JP2005291782A - Ice thickness estimation method by sar - Google Patents

Ice thickness estimation method by sar Download PDF

Info

Publication number
JP2005291782A
JP2005291782A JP2004103987A JP2004103987A JP2005291782A JP 2005291782 A JP2005291782 A JP 2005291782A JP 2004103987 A JP2004103987 A JP 2004103987A JP 2004103987 A JP2004103987 A JP 2004103987A JP 2005291782 A JP2005291782 A JP 2005291782A
Authority
JP
Japan
Prior art keywords
ice
sea
thickness
sar
year
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004103987A
Other languages
Japanese (ja)
Inventor
Kazuki Nakamura
和樹 中村
Hiroyuki Wakabayashi
裕之 若林
Fumihiko Nishio
文彦 西尾
Shotaro Uto
正太郎 宇都
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Information and Communications Technology
Original Assignee
National Institute of Information and Communications Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Information and Communications Technology filed Critical National Institute of Information and Communications Technology
Priority to JP2004103987A priority Critical patent/JP2005291782A/en
Publication of JP2005291782A publication Critical patent/JP2005291782A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for determining the ice thickness accurately from a back scattering coefficient by clarifying a mechanism of back scattering by paying attention to a characteristic of the sea ice having salinity or bubbles. <P>SOLUTION: In this method for estimating the ice thickness by remote sensing by a SAR, if the back scattering coefficient is smaller mainly because of surface scattering, proportionally at a portion having the larger thickness of the object ice, the object ice is determined to be first-year ice, and if the back scattering coefficient is larger mainly because of volume scattering, proportionally at a portion having the smaller thickness of the object ice, the object ice is determined to be many-year ice. Classification between the first-year ice and the many-year ice may be performed by setting a threshold of the back scattering coefficient at 10 dB. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、SARによるリモートセンシングによって、海氷の厚さを推定する方法に関する。   The present invention relates to a method for estimating the thickness of sea ice by remote sensing using SAR.

地球温暖化により地球の全球平均気温は上昇を続け、気候変動に関する政府間パネル(IPCC)の報告によれば、気温の上昇に伴い海氷が減少する傾向が示されている。
さらに、極域における氷河・氷床の融解を考えると、我々の人間活動に地球温暖化が波及し、日常的な生活が困難になるものと容易に予想される。とくに雪氷圏では、氷河・氷床の消失によって太陽光を反射する雪氷面積が減少し、アルベド効果が減少する。これにより、吸収日射量の増加に伴って気温が上昇する正のフィードバック効果を引き起こすと考えられる。
The global average temperature of the earth continues to rise due to global warming, and a report by the Intergovernmental Panel on Climate Change (IPCC) shows that sea ice tends to decrease as the temperature rises.
Furthermore, considering the melting of glaciers and ice sheets in the polar regions, it is easily predicted that global warming will affect our human activities and make daily life difficult. Especially in the snow and ice region, the disappearance of glaciers and ice sheets reduces the area of snow and ice that reflects sunlight, reducing the albedo effect. This is considered to cause a positive feedback effect in which the temperature rises with an increase in the amount of absorbed solar radiation.

海氷は温暖化を緩衝する役割を持つことから、オホーツク海など海氷が発生する海域をモニタリングする手法を確立し、海氷の変化を継続的に観測することが望まれている。
氷厚は、海氷の質量収支と大気との熱収支を推定する検証データとして大変重要である。
Since sea ice plays a role in buffering global warming, it is desirable to establish a method to monitor sea areas where sea ice occurs, such as the Sea of Okhotsk, and to observe changes in sea ice continuously.
Ice thickness is very important as verification data for estimating the mass balance of sea ice and the heat balance with the atmosphere.

海氷表面から大気への熱輸送を氷厚の違いからモデルにより比較した結果、氷厚が40cm以下の海氷は氷厚が1m以上の海氷よりも大気への熱輸送量が10倍から100倍大きいことが非特許文献1により開示されており、年々生成される海氷の生成量および海氷の質量収支と大気との熱収支を知る上で重要である。
Maykut, G., A.: Energy exchange over young sea ice in central arctic. J. Geophys. Res., 83, pp.3646-3658, 1978.
As a result of comparing the heat transport from the surface of the sea ice to the atmosphere based on the difference in the ice thickness, the sea ice with an ice thickness of 40 cm or less is 10 times the amount of heat transport to the atmosphere than the sea ice with an ice thickness of 1 m or more. Non-Patent Document 1 discloses that the size is 100 times larger, which is important for knowing the amount of sea ice produced every year and the mass balance of sea ice and the heat balance with the atmosphere.
Maykut, G.M. A. : Energy exchange over young sea ice in central arc. J. et al. Geophys. Res. , 83, pp. 3646-3658, 1978.

従来の氷厚観測は、以下の事例が開示されている。   Conventional ice thickness observations have disclosed the following cases.

非特許文献2及び3は、潜水艦および海底に係留された音響ソナーによる海氷のドラフト厚(喫水値)の測定結果について開示している。
Wadhams, P., N. R. Davis, J. C. Comiso, R. Kutz, J. Crawford, G. Jackson, W. Krabill, C. B. Sear, R. Swift and W. B. Tucker III: Concurrent remote sensing of Arctic sea ice from submarine and aircraft, Int. J. Remote Sens., 12, pp.1829-1840, 1991. Hudson, R.: Annual measurement of sea-ice thickness using an upward-looking sonar, Nature, 344(6262), pp.135-137, 1990.
Non-patent documents 2 and 3 disclose measurement results of sea ice draft thickness (draft value) by submarine and acoustic sonar moored on the seabed.
Wadhams, P.M. , N.M. R. Davis, J. et al. C. Comiso, R.A. Kutz, J.A. Crawford, G.M. Jackson, W.M. Krabill, C.I. B. Sear, R.A. Swift and W.M. B. Tucker III: Current remote sensing of Arctic sea from submarine and aircraft, Int. J. et al. Remote Sens. , 12, pp. 1829-1840, 1991. Hudson, R.A. : Annual measurement of sea-ice thickness using an up-locking sonar, Nature, 344 (6262), pp. 135-137, 1990.

また、非特許文献4ないし6は、砕氷船に設置されたビデオカメラなどを使用して、砕氷された破断面を撮影することによる氷厚の測定結果を開示している。
西尾文彦, 土田幸子: オホーツク海の海氷厚の測定と変動, 釧路論集(北海道教育大学釧路分校研究報告), 30, pp.63-86, 1998. 酒田千尋, 中村和樹, 西尾文彦: 流氷観光砕氷船おーろら号による海氷厚観測, 1999年度日本雪氷学会全国大会講演予稿集, pp.182, 1999. 谷口祐司, 中山雅茂, 長幸平, 下田陽久, 坂田俊文: 3次元画像計測による海氷厚測定に関する研究, 第23回極域気水圏シンポジウムプログラム・講演要旨, pp.60-61, 2000.
Non-Patent Documents 4 to 6 disclose the measurement results of ice thickness by photographing a fractured surface that has been crushed using a video camera or the like installed in an icebreaker.
Fumihiko Nishio, Sachiko Tsuchida: Measurement and variation of sea ice thickness in the Sea of Okhotsk, Kushiro Ronshu (Hokkaido University of Education Kushiro Branch School Research Report), 30, pp. 63-86, 1998. Sakata Chihiro, Nakamura Kazuki, Nishio Fumihiko: Sea ice thickness observation by drift ice sightseeing icebreaker Aurora, Proceedings of the 1999 Annual Conference of the Japanese Society of Snow and Ice, pp. 182, 1999. Yuji Taniguchi, Masashi Nakayama, Kohei Nagayama, Yoshihisa Shimoda, Toshifumi Sakata: Research on Sea Ice Thickness Measurement Using Three-Dimensional Image Measurement, 23rd Polar Regions Hydrosphere Symposium Program and Abstract, pp. 60-61, 2000.

非特許文献7は、航空機に搭載されたレーザー高度計による海水面と海氷面の厚さの測定結果について開示している。
石津美津雄, 板部敏和: 航空機搭載レーザ高度計による海氷厚観測と今後の開発研究, 衛星によるオホーツク海氷プログラムのワークショップ, 地球環境観測委員会極域雪氷圏サイエンスチーム, pp.129-141, 1986.
Non-Patent Document 7 discloses a measurement result of the thickness of the sea surface and sea ice surface by a laser altimeter mounted on an aircraft.
Mitsuo Ishizu, Toshikazu Itabe: Observation of sea ice thickness by airborne laser altimeter and future development research, Okhotsk sea ice program workshop by satellite, Earth and Environment Observation Committee Polar Snow and Ice Area Science Team, pp. 129-141, 1986.

非特許文献8では、ヘリコプターや船舶からレーザー高度計と電磁誘導を組み合わせて氷厚を測定するEM(Electric Magnetic)法が考案されている。
Haas, C., S. Gerland, H. Ericken and H. Miller: Comparison of sea-ice thickness measurements under summer and winter conditions in the Arctic using a small electromagnetic induction device, Geophys., 62, pp.749-757, 1997.
In Non-Patent Document 8, an EM (Electric Magnetic) method for measuring ice thickness by combining a laser altimeter and electromagnetic induction from a helicopter or a ship is devised.
Haas, C.I. S. Gerland, H.M. Ericken and H.M. Miller: Comparison of sea-ice thickness measurements under summer and winter conditions in the Arctic using a small electro-magnetic induction. , 62, pp. 749-757, 1997.

しかし、衛星データによる取得領域と比較すると、これらの氷厚の測定方法を広域に適用するためには困難が多い。そこで、リモートセンシングによる氷厚の測定が望まれる。   However, it is more difficult to apply these ice thickness measurement methods over a wide area than the acquisition area by satellite data. Therefore, measurement of ice thickness by remote sensing is desired.

衛星をプラットフォームとするマイクロ波センサによる観測は、アメリカ航空宇宙局(NASA)が1972年に打ち上げた気象衛星Nimbus-5に搭載されたESMR(Electrically Scanning Microwave Radiometer)を使用して開始されたことが非特許文献9に開示されている。
Zwally, H. J., J. C. Comiso, C. L. Parkinson, W. J. Campbell, F. D. Carsey and P. Gloersen: Antarctic Sea Ice, 1973-1976 Satellite Passive Microwave Observations, NASA SP-459, Washington, NASA Scientific and Technical Information Branch, pp.206, 1983.
Observations using satellite-based microwave sensors have been initiated using the ESMR (Electronic Scanning Microwave Radiator) installed in the Meteorological Satellite Nimbus-5 launched by the NASA in 1972. It is disclosed in Non-Patent Document 9.
Zwally, H.M. J. et al. , J. et al. C. Comiso, C.I. L. Parkinson, W.M. J. et al. Campbell, F.M. D. Carsey and P.M. Gloersen: Atlantic Sea Ice, 1973-1976 Satellite Passive Microwave Observations, NASA SP-459, Washington, NASA Scientific and Technical Institutional Technology. 206, 1983.

その後、1978年に打ち上げられたNimbus-7に搭載されたSMMR(Scanning Multichannel Microwave Radiometer)の観測データから、マイクロ波放射計を使用した海氷観測の有効性が非特許文献10に開示されている。
Gloersen, P. et al.: Arctic and Antarctic sea ice, 1978-1987: Satellite passive-microwave observations and analysis, NASA SP-511, 1992.
Subsequently, from the observation data of SMMR (Scanning Multichannel Microwave Radiometer) mounted on Nimbus-7 launched in 1978, the effectiveness of sea ice observation using a microwave radiometer is disclosed in Non-Patent Document 10. .
Gloersen, P.M. et al. : Arctic and Atlantic sea ice, 1978-1987: Satellite passive-microwave observations and analysis, NASA SP-511, 1992.

現在では、DMSP(Defense Meteorological Satellite Program)に搭載されたマイクロ波放射計SSM/I(Special Sensor Microwave/Imager)により定常的な海氷の変動の観測が全球規模で行われるようになった。   At present, observation of steady sea ice fluctuations has been carried out on a global scale by a microwave radiometer SSM / I (Special Sensor Microwave / Imager) mounted on a DMSP (Defense Metalological Satellite Program).

マイクロ波放射計を使用した海氷観測は、一定面積の海域内における氷の割合である海氷密接度を推定することが重要とされ、海氷密接度の推定アルゴリズムは主として非特許文献11ないし15のアルゴリズムが開示されている。
Cavalieri, D. J. and P. Gloersen: Determination of sea ice parameters with the NIMBUS7SMMR, J. Geophys. Res., 89, pp.5355-5369, 1984. Gloersen, P. and D. J. Cavalieri: Reduction of weather effects in the calculation of sea ice concentration from microwave radiances, J. Geophys. Res., 91, pp.3913-3919, 1986. Cavalieri, D. J.: NASA Sea Ice Varidation Program for the Defense Meteorological Satellite Program Special Sensor Microwave Imager: Final Report, NASA Technical Memorandum 104559, pp.126, 1992. Comiso, J. C.: Characteristic of Arctic winter sea ice from satellite multispectral microwave observations, J. Geophys. Res., 91, pp.975-994, 1986. Comiso, J. C.: SSM/I Sea Ice Concentrations Using the Bootstrap Algorithm, NASA Reference Publication 1380, Maryland, NASA Center for AeroSpace Information, pp.57, 1995.
In sea ice observation using a microwave radiometer, it is important to estimate the sea ice density, which is the proportion of ice in a certain area of the sea, and the algorithm for estimating sea ice density is mainly described in Non-Patent Documents 11 to 11. Fifteen algorithms are disclosed.
Cavalieri, D.C. J. et al. and P.M. Gloersen: Determination of sea parameters with the NIBUS7 SMMR, J. MoI. Geophys. Res. , 89, pp. 5355-5369, 1984. Gloersen, P.M. and D.D. J. et al. Cavalieri: Reduction of the effects in the calculation of the ice concentration from microwave radiances, J. Am. Geophys. Res. , 91, pp. 3913-3919, 1986. Cavalieri, D.C. J. et al. : NASA Sea Ice Validation Program for the Defense Metalological Satelite Program Sensor Sensor Microimage Imager: Final Report, NASA 126, 1992. Comiso, J. et al. C. : Characteristic of Arctic winter sea from saline multispectral observations, J .; Geophys. Res. , 91, pp. 975-994, 1986. Comiso, J. et al. C. : SSM / I Sea Ice Concentrations The the Bootstrap Algorithm, NASA Reference Publication 1380, Maryland, NASA Center for AeroSpace Information. 57, 1995.

さらに、季節海氷域であるオホーツク海を対象としたアルゴリズムの開発も研究されており、マイクロ波放射計による海氷密接度推定の有効性の検証が非特許文献16ないし18により開示されている。
Cho, K., N. Sasaki, H. Shimoda, T. Sakata and F. Nishio: Evaluation and Improvement of SMM/I sea ice concentration algorithms for the Sea of Okhtsk, J. Remote Sens. Soc. Jpn, 16 (2), pp.47-58, 1996. 中山雅茂, 長幸平, 下田陽久, 坂田俊文, 谷川朋範, 西尾文彦: オホーツク海一年氷の観測に有効なマイクロ波放射計の周波数帯・偏波の検討, 雪氷, 62 (6), pp.523-535, 2000. Tateyama, K., H. Enomoto, S. Takahashi, K. Shirasaki, K. Hyakutake and F. Nishio: New passive microwave remote sensing technique for sea ice in the Sea of Okhotsk using 85-GHz channel of DMSP SSM/I, Bulletin Glaciol. Res., 17, pp.23-30, 2000.
Further, the development of an algorithm for the Sea of Okhotsk, which is a seasonal sea ice region, has been studied, and verification of the effectiveness of sea ice concentration estimation by a microwave radiometer is disclosed in Non-Patent Documents 16 to 18. .
Cho, K.K. , N.M. Sasaki, H .; Shimoda, T .; Sakata and F.M. Nishio: Evaluation and Improvement of SMM / I sea concentration algorithms for the Sea of Okhtsk, J. et al. Remote Sens. Soc. Jpn, 16 (2), pp. 47-58, 1996. Masashi Nakayama, Kohei Nagayama, Yoshihisa Shimoda, Toshifumi Sakata, Yasunori Tanikawa, Fumihiko Nishio: Examination of the frequency band and polarization of a microwave radiometer effective for observation of the Sea of Okhotsk ice, Snow and Ice, 62 (6), pp. 523-535, 2000. Tateyama, K .; , H .; Enomoto, S.M. Takahashi, K .; Shirasaki, K. et al. Hyakutake and F.H. Nishi: New passive microwave sensing technique for the sea in the Sea of Okhotsk using 85-GHz channel of DMSP Sol / in. Res. , 17, pp. 23-30, 2000.

SSM/Iは広域な観測に有効であるが、NSIDC(National Snow and Ice Data Center)から提供されるグリッドデータは空間分解能が25km×25kmであるため、より高分解能なマイクロ波センサによる海氷観測が期待される。   SSM / I is effective for wide-area observation, but the grid data provided by NSIDC (National Snow and Ice Data Center) has a spatial resolution of 25 km x 25 km, so sea ice observation by a higher resolution microwave sensor There is expected.

高分解能で天候の影響を受けないマイクロ波センサとして、合成開口レーダ(Synthetic Aperture Radar: SAR)が運用されている。   Synthetic Aperture Radar (SAR) is operated as a microwave sensor that has high resolution and is not affected by the weather.

当初、SARは軍用目的であったが、1978年にアメリカが打ち上げたSEASATが初めて民生用に使用された。   Initially, SAR was for military use, but SEASAT, launched by the United States in 1978, was first used for civilian use.

1991年にヨーロッパ宇宙機関(ESA)がERS-1(European Remote Sensing Satellite-1)、1992年に宇宙開発事業団(NASDA)と通商産業省(MITI)が共同でJERS-1(Japanese Earth Resources Satellite-1)、1995年にはESAがERS-1の後継に当たるERS-2、さらに同年にカナダ航空宇宙局(CSA)を主体としてRADARSATが打ち上げられた。 In 1991, the European Space Agency (ESA) joined ERS-1 (European Remote Sensing Satellite-1). -1) In 1995, ESA was launched by ERS-2, the successor to ERS-1, and in the same year, RADARSAT was launched mainly by the Canadian Aerospace Administration (CSA).

SARを使用した海氷の観測は主として、海氷からの後方散乱特性から海氷を分類する手法であり、非特許文献19などに開示されている。
Frank, D. C. (Ed.): Microwave Remote Sensing of Sea Ice, Geophysical Monograph 68, pp.73-104, American Geophysical Union, 2000 Florida Avenue, NW, Washington, 1992.
Sea ice observation using SAR is a technique for classifying sea ice mainly from the backscattering characteristics from sea ice, and is disclosed in Non-Patent Document 19 and the like.
Frank, D.D. C. (Ed.): Microwave Remote Sensing of Sea Ice, Geophysical Monograph 68, pp. 73-104, American Geophysical Union, 2000 Florida Avenue, NW, Washington, 1992.

また、SAR画像上で局所的な閾値を統計的かつ動的に割り当てることにより海氷を分類し、氷厚推定のための初期値を決定する手法が非特許文献20により開示されている。
Haverkamp, D., L. K. Soh and C. Tsatsoulis: A Comprehensive, Automated Approach to Determining Sea Ice Thickness from SAR Data, IEEE Trans. Geosci. Remote Sens., 33(1), pp.46-57, 1995.
Further, Non-Patent Document 20 discloses a method of classifying sea ice by assigning a local threshold value statistically and dynamically on a SAR image and determining an initial value for ice thickness estimation.
Haverkamp, D.H. , L.M. K. Soh and C.M. Tsatsoulis: A Comprehensive, Automated Approach to Determining Sea Ice Thickness from SAR Data, IEEE Trans. Geosci. Remote Sens. , 33 (1), pp. 46-57, 1995.

前述の通り、海氷の変化を継続的に観測することは重要であるが、海氷の質量収支と大気の熱収支の相互関係の知見を得るためには、氷厚の観測が必要不可欠である。
しかし、氷厚の分類結果を基に相対的な氷の厚さの程度を推定するのではなく、SARの後方散乱係数から氷厚そのものを推定する決定的な手法は、SARのマイクロ波と海氷の相互作用の解釈が困難であることから報告されていない。
As mentioned above, it is important to observe sea ice changes continuously, but in order to obtain knowledge about the interrelationship between the sea ice mass balance and the atmospheric heat balance, ice thickness observation is indispensable. is there.
However, rather than estimating the relative ice thickness based on the ice thickness classification results, a decisive method for estimating the ice thickness itself from the SAR backscatter coefficient is the SAR microwave and ocean. It has not been reported due to the difficulty in interpreting ice interactions.

非特許文献21及び22は、北海道サロマ湖を海氷観測のテストサイトとしてSARの海氷観測の有効性を調査した結果、ラフネスが一様もしくは検出できれば氷厚を推定できることを開示している。
Wakabayashi, H. and F. Nishio: A study of ice on Lake Saroma using SAR data, J. Remote Sens. Soc. Jpn. 16(2), pp.59-66, 1996. 中村和樹, 西尾文彦, 若林裕之: 合成開口レーダによるサロマ湖の氷厚分布推定への適用研究, 雪氷, 62 (6), pp.537-548, 2000.
Non-Patent Documents 21 and 22 disclose that, as a result of investigating the effectiveness of SAR sea ice observation using Lake Saroma in Hokkaido as a test site for sea ice observation, if the roughness is uniform or can be detected, the ice thickness can be estimated.
Wakabayashi, H .; and F. Nishi: A study of ice on Lake Sarouma using SAR data, J. MoI. Remote Sens. Soc. Jpn. 16 (2), pp. 59-66, 1996. NAKAMURA Kazuki, NISHIO Fumihiko, WAKABAYASHI Hiroyuki: Application Research to Estimating Ice Thickness Distribution in Lake Saroma by Synthetic Aperture Radar, Yuki, 62 (6), pp. 537-548, 2000.

オホーツク海の海氷は、WMO(Would Meteorological Organization)の海氷分類の定義によれば「薄い一年氷」であり、この氷からの後方散乱は表面散乱が支配的である。   Sea ice in the Sea of Okhotsk is “thin annual ice” according to the definition of WMO (Would Metalological Organization) sea ice classification, and the backscattering from this ice is dominated by surface scattering.

つまり、一年氷からの後方散乱は氷表面のラフネスと誘電率に寄与され、SARにより観測される後方散乱係数からラフネスの検出が可能であれば、誘電率にのみ依存する後方散乱から氷厚を推定できる。このことは、非特許文献23により開示されている。
中村和樹, 西尾文彦, 若林裕之, 浦塚清峰:多入射角SARデータによるサロマ湖氷のラフネスと氷厚の推定, 日本リモートセンシング学会誌, 22 (4), pp.405-422, 2002.
In other words, backscattering from one-year ice contributes to the roughness and dielectric constant of the ice surface, and if the roughness can be detected from the backscattering coefficient observed by SAR, the ice thickness from the backscattering that depends only on the dielectric constant. Can be estimated. This is disclosed in Non-Patent Document 23.
Nakamura Kazuki, Nishio Fumihiko, Wakabayashi Hiroyuki, Uratsuka Kiyomine: Estimation of Roughness and Ice Thickness of Lake Saroma from Multiple Incident Angle SAR Data, Journal of the Remote Sensing Society of Japan, 22 (4), pp. 405-422, 2002.

これまでの衛星搭載SARによる観測は、周波数、入射角、偏波がそれぞれ単一の観測であり、ラフネスと誘電率を同時に推定することが難しい。   Conventional observations using satellite-borne SAR are single observations of frequency, incident angle, and polarization, and it is difficult to estimate roughness and dielectric constant at the same time.

非特許文献23では、多入射角データを使用することにより、観測対象物からの情報が増加するため氷厚の推定が可能になった。   In Non-Patent Document 23, by using multi-incidence angle data, the information from the observation object increases, so that the ice thickness can be estimated.

しかし、多入射角データは同一の場所を1回の観測により複数の入射角データを取得することができない。したがって、同一の場所を極力短いタイムラグで観測する必要があり、これは、衛星の軌道および観測要求などに左右される可能性がある。   However, multiple incident angle data cannot acquire a plurality of incident angle data by observing the same place once. Therefore, it is necessary to observe the same place with as short a time lag as possible, and this may depend on the orbit of the satellite and the observation request.

人工衛星に搭載されるSARは、将来、様々な観測パラメータでデータ取得が可能になるため、多周波、多偏波のSARデータを使用することにより、前述の問題が解決するものと期待されている。
しかし、これまで蓄積されてきたSARデータを利用して、海氷及び気候変動を調べるためには、従来のSARを利用する海氷の観測方法を確立する必要があるが、従来技術では、SARで得られた後方散乱係数から、氷厚を十分精確に推定することはできなかった。
Since the SAR mounted on the satellite will be able to acquire data with various observation parameters in the future, the use of multi-frequency and multi-polarized SAR data is expected to solve the aforementioned problems. Yes.
However, in order to investigate sea ice and climate change using SAR data accumulated so far, it is necessary to establish a sea ice observation method using conventional SAR. The ice thickness could not be estimated with sufficient accuracy from the backscattering coefficient obtained in (1).

そこで、本発明は、塩分や気泡を有する海氷の特性に着目して、後方散乱のメカニズムを明らかにし、それを用いて、従来型SARからの後方散乱係数から氷厚を精確に求める方法を提供することを課題とする。   Therefore, the present invention focuses on the characteristics of sea ice having salinity and bubbles, reveals the mechanism of backscattering, and uses it to accurately determine the ice thickness from the backscattering coefficient from the conventional SAR. The issue is to provide.

上記課題を解決する本発明のSARによる氷厚推定方法は、SARによるリモートセンシングによって、氷厚を推定する方法において、対象氷の氷厚が大きい部位ほど、後方散乱係数が表面散乱を主因として小さければ、その対象氷が一年氷であると判断し、対象氷の氷厚が小さい部位ほど、後方散乱係数が体積散乱を主因として大きければ、その対象氷が多年氷であると判断することを特徴とする。   The ice thickness estimation method using the SAR of the present invention that solves the above problem is a method for estimating the ice thickness by remote sensing using the SAR. The larger the ice thickness of the target ice is, the smaller the backscatter coefficient is due to surface scattering. For example, if the target ice is determined to be one-year ice, and the portion of the target ice having a smaller ice thickness has a larger backscattering coefficient due to volume scattering, the target ice is determined to be perennial ice. Features.

後方散乱係数の閾値を約10dBとして、一年氷と多年氷との分類を行ってもよい。   One year ice and multi-year ice may be classified by setting the threshold value of the backscattering coefficient to about 10 dB.

本発明によると、海氷の特性を考慮に入れた後方散乱のメカニズムに基づくので、後方散乱係数から氷厚を精確に求めることが可能になった。
そのため、海氷の質量収支と大気との熱収支を推定でき、気象予報にも寄与する。
According to the present invention, the ice thickness can be accurately determined from the backscattering coefficient because it is based on a backscattering mechanism that takes into account the characteristics of sea ice.
Therefore, the mass balance of sea ice and the heat balance with the atmosphere can be estimated, contributing to weather forecasts.

本発明者は、海氷のモニタリングのための氷厚推定アルゴリズム開発を目指し、北海道周辺の比較的薄い一年氷の海氷が存在する北海道サロマ湖およびその周辺海域において、衛星SARと同期する海氷の観測データを取得してきた。   The present inventor aims to develop an ice thickness estimation algorithm for monitoring sea ice, and in the Hokkaido Saroma Lake and its surrounding sea area where relatively thin one-year sea ice around Hokkaido exists, and the sea synchronized with the satellite SAR. I have acquired ice observation data.

そのSARデータの解析結果から、サロマ湖の海氷からの後方散乱は、氷厚の増加に伴って減少することが観測され、氷の成長に伴う氷表面の誘電率の変化をSARにより観測できていると推定された。
変形していない一年氷からの後方散乱は、海氷表面の塩分濃度が高い場合、海氷の表面散乱が支配すると考えられ、誘電率の変化を計測できれば、間接的に海氷厚を計測できる。
From the analysis results of the SAR data, it is observed that the backscatter from the sea ice of Lake Saroma decreases with increasing ice thickness, and the change in the dielectric constant of the ice surface as the ice grows can be observed by SAR. It was estimated that
Backscatter from undeformed one-year ice is considered to be dominated by sea ice surface scattering when the salinity of the sea ice surface is high. If the change in dielectric constant can be measured, sea ice thickness can be measured indirectly. it can.

両半球における海氷面積の季節変動は、北半球において7.8×106〜14.5×106kmであり(非特許文献24)、南半球においては、3.6×106〜20.0×106kmである(非特許文献25)。
Parkinson,C.L.,C.Comiso,H.J.Zwally,W.G.Campbell,F.D.Carsey and P.Gloersen(1987):Antarctic sea ice,1973 1976,satellite passive microwave observations,NASA SP 459,Washington,DC,NASA,pp.206. Zwally,H.J.,J.C.Comiso,C.L.Parkinson,W.G.Campbell,F.D.Carsey and P.Gloersen(1983):Antarctic sea ice,1973 1976,satellite passive microwave observations,NASA SP 459,Washington,DC,NASA,pp.206.
The seasonal variation of the sea ice area in both hemispheres is 7.8 × 10 6 to 14.5 × 10 6 km 2 in the northern hemisphere (Non-patent Document 24), and 3.6 × 10 6 to 20.0 × 10 6 km 2 in the southern hemisphere. (Non-patent Document 25).
Parkinson, C.I. L. , C.I. Comiso, H .; J. et al. Zwally, W.M. G. Campbell, F.M. D. Carsey and P.M. Gloersen (1987): Atlantic sea ice, 1973 1976, satellite passive microwave services, NASA SP 459, Washington, DC, NASA, pp. 197 206. Zwally, H.M. J. et al. , J .; C. Comiso, C.I. L. Parkinson, W.M. G. Campbell, F.M. D. Carsey and P.M. Gloersen (1983): Atlantic sea ice, 1973 1976, satellite passive microwave services, NASA SP 459, Washington, DC, NASA, pp. 197 206.

両者を比較すると、最大海氷面積および変化幅は南半球の方が大きい。このことは、海洋に通年存在する多年氷(11.4×106km2)よりも新生氷(23.1×106km2)が2倍もの面積を占めることを示している。新生氷や一年氷に代表される薄氷は、大気・海氷・海洋の熱輸送に大きく関与しており、そのメカニズムの知見を得るためには氷厚の計測が必要となる。 Comparing the two, the maximum sea ice area and the range of change are larger in the Southern Hemisphere. This indicates that new ice (23.1 × 106 km 2 ) occupies twice the area of perennial ice (11.4 × 10 6 km 2 ) that exists in the ocean all year round. Thin ice typified by new ice and one-year ice is greatly involved in the heat transport of the atmosphere, sea ice, and ocean, and it is necessary to measure the ice thickness in order to gain knowledge of the mechanism.

本実施例では、南極海域のリュツォ・ホルム湾の比較的安定して存在する海氷の氷厚推定について検討した結果を示す。さらに、リュツォ・ホルム湾の氷厚推定への適用性について、SARによる後方散乱係数が南極の海氷厚に対してどのような関連性を持つか調べた。   In this example, the results of examining the ice thickness estimation of sea ice that exists relatively stably in Lutzow-Holm Bay in the Antarctic waters are shown. In addition, the applicability of Lutzow-Holm Bay to ice thickness estimation was investigated as to how the SAR backscattering coefficient relates to the Antarctic sea ice thickness.

図1及び2は、それぞれ、SARのマイクロ波と海氷の物理的構造の相互作用に着目して、一年氷および多年氷からの後方散乱メカニズムを示した模式図である。図中の波線矢印は、散乱波が等方的な散乱をすることを示しており、SARは、実線上向き矢印で示すアンテナ方向への散乱波(後方散乱波)を受信している。   FIGS. 1 and 2 are schematic diagrams showing the backscattering mechanism from one-year ice and multi-year ice, focusing on the interaction between the SAR microwave and the physical structure of sea ice, respectively. The wavy arrow in the figure indicates that the scattered wave is isotropically scattered, and the SAR receives the scattered wave (back scattered wave) in the antenna direction indicated by the solid line upward arrow.

一年氷からの後方散乱は、海氷表面の塩分濃度が高くSARのマイクロ波が海氷内部へ透過できないため、海氷の表面散乱が支配するものと考えられる。
海氷の表面散乱は、海氷の表面付近の誘電率とラフネスが寄与し、海氷の表面付近の誘電率は、塩分濃度と温度の影響を受けて変化する。
一般的には、海氷の成長に伴い塩分濃度が低下する傾向がある。したがって、誘電率の変化を計測できれば、間接的に氷厚を計測できる。氷厚と誘電率の関連は、氷の成長に伴う氷体および氷表面の温度低下によるブラインの排出過程にあり、氷厚の増加に伴い塩分濃度が低下することにより誘電率も低下するため、最終的に氷厚の増加に伴い後方散乱係数は減少することになる。
Backscattering from one-year ice is thought to be dominated by surface scattering of sea ice because the SAR microwaves cannot penetrate into the sea ice due to the high salinity of the surface of the sea ice.
Sea ice surface scattering is affected by the dielectric constant and roughness near the surface of the sea ice, and the dielectric constant near the surface of the sea ice changes under the influence of salinity and temperature.
In general, the salinity tends to decrease with the growth of sea ice. Therefore, if the change in dielectric constant can be measured, the ice thickness can be measured indirectly. The relationship between ice thickness and dielectric constant is in the process of discharging brine due to the decrease in temperature of the ice body and ice surface as the ice grows, and the dielectric constant decreases as the salinity decreases as the ice thickness increases. Eventually, the backscatter coefficient decreases with increasing ice thickness.

多年氷の後方散乱は、海氷の成長に伴う脱塩化の作用により海氷表面の塩分濃度が低くなり、夏の融解期を越す頃には、海氷中のほとんどの塩分が海水へ排出される。したがって、多年氷の誘電率は低くSARのマイクロ波は海氷の内部へ到達することから、海氷の体積散乱が支配的となる。
海氷の体積散乱は、海氷の内部構造が寄与し、海氷の内部における気泡、クラック、ブラインチャンネル(ブラインが海氷へ抜け出る細い管状部)等の影響を受ける。体積散乱は、媒質内の誘電体の不連続性と媒質の不均一性の密度に比例することから、主として、氷厚の増加に伴う密度変化に関連して後方散乱係数も増加することになる。
The backscattering of perennial ice is due to the desalination effect of sea ice growth, resulting in a low salinity on the surface of the sea ice. By the time the summer melting period is over, most of the salinity in the sea ice is discharged into the seawater. The Therefore, since the dielectric constant of perennial ice is low and the SAR microwave reaches the inside of the sea ice, the volume scattering of the sea ice becomes dominant.
The sea ice volume scattering is influenced by the internal structure of the sea ice, and is affected by bubbles, cracks, brine channels (thin tubular portions through which the brine escapes into the sea ice), and the like. Volume scattering is proportional to the density of dielectric discontinuities and medium inhomogeneities in the medium, so the backscatter coefficient will also increase primarily in relation to density changes with increasing ice thickness. .

