JP2005291008A - 圧縮機 - Google Patents

圧縮機 Download PDF

Info

Publication number
JP2005291008A
JP2005291008A JP2004103539A JP2004103539A JP2005291008A JP 2005291008 A JP2005291008 A JP 2005291008A JP 2004103539 A JP2004103539 A JP 2004103539A JP 2004103539 A JP2004103539 A JP 2004103539A JP 2005291008 A JP2005291008 A JP 2005291008A
Authority
JP
Japan
Prior art keywords
valve plate
compressor
nitriding
chamber
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004103539A
Other languages
English (en)
Inventor
Fuminobu Enoshima
史修 榎島
Tetsuhiko Fukanuma
哲彦 深沼
Masaki Ota
太田  雅樹
Kyoichi Kinoshita
恭一 木下
Katsuaki Tanaka
勝章 田中
Motoharu Tanizawa
元治 谷澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2004103539A priority Critical patent/JP2005291008A/ja
Priority to EP05005187A priority patent/EP1582741A2/en
Priority to US11/092,850 priority patent/US20050220632A1/en
Publication of JP2005291008A publication Critical patent/JP2005291008A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/1009Distribution members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/1036Component parts, details, e.g. sealings, lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/10Adaptations or arrangements of distribution members
    • F04B39/1066Valve plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/04Heavy metals
    • F05C2201/0433Iron group; Ferrous alloys, e.g. steel
    • F05C2201/0448Steel
    • F05C2201/0454Case-hardened steel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2203/00Non-metallic inorganic materials
    • F05C2203/08Ceramics; Oxides
    • F05C2203/0804Non-oxide ceramics
    • F05C2203/083Nitrides

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

【課題】新たな部材を設けたり、構造を変更したりせずに、バルブプレートに処理を施すことにより、吸入冷媒ガスの温度上昇を抑制して、圧縮効率を向上させる。
【解決手段】吸入室24及び吐出室25を備えたリヤハウジング14が、シリンダブロック11の端面に対し、弁・ポート形成体13を介して接合されている。弁・ポート形成体13は、バルブプレート26と、吸入弁プレート27と、吐出弁プレート28とで構成されている。バルブプレート26には吸入ポート29及び吐出ポート30が形成されている。バルブプレート26は、磁性軟鉄板あるいは冷間圧延鋼板製で、軟窒化処理が施されている。バルブプレート26には、その両面に窒化物層26aが形成されている。両窒化物層26aは、バルブプレート26の熱伝導率が60W/(mK)以下となる厚さに形成されている。軟窒化処理は、塩浴窒化処理により施されている。
【選択図】 図1

