18 2018-02-23 江苏瑞德斯环保科技有限公司 It is a kind of to preheat stand material machine and the equipment with stand material machine
CN107720337B (en) * 2017-10-18 2024-06-21 江苏瑞德斯环保科技有限公司 Preheating spreading machine and equipment with same
CN111037774A (en) * 2019-12-06 2020-04-21 联塑科技发展(武汉)有限公司 Mixing control method for preplasticizing plastic powder
CN111037774B (en) * 2019-12-06 2021-10-29 联塑科技发展(武汉)有限公司 Mixing control method for preplasticizing plastic powder
CN111421696A (en) * 2020-05-16 2020-07-17 合肥新胜塑料科技有限公司 Automatic granulation processing system of plastics regeneration
CN111421696B (en) * 2020-05-16 2020-12-18 广西梧州国龙再生资源发展有限公司 Automatic granulation processing system of plastics regeneration

Also Published As

Publication number Publication date
JP4838496B2 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
JP4838496B2 (en) Method and apparatus for mixing resin material and carbon nanomaterial
JP3280875B2 (en) Plasticizer
CA2843392A1 (en) Apparatus for extruding plastic materials
CN108437267A (en) A kind of plastic granulating equipment
CN211389634U (en) Extrusion molding polyphenyl board raw material mixer
JP5373987B1 (en) Auxiliary raw material charging apparatus and melt kneader including the auxiliary raw material charging apparatus
WO2015040765A1 (en) Production apparatus for polymer composite material, and method of producing the same
CN207874767U (en) A kind of injection molding machine plasticizing apparatus
JP2010280190A (en) Plastic kneader and material supply apparatus
CN216267527U (en) Screw heating type plastic extruder
CN208774052U (en) A kind of PVC pipe 3D printer plastifying organization
CN207630533U (en) A kind of reclaiming device of FDM printings waste material
CN204017743U (en) Electronic ceramics raw material agitator
KR200268962Y1 (en) a polymer extruder
CN205572824U (en) Plastic granules heating melting device
CN218366146U (en) Quick hot melt formula injection molding machine
CN111319256B (en) Method for directly manufacturing organic polymer PTC thermosensitive device through 3D printing
CN205853331U (en) A kind of plastic granulator heater
JP7372301B2 (en) Method for producing a mixture of wood and polylactic acid resin
CN207808441U (en) A kind of modified plastics high speed extrusion counterflow-preventing prilling granulator
JP2013237241A (en) Apparatus and method for manufacturing fiber reinforced resin molded article
CN213761713U (en) Fertile granulator of boron magnesium
JP4550646B2 (en) Method for producing foamed molded article made of thermoplastic resin or mixture thereof
CN214926947U (en) Novel multiaxis extruder convenient to heat dissipation
CN212498419U (en) Energy-conserving high-efficient color masterbatch blendor with preheat function

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050914

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080417

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081024

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081110

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20081205

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110930

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees