JP2005298223A - Silicon single crystal growing method - Google Patents
Silicon single crystal growing method Download PDFInfo
- Publication number
- JP2005298223A JP2005298223A JP2004111988A JP2004111988A JP2005298223A JP 2005298223 A JP2005298223 A JP 2005298223A JP 2004111988 A JP2004111988 A JP 2004111988A JP 2004111988 A JP2004111988 A JP 2004111988A JP 2005298223 A JP2005298223 A JP 2005298223A
- Authority
- JP
- Japan
- Prior art keywords
- single crystal
- magnetic field
- defect
- silicon single
- pulling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 141
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 32
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 32
- 239000010703 silicon Substances 0.000 title claims abstract description 32
- 238000000034 method Methods 0.000 title claims abstract description 26
- 239000000155 melt Substances 0.000 claims abstract description 32
- 238000009826 distribution Methods 0.000 claims abstract description 21
- 238000004519 manufacturing process Methods 0.000 claims abstract description 15
- 230000004907 flux Effects 0.000 claims abstract description 14
- 239000004065 semiconductor Substances 0.000 claims abstract description 6
- 230000007547 defect Effects 0.000 abstract description 32
- 239000007788 liquid Substances 0.000 description 26
- 230000002093 peripheral effect Effects 0.000 description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 239000011810 insulating material Substances 0.000 description 4
- 238000011282 treatment Methods 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000002950 deficient Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000007711 solidification Methods 0.000 description 3
- 230000008023 solidification Effects 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 238000004854 X-ray topography Methods 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000002109 crystal growth method Methods 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000005247 gettering Methods 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 150000003376 silicon Chemical class 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 238000007669 thermal treatment Methods 0.000 description 1
Images
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
本発明は、チョクラルスキー法(以下、「CZ法」という)により半導体材料として使用されるシリコン単結晶の育成方法に関し、より詳しくは、結晶欠陥の少ない高品質結晶を、効率的に製造できるシリコン単結晶育成方法に関するものである。 The present invention relates to a method for growing a silicon single crystal used as a semiconductor material by the Czochralski method (hereinafter referred to as “CZ method”). More specifically, a high-quality crystal with few crystal defects can be efficiently produced. The present invention relates to a silicon single crystal growth method.
半導体材料のシリコンウェーハに用いるシリコン単結晶の製造に、最も広く採用されている方法がCZ法による単結晶育成方法である。 The most widely adopted method for producing a silicon single crystal used for a semiconductor material silicon wafer is a CZ method.
CZ法は、石英るつぼ内の溶融したシリコンに種結晶を浸けて引き上げ、単結晶を成長させるものであるが、このシリコン単結晶育成技術の進歩により、欠陥の少ない、無転位の単結晶が製造されるようになってきている。半導体デバイスは、単結晶から得られたウェーハを基板とし、数百のプロセスを経過して製品化される。 In the CZ method, a single crystal is grown by immersing a seed crystal in molten silicon in a quartz crucible and growing the single crystal. Due to the advancement of this silicon single crystal growth technology, a dislocation-free single crystal with few defects is produced. It has come to be. A semiconductor device is manufactured as a substrate after several hundred processes using a wafer obtained from a single crystal as a substrate.
その過程で基板には数多くの物理的処理、化学的処理、さらには熱的処理が施され、中には1000℃以上での高温処理など、過酷な熱的環境での処理も含まれる。このため、単結晶の成長過程にてその原因が導入されていて、デバイスの製造過程で顕在化し、その性能を低下させる結果となる微小欠陥、すなわちGrown−in欠陥が問題になる。 In the process, the substrate is subjected to many physical treatments, chemical treatments, and thermal treatments, and includes processing in a severe thermal environment such as high-temperature treatment at 1000 ° C. or higher. For this reason, the cause is introduced in the growth process of the single crystal, and the micro defect, that is, the Grown-in defect, which becomes obvious in the manufacturing process of the device and results in the deterioration of the performance becomes a problem.
図1は、シリコンウェーハで観察される典型的な欠陥分布の例を模式的に示した図である。同図に示す微少欠陥の代表的なものの分布は、成長直後の単結晶からウェーハを切り出し、硝酸銅水溶液に浸けてCuを付着させ、熱処理後、X線トポグラフ法により微小欠陥分布の観察をおこなった結果を、模式的に示している。 FIG. 1 is a diagram schematically showing an example of a typical defect distribution observed on a silicon wafer. The distribution of representative microdefects shown in the figure is that a wafer is cut out from a single crystal immediately after growth, dipped in an aqueous copper nitrate solution to deposit Cu, and after heat treatment, the microdefect distribution is observed by X-ray topography. The results are shown schematically.
すなわち、このウェーハは、外径の約2/3の位置に、リング状に分布した酸化誘起積層欠陥{以下OSF(Oxygen induced Stacking Fault)という}が現れたものであるが、そのリングの内側部分には赤外線散乱体欠陥(COPまたはFPDともいわれるがいずれも同じSiが欠損した状態の欠陥)が見出される。また、リング状OSFに接してすぐ外側には酸素析出物が現れやすい酸素析出促進領域があり、それに接して欠陥の現れない無欠陥領域があり、その外側のウェーハの周辺部は転位クラスターの発生しやすい部分となっている。 That is, in this wafer, an oxidation-induced stacking fault distributed in a ring shape (hereinafter referred to as OSF (Oxygen Induced Stacking Fault)) appears at a position about 2/3 of the outer diameter. Infrared scatterer defects (also referred to as COP or FPD, both of which are defective in the same Si state) are found. In addition, there is an oxygen precipitation promoting region where oxygen precipitates are likely to appear immediately outside the ring-shaped OSF, and there is a defect-free region where defects do not appear, and dislocation clusters are generated around the outer periphery of the wafer. It is easy to do.
上記の欠陥の発生位置は、通常、単結晶育成の際の引き上げ速度に大きく影響される。一例として、転位のない健全な単結晶を得る育成速度の範囲内にて、引き上げ速度を連続して減少させながら成長させた単結晶について、結晶中心の引き上げ軸に沿って縦方向に切断された面での各種の欠陥の分布を調べると、図2(a)のような結果が得られる。 The position where the above defects are generated is usually greatly affected by the pulling speed during single crystal growth. As an example, a single crystal grown while continuously reducing the pulling rate within the range of the growth rate to obtain a healthy single crystal without dislocation was cut longitudinally along the pulling axis at the center of the crystal. When the distribution of various defects on the surface is examined, a result as shown in FIG. 2A is obtained.
単結晶引き上げ軸に対し垂直に切り出した円盤状のウェーハ面で見る場合、ショルダー部を形成させ所要の直胴径とした後、育成速度を下げていけば、結晶周辺部からリング状OSFが現れる。周辺部に現れたこのリング状OSFは、育成速度の低下にともない、その径が次第に小さくなり、やがては消失し、ウェーハ全面がリング状OSFの外側部分に相当するものになる。 When viewed on a disk-shaped wafer surface cut perpendicular to the single crystal pulling axis, a ring-shaped OSF appears from the periphery of the crystal if the growth rate is lowered after forming the shoulder portion to obtain the required straight body diameter. . The ring-shaped OSF that appears in the peripheral portion gradually decreases in diameter as the growth rate decreases, and eventually disappears, and the entire surface of the wafer corresponds to the outer portion of the ring-shaped OSF.
すなわち、前記図1は、図2(a)における単結晶のAの引き上げ軸に垂直な断面、またはその引き上げ速度で育成した単結晶のウェーハを示したものであり、リング状OSF発生の位置を基準にすれば、育成速度の速い場合はリング状OSFの内側領域に相当する相対的には赤外線散乱体欠陥の多い高速育成単結晶となり、遅い場合は外側領域の転位クラスターの多い低速育成単結晶となる。 That is, FIG. 1 shows a cross section perpendicular to the single crystal A pulling axis in FIG. 2A, or a single crystal wafer grown at the pulling speed, and shows the position of occurrence of the ring-shaped OSF. As a standard, when the growth rate is fast, the single crystal grows relatively fast with a large number of infrared scatterer defects corresponding to the inner region of the ring-shaped OSF, and when slow, the slow growth single crystal has many dislocation clusters in the outer region. It becomes.
溶融したシリコンが凝固して単結晶になるとき、結晶格子としてシリコン原子が不足している欠陥部分と過剰な欠陥部分とが同時に取り込まれ、これらは合体したり拡散したりして消滅するが、最終的に不足している部分には赤外線散乱体欠陥、過剰な部分には転位クラスターが残る。そして、両者の過不足のない部分は無欠陥領域となり、その中の特定位置にリング状OSFが現れると考えられ、この無欠陥領域をニュートラル領域と言うこともある。 When the melted silicon solidifies into a single crystal, the defect part lacking silicon atoms as the crystal lattice and the excess defect part are taken in at the same time, and these coalesce or diffuse and disappear, Infrared scatterer defects are left in the finally missing part, and dislocation clusters remain in the excess part. Then, a portion where both are not excessive or deficient becomes a defect-free region, and it is considered that a ring-shaped OSF appears at a specific position in the region, and this defect-free region is sometimes called a neutral region.
シリコン単結晶の転位は、その上に形成されるデバイスの特性を劣化させる原因になることはよく知られている。また、OSFはリーク電流増大など電気特性を劣化させるが、リング状OSFにはこれが高密度に存在する。 It is well known that dislocations in a silicon single crystal cause deterioration of the characteristics of a device formed thereon. In addition, the OSF deteriorates electrical characteristics such as an increase in leakage current, but the ring-shaped OSF has a high density.
したがって、現在、通常のLSI用には、リング状OSFが単結晶の最外周に分布するような、比較的高速の引き上げ速度で単結晶が育成されている。それによって、ウェーハの大部分をリング状OSFの内側部分、すなわち、高速育成単結晶にして、転位クラスターを回避する。これは、リング状OSFの内側部分は、デバイスの製造過程にて発生する重金属汚染に対するゲッタリング作用が、外側部分よりも大きいことにもよっている。 Therefore, at present, for a normal LSI, a single crystal is grown at a relatively high pulling speed such that the ring-shaped OSF is distributed on the outermost periphery of the single crystal. Thereby, most of the wafer is made into an inner part of the ring-shaped OSF, that is, a high-speed grown single crystal, thereby avoiding dislocation clusters. This is because the inner part of the ring-shaped OSF has a larger gettering action against heavy metal contamination generated in the manufacturing process of the device than the outer part.
近年LSIの集積度増大にともない、ゲート酸化膜が薄膜化されて、デバイス製造工程での温度が低温化してきている。このため、高温処理で発生しやすいOSFが低減され、結晶の低酸素化もあってリング状OSFなどのOSFは、デバイス特性を劣化させる因子としての問題が少なくなってきた。 In recent years, with the increase in the degree of integration of LSI, the gate oxide film has been made thinner, and the temperature in the device manufacturing process has been lowered. For this reason, the OSF that is likely to be generated by high-temperature treatment is reduced, and the crystal has low oxygen, so that the OSF such as a ring-shaped OSF has less problems as a factor that deteriorates the device characteristics.
ところが、高速育成単結晶中に主として存在する赤外線散乱体欠陥の存在は、薄膜化したゲート酸化膜の耐圧特性を大きく劣化させることが明らかになっており、特に、デバイスのパターンが微細化してくると、その影響が大きくなって高集積度化への対応が困難になる。 However, it has been clarified that the presence of infrared scatterer defects mainly present in high-speed grown single crystals greatly deteriorates the breakdown voltage characteristics of the thinned gate oxide film, and in particular, the device pattern becomes finer. As a result, the effect becomes large and it becomes difficult to cope with high integration.
前記図1に示した欠陥分布において、リング状OSFに接する酸素析出促進領域および無欠陥領域を拡大できれば、Grown−in欠陥の極めて少ないウェーハ、または単結晶の得られる可能性がある。 In the defect distribution shown in FIG. 1, if the oxygen precipitation promoting region and the defect-free region in contact with the ring-shaped OSF can be enlarged, a wafer or a single crystal with very few grown-in defects may be obtained.
例えば、特許文献1には、単結晶育成時の引き上げ速度をV(mm/min)、融点から1300℃までの温度範囲における引き上げ軸方向の結晶内温度勾配をG(℃/mm)とするとき、結晶中央部より外周から30mmまでの内部位置ではV/Gを0.20〜0.22とし、結晶外周に向かってこれを漸次増加させるように結晶内の温度勾配を制御して、転位クラスターを生成させることなく、リング状OSFの外側部分の無欠陥領域のみをウェーハ全面さらには単結晶全体に広げる方法が提案されている。 For example, Patent Document 1 discloses that the pulling speed during single crystal growth is V (mm / min), and the temperature gradient in the pulling axis direction in the temperature range from the melting point to 1300 ° C. is G (° C./mm). In the internal position from the outer periphery to 30 mm from the center of the crystal, V / G is set to 0.20 to 0.22, and the temperature gradient in the crystal is controlled so as to gradually increase toward the outer periphery of the crystal, thereby dislocation clusters. There has been proposed a method in which only the defect-free region of the outer portion of the ring-shaped OSF is extended to the entire wafer surface or even the entire single crystal without generating.
前述のように、引き上げ速度を連続して減少させながら単結晶を育成した場合、通常は、リング状OSFが図2(a)に示したV字状に現れる。これに対し、上記特許文献1に示された方法は、引き上げ軸方向の温度勾配を結晶の中央部は大きく周辺部は小さくなるようにし、かつその範囲を限定することにより、図2(a)と同じようにして育成した単結晶のリング状OSFの発生を、図2(b)に示すU字状または平底状に変えることができる。 As described above, when a single crystal is grown while the pulling rate is continuously decreased, the ring-shaped OSF usually appears in a V shape shown in FIG. On the other hand, the method disclosed in Patent Document 1 is such that the temperature gradient in the pulling-up axis direction is such that the central part of the crystal is large and the peripheral part is small, and the range is limited, so that FIG. The generation of the single crystal ring-shaped OSF grown in the same manner as described above can be changed to a U-shape or a flat bottom as shown in FIG.
そこで、例えばB1として示した引き上げ速度にて育成を行えば、無欠陥領域が大幅に拡大された単結晶が得られることになる。この特許文献1に示された方法は、結晶内の温度勾配Gを、伝熱解析シミュレーションによりにより求め予測しているが、そのような温度勾配を実現させる具体的手法については必ずしも明らかではない。 Therefore, for example, if the growth is performed at the pulling rate shown as B 1 , a single crystal in which the defect-free region is greatly expanded can be obtained. In the method disclosed in Patent Document 1, the temperature gradient G in the crystal is obtained and predicted by heat transfer analysis simulation, but the specific method for realizing such a temperature gradient is not necessarily clear.
その後、上記の単結晶全体を無欠陥領域にするという考え方を実現するための製造方法がいくつか提案されている。例えば、特許文献2には、単結晶育成時シリコン溶融液の湯面直上にシリコン単結晶を囲繞するように断熱材を配置して、断熱材と湯面との隙間を30〜50mmとし、0.2T以上の水平磁場を印加する装置を用い、結晶の固液界面の形状が平均値に対し±5mm以内、引き上げ軸方向の温度勾配が結晶中心部と結晶周辺部とでその差が0.5℃/mm以内とし、引き上げ速度を調整することにより、単結晶全体を前述の無欠陥領域またはニュートラル状態領域にする製造方法の発明が開示された。 Thereafter, several manufacturing methods have been proposed for realizing the idea of making the entire single crystal a defect-free region. For example, in Patent Document 2, a heat insulating material is disposed so as to surround a silicon single crystal immediately above the molten metal surface of the silicon melt during single crystal growth, and the gap between the heat insulating material and the molten metal surface is set to 30 to 50 mm. Using a device that applies a horizontal magnetic field of 2 T or more, the shape of the solid-liquid interface of the crystal is within ± 5 mm of the average value, and the temperature gradient in the pulling axis direction is 0. An invention of a manufacturing method has been disclosed in which the entire single crystal is brought into the above-described defect-free region or neutral state region by adjusting the pulling speed within 5 ° C./mm.
次に、特許文献3には、上記の無欠陥のシリコン単結晶を製造する方法として、固液界面の形状を平坦または上凸状態にするのがよいとし、その実現のために、るつぼの回転速度を5回転/分以下、単結晶は回転速度を13回転/分以上にて引き上げる発明が提案されている。 Next, in Patent Document 3, as a method for manufacturing the defect-free silicon single crystal, it is preferable to make the shape of the solid-liquid interface flat or upwardly convex. There has been proposed an invention in which the speed is increased at 5 rotations / minute or less and the single crystal is pulled at a rotation speed of 13 rotations / minute or more.
また、特許文献4には、るつぼと単結晶の回転速度の選定、単結晶の周囲に配置する熱遮蔽体の位置設定、および融液に対し水平磁場あるいはカスプ磁場の印加、等の組合せによって、固液界面形状を周辺部に対し中央部の高さが5mmを超える上凸状、単結晶の引き上げ軸方向の温度勾配を中央部が大きく周辺部が小さくなる温度分布として、引き上げ育成をおこなう、全体が無欠陥領域である高品質のシリコン単結晶を製造する方法の発明が開示されている。 Further, in Patent Document 4, by selecting a rotation speed of the crucible and the single crystal, setting a position of the heat shield disposed around the single crystal, and applying a horizontal magnetic field or a cusp magnetic field to the melt, etc., The solid-liquid interface shape is an upward convex shape with a central part height exceeding 5 mm with respect to the peripheral part, and the temperature gradient in the pulling axis direction of the single crystal is set as a temperature distribution in which the central part is large and the peripheral part is small. An invention of a method for producing a high-quality silicon single crystal that is entirely defect-free is disclosed.
さらに、特許文献5には、上凸状固液界面の形状とともに単結晶側面の温度分布を制御して、上述の無欠陥単結晶を得る発明が提案されている。 Further, Patent Document 5 proposes an invention for obtaining the above defect-free single crystal by controlling the temperature distribution on the side surface of the single crystal as well as the shape of the upward convex solid-liquid interface.
電子機器の多機能制御の発展にともない、LSIのチップサイズの大型化が進められているが、ウェーハ当たりのチップ採取率を高めるため、ウェーハの大口径化、すなわちシリコン単結晶の大径化が必要となる。また、チップサイズの大型化は、Grown−in欠陥のような点欠陥の発生密度を従来より低くしなければ、良品採取率を低下させる。このため、無欠陥領域を拡大させた単結晶が望ましい。 With the development of multi-function control of electronic equipment, the LSI chip size has been increased, but in order to increase the chip collection rate per wafer, the diameter of the wafer, that is, the diameter of the silicon single crystal has been increased. Necessary. Further, increasing the chip size reduces the yield of non-defective products unless the density of point defects such as grown-in defects is made lower than before. For this reason, the single crystal which expanded the defect-free area | region is desirable.
しかしながら、単結晶の径が大きくなり300mm以上になってくると、単結晶からの抜熱が容易でなく、生産性向上のため冷却を強化しようとすれば、熱応力が増大して転位を発生させたり、さらには結晶に割れが発生することもある。このために、引き上げ速度を大きくすることができず、生産性が大きく低下する。 However, when the diameter of the single crystal is increased to 300 mm or more, it is not easy to remove heat from the single crystal, and if an attempt is made to enhance cooling to improve productivity, the thermal stress increases and dislocations are generated. Or cracks may occur in the crystal. For this reason, the pulling speed cannot be increased, and the productivity is greatly reduced.
これに加えて、無欠陥領域を拡大させたシリコン単結晶を得ようとするとき、大径単結晶になると従来の200mm、またはそれ以下の小径単結晶のように単結晶内の温度勾配を制御することは容易ではなく、無欠陥単結晶を育成できる引き上げ速度範囲が極めて狭くなり、速度の制御が困難となって、無欠陥部分の生成歩留まりが大きく低下する。 In addition to this, when trying to obtain a silicon single crystal with an expanded defect-free region, the temperature gradient in the single crystal is controlled as in the conventional single crystal of 200 mm or smaller when it becomes a large single crystal. It is not easy to do so, and the pulling speed range in which a defect-free single crystal can be grown becomes extremely narrow, making it difficult to control the speed and greatly reducing the yield of defect-free portions.
本発明の目的は、直径が300mm以上の大径のシリコン単結晶において、Grown−in欠陥をできるだけ少なくした高品質結晶を、歩留まりよくしかも引き上げ育成速度を高くして製造できる方法の提供にある。 An object of the present invention is to provide a method capable of producing a high-quality crystal having as few as possible grown-in defects in a large-diameter silicon single crystal having a diameter of 300 mm or more with a high yield and a high growth rate.
前述のように、従来から、引き上げ時の単結晶内温度分布および固液界面の形状を、断熱材の使用、るつぼおよび単結晶の回転の制御、並びに融液への磁場印加等により制御するとともに、引き上げ速度を選定して、全体を無欠陥領域とする単結晶の製造方法が提案されている。 As described above, conventionally, the temperature distribution in the single crystal and the shape of the solid-liquid interface at the time of pulling are controlled by using a heat insulating material, controlling the rotation of the crucible and the single crystal, and applying a magnetic field to the melt. There has been proposed a method for producing a single crystal in which the pulling speed is selected to make the whole defect-free region.
しかしながら、単結晶の径が大きくなってくると、引き上げ速度を大幅に低下させなければならず、その上、無欠陥とするための最適速度範囲が狭くなってしまい、実生産への適用は困難になっている。 However, as the diameter of the single crystal increases, the pulling speed must be greatly reduced, and the optimum speed range for defect-free is narrowed, making it difficult to apply to actual production. It has become.
これに対し、本発明は、最適速度範囲を拡大でき、しかも育成速度を大きくできる無欠陥単結晶の製造方法を提供するものである。 On the other hand, the present invention provides a method for producing a defect-free single crystal capable of expanding the optimum speed range and increasing the growth speed.
本発明は、(1)CZ法により、るつぼ内の融液に水平方向の磁場を印加しつつ単結晶を引き上げる半導体用シリコン単結晶製造において、融液表面からの深さが100mmから〜600mmまでの範囲にて、磁場中心(磁束密度の最大値位置)が位置し、かつ当該範囲における磁束密度分布の変動が3%以上である磁場を印加しつつ引き上げをおこなうことを特徴とするシリコン単結晶育成方法であり、さらに(2)磁場中心の磁場強さが0.1〜0.2Tの範囲にあることを特徴とする上記(1)のシリコン単結晶育成方法である。 In the present invention, (1) in the production of a silicon single crystal for a semiconductor that pulls up a single crystal while applying a horizontal magnetic field to the melt in the crucible by the CZ method, the depth from the melt surface is 100 mm to 600 mm. The silicon single crystal is characterized in that the magnetic field center (the maximum value position of the magnetic flux density) is located in the range and the pulling is performed while applying a magnetic field in which the fluctuation of the magnetic flux density distribution in the range is 3% or more. (1) The method for growing a silicon single crystal according to (1) above, wherein the magnetic field strength at the center of the magnetic field is in the range of 0.1 to 0.2T.
大径のシリコン単結晶において、Grown−in欠陥をできるだけ少なくした高品質結晶を、歩留まりよく、しかも引き上げ育成速度を高くして製造できる。このような単結晶から得られたウェーハは、LSIチップの高密度化および大型化の傾向に対し、歩留まりの向上やコストの低減など効果的に適応できる。 In a large-diameter silicon single crystal, a high-quality crystal with as few grown-in defects as possible can be manufactured with a high yield and a high pulling growth rate. A wafer obtained from such a single crystal can be effectively applied to increase the yield and reduce the cost in response to the trend toward higher density and larger LSI chips.
転位クラスター欠陥や赤外線散乱体欠陥のようなGrown−in欠陥、または点欠陥をできるだけ少なくした単結晶を製造するには、引き上げ速度を連続して低下させながら育成したときに、リング状OSFまたは無欠陥領域が図2(b)に示したように平底状になるようにし、その上で、Bの速度、またはB1(転位クラスター欠陥の現れない下限の引き上げ速度)からB2(赤外線散乱体欠陥の現れない上限の引き上げ速度)の間の速度にて育成する。 In order to produce a single crystal having as few as possible a grown-in defect such as a dislocation cluster defect or an infrared scatterer defect, or a point defect, a ring-like OSF or non-destructive crystal can be obtained when grown while the pulling rate is continuously reduced. The defect area is made flat as shown in FIG. 2B, and then B 2 (infrared scatterer) from B velocity or B 1 (lower pulling rate at which dislocation cluster defects do not appear). It is grown at a speed between the upper limit pulling speed at which no defect appears).
この図2(b)のような形状の無欠陥領域を出現させるため、従来の外径が200mmまでの単結晶では、例えば、前述の特許文献4に示されているように、育成中単結晶の引き上げ軸方向の結晶内温度勾配を中心部は大きく周辺部は小さくし、固液界面形状を上凸型として引き上げ速度を限定し育成する方法が用いられている。 In order to make the defect-free region having the shape as shown in FIG. 2B appear, in the conventional single crystal having an outer diameter of up to 200 mm, for example, as shown in the aforementioned Patent Document 4, the single crystal being grown In this method, the temperature gradient in the crystal in the pulling axis direction is made large at the center and small at the periphery, and the solid-liquid interface shape is made as an upward convex shape, and the pulling rate is limited and growing.
しかしながら、単結晶の径が300mm以上になると、ウェーハ全面が無欠陥領域となる引き上げ速度を見出すのは容易ではなく、それを実現できたとしても許容速度範囲が極めて小さくて、安定して無欠陥単結晶を得るのは困難になる。図2(b)に示される無欠陥領域が、水平方向に十分平らなものとならないのである。 However, when the diameter of the single crystal is 300 mm or more, it is not easy to find a pulling speed at which the entire wafer surface becomes a defect-free region. Even if it can be realized, the allowable speed range is extremely small and stable and defect-free. It becomes difficult to obtain a single crystal. The defect-free region shown in FIG. 2B is not sufficiently flat in the horizontal direction.