Description

本発明は、鋼製のバルブプレートを備えた圧縮機に関する。
ピストン式圧縮機においては、シリンダブロックに形成されたシリンダボア内にピストンが収容され、吸入室及び吐出室を区画形成するハウジングが、吸入孔及び吐出孔が形成されたバルブプレートを介して、シリンダブロックの端面に対し接合されている。そして、回転軸の回転が駆動機構を介してピストンの往復運動に変換され、ピストンの往復運動により吸入室内の冷媒ガスを吸入孔を通してシリンダボア内の圧縮室に吸入し、圧縮された冷媒ガスを吐出孔を通して吐出室へ吐出するように構成されている。
ハウジングに設けられた吐出室は、圧縮された冷媒ガス(吐出ガス)により高温に加熱されている。そのため、外部冷媒回路から吸入室へ流入した低温の冷媒ガスが、吐出室と吸入室とを区画するハウジングの壁面やバルブプレートを介して伝達される熱により加熱される。そして、吸入室内の冷媒ガスがシリンダボア内の圧縮室へ吸入される以前に加熱されて膨張する状態となり、圧縮室への実質的な冷媒ガスの吸入量が減少し、体積効率が低下するという問題がある。また、吸入冷媒ガスが加熱された場合には、圧縮室で圧縮された圧縮ガスの温度も上昇し、このため吐出冷媒ガスの温度が上昇して、圧縮機や冷房回路のシール部材等の熱による劣化が生じ易いという問題があった。
この問題を解決する手段として、吸入室及び吐出室の区画壁に断熱手段を設けたピストン式圧縮機が提案されている(例えば、特許文献1参照。)。特許文献1に開示された圧縮機は、図9に示すように、吸入室51及び吐出室52を備えたハウジング53が、シリンダブロック54の端面に対し、吸入孔55及び吐出孔56が形成されたバルブプレート57を介して接合されている。吸入室51及び吐出室52は区画壁58により区画され、区画壁58には断熱手段としての断熱溝58aが設けられている。
また、シリンダの端部に、吸込室(吸入室)と吐出室とが形成されたシリンダヘッドを設けた圧縮機において、前記シリンダヘッドを放熱性の良い材料で製造し、かつ、シリンダヘッドの吸入室を断熱材により形成したものも提案されている(例えば、特許文献2参照。)。
また、回転式流体コンプレッサに用いられるベーンの耐摩耗性を高めるため、ベーン形状を呈する鋼材の表面にイオン窒化膜を形成することが開示されている。(例えば、特許文献3参照。)。
特開平5−164042号公報(明細書の段落[0006]、[0012]、図1) 実開平2−31382号公報 特開平5−33119号公報(明細書の段落[0003])
ところが、特許文献1の圧縮機は、区画壁58に断熱溝58aが設けられているため、ハウジング53の構造が従来と異なる構造となり、既存のハウジングを使用できない。また、特許文献2の圧縮機も、吸入室を断熱材により形成するため、吸入室の周囲の構造をそれに対応して変更する必要があり、既存のハウジング等をそのまま使用することができない。
また、特許文献3には、回転式流体コンプレッサ(ベーン圧縮機)のベーンの耐摩耗性を高める表面処理として、ベーンにイオン窒化処理を施すことが開示されている。しかし、この処理は、鋼材の耐摩耗性を高めるためのものであり、窒化処理の本来の使用方法である。そして、特許文献3には窒化処理が鋼材の熱伝導率を下げるために使用することに関しては、何ら記載はなく、それを示唆する記載もない。
本発明は、前記の問題に鑑みてなされたものであって、その目的は、新たな部材を設けたり、構造を変更したりせずに、安価な鉄材製のバルブプレートに処理を施すことにより、吸入冷媒ガスの温度上昇を抑制して、圧縮効率を向上することができる圧縮機を提供することにある。
前記の目的を達成するため、請求項1に記載の発明は、鋼製のバルブプレートを備えた圧縮機であって、前記バルブプレートに対して、その熱伝導率が60W/(mK)以下となるように窒化処理又は軟窒化処理が施されている。例えば、バルブプレートとして冷間圧延鋼板を使用した場合、熱伝導率が80W/(mK)と高いが、バルブプレートに対してその熱伝導率が60W/(mK)以下になるように窒化処理又は軟窒化処理が施されると、吐出室内の冷媒ガスの熱がバルブプレートを介して吸入室内の冷媒ガスに伝達されるのが抑制される。その結果、吸入冷媒ガスの温度上昇が抑制されて、圧縮効率が向上する。また、窒化処理又は軟窒化処理が施されることにより、バルブプレートの硬度が高くなり、バルブプレートが窒化処理又は軟窒化処理を施さないバルブプレートに比較して薄くても必要な強度を確保することができる。また、バルブプレートの素材として安価な鉄材を使用することができる。即ち、この発明では、従来、鋼板の硬度を高めるのに使用されていた表面処理の手法である窒化処理又は軟窒化処理を、これまで考えられていなかったバルブプレートの熱伝導率を低下させる手段として採用することにより、安価な鉄材を使用して前記目的を達成することができる。
請求項2に記載の発明は、請求項1に記載の発明において、前記窒化処理又は軟窒化処理は、塩浴窒化処理である。窒化処理の方法としては、大別すると、ガス窒化法、塩浴窒化法、ガス軟窒化法、イオン窒化法(プラズマ窒化法)がある。ガス窒化法の場合、窒化に適した鋼材(窒化用鋼)以外の鋼材に対しては窒化処理を施すのが難しい。しかし、塩浴窒化法の場合は窒化用鋼に限らず、他の鋼材(鉄材)にも容易に窒化処理(軟窒化処理)を施すことができる。また、塩浴窒化法では、窒化と同時に炭素の拡散浸透(浸炭)も行われる。
請求項3に記載の発明は、請求項1又は請求項2に記載の発明において、前記バルブプレートの素材は、窒化用鋼である。この発明では、窒化処理又は軟窒化処理を容易に行うことができる。
請求項4に記載の発明は、請求項1〜請求項3のいずれか一項に記載の発明において、前記圧縮機は、シリンダブロックに形成されたシリンダボア内にピストンが収容され、ピストンの往復動により、冷媒ガスの吸入及び圧縮・吐出が行われるように構成されたピストン式圧縮機である。この発明では、ピストン式圧縮機において、請求項1〜請求項3のいずれか一項に記載の発明と同様な作用効果を奏する。
請求項5に記載の発明は、請求項4に記載の発明において、前記バルブプレートは、吸入室及び吐出室を形成するハウジングと、前記シリンダブロックとの間に配置され、その両面に窒化物層が形成されている。この発明では、シリンダブロックの両側に形成された窒化物層の合計の厚さと同じ厚さの窒化物層を、バルブプレートの片側にのみ形成した場合に比較して、吸入冷媒ガスの温度上昇が抑制される。
本発明によれば、新たな部材を設けたり、構造を変更したりせずに、安価な鉄材製のバルブプレートに処理を施すことにより、吸入冷媒ガスの温度上昇を抑制して、圧縮効率を向上することができる。
以下、本発明を、車両空調装置の冷凍回路に用いられるピストン式可変容量圧縮機に具体化した一実施形態を図1〜図5に従って説明する。
図1は前記可変容量圧縮機(以下単に圧縮機とする)の縦断面図を示し、図2は図1の弁・ポート形成体部分の模式拡大図、図3は図1のA−A線断面図である。
図1において左方を圧縮機の前方とし、右方を圧縮機の後方とする。図1に示すように、圧縮機10のハウジングは、シリンダブロック11と、該シリンダブロック11の前端に接合固定されたフロントハウジング12と、シリンダブロック11の後端に弁・ポート形成体13を介して接合固定されたリヤハウジング14とを備えている。
前記ハウジング内において、シリンダブロック11とフロントハウジング12との間には、クランク室15が区画形成されている。シリンダブロック11とフロントハウジング12との間には、クランク室15を挿通するようにして、駆動軸16が回転可能に支持されている。駆動軸16には、車両の走行駆動源である図示しないエンジンが作動連結されている。駆動軸16は、エンジンから動力の供給を受けて矢印Rの方向に回転される。
前記クランク室15内において駆動軸16には、実質的に円盤状をなすラグプレート17が一体回転可能に固定されている。クランク室15内には、カムプレートとしての斜板18が収容されている。斜板18の中央部に形成された挿通孔18aには、駆動軸16が挿通されている。ラグプレート17と斜板18との間には、ヒンジ機構19が介在されている。斜板18は、ヒンジ機構19を介したラグプレート17との間でのヒンジ連結、及び挿通孔18aを介した駆動軸16の支持により、ラグプレート17及び駆動軸16と同期回転可能であるとともに、駆動軸16の軸線T方向へのスライド移動を伴いながら駆動軸16に対して傾動可能となっている。
前記シリンダブロック11において駆動軸16の軸線T周りには、複数(図1には一つのみ示す)のシリンダボア20が等角度間隔で前後方向(紙面左右方向)に貫通形成されている。片頭型のピストン21は、各シリンダボア20内に前後方向へ移動可能に収容されている。シリンダボア20の前後開口は、弁・ポート形成体13及びピストン21によって閉塞されており、このシリンダボア20内にはピストン21の前後方向への移動に応じて容積変化する圧縮室22が区画されている。
前記ピストン21は、一対のシュー23を介して斜板18の外周部に係留されている。ハウジング内において弁・ポート形成体13とリヤハウジング14との間には、吸入室24及び吐出室25がそれぞれ区画形成されている。
弁・ポート形成体13は、バルブプレート26と、バルブプレート26のシリンダブロック11側に設けられた吸入弁プレート27と、バルブプレート26のリヤハウジング14側に設けられた吐出弁プレート28とで構成されている。図1及び図3に示すように、バルブプレート26には、各シリンダボア20と相対する位置において、径方向外寄りに吸入ポート29が、径方向内寄りに吐出ポート30がそれぞれ形成されている。吸入弁プレート27には吸入ポート29と対応する位置に吸入弁31が形成され、吐出弁プレート28には吐出ポート30と対応する位置に吐出弁32が形成されている。吐出弁32はバルブプレート26に固定されたリテーナ33によって開放位置が規制されるようになっている。
圧縮機10のハウジング内には、抽気通路34及び給気通路35並びに制御弁36が設けられている。抽気通路34は、クランク室15と吸入室24とを接続する。給気通路35は、吐出室25とクランク室15とを接続する。給気通路35の途中には、電磁弁よりなる周知の制御弁36が配設されている。
次に、前記バルブプレート26について説明する。バルブプレート26は、鋼製(この実施形態では電磁軟鋼製)で、その熱伝導率が60W/(mK)以下となるように軟窒化処理が施されている。バルブプレート26には、その両面に窒化物層26aが形成されている。窒化処理を行った場合、図4の模式断面図に示すように、基材37の表面に窒化物層26aが形成されるとともに、窒化物層26aより深い位置に拡散層37aが形成される。なお、図1及び図2においては拡散層37aの図示を省略している。
バルブプレート26に窒化物層26aを形成した場合の熱伝導率は、後に詳述するが、窒化物層26aの形成方法及び窒化物層26aの厚さによって異なる。そして、例えば、塩浴窒化処理により窒化物層26aを形成した場合は、窒化物層26aの厚さは20μm以上となるように形成される。バルブプレート26の厚さは、例えば、2〜3mmである。窒化物層26aの厚さが厚い方が吸入冷媒ガスの温度上昇の抑制効果が大きく、吸入冷媒ガスの温度上昇の抑制効果の点からは好ましい。しかし、同じ窒化処理方法では、窒化物層26aの厚さが厚い方が軟窒化処理に必要な時間が長くなるため、両者の兼ね合いで窒化物層26aの厚さが設定される。
次に塩浴窒化処理により形成された窒化物層の厚さと、被窒化処理材の熱伝導率との関係について説明する。塩浴窒化処理は公知の塩浴窒化処理で行った。塩浴はシアン酸塩を主成分とする。シアン酸塩としては、シアン酸ソーダ(NaCNO)又はシアン酸カリ(KCNO)を用い、処理温度580〜600℃で被窒化処理材の処理を行った。被窒化処理材として厚さ1mmの電磁軟鉄の板を使用し、研磨なしで処理を行った。結果を図5に示す。
また、窒化処理法として、ガス軟窒化処理を行った場合の結果を図5に合わせて示す。被窒化処理材には、電磁軟鉄を使用した。ガス軟窒化処理は処理温度580℃で行った。結果を図5に合わせて示す。図5において、△が塩浴窒化処理の場合を示し、□がガス軟窒化処理の場合を示す。
図5から、窒化物層(化合物層)の厚さが厚い方が熱伝導率が低くなることが分かった。また、窒化処理方法によって、窒化物層の厚さが同じでも、熱伝導率に差があることも分かった。そして、塩浴窒化処理で窒化物層を形成した場合は、ガス軟窒化処理で窒化物層を形成した場合と比較して、窒化物層の厚さの増加に対する熱伝導率の低下割合が大きいことがわかった。熱伝導率を目的の60W/(mK)以下にするのに必要な窒化物層の厚さは、塩浴窒化処理の場合は20μm以上となる。一方、ガス軟窒化処理の場合は、窒化物層の厚さが、塩浴窒化処理の場合の2倍以上必要なことが分かる。
窒化処理品の熱膨張係数を測定したが、非窒化処理品とほぼ同等の値が得られた。窒化物層の厚さが薄いため、熱膨張係数が殆ど変わらないものと考えられる。
表面硬さを測定した結果、塩浴窒化処理では窒化物層の厚さが19μmで675程度、ガス軟窒化処理では窒化物層の厚さが20μmで580程度であった。
次に、前記のように構成された圧縮機について、その作用を説明する。
駆動軸16の回転に伴い斜板18が一体回転し、斜板18の回転運動がシュー23を介して各ピストン21の往復運動に変換され、各ピストン21が斜板18の傾斜角度(駆動軸16の軸線Tと直交する平面との間でなす角度)に対応したストロークで往復動される。この駆動の継続によって、圧縮室22への吸入室24からの冷媒ガスの吸入、吸入冷媒ガスの圧縮、吐出室25への圧縮冷媒ガスの吐出が順次繰り返される。吸入室24内の冷媒(本実施形態においては二酸化炭素が用いられている)ガスは、各ピストン21の上死点位置から下死点位置側への移動により、吸入ポート29及び吸入弁31を介して圧縮室22へと吸入される。圧縮室22に吸入された冷媒ガスは、ピストン21の下死点位置から上死点位置側への移動により所定の圧力にまで圧縮され、吐出ポート30及び吐出弁32を介して吐出室25へと吐出される。吐出室25に吐出された冷媒は、吐出孔(図示せず)から外部冷媒回路に送り出される。
前記制御弁36の開度を調節することで、給気通路35を介したクランク室15への高圧な吐出ガスの導入量と、抽気通路34を介したクランク室15からのガス導出量とのバランスが制御され、クランク室15の内圧が決定される。クランク室15の内圧の変更に応じて、クランク室15の内圧と圧縮室22の内圧とのピストン21を介した差が変更され、斜板18の傾斜角度が変更される結果、ピストン21のストローク即ち圧縮機10の吐出容量が調節される。
例えば、クランク室15の内圧が低下されると斜板18の傾斜角度が増大し、ピストン21のストロークが増大して圧縮機10の吐出容量が増大される。逆に、クランク室15の内圧が上昇されると斜板18の傾斜角度が減少し、ピストン21のストロークが減少して圧縮機10の吐出容量が減少される。
圧縮機10の運転中においては、圧縮された冷媒ガスが高圧、高温となって吐出室25内に一時貯留される。バルブプレート26が窒化処理又は軟窒化処理の施されていない冷間圧延鋼板や電磁軟鉄で形成されている場合は、バルブプレート26の熱伝導率が80W/(mK)程度のため、吐出室25内の冷媒ガスの熱はバルブプレート26を介して伝達され易い。その結果、吸入室24内の吸入冷媒ガスが加熱されたり、吸入冷媒ガスが吸入ポート29を通過する際に加熱されたりするため、圧縮室22への実質的な冷媒ガスの吸入量が減少し、体積効率が低下する。
しかし、この実施形態では、バルブプレート26に対して、その熱伝導率が60W/(mK)以下になるように窒化物層26aが形成されている。従って、吐出室25内の冷媒ガスの熱がバルブプレート26を介して吸入室24内の冷媒ガスに伝達されるのが抑制される。また、吸入冷媒ガスが吸入ポート29を通過する際に加熱されるのも抑制される。その結果、圧縮室22への実質的な冷媒ガスの吸入量が増加し、体積効率が向上して、圧縮効率も向上する。
バルブプレート26に窒化処理(軟窒化処理)を施した場合、図4に示すように、基材37としてのバルブプレート26の表面に窒化物層26aが形成されるとともに、その内側に窒素の拡散層37aが形成される。そして、窒化物層26a及び拡散層37aがバルブプレート26の熱伝導率の低下及び表面硬化に寄与する。
なお、この実施形態では塩浴窒化処理及びガス軟窒化処理共に被窒化処理材として電磁軟鉄を使用したが、このほかに、例えば、「SPC」、「SPCE」、「SPCD」等の低炭素鋼板が使用できる。
この実施形態では以下の効果を有する。
(1)圧縮機10のバルブプレート26に対して、その熱伝導率が60W/(mK)以下になるように窒化物層26aが形成されている。従って、バルブプレート26の素材として安価な鉄材を使用しても、熱伝導率を60W/(mK)以下にすることができ、吐出室25内の冷媒ガスの熱がバルブプレート26を介して吸入室24内の冷媒ガスに伝達されるのを抑制することができ、吸入冷媒ガスの温度上昇を抑制して、圧縮効率を向上することができる。また、窒化処理(軟窒化処理)が施されることにより、バルブプレート26の硬度が高くなり、バルブプレート26が窒化処理を施さないバルブプレートに比較して薄くても必要な強度を確保することができる。
(2)窒化処理(軟窒化処理)として塩浴窒化処理が行われているため、ガス軟窒化処理に比較して短時間で、目的の熱伝導率以下となる厚さの窒化物層を形成することができる。また、ガス窒化処理と異なり、窒素と炭素が同時に拡散浸透されるため、窒素のみが拡散されるガス窒化処理に比較して、窒素の拡散が促進される。また、ガス窒化処理の場合、窒化に適した鋼材(窒化用鋼)以外の鋼材に対しては窒化処理を施すのが難しい。しかし、塩浴窒化処理の場合は窒化用鋼に限らず、他の鋼材(鉄材)にも容易に窒化処理(軟窒化処理)を施すことができる。ガス軟窒化処理によっても、窒化用鋼以外の鋼材に対して窒化処理(軟窒化処理)を施すことができる。
(3)バルブプレート26の素材に、冷間圧延鋼板や電磁軟鉄板を使用しているため、バルブプレート26への加工性が窒化用鋼に比較して良い。
(4)圧縮機10は、シリンダブロック11に形成されたシリンダボア20内にピストン21が収容され、ピストン21の往復動により、冷媒ガスの吸入及び圧縮・吐出が行われるように構成されたピストン式圧縮機である。従って、他の圧縮機に比較して吸入室24と吐出室25との距離が近く、吐出室25内の熱がバルブプレート26を介して吸入室24内の吸入冷媒ガスに伝達され易い構造であるが、窒化処理(軟窒化処理)という、比較的簡単な処理で吸入冷媒ガスの温度上昇を抑制することができる。
(5)バルブプレート26は、シリンダブロック11と、吸入室24及び吐出室25を形成するリヤハウジング14との間に配置され、その両面に窒化物層26aが形成されている。従って、窒化物層26aの厚さが同じ場合、バルブプレート26の片側にのみ窒化物層26aを形成した場合に比較して、吸入冷媒ガスの温度上昇が抑制される。なぜならば、バルブプレート26のシリンダボア20と対応する側には吸入弁プレート27が存在するが、吸入弁31の周囲にはバルブプレート26に直接圧縮室22内の冷媒ガスと接触する領域が存在する。その結果、圧縮行程において吐出圧まで圧縮された高温の圧縮ガスがバルブプレート26と接触する状態となるため、その部分から熱が吸入ポート29の周囲に伝達されて、吸入冷媒ガスに熱が伝達される。しかし、バルブプレート26の両側に窒化物層26aが形成されていれば、前記の経路による吸入冷媒ガスへの熱伝達が抑制されるからである。