変形していない海氷厚は増加することに伴って、SARで観測される後方散乱係数が減少する傾向があり、この現象について前述の通り定性的に説明した。一年氷とは対照的に、多年氷は海氷厚が増加することに伴って、後方散乱係数が増加する傾向があると言われている。   As the undeformed sea ice thickness increases, the backscattering coefficient observed by SAR tends to decrease. This phenomenon has been qualitatively explained as described above. In contrast to one-year ice, perennial ice is said to have a tendency to increase the backscatter coefficient with increasing sea ice thickness.

一年氷と多年氷が混在するリュツォ・ホルム湾において、日本の南極地域観測隊を昭和基地へ輸送する観測船「しらせ」の航路は、比較的薄い海氷を選んで航行している。リュツォ・ホルム湾は、しらせ氷河や茅氷河から流出した浮氷舌を除けば、比較的変形の少ない海氷や定着氷で覆われている。前述した通り、北半球と南半球の両海域における海氷面積の季節的変動は南半球の方が大きく、多年氷よりも新生氷や一年氷の占める割合が大きいことから大気/海氷/海洋の熱輸送に大きく関与している。   In Lutzow-Holm Bay, where annual and perennial ice is mixed, the route of the observation ship “Shirase”, which transports the Japanese Antarctic observation team to Syowa Station, selects relatively thin sea ice. Lutzow-Holm Bay is covered with sea ice and fixed ice with relatively little deformation, except for the floating ice tongue that has flowed out of Shirase and Glacier glaciers. As mentioned above, the seasonal variation in sea ice area in both the northern and southern hemispheres is larger in the southern hemisphere, and the proportion of new ice and annual ice is greater than that of perennial ice. It is heavily involved in transportation.

リュツォ・ホルム湾は、南半球の海氷を調べるには過去の実測データが存在するなど適した海域と考えられることから、南半球におけるSARによる海氷厚の測定の可能性を調べるため、リュツォ・ホルム湾における氷厚と後方散乱係数の関係を調べた。この関係を導出する際に使用した氷厚データおよびSARデータについては次の通りである。   Lutzow-Holm Bay is considered to be a suitable sea area for the investigation of sea ice in the Southern Hemisphere. For this reason, in order to investigate the possibility of measuring sea ice thickness by SAR in the Southern Hemisphere, The relationship between ice thickness and backscattering coefficient in the bay was investigated. The ice thickness data and SAR data used in deriving this relationship are as follows.

氷厚データは、第43次南極地域観測隊が昭和基地へ向かう航行時において、「しらせ」により砕氷された海氷の破断面を、ビデオカメラを使用して連続的に撮影した画像を解析することにより測定したものである。   The ice thickness data is analyzed by using a video camera to continuously analyze the fracture surface of sea ice broken by “Shirase” during the 43rd Antarctic Observation Team sailing to Syowa Station. It is measured by.

SARデータは、リュツォ・ホルム湾をカバーした2002年1月11日のパス、ローがそれぞれ189、417のデータを使用した。図3に示すSARデータによる衛星画像は,スペックルノイズフィルタリング、ラジオメトリック校正、地図投影の一連の処理を施した結果を示している。ERS-2のラジオメトリック校正に関しては、昭和基地の校正用ターゲットを使用して局所的に校正係数を求め、後方散乱係数への校正変換に使用した。   For the SAR data, 189 and 417 were used for the January 11, 2002 pass covering the Lutzow-Holm Bay and Low, respectively. The satellite image by the SAR data shown in FIG. 3 shows the result of performing a series of processes of speckle noise filtering, radiometric calibration, and map projection. For radiometric calibration of ERS-2, a calibration coefficient was obtained locally using a calibration target at Syowa Station and used for calibration conversion to a backscattering coefficient.

図中、画像の明暗は、後方散乱係数の大きさを表しており、明るいほど後方散乱係数が大きいことを示す。図中の実線(a)は観測船「しらせ」の航路を示す。「しらせ」航路上には多くの氷山があり、氷山の領域を除いた囲み枠(b)、(c)を氷厚と後方散乱係数の導出領域と選定した。なお、囲み枠(b)、(c)は、図4のグラフ(b)(c)にそれぞれ対応する。   In the figure, the brightness of the image represents the size of the backscattering coefficient, and the brighter the image, the larger the backscattering coefficient. The solid line (a) in the figure shows the route of the observation ship “Shirase”. There are many icebergs on the “Shirase” route, and the surrounding frames (b) and (c) excluding the iceberg area were selected as areas for deriving the ice thickness and the backscattering coefficient. Note that the surrounding frames (b) and (c) respectively correspond to the graphs (b) and (c) in FIG.

図4は、リュツォ・ホルム湾において、観測船「しらせ」により砕氷された海氷の破断面を、ビデオカメラを使用した連続的な撮影結果を解析することにより測定した氷厚と後方散乱係数の関係を示すグラフであり、(a)は、図3に示したERS 2の1シーンにおける観測船「しらせ」の航路上の全ての氷厚と後方散乱係数の関係、(b)は、一年氷の氷厚と後方散乱係数の関係(図中の○、□は、それぞれ、薄い一年氷(Thin first year ice)、並の一年氷(Medium First year ice)を示す)、(c)は、多年氷の氷厚と後方散乱係数の関係である。   Fig. 4 shows the ice thickness and backscattering coefficient of Lutzow-Holm Bay, measured by analyzing the results of continuous imaging using a video camera of the fractured surface of sea ice crushed by the observation ship "Shirase". 4A is a graph showing the relationship, and FIG. 3A is a graph showing the relationship between all ice thicknesses on the channel of the observation ship “Shirase” and the backscattering coefficient in one scene of ERS 2 shown in FIG. Relationship between ice thickness and backscattering coefficient (circles and squares in the figure indicate thin first year ice and medium first year ice, respectively), (c) Is the relationship between the ice thickness of the perennial ice and the backscattering coefficient.

図4(a)から、氷厚の増加に伴って、後方散乱係数も増加する正の相関関係が見られた。ただし、「しらせ」の航路上のすべての氷厚データを使用しており、一年氷および多年氷を区別することなく氷厚と後方散乱係数を導出した結果である。   FIG. 4A shows a positive correlation in which the backscattering coefficient increases as the ice thickness increases. However, all the ice thickness data on the Shirase route are used, and the ice thickness and the backscattering coefficient are derived without distinguishing between annual and perennial ice.

ここで、一年氷と多年氷の分類について検討する。南極海であるウェッデル海において、海氷の種類別に後方散乱係数を導出した結果が、非特許文献26に開示されており、これによると、一年氷と多年氷の閾値は9.54dBとなる。また、本実施例による図4に示す結果を考慮すると、一年氷と多年氷との分類に当たっては、後方散乱係数の閾値を10dBとするのが好適である。
Tsatsoulis, C. and R. Kwok(Eds.):Analysis of SAR data of the Polar Oceans, Springer-Verlag, Berlin Heidelberg, pp.145-188, 1998.
Here, we examine the classification of annual and perennial ice. In the Weddell Sea, which is the Antarctic Ocean, the result of deriving the backscattering coefficient for each type of sea ice is disclosed in Non-Patent Document 26. According to this, the threshold value for one-year ice and multi-year ice is 9.54 dB. . In consideration of the result shown in FIG. 4 according to the present embodiment, it is preferable to set the threshold value of the backscattering coefficient to 10 dB when classifying the one-year ice and the multi-year ice.
Tsatsoulis, C.I. and R.R. Kwok (Eds.): Analysis of SAR data of the Polar Oceans, Springer-Verlag, Berlin Heidelberg, pp. 145-188, 1998.