これは、単結晶の径が大きくなるほど凝固直後の結晶からの抜熱が困難になり、断熱材や冷却体の活用、または気体吹きつけなどの、単結晶表面からの冷却または加熱による単結晶内の温度分布制御が不十分になるためである。この制御をより強力におこなおうとすれば、温度差による熱ひずみが大きくなり、転位の発生、さらには結晶の割れを発生させるおそれがでてくる。 This is because the larger the diameter of the single crystal, the more difficult it is to remove heat from the crystal immediately after solidification, and the use of a heat insulating material or a cooling body, or gas blowing, etc. This is because the temperature distribution control is not sufficient. If this control is performed more strongly, the thermal strain due to the temperature difference increases, and there is a risk of causing dislocations and further crystal cracks.
一方、固液界面形状を上凸型としその高さを高くするには、単結晶の回転速度を大きくし、さらに融液に磁場を印加して融液の対流を制御する方法があるが、単結晶の回転速度を大きくすることは、径が大きくなると転位が発生しやすくなるので、十分に大きくすることができない。 On the other hand, in order to increase the height of the solid-liquid interface shape with an upward convex shape, there is a method of increasing the rotational speed of the single crystal and further applying a magnetic field to the melt to control the convection of the melt. Increasing the rotation speed of the single crystal cannot be sufficiently increased because dislocations are likely to occur when the diameter increases.
このように、単結晶の径が大きくなった場合、単結晶内部の引き上げ軸方向の温度勾配が中心部は大きく周辺部は小さい、という単結晶の径に見合った温度分布が十分実現されず、図2(b)に示したような、平底状の無欠陥領域が十分には得られなくなる。 Thus, when the diameter of the single crystal is increased, the temperature distribution in the pulling axis direction inside the single crystal is not realized sufficiently, and the temperature distribution corresponding to the diameter of the single crystal that the central portion is large and the peripheral portion is small, As shown in FIG. 2B, a flat bottom-like defect-free region cannot be obtained sufficiently.
しかしながら、凝固界面の温度は一定なので、固液界面の上凸形状をより大きくできれば、引き上げ中の単結晶内の温度分布が同じような場合、中心部の引き上げ軸方向温度勾配は周辺部のそれよりも大きくできる可能性があると考えられる。 However, since the temperature of the solidification interface is constant, if the upward convex shape of the solid-liquid interface can be made larger, the temperature gradient in the pulling axial direction at the center will be that of the periphery when the temperature distribution in the single crystal being pulled is similar. It is thought that there is a possibility that it can be made larger.
固液界面の形状は、凝固潜熱が一定なので、融液からの熱の供給と固体となった結晶への伝熱による熱の排除とのバランスにより決まってくるが、熱の排除は前述のように結晶の径により限界があることから、融液からの熱の供給すなわち融液の対流を制御することにより固液界面の形状を制御するのがよいと思われる。 The shape of the solid-liquid interface has a constant latent heat of solidification, so it is determined by the balance between the supply of heat from the melt and the removal of heat by heat transfer to the solid crystal. Therefore, the shape of the solid-liquid interface should be controlled by controlling the supply of heat from the melt, that is, the convection of the melt.
融液の対流などその流動に大きく影響するのは、結晶の回転と磁場印加であるが、単結晶の径が大きくなると、上述のように結晶の回転は制限されるので、磁場の印加条件にについて種々検討を行ってみた。 It is the rotation of the crystal and the application of the magnetic field that greatly affect the flow of the melt, such as convection.However, as the diameter of the single crystal increases, the rotation of the crystal is limited as described above. I tried various investigations.
その結果、融液に限定された範囲で特定の磁場を印加すれば、効果的に固液界面の形状すなわちその上凸形状の高さを適度に大きくできることが見出された。そこで、この固液界面の形状と、引き上げ速度を連続的に変化させて得られた単結晶の、無欠陥領域の生成形状、および転位のない健全な単結晶が育成できる条件との関係をさらに検討し、固液界面形状に好ましい範囲のあることを確認することができた。 As a result, it was found that the shape of the solid-liquid interface, that is, the height of the upwardly convex shape can be effectively increased by applying a specific magnetic field in a range limited to the melt. Therefore, the relationship between the shape of the solid-liquid interface, the generation shape of the defect-free region of the single crystal obtained by continuously changing the pulling rate, and the conditions under which a healthy single crystal without dislocations can be grown is further It was confirmed that the solid-liquid interface shape has a preferable range.
従来、シリコン単結晶育成時の磁場印加は、融液の対流を抑止し単結晶に取り込まれる酸素量の制御に主として用いられ、また、単結晶育成時の固液界面形状に影響を及ぼすことも知られている。そして、通常用いられる水平磁場印加では、融液に対し均一性のよい磁場が適用され、通常、水平磁場では磁場発生コイルの中心軸位置の磁束密度が最も高く、中心から離れるに従って磁束密度が低下する。 Conventionally, magnetic field application during silicon single crystal growth is mainly used to control the amount of oxygen taken into the single crystal by suppressing convection of the melt, and may affect the solid-liquid interface shape during single crystal growth. Are known. In the horizontal magnetic field application that is normally used, a magnetic field with good uniformity is applied to the melt. In the horizontal magnetic field, the magnetic flux density at the central axis position of the magnetic field generating coil is usually the highest, and the magnetic flux density decreases as the distance from the center increases. To do.
そこで、単結晶の回転速度は、安定して育成できる上限近くに設定し、この磁場の強さおよび磁場中心の位置の固液界面形状におよぼす影響を調べてみた。その結果、磁場の強さは大きくすると上凸形状が抑制され、小さくすると上凸型の高さは大きくでき、同じ強さの磁場でも、固液界面の上凸形状をより大きくするには、磁場の中心を融液表面から100mm以上の深さにするのがよいことがわかった。 Therefore, the rotation speed of the single crystal was set near the upper limit for stable growth, and the influence of the strength of the magnetic field and the position of the magnetic field center on the solid-liquid interface shape was examined. As a result, if the strength of the magnetic field is increased, the upward convex shape is suppressed, and if the magnetic field strength is decreased, the height of the upward convex shape can be increased. It was found that the center of the magnetic field should be at least 100 mm deep from the melt surface.
このような調査の過程で、磁場印加に用いる磁場発生装置も取り替えて試験してみたところ、均一な磁場を用いるよりも不均一な磁場とする方がより効果的であることが見出された。 In the course of such an investigation, when the magnetic field generator used for applying the magnetic field was replaced and tested, it was found that using a non-uniform magnetic field was more effective than using a uniform magnetic field. .
そこで、これらの条件の限界を、単結晶内の引き上げ軸方向における温度勾配が、中央部は大きく、周辺部は小さくなり、前記図2における無欠陥領域ができるだけ水平に近くすることを目標に、さらに検討をおこなった。 Therefore, the limit of these conditions, with the goal that the temperature gradient in the pulling axis direction in the single crystal is large in the central part and small in the peripheral part, and the defect-free region in FIG. Further study was conducted.