(6)車両空調装置の冷媒として二酸化炭素が用いられている。二酸化炭素冷媒を用いた場合には、例えばフロン冷媒を用いた場合と比較して、単位体積当たりの冷媒能力が大きく、同じ能力の圧縮機ではシリンダボア20の容積が小さく形成される。そのため、吸入室24内の冷媒ガスが加熱されて膨張し、圧縮室22への実質的な冷媒ガスの吸入量が減少した際、体積効率の低下割合が大きくなる。従って、二酸化炭素冷媒を扱う圧縮機10では、吸入冷媒ガスの加熱による膨張を抑制することによる体積効率の向上効果が大きくなる。従って、二酸化炭素冷媒の圧縮を行う圧縮機10に適用するのに特に有効であると言える。
(7)窒化処理(軟窒化処理)を施した場合、基材の表面に薄くて硬い窒化物層26aが形成されるだけでなく、窒化物層26aに連続して窒素の拡散層が形成される。従って、耐摩耗性が向上するとともに、初期なじみもよくなる。
実施形態は前記に限定されるものではなく、例えば次のように構成してもよい。
○ バルブプレート26は、その熱伝導率が60W/(mK)以下になるように窒化処理又は軟窒化処理が施されていればよい。例えば、図6に示すように、リヤハウジング14側にのみ窒化物層26aが形成された構成としたり、図7に示すように、シリンダブロック11側にのみ窒化物層26aが形成された構成としたりしてもよい。窒化物層26aをバルブプレート26の片側にのみ形成する構成の場合は、リヤハウジング14側に窒化物層26aが存在するように形成する方が好ましい。なぜならば、リヤハウジング14側の方が、吐出ガスと対向する面積が広いからである。
○ 吸入室24及び吐出室25の配置は、図8に示すように、吸入室24が内側に配置され、吐出室25が外側に配置される構成としてもよい。
○ 窒化処理又は軟窒化処理は塩浴窒化処理やガス軟窒化処理に限らず、他の窒化処理を行ってもよい。他の窒化処理としては、ガス窒化処理やイオン窒化処理(プラズマ窒化処理)等がある。前述したように窒化物層26aの厚さと、バルブプレート26の熱伝導率との関係は、窒化処理又は軟窒化処理の種類によって異なる場合があるため、目的とする熱伝導率を確保するための窒化物層26aの厚さは、窒化処理又は軟窒化処理の種類によってそれぞれ適正な値に設定される。
○ バルブプレート26の素材は冷間圧延鋼板や電磁軟鉄板に限らず他の鉄材としてもよい。例えば、熱間圧延軟鋼板を使用したり、窒化用鋼を使用したりしてもよい。窒化用鋼を素材とした場合は、他の鉄材に比較して窒化処理(軟窒化処理)を容易に行うことができる。
○ 可変容量型の斜板式圧縮機に限らず、両頭式や固定容量型の斜板式圧縮機に適用してもよい。斜板が駆動軸と一体回転せずに、駆動軸の回転に伴って揺動するタイプ(ワブルタイプ)の斜板式圧縮機に適用してもよい。
○ 圧縮機10のハウジングは、シリンダブロック11をフロントハウジング12及びリヤハウジング14で挟む構成に限らない。例えば、ハウジングをフロントハウジングとリヤハウジングとで構成し、フロントハウジング及びリヤハウジングの一方にクランク室を設け、他方のハウジングにシリンダボアを有するシリンダを嵌入した構成としてもよい。
○ 斜板式以外のピストン式圧縮機に適用したり、ピストン式圧縮機に限らず、スクロール式圧縮機に適用したりしてもよい。
○ 車両空調装置の冷媒として二酸化炭素を用いる圧縮機に限らず、例えば、フロン系冷媒を用いる圧縮機に適用してもよい。
○ 駆動軸16がエンジンから動力の供給を受けて回転される構成に限らず、モータで駆動される構成としてもよい。
○ 車両用空調装置に用いられる圧縮機に限らず、例えば家庭用空調装置に用いられる電動圧縮機に適用してもよい。
○ 空調装置に用いられる圧縮機に限らず、空調装置以外の冷凍サイクル、例えば、冷蔵庫や冷凍庫の冷凍サイクルに用いられる圧縮機に適用してもよい。
以下の技術的思想(発明)は前記実施形態から把握できる。
(1)請求項1又は請求項2に記載の発明において、前記バルブプレートの素材は電磁軟鉄である。
(2)鋼製のバルブプレートを備えた圧縮機であって、前記バルブプレートに対して窒化物層の厚さが20μm以上となるように塩浴窒化処理が施されていることを特徴とする圧縮機。
(3)請求項1〜請求項5及び前記技術的思想(1),(2)のいずれか一項に記載の発明において、冷媒として二酸化炭素が使用されている。
ピストン式可変容量圧縮機に具体化した一実施形態を示す縦断面図。 図1の弁・ポート形成体部分の模式拡大図。 図1のA−A線断面図。 窒化処理が施されたバルブプレートの部分模式断面図。 窒化物層厚さと、熱伝導率との関係を示すグラフ。 別の実施形態の弁・ポート形成体部分の模式拡大図。 別の実施形態の弁・ポート形成体部分の模式拡大図。 別の実施形態の部分断面図。 従来技術の部分断面図。
符号の説明
10…圧縮機、11…シリンダブロック、14…吸入室及び吐出室を形成するハウジングとしてのリヤハウジング、20…シリンダボア、21…ピストン、24…吸入室、25…吐出室、26…バルブプレート、26a…窒化物層。