一年氷に関する図4(b)からは、氷厚の増加に伴って後方散乱係数が減少する関係が見られた。この関係は、北海道サロマ湖において見られるものと同様な傾向であり、南極における一年氷についても、氷厚の増加に伴う後方散乱係数の減少が確認できた。   From FIG. 4 (b) regarding the one-year ice, there was a relationship in which the backscattering coefficient decreased as the ice thickness increased. This relationship is similar to that seen in Lake Saroma, Hokkaido, and the decrease in the backscattering coefficient with the increase in ice thickness was confirmed for one-year ice in Antarctica.

多年氷に関する図4(c)からは、氷厚が増加することに伴って後方散乱係数も増加する関係が見られた。この関係は、多年氷について一般的に言われている傾向であり、体積散乱が支配的になることを示す。   From FIG. 4 (c) regarding perennial ice, there is a relationship in which the backscattering coefficient increases as the ice thickness increases. This relationship is a commonly said trend for perennial ice and shows that volume scattering dominates.

以上から、一年氷と多年氷を分類し、一年氷は図4(b)、多年氷は図4(c)から氷厚と後方散乱係数の関係式を算出し、氷の種類に対応する関係式を用いて氷厚を推定してもよい。   Based on the above, the annual ice and perennial ice are classified, and the relationship between the ice thickness and the backscattering coefficient is calculated from the annual ice in Fig. 4 (b) and the multi-year ice in Fig. 4 (c). The ice thickness may be estimated using a relational expression.

海氷厚と後方散乱係数の関係を導出し、海氷からの後方散乱特性を調べた。その結果、一年氷における氷厚と後方散乱係数の関係は負の相関関係が見られ、また、多年氷については一般的に言われているように、氷厚と後方散乱係数の関係は正の相関が見られた。
本発明によると、塩分や気泡などを有する海氷の特性に着目して、後方散乱のメカニズムを明らかにし、それを用いて一年氷と多年氷を分類することで、氷厚を精度高く推定することが可能になった。
これにより、海氷の質量収支と大気との熱収支の推定や気象予報に寄与する。
The relationship between sea ice thickness and backscattering coefficient was derived, and the backscattering characteristics from sea ice were investigated. As a result, there is a negative correlation between the ice thickness and backscattering coefficient in one-year ice, and the relationship between ice thickness and backscattering coefficient is positive, as is generally said for multi-year ice. The correlation was seen.
According to the present invention, focusing on the characteristics of sea ice with salinity and bubbles, etc., the mechanism of backscattering is clarified, and the ice thickness is estimated with high accuracy by using it to classify one-year ice and multi-year ice. It became possible to do.
This contributes to the estimation of the mass balance of sea ice and the heat balance between the atmosphere and weather forecasts.

一年氷からの後方散乱メカニズムを示した模式図Schematic diagram showing the mechanism of backscattering from one-year ice 多年氷からの後方散乱メカニズムを示した模式図Schematic showing the mechanism of backscattering from perennial ice リュツォ・ホルム湾の衛星SAR画像Satellite SAR image of Lutzow-Holm Bay リュツォ・ホルム湾における撮影解析氷厚と後方散乱係数の関係を示すグラフGraph showing the relationship between ice thickness and backscatter coefficient in Lutzow-Holm Bay

Claims (2)

SARによるリモートセンシングによって、氷厚を推定する方法において、
対象氷の氷厚が大きい部位ほど、後方散乱係数が表面散乱を主因として小さければ、その対象氷が一年氷であると判断し、
対象氷の氷厚が小さい部位ほど、後方散乱係数が体積散乱を主因として大きければ、その対象氷が多年氷であると判断する
ことを特徴とするSARによる氷厚推定方法。
In a method for estimating ice thickness by remote sensing using SAR,
If the ice thickness of the target ice is large, if the backscattering coefficient is small mainly due to surface scattering, the target ice is judged to be one-year ice,
A method for estimating ice thickness by SAR, characterized in that if the ice thickness of the target ice is smaller, if the backscattering coefficient is larger mainly due to volume scattering, the target ice is determined to be perennial ice.
後方散乱係数の閾値を約10dBとして、一年氷と多年氷との分類を行う
請求項1に記載のSARによる氷厚推定方法。

The method for estimating ice thickness by SAR according to claim 1, wherein the threshold value of the backscattering coefficient is set to about 10 dB to classify the one-year ice and the multi-year ice.

JP2004103987A 2004-03-31 2004-03-31 Ice thickness estimation method by sar Pending JP2005291782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004103987A JP2005291782A (en) 2004-03-31 2004-03-31 Ice thickness estimation method by sar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004103987A JP2005291782A (en) 2004-03-31 2004-03-31 Ice thickness estimation method by sar

Publications (1)

Publication Number Publication Date
JP2005291782A true JP2005291782A (en) 2005-10-20

Family

ID=35324892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004103987A Pending JP2005291782A (en) 2004-03-31 2004-03-31 Ice thickness estimation method by sar

Country Status (1)

Country Link
JP (1) JP2005291782A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2467347C1 (en) * 2011-04-08 2012-11-20 Министерство промышленности и торговли Российской Федерации (Минпромторг России) Method of detection and high-accuracy determination of marine ice floes and radiolocating system that implements it
CN102866171A (en) * 2012-09-14 2013-01-09 江苏科技大学 Backward electromagnetic scattering coefficient detection module of snow cover-covered sea ice
CN103017668A (en) * 2012-11-30 2013-04-03 国家海洋局第一海洋研究所 Method for calculating sea ice thickness based on hyperspectral remote sensing reflectance
RU2510608C1 (en) * 2012-11-15 2014-04-10 Открытое акционерное общество "Концерн "Океанприбор" Method of measuring thickness of ice from underwater vehicle
WO2016098350A1 (en) * 2014-12-16 2016-06-23 独立行政法人石油天然ガス・金属鉱物資源機構 Remote ice-thickness measurement method, remote ice-strength measurement method, remote measurement method, remote ice-thickness measurement device, remote ice-strength measurement device, and remote measurement body
CN107064890A (en) * 2017-04-11 2017-08-18 南京信息工程大学 A kind of pulse radar sea ice detectivity appraisal procedure
RU2631267C2 (en) * 2015-10-06 2017-09-20 Федеральное государственное бюджетное учреждение науки "Морской гидрофизический институт РАН" Method of remote seawater salinity measurement
RU2660752C1 (en) * 2017-06-14 2018-07-10 Открытое акционерное общество "Авангард" Method of detecting and high-speed determination of parameters of marine ice fields and a radar location system for its implementation
RU2664981C2 (en) * 2015-07-22 2018-08-24 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг) Parametric ice fathometer
CN110276365A (en) * 2018-03-16 2019-09-24 中国科学院遥感与数字地球研究所 A kind of training method and its classification method of the convolutional neural networks for the classification of SAR image sea ice
CN111046885A (en) * 2019-12-12 2020-04-21 厦门大学 Sea ice mapping method based on sentinel I synthetic aperture radar image
RU2730003C1 (en) * 2019-10-22 2020-08-14 Федеральное государственное бюджетное учреждение "Арктический и Антарктический научно-исследовательский институт" (ФГБУ "ААНИИ") Method of determining physical and mechanical and morphometric characteristics of ice hummock formations
CN112307679A (en) * 2020-11-23 2021-02-02 内蒙古工业大学 Method and device for constructing river ice thickness inversion microwave scattering model
RU2750562C1 (en) * 2020-08-12 2021-06-29 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Method for assessing the state of snow and ice cover
RU2750651C1 (en) * 2020-08-12 2021-06-30 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Method for remote determination of state of snow and ice cover
CN113686964A (en) * 2021-09-07 2021-11-23 哈尔滨工程大学 Sea ice thickness observation method based on leakage mode acoustic waveguide characteristics

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2467347C1 (en) * 2011-04-08 2012-11-20 Министерство промышленности и торговли Российской Федерации (Минпромторг России) Method of detection and high-accuracy determination of marine ice floes and radiolocating system that implements it
CN102866171A (en) * 2012-09-14 2013-01-09 江苏科技大学 Backward electromagnetic scattering coefficient detection module of snow cover-covered sea ice
RU2510608C1 (en) * 2012-11-15 2014-04-10 Открытое акционерное общество "Концерн "Океанприбор" Method of measuring thickness of ice from underwater vehicle
CN103017668A (en) * 2012-11-30 2013-04-03 国家海洋局第一海洋研究所 Method for calculating sea ice thickness based on hyperspectral remote sensing reflectance
RU2712969C2 (en) * 2014-12-16 2020-02-03 Джапан Ойл, Гас Энд Металс Нэйшнл Корпорэйшн Method for remote measurement of ice thickness, method for remote measurement of ice strength, device for remote measurement of ice thickness, device for remote measurement of ice strength and remote measuring module
WO2016098350A1 (en) * 2014-12-16 2016-06-23 独立行政法人石油天然ガス・金属鉱物資源機構 Remote ice-thickness measurement method, remote ice-strength measurement method, remote measurement method, remote ice-thickness measurement device, remote ice-strength measurement device, and remote measurement body
JP2016114516A (en) * 2014-12-16 2016-06-23 独立行政法人石油天然ガス・金属鉱物資源機構 Remote ice thickness measuring method, remote ice hardness measuring method, remote measuring method, remote ice thickness measuring device, remote ice hardness measuring device, and remote measuring body
RU2664981C2 (en) * 2015-07-22 2018-08-24 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг) Parametric ice fathometer
RU2631267C2 (en) * 2015-10-06 2017-09-20 Федеральное государственное бюджетное учреждение науки "Морской гидрофизический институт РАН" Method of remote seawater salinity measurement
CN107064890A (en) * 2017-04-11 2017-08-18 南京信息工程大学 A kind of pulse radar sea ice detectivity appraisal procedure
RU2660752C1 (en) * 2017-06-14 2018-07-10 Открытое акционерное общество "Авангард" Method of detecting and high-speed determination of parameters of marine ice fields and a radar location system for its implementation
CN110276365A (en) * 2018-03-16 2019-09-24 中国科学院遥感与数字地球研究所 A kind of training method and its classification method of the convolutional neural networks for the classification of SAR image sea ice
RU2730003C1 (en) * 2019-10-22 2020-08-14 Федеральное государственное бюджетное учреждение "Арктический и Антарктический научно-исследовательский институт" (ФГБУ "ААНИИ") Method of determining physical and mechanical and morphometric characteristics of ice hummock formations
CN111046885A (en) * 2019-12-12 2020-04-21 厦门大学 Sea ice mapping method based on sentinel I synthetic aperture radar image
CN111046885B (en) * 2019-12-12 2023-04-07 厦门大学 Sea ice mapping method based on sentinel I synthetic aperture radar image
RU2750562C1 (en) * 2020-08-12 2021-06-29 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Method for assessing the state of snow and ice cover
RU2750651C1 (en) * 2020-08-12 2021-06-30 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Method for remote determination of state of snow and ice cover
CN112307679A (en) * 2020-11-23 2021-02-02 内蒙古工业大学 Method and device for constructing river ice thickness inversion microwave scattering model
CN113686964A (en) * 2021-09-07 2021-11-23 哈尔滨工程大学 Sea ice thickness observation method based on leakage mode acoustic waveguide characteristics
CN113686964B (en) * 2021-09-07 2023-12-12 哈尔滨工程大学 Sea ice thickness observation method based on leakage modal acoustic waveguide characteristics

Similar Documents

Publication Publication Date Title
Ruf et al. Assessment of CYGNSS wind speed retrieval uncertainty
Ruf et al. In-orbit performance of the constellation of CYGNSS hurricane satellites
JP2005291782A (en) Ice thickness estimation method by sar
Farrell et al. A first assessment of IceBridge snow and ice thickness data over Arctic sea ice
Kern et al. The impact of snow depth, snow density and ice density on sea ice thickness retrieval from satellite radar altimetry: results from the ESA-CCI Sea Ice ECV Project Round Robin Exercise
Dierking Mapping of different sea ice regimes using images from Sentinel-1 and ALOS synthetic aperture radar
Swan et al. Multiyear Arctic sea ice classification using QuikSCAT
Sandven et al. Sea ice monitoring by remote sensing
Paţilea et al. Combined SMAP–SMOS thin sea ice thickness retrieval
Nakamura et al. Observation of sea-ice thickness in the Sea of Okhotsk by using dual-frequency and fully polarimetric airborne SAR (Pi-SAR) data
Schiavulli et al. Observing sea/ice transition using radar images generated from TechDemoSat-1 delay Doppler maps
Zakharova et al. Sea ice leads detection using SARAL/AltiKa altimeter
Stroeve et al. Surface-based Ku-and Ka-band polarimetric radar for sea ice studies
Fors et al. Late summer Arctic sea ice surface roughness signatures in C-band SAR data
Stroeve et al. Rain on snow (ROS) understudied in sea ice remote sensing: a multi-sensor analysis of ROS during MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate)
Xia et al. Assessing three waveform retrackers on sea ice freeboard retrieval from Cryosat-2 using Operation IceBridge Airborne altimetry datasets
Zhao et al. Recent ice cap snowmelt in Russian High Arctic and anti-correlation with late summer sea ice extent
Drinkwater K u band airborne radar altimeter observations of marginal sea ice during the 1984 Marginal Ice Zone Experiment
Strelnikova et al. Advanced hodograph-based analysis technique to derive gravity-wave parameters from lidar observations
Scharien et al. First-year sea ice melt pond fraction estimation from dual-polarisation C-band SAR–Part 1: In situ observations
Li et al. Retrieving ocean surface wind speed from the TRMM precipitation radar measurements
Bruck et al. TerraSAR-X/TanDEM-X sea state measurements using the XWAVE algorithm
Fors et al. Signature of Arctic first-year ice melt pond fraction in X-band SAR imagery
Early et al. Azimuthal modulation of C-band scatterometer/spl sigma//sup 0/over Southern Ocean sea ice
Toyota et al. Measuring deformed sea ice in seasonal ice zones using L-band SAR images

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060428

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060830