その結果、印加する磁場は水平磁場とし、融液表面からの深さが100mmから〜600mmまでの範囲に磁場中心(磁束密度の最大値位置)が位置し、かつ当該範囲における磁束密度分布の変動が3%以上であることとするのがよいことが確認できた。さらに望ましくは、磁場中心の磁場強さを0.1〜0.2Tの範囲にすることである。 As a result, the applied magnetic field is a horizontal magnetic field, the magnetic field center (maximum magnetic flux density position) is located in the range from 100 mm to 600 mm in depth from the melt surface, and the fluctuation of the magnetic flux density distribution in that range. It has been confirmed that it is good to be 3% or more. More desirably, the magnetic field strength at the center of the magnetic field is in the range of 0.1 to 0.2T.
このような条件にて単結晶の育成を種々試みたところ、引き上げ速度をより大きくできること、および無欠陥単結晶を製造するための許容速度範囲(速度マージン)が大幅に拡大できることがわかった。 Various attempts were made to grow single crystals under such conditions, and it was found that the pulling speed could be increased and the allowable speed range (speed margin) for producing defect-free single crystals could be greatly expanded.
これまで口径が300mmの場合、Grown−in欠陥に関して無欠陥となる単結晶を得ようとすると、速度マージンが0.01mm前後であり単結晶全体に無欠陥領域を拡大することは極めて困難であった。しかし、上記条件にて育成をおこなえば、この速度マージンが倍近く拡大される。その上、無欠陥領域とするための引き上げ速度は10〜40%向上できる。 So far, when the diameter is 300 mm, when trying to obtain a single crystal that is defect-free with respect to a grown-in defect, the speed margin is around 0.01 mm, and it is extremely difficult to expand the defect-free region throughout the single crystal. It was. However, if the growth is performed under the above conditions, this speed margin is nearly doubled. In addition, the pulling speed for making a defect-free region can be improved by 10 to 40%.
ここで、磁場中心の位置が融液表面から100mmより浅くなると、固液界面の上凸形状が不十分となる。これは、融液の流動が抑制されるためと思われる。また、磁場中心の位置が融液表面から600mmを超える深さになると、単結晶の有転位化や割れが発生することがあるが、これは固液界面の上凸形状が高くなりすぎるためと思われる。 Here, when the position of the magnetic field center is shallower than 100 mm from the melt surface, the upwardly convex shape of the solid-liquid interface becomes insufficient. This seems to be because the flow of the melt is suppressed. Also, when the position of the magnetic field center is deeper than 600 mm from the melt surface, dislocations and cracks of the single crystal may occur, but this is because the convex shape of the solid-liquid interface becomes too high. Seem.
そして、磁場中心における磁場強さは、0.1Tより小さくなると、上凸形状が高くなりすぎてしまう。また、0.2Tを下回ると、上凸形状の高さが低くなってしまう。このため、磁場中心の磁場強さを0.1〜0.2Tの範囲にすることが望ましい。 When the magnetic field strength at the magnetic field center is smaller than 0.1T, the upwardly convex shape becomes too high. Moreover, if it is less than 0.2T, the height of the upward convex shape will be low. For this reason, it is desirable that the magnetic field strength at the center of the magnetic field be in the range of 0.1 to 0.2T.
また、磁場の磁束密度は、均一よりも不均一である方が、単結晶の無欠陥領域が拡大される。この理由は必ずしも明らかではないが、不均一である方が融液の流動が容易になり、上凸の形状をより好ましい状態にするのではないかと思われる。 Further, when the magnetic flux density of the magnetic field is non-uniform rather than uniform, the defect-free region of the single crystal is expanded. The reason for this is not necessarily clear, but it is considered that the non-uniformity facilitates the flow of the melt and makes the upwardly convex shape more favorable.
この不均一の状態をより明確に定義すると、融液表面からの深さが100mmから〜600mmまでの範囲において、最高の磁束密度THと最低の磁束密度TLすれば、下記(1)式で示される不均一性を示すΔT(%)が、3%を超える値になることである。 When this non-uniform state is defined more clearly, if the maximum magnetic flux density T H and the minimum magnetic flux density T L are within the range from 100 mm to 600 mm in depth from the melt surface, the following equation (1) ΔT (%) indicating the non-uniformity indicated by is a value exceeding 3%.
ΔT(%)=100×(TH−TL)/TH ・・・・ (1)
なお、単結晶の有転位化および割れの発生を抑制する観点からは、ΔTは大きくても10%以内に留めることが望ましく、ΔTの大きさは水平磁場発生コイルの上下コイル間隔を変えることによって調整することができる。
ΔT (%) = 100 × (T H −T L ) / T H (1)
From the viewpoint of suppressing the occurrence of dislocations and cracks in the single crystal, ΔT is preferably kept within 10% at most, and the magnitude of ΔT can be changed by changing the vertical coil interval of the horizontal magnetic field generating coil. Can be adjusted.
上記のような磁場の印加は、不均一な磁場を持つ水平磁場発生コイルの磁場中心軸を、融液表面からの深さが100mmから〜600mmまでの範囲に配置することによって実現できるが、その場合、磁場中心を深さ200mmから400mmの範囲におくことがより好ましい。これは深さが200mmを超える方が、固液界面を上凸状にする効果がより大きくなり、400mmを超えてもそれ以上は大きくは変化せず不安定性が増してくるからである。 The application of the magnetic field as described above can be realized by arranging the magnetic field central axis of the horizontal magnetic field generating coil having a non-uniform magnetic field in the range from 100 mm to 600 mm in depth from the melt surface. In this case, it is more preferable to place the magnetic field center at a depth in the range of 200 mm to 400 mm. This is because the effect of making the solid-liquid interface convex upward is greater when the depth exceeds 200 mm, and the instability increases without much change beyond 400 mm.
磁場印加に用いる装置は、上記の磁場を発生できるものであれば、特には限定するものではない。しかし、単結晶が大径化してくると、磁場発生装置も大型化してくる。磁場発生装置の大型化は、単結晶製造装置のるつぼ取り替えなど溶融引き上げのための炉回りの作業の際、取り付け取り外しが煩雑になってくる。 The apparatus used for applying the magnetic field is not particularly limited as long as it can generate the magnetic field. However, as the diameter of the single crystal increases, the magnetic field generator increases in size. The increase in size of the magnetic field generator makes it difficult to attach and detach the work around the furnace for melting and pulling up, such as replacing the crucible of the single crystal manufacturing apparatus.