Claims (5)

  1. 鋼製のバルブプレートを備えた圧縮機であって、前記バルブプレートに対して、その熱伝導率が60W/(mK)以下となるように窒化処理又は軟窒化処理が施されていることを特徴とする圧縮機。
  2. 前記窒化処理又は軟窒化処理は、塩浴窒化処理である請求項1に記載の圧縮機。
  3. 前記バルブプレートの素材は、窒化用鋼である請求項1又は請求項2に記載の圧縮機。
  4. 前記圧縮機は、シリンダブロックに形成されたシリンダボア内にピストンが収容され、ピストンの往復動により、冷媒ガスの吸入及び圧縮・吐出が行われるように構成されたピストン式圧縮機である請求項1〜請求項3のいずれか一項に記載の圧縮機。
  5. 前記バルブプレートは、吸入室及び吐出室を形成するハウジングと、前記シリンダブロックとの間に配置され、その両面に窒化物層が形成されている請求項4に記載の圧縮機。
JP2004103539A 2004-03-31 2004-03-31 圧縮機 Pending JP2005291008A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004103539A JP2005291008A (ja) 2004-03-31 2004-03-31 圧縮機
EP05005187A EP1582741A2 (en) 2004-03-31 2005-03-09 Compressor valve plate coating
US11/092,850 US20050220632A1 (en) 2004-03-31 2005-03-28 Compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004103539A JP2005291008A (ja) 2004-03-31 2004-03-31 圧縮機

Publications (1)

Publication Number Publication Date
JP2005291008A true JP2005291008A (ja) 2005-10-20

Family

ID=34880036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004103539A Pending JP2005291008A (ja) 2004-03-31 2004-03-31 圧縮機

Country Status (3)

Country Link
US (1) US20050220632A1 (ja)
EP (1) EP1582741A2 (ja)
JP (1) JP2005291008A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024536577A (ja) * 2021-10-19 2024-10-04 クノル-ブレムゼ ジステーメ フューア シーネンファールツォイゲ ゲゼルシャフト ミット ベシュレンクテル ハフツング コンプレッサおよびこのようなコンプレッサを備えた車両圧縮空気システム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4626808B2 (ja) * 2005-04-26 2011-02-09 株式会社豊田自動織機 可変容量型クラッチレス圧縮機用の容量制御弁
JP4758728B2 (ja) * 2005-10-25 2011-08-31 サンデン株式会社 往復動型流体機械

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4342605A (en) * 1979-07-05 1982-08-03 Honda Giken Kogyo Kabushiki Kaisha Gas soft-nitriding method
KR100389013B1 (ko) * 2000-01-11 2003-06-25 가부시키가이샤 도요다 지도숏키 피스톤식 압축기 및 그 조립방법
JP2003089831A (ja) * 2001-07-12 2003-03-28 Komatsu Ltd 銅系焼結摺動材料および複層焼結摺動部材

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024536577A (ja) * 2021-10-19 2024-10-04 クノル-ブレムゼ ジステーメ フューア シーネンファールツォイゲ ゲゼルシャフト ミット ベシュレンクテル ハフツング コンプレッサおよびこのようなコンプレッサを備えた車両圧縮空気システム

Also Published As

Publication number Publication date
US20050220632A1 (en) 2005-10-06
EP1582741A2 (en) 2005-10-05

Similar Documents

Publication Publication Date Title
JP5040934B2 (ja) 密閉型圧縮機
JP3896712B2 (ja) 圧縮機
JP2005291008A (ja) 圧縮機
US20210017993A1 (en) Rotary compressor
JP2005264798A (ja) 圧縮機
CN1313496A (zh) 电冰箱
JP2005188407A (ja) ピストン式圧縮機における断熱構造
JP3615609B2 (ja) 斜板式コンプレッサ
KR20120062417A (ko) 사판식 압축기의 사판 제조방법
JP2005344654A (ja) 圧縮機
KR20040092455A (ko) 전동 사판식 압축기
JP4886370B2 (ja) 流体機械
JP2012021400A (ja) 密閉型圧縮機及びこれを備えた冷蔵庫
KR101491160B1 (ko) 압축기
KR101152025B1 (ko) 사판식 압축기
CN219366323U (zh) 一种压缩机气缸以及压缩机泵体
KR20150060199A (ko) 왕복식 압축기
KR101463266B1 (ko) 압축기
WO2012133669A1 (ja) 斜板式圧縮機
JP2011064180A (ja) 冷媒圧縮機及び冷凍サイクル装置
JP4071551B2 (ja) 圧縮機
JP2005163572A (ja) ベーンの製造方法及び冷媒圧縮機
KR101142767B1 (ko) 압축기용 피스톤
JP2006207391A (ja) 流体機械
JP2005291160A (ja) 圧縮機