これに対し、磁場を発生させる磁気コイルを鞍型として容易に二分割できるものとし、しかも垂直磁場と水平磁場のいずれも、その二つのコイルの距離を変えることによって発生させることができる技術が、特許文献6に開示されている。このような鞍型の磁気コイルを用い、水平磁場を発生させれば、上記の不均一磁場は容易に得ることができる。 On the other hand, it is assumed that the magnetic coil that generates the magnetic field can be easily divided into two as a saddle type, and both the vertical magnetic field and the horizontal magnetic field can be generated by changing the distance between the two coils. It is disclosed in Patent Document 6. If such a saddle-shaped magnetic coil is used to generate a horizontal magnetic field, the above-mentioned non-uniform magnetic field can be easily obtained.
育成中の単結晶の回転およびるつぼの回転は、特に限定するものではないが、磁場で融液の対流を抑制する一方、単結晶の固液界面に対しては、融液の流動が大きい方が好ましく、るつぼ面に対しては小さい方が好ましいので、単結晶の回転は6回転/分以上、るつぼの回転は5回転/分以下とするのがよい。 The rotation of the single crystal and the rotation of the crucible during the growth are not particularly limited, but the convection of the melt is suppressed by a magnetic field, while the flow of the melt is larger with respect to the solid-liquid interface of the single crystal. It is preferable that the surface is smaller than the crucible surface. Therefore, the rotation of the single crystal is preferably 6 rotations / minute or more and the crucible rotation is 5 rotations / minute or less.
直径300mmの単結晶育成装置を用い、内径810mmの石英るつぼ内で230kgの多結晶シリコンを電気抵抗が20Ωcmとなるようボロンを添加し、2600Paのアルゴン雰囲気中にて溶融した。磁場の印加は水平磁場とし、発生装置は、従来の均一磁場を発生させるもの、または不均一磁場を発生できるものを用いた。均一磁場の場合前述の式(1)のΔTは2.3%であり、不均一磁場の場合、磁気発生装置は鞍型コイルのものを用い、ΔTは、3%、6%および7%とした。 Using a single crystal growth apparatus having a diameter of 300 mm, 230 kg of polycrystalline silicon was added in a quartz crucible having an inner diameter of 810 mm so as to have an electric resistance of 20 Ωcm, and was melted in an argon atmosphere at 2600 Pa. The application of the magnetic field was a horizontal magnetic field, and the generator used was one that generates a conventional uniform magnetic field or one that can generate a non-uniform magnetic field. In the case of a uniform magnetic field, ΔT in the above formula (1) is 2.3%. In the case of a non-uniform magnetic field, the magnetism generator is of a saddle type coil, and ΔT is 3%, 6% and 7%. did.
種結晶を融液に接触させて引き上げ、所定のネック部、ショルダー部を形成させ、目標のボディ径となった後、引き上げ速度を徐々に低下させてシリコン単結晶を育成した。単結晶の回転数は13回/分、るつぼの回転数は3回/分とした。固液界面形状の確認のため、無欠陥領域を形成すると予想される引き上げ速度を経過させた後、育成を中止して単結晶を融液から引き離した。 The seed crystal was brought into contact with the melt and pulled up to form predetermined neck portions and shoulder portions. After reaching the target body diameter, the pulling rate was gradually reduced to grow a silicon single crystal. The rotational speed of the single crystal was 13 times / minute, and the rotational speed of the crucible was 3 times / minute. In order to confirm the shape of the solid-liquid interface, after raising the pulling speed expected to form a defect-free region, the growth was stopped and the single crystal was pulled away from the melt.
得られた単結晶の底面について、周辺部に対する中央部の高さを測定し、固液界面の上昇率を測定した。この場合、単結晶の径にはそれぞれ多少の変動があるので、単結晶直径に対する中央部の高さの比率を求め、均一磁場を印加し磁場中心を融液面から50mm下の位置としたときの比率を100(%)とし、他の条件の場合はこれに対する比を上昇率とした。 About the bottom face of the obtained single crystal, the height of the center part with respect to the peripheral part was measured, and the rate of increase of the solid-liquid interface was measured. In this case, since the diameter of the single crystal varies slightly, the ratio of the height of the central portion to the single crystal diameter is obtained, and when the uniform magnetic field is applied and the magnetic field center is positioned 50 mm below the melt surface The ratio was set to 100 (%), and in the case of other conditions, the ratio to this was set as the rate of increase.
さらに、単結晶は引き上げ軸に平行に切断して、引き上げ軸を含む厚さ1.4mmのスライス片を採取し、16質量%の硝酸銅溶液に浸漬して銅を付着させ、900℃にて20分間加熱し冷却後X線トポグラフ法にて欠陥分布を調査した。 Further, the single crystal was cut in parallel with the pulling shaft, and a slice piece having a thickness of 1.4 mm including the pulling shaft was collected and immersed in a 16% by mass copper nitrate solution to attach copper, at 900 ° C. After heating for 20 minutes and cooling, the defect distribution was investigated by X-ray topography.
表1に、通常の水平磁場、ΔTが3%、6%および7%の不均一磁場を、磁場中心の融液面からの高さを変えて印加した場合の、固液界面高さの上昇率を示す。通常の水平磁場の場合に比し、不均一磁場では固液界面高さが大幅に上昇していることがわかる。ただし、固液界面高さが50mmを大きく超える場合は、有転位化を生じやすく好ましくない。 Table 1 shows the increase in the solid-liquid interface height when a normal horizontal magnetic field and an inhomogeneous magnetic field with ΔT of 3%, 6%, and 7% are applied at different heights from the melt surface at the center of the magnetic field. Indicates the rate. It can be seen that the solid-liquid interface height is significantly increased in the non-uniform magnetic field as compared with the case of the normal horizontal magnetic field. However, when the solid-liquid interface height greatly exceeds 50 mm, dislocation is likely to occur, which is not preferable.
表2に、磁場中心の磁束密度が0.2T、不均一性ΔTが6%の磁場の中心位置を変えたときの、無欠陥領域の分布から判断される育成速度の向上率および育成速度マージン(無欠陥単結晶を得るための速度範囲)を示す。 Table 2 shows the growth rate improvement rate and the growth rate margin determined from the distribution of defect-free regions when the magnetic field center position where the magnetic flux density at the magnetic field center is 0.2T and the non-uniformity ΔT is 6% is changed. (Speed range for obtaining a defect-free single crystal) is shown.
育成速度は、通常の均一水平磁場印加にて無欠陥単結晶を製造したときの速度を基準としたが、不均一磁場を用いても、磁場の中心位置が−50mmであれば、育成速度向上の効果はなく、均一磁場印加とほぼ同じである。育成速度マージンは、通常の水平磁場印加では0.01mm程度であったのに対し、不均一磁場印加とすれば範囲が拡大されていることがわかる。 The growth speed is based on the speed when a defect-free single crystal is produced by applying a normal uniform horizontal magnetic field, but the growth speed is improved if the center position of the magnetic field is −50 mm even if a non-uniform magnetic field is used. This is almost the same as applying a uniform magnetic field. It can be seen that the growth rate margin was about 0.01 mm when a normal horizontal magnetic field was applied, but the range was expanded if a non-uniform magnetic field was applied.
表3に、磁場中心の位置を融液面から−280mmとし、ΔT=6%の不均一磁場の強さを変えた時の結果を示す。磁場の強さが0.1Tを下回る場合、固液界面高さの上昇がやや高すぎ、0.2Tを超える場合は固液界面高さが十分上昇しない。 Table 3 shows the results when the position of the magnetic field center is −280 mm from the melt surface and the intensity of the inhomogeneous magnetic field of ΔT = 6% is changed. When the strength of the magnetic field is less than 0.1T, the rise in the solid-liquid interface height is slightly too high, and when it exceeds 0.2T, the solid-liquid interface height does not rise sufficiently.
Claims (2)
融液表面からの深さが100mmから〜600mmまでの範囲にて、磁場中心(磁束密度の最大値位置)が位置し、かつ当該範囲における磁束密度分布の変動が3%以上である磁場を印加しつつ引き上げをおこなうことを特徴とするシリコン単結晶育成方法。 In the production of a silicon single crystal for semiconductors that pulls up the single crystal while applying a horizontal magnetic field to the melt in the crucible by the Czochralski method,
A magnetic field in which the center of the magnetic field (maximum magnetic flux density position) is located in a range from 100 mm to 600 mm in depth from the melt surface, and a magnetic flux density distribution variation in the range is 3% or more is applied. A method for growing a silicon single crystal, wherein the silicon single crystal is pulled up while being pulled.
2. The method for growing a silicon single crystal according to claim 1, wherein the magnetic field strength at the magnetic field center is in the range of 0.1 to 0.2T.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004111988A JP4501507B2 (en) | 2004-04-06 | 2004-04-06 | Silicon single crystal growth method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004111988A JP4501507B2 (en) | 2004-04-06 | 2004-04-06 | Silicon single crystal growth method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005298223A true JP2005298223A (en) | 2005-10-27 |
JP4501507B2 JP4501507B2 (en) | 2010-07-14 |
Family
ID=35330229
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004111988A Expired - Lifetime JP4501507B2 (en) | 2004-04-06 | 2004-04-06 | Silicon single crystal growth method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4501507B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008189525A (en) * | 2007-02-06 | 2008-08-21 | Covalent Materials Corp | Single crystal pulling apparatus |
EP2031100A1 (en) | 2007-06-08 | 2009-03-04 | Siltronic AG | Manufacturing method of single crystal |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08333191A (en) * | 1995-06-01 | 1996-12-17 | Shin Etsu Handotai Co Ltd | Production of single crystal and apparatus therefor |
JPH09188590A (en) * | 1995-12-29 | 1997-07-22 | Shin Etsu Handotai Co Ltd | Production of single crystal and apparatus therefor |
JPH11268987A (en) * | 1998-03-20 | 1999-10-05 | Shin Etsu Handotai Co Ltd | Silicon single crystal and its production |
JP2001158690A (en) * | 1999-11-30 | 2001-06-12 | Sumitomo Metal Ind Ltd | Method for producing high-quality silicon single crystal |
JP2002137988A (en) * | 2000-10-31 | 2002-05-14 | Super Silicon Kenkyusho:Kk | Method of pull up single crystal |
-
2004
- 2004-04-06 JP JP2004111988A patent/JP4501507B2/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08333191A (en) * | 1995-06-01 | 1996-12-17 | Shin Etsu Handotai Co Ltd | Production of single crystal and apparatus therefor |
JPH09188590A (en) * | 1995-12-29 | 1997-07-22 | Shin Etsu Handotai Co Ltd | Production of single crystal and apparatus therefor |
JPH11268987A (en) * | 1998-03-20 | 1999-10-05 | Shin Etsu Handotai Co Ltd | Silicon single crystal and its production |
JP2001158690A (en) * | 1999-11-30 | 2001-06-12 | Sumitomo Metal Ind Ltd | Method for producing high-quality silicon single crystal |
JP2002137988A (en) * | 2000-10-31 | 2002-05-14 | Super Silicon Kenkyusho:Kk | Method of pull up single crystal |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008189525A (en) * | 2007-02-06 | 2008-08-21 | Covalent Materials Corp | Single crystal pulling apparatus |
EP2031100A1 (en) | 2007-06-08 | 2009-03-04 | Siltronic AG | Manufacturing method of single crystal |
US8172943B2 (en) | 2007-06-08 | 2012-05-08 | Siltronic Ag | Single Crystal manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
JP4501507B2 (en) | 2010-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3783495B2 (en) | Manufacturing method of high quality silicon single crystal | |
EP2083098B1 (en) | Apparatus for manufacturing semiconductor single crystal ingot and method using the same | |
JP3573045B2 (en) | Manufacturing method of high quality silicon single crystal | |
JP3919308B2 (en) | Method for producing silicon single crystal with few crystal defects and silicon single crystal and silicon wafer produced by this method | |
KR20000006112A (en) | Silicon single crystal wafer and a method for producing it | |
EP1926134A1 (en) | Method for manufacturing silicon epitaxial wafers | |
JP2002187794A (en) | Silicon wafer and production process for silicon single crystal used for producing the same | |
JP2007045662A (en) | Semiconductor silicon wafer and method for manufacturing the same | |
JP5283543B2 (en) | Method for growing silicon single crystal | |
JP2006347855A (en) | Method for growing silicon single crystal and method for manufacturing silicon wafer | |
JP2006347853A (en) | Method for growing silicon single crystal | |
JP2005162599A (en) | Single crystal silicon ingot and wafer having homogeneous vacancy defect, and method and apparatus for making same | |
JP4193610B2 (en) | Single crystal manufacturing method | |
JP2004083346A (en) | Silicon single crystal wafer for particle monitor, and its manufacture method | |
JP2008189485A (en) | Method and apparatus for manufacturing silicon single crystal | |
US7582159B2 (en) | Method for producing a single crystal | |
JP4501507B2 (en) | Silicon single crystal growth method | |
JP2000072590A (en) | Growth of high quality single silicon crystal | |
JP2004250263A (en) | High-quality wafer and its manufacture method | |
JP5668786B2 (en) | Method for growing silicon single crystal and method for producing silicon wafer | |
JP2005015290A (en) | Method for manufacturing single crystal, and single crystal | |
JP2010018499A (en) | Method for producing single crystal | |
JP2011105526A (en) | Method for growing silicon single crystal | |
JP4842861B2 (en) | Method for producing silicon single crystal | |
JP4150167B2 (en) | Method for producing silicon single crystal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060707 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081017 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081028 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081224 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100119 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100223 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100330 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100412 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4501507 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130430 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140430 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |