JP2005289740A - Thermochemical hydrogen producing equipment - Google Patents

Thermochemical hydrogen producing equipment Download PDF

Info

Publication number
JP2005289740A
JP2005289740A JP2004108110A JP2004108110A JP2005289740A JP 2005289740 A JP2005289740 A JP 2005289740A JP 2004108110 A JP2004108110 A JP 2004108110A JP 2004108110 A JP2004108110 A JP 2004108110A JP 2005289740 A JP2005289740 A JP 2005289740A
Authority
JP
Japan
Prior art keywords
fluid
heat
pipe
hydrogen iodide
sulfuric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004108110A
Other languages
Japanese (ja)
Other versions
JP4223985B2 (en
Inventor
Mika Tawara
美香 田原
Kenji Arai
健司 新井
Shigeki Maruyama
茂樹 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004108110A priority Critical patent/JP4223985B2/en
Publication of JP2005289740A publication Critical patent/JP2005289740A/en
Application granted granted Critical
Publication of JP4223985B2 publication Critical patent/JP4223985B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide thermochemical hydrogen producing equipment which does not induce precipitation of iodine when heat supply from a heat source is stopped or when operation of the hydrogen producing equipment is stopped. <P>SOLUTION: The equipment is equipped with: a heat source; a first piping system to transport a first fluid; a second piping system L6, L7 to transport a second fluid, an intermediate heat exchanger to heat exchange the first and second fluids; a sulfuric acid vaporizing and decomposing part 8 and a hydrogen iodide decomposing part 9 to exchange heat with the second fluid; a reactor 10; heat exchange piping L8 to heat exchange the sulfuric acid vaporizing and decomposing part 8 and the hydrogen iodide decomposing part 9; a third piping system L61, L62 to transport a third fluid; a heat exchanger 6 to impart the heat of the second fluid into the third fluid; a first valve V1 to control the distribution of the flow rate to the heat exchanger 6 and to the second piping system; a third fluid introducing piping system L14 to introduce the third fluid into hydrogen iodide transporting piping L22 directing to the hydrogen iodide decomposing part 9; a second valve V2 to control the flow rate of the third fluid; and a connecting part V3 which makes the third fluid join the hydrogen iodide flowing in the hydrogen iodide transporting piping L22. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

熱化学法(IS法またはSI法)を利用して水素を製造する熱化学的水素製造設備に関する。   The present invention relates to a thermochemical hydrogen production facility for producing hydrogen using a thermochemical method (IS method or SI method).

水素製造設備の一つとして熱化学法(IS法またはSI法)を利用した熱化学的水素製造設備が考案されている。このような熱化学的水素製造設備としては、例えば特許文献1において開示されているように、ヨウ素と二酸化硫黄と水との反応によりヨウ化水素及び硫酸を生成し、ヨウ化水素を分解してヨウ素と水素を生成すると共に、硫酸を335℃ないし950℃の間の温度に加熱して蒸発・分解させ二酸化硫黄と酸素を生成し、水素と酸素を回収して、ヨウ素と二酸化硫黄を再び水と反応させるという一般にIS法と呼ばれる水素製造方法のための設備がある。   As one of the hydrogen production facilities, a thermochemical hydrogen production facility using a thermochemical method (IS method or SI method) has been devised. As such a thermochemical hydrogen production facility, for example, as disclosed in Patent Document 1, hydrogen iodide and sulfuric acid are produced by reaction of iodine, sulfur dioxide and water, and hydrogen iodide is decomposed. In addition to producing iodine and hydrogen, sulfuric acid is heated to a temperature between 335 ° C. and 950 ° C. to evaporate and decompose to produce sulfur dioxide and oxygen. Hydrogen and oxygen are recovered, and iodine and sulfur dioxide are re-watered. There is equipment for a hydrogen production process, generally called the IS process.

また、このような水素製造設備で硫酸を分解するために必要な熱源として、例えば非特許文献1のように高温ガス炉を用いることが検討されている。
特公昭60−52081 http://httrntsy.oarai.jacri.go.jp/index_top.html
Further, as a heat source necessary for decomposing sulfuric acid in such a hydrogen production facility, use of a high-temperature gas furnace as in Non-Patent Document 1, for example, has been studied.
Shoko 60-52081 http://httrntsy.oarai.jacri.go.jp/index_top.html

上述したIS法による熱化学的水素製造設備においては、ヨウ素の融点が約114℃であるため、ヨウ素を含むガスあるいは溶液が114℃以下になると、反応容器内あるいは配管、弁、ポンプ内でヨウ素が析出し、水素製造プラントの運転に支障が生じる可能性があり、プラントの温度管理及びプラント停止時のヨウ素析出対策が課題であった。   In the thermochemical hydrogen production facility using the IS method described above, since the melting point of iodine is about 114 ° C., when the gas or solution containing iodine becomes 114 ° C. or lower, iodine in the reaction vessel or in the piping, valves, and pumps. This may cause problems in the operation of the hydrogen production plant, and temperature management of the plant and measures against iodine precipitation when the plant is stopped have been problems.

本発明は、上述した課題を解決するためになされたものであり、熱源からの熱の供給停止時及び水素製造設備運転停止時にヨウ素の析出を起こすことなく設備を常温に戻すことのできる熱化学的水素製造設備を得ることを目的とする。   The present invention has been made in order to solve the above-described problems, and is capable of returning the equipment to room temperature without causing iodine precipitation when the supply of heat from the heat source is stopped and when the hydrogen production equipment is stopped. The purpose is to obtain a hydrogen production facility.

本発明の熱化学的水素製造設備は、熱源2と、前記熱源2と熱交換する第1の流体を輸送する第1の配管系L2〜L5と、第2の流体を輸送する第2の配管系L6,L7と、前記第1の配管系L3および前記第2の配管系L7にそれぞれ接続され、前記第1の流体と前記第2の流体とを熱交換させる中間熱交換器4と、前記第2の流体と熱交換して硫酸を蒸発・分解する硫酸蒸発分解部8と、前記第2の流体と熱交換してヨウ化水素を分離・分解するヨウ化水素分解部9と、前記硫酸蒸発分解部8および前記ヨウ化水素分解部9にそれぞれセパレータを介して接続され、二酸化硫黄とヨウ素と水を反応させて硫酸およびヨウ化水素を生成する反応器10と、前記第2の配管系L6,L7が前記硫酸蒸発分解部8と接する部分よりも上流側で前記第2の配管系L6,L7から分岐し、前記硫酸蒸発分解部8および前記ヨウ化水素分解部9とそれぞれ熱交換する熱交換配管L8と、第3の流体を輸送する第3の配管系L61,L62と、前記第2の配管系L6,L7を介して前記熱交換配管L8に接続され、前記第2の流体の熱を前記第3の流体に付与する熱交換器6と、前記第2の配管系L6,L7から前記熱交換配管L8が分岐するところに設けられ、前記熱交換器6への前記第2の流体の流量と前記第2の配管系への前記第2の流体の流量との配分を調整する第1の弁V1と、前記第3の配管系の熱交換器6の出口側で前記第3の配管系L62から分岐して、前記ヨウ化水素分解部9へ向かうヨウ化水素輸送配管L22に前記第3の流体を導入する第3の流体導入配管L14と、前記第3の流体導入配管L14が前記第3の配管系L62から分岐するところに設けられ、前記第3の流体の流量を調整する第2の弁V2と、前記第3の流体導入配管L14が前記ヨウ化水素輸送配管L22に接続されるところに設けられ、前記第3の流体を前記ヨウ化水素輸送配管L22内を流れるヨウ化水素に合流させる接続部V3と、廃棄物を排出するための排出管L15を介して前記反応器10に接続された廃棄物処理設備16と、前記熱交換配管L8が前記硫酸蒸発分解部8と接する部分よりも下流側で、かつ、前記熱交換配管L8が前記ヨウ化水素分解部9と接する部分よりも上流側に接続され、前記第2の流体を前記硫酸蒸発分解部8と熱交換することなく前記ヨウ化水素分解部9へバイパスさせるバイパス配管L13と、前記バイパス配管L13が前記第2の配管系L6から分岐するところに設けられ、前記バイパス配管L13への前記第2の流体の流量と前記第2の配管系への前記第2の流体の流量との配分を調整する第4の弁V4と、前記バイパス配管L13が前記熱交換配管L8に合流するところに設けられ、前記バイパス配管L13から前記熱交換配管L8へ流れ込む流量配分を調整する第5の弁V5とを具備することを特徴とする。   The thermochemical hydrogen production facility of the present invention includes a heat source 2, first piping systems L2 to L5 that transport a first fluid that exchanges heat with the heat source 2, and a second piping that transports a second fluid. An intermediate heat exchanger 4 connected to the systems L6, L7, and the first piping system L3 and the second piping system L7, respectively, for exchanging heat between the first fluid and the second fluid; A sulfuric acid evaporative decomposition unit 8 that exchanges heat with the second fluid to evaporate and decompose sulfuric acid, a hydrogen iodide decomposition unit 9 that exchanges heat with the second fluid to separate and decompose hydrogen iodide, and the sulfuric acid A reactor 10 connected to the evaporative decomposition unit 8 and the hydrogen iodide decomposition unit 9 via a separator, respectively, to react with sulfur dioxide, iodine and water to produce sulfuric acid and hydrogen iodide; and the second piping system L6 and L7 are upstream of the portion in contact with the sulfuric acid evaporative decomposition portion 8 and upstream. A heat exchange pipe L8 that branches from the second piping systems L6 and L7 and exchanges heat with the sulfuric acid evaporative decomposition section 8 and the hydrogen iodide decomposition section 9 respectively, and a third piping system L61 that transports a third fluid. , L62 and the heat exchanger 6 connected to the heat exchange pipe L8 via the second pipe systems L6, L7, and applying the heat of the second fluid to the third fluid, and the second The heat exchange pipe L8 is branched from the pipe systems L6, L7, and the flow rate of the second fluid to the heat exchanger 6 and the flow rate of the second fluid to the second pipe system are provided. The first valve V1 that adjusts the distribution of the water and the third piping system L62 on the outlet side of the heat exchanger 6 of the third piping system, branching from the third piping system L62 to the hydrogen iodide decomposition section 9 A third fluid introduction pipe L14 for introducing the third fluid into the hydrogen fluoride transport pipe L22; The third fluid introduction pipe L14 is provided where the third pipe system L62 branches, the second valve V2 for adjusting the flow rate of the third fluid, and the third fluid introduction pipe L14. A connection portion V3 provided at a place connected to the hydrogen iodide transport pipe L22 and joining the third fluid to hydrogen iodide flowing in the hydrogen iodide transport pipe L22, and for discharging waste The waste treatment facility 16 connected to the reactor 10 via the discharge pipe L15, the downstream side of the portion where the heat exchange pipe L8 is in contact with the sulfuric acid evaporative decomposition section 8, and the heat exchange pipe L8 A bypass pipe L13 connected to the upstream side of the portion in contact with the hydrogen iodide decomposition unit 9 and bypassing the second fluid to the hydrogen iodide decomposition unit 9 without exchanging heat with the sulfuric acid evaporation decomposition unit 8; The above A bypass pipe L13 is provided where the second pipe system L6 branches, and the flow rate of the second fluid to the bypass pipe L13 and the flow rate of the second fluid to the second pipe system are A fourth valve V4 for adjusting the distribution and a fifth valve for adjusting the flow distribution flowing from the bypass pipe L13 to the heat exchange pipe L8, provided where the bypass pipe L13 joins the heat exchange pipe L8. And V5.

熱化学法(IS法)では下記の反応式(1)(2)(3)に従って水素生成のための反応が進行する。   In the thermochemical method (IS method), the reaction for hydrogen generation proceeds according to the following reaction formulas (1), (2), and (3).

2H2O+SO2+3I2=H2SO4+2HI3 …(1)
2SO4→SO2+1/2O2 …(2)
2HI3→3I2+3H2 …(3)
反応器では、温度100〜120℃、大気圧〜20気圧の条件下で、上式(1)の左辺から右辺へあるいは右辺から左辺へ化学反応が可逆的に進行する。
2H 2 O + SO 2 + 3I 2 = H 2 SO 4 + 2HI 3 (1)
H 2 SO 4 → SO 2 + 1 / 2O 2 (2)
2HI 3 → 3I 2 + 3H 2 (3)
In the reactor, the chemical reaction proceeds reversibly from the left side to the right side of the above formula (1) or from the right side to the left side under the conditions of a temperature of 100 to 120 ° C. and an atmospheric pressure to 20 atm.

硫酸蒸発分解部の分解器では、温度約900℃、大気圧〜20気圧の条件下で、上式(2)の左辺から右辺へ化学反応が不可逆的に進行する。   In the decomposer of the sulfuric acid evaporative decomposition section, the chemical reaction irreversibly proceeds from the left side to the right side of the above formula (2) under the conditions of a temperature of about 900 ° C. and atmospheric pressure to 20 atm.

ヨウ化水素分解部の分解器では、温度約450℃、大気圧〜20気圧の条件下で、上式(3)の左辺から右辺へ化学反応が不可逆的に進行する。   In the decomposer of the hydrogen iodide decomposition unit, the chemical reaction irreversibly proceeds from the left side to the right side of the above formula (3) under conditions of a temperature of about 450 ° C. and atmospheric pressure to 20 atm.

本発明によれば、水素製造設備を停止して常温に戻す前に、ヨウ素の析出温度よりも高温の水で洗浄するので、水素製造設備を常温に戻したときのヨウ素の析出を有効に防止することができる。   According to the present invention, before the hydrogen production facility is stopped and returned to room temperature, it is washed with water having a temperature higher than the iodine precipitation temperature, so that the precipitation of iodine when the hydrogen production facility is returned to room temperature is effectively prevented. can do.

また、洗浄用の高温水の生成を、硫酸蒸発分解部をバイパスした二次系Heの熱を利用して行うために、高温水生成のための特別な熱源を必要としない。さらに、洗浄用の高温水の準備中及び洗浄中を通して、ヨウ化水素分解部が二次系Heでヨウ素析出温度よりも高い温度に維持されるため、プラント停止措置中のヨウ素の析出を防止できる。   Further, since the high-temperature water for cleaning is generated using the heat of the secondary system He bypassing the sulfuric acid evaporative decomposition section, no special heat source for generating the high-temperature water is required. Furthermore, since the hydrogen iodide decomposition part is maintained at a temperature higher than the iodine precipitation temperature in the secondary system He during the preparation and cleaning of the high-temperature water for washing, precipitation of iodine during the plant stoppage can be prevented. .

以下、本発明の様々な最良の実施の形態について添付の図面を参照して説明する。   Hereinafter, various exemplary embodiments of the present invention will be described with reference to the accompanying drawings.

まず、図1及び図2を用いて本発明の第1の実施形態を説明する。また、図3に熱化学的水素製造設備における物質の流れの例を示す。ここでは熱源として高温ガス炉を利用した場合を例として説明を行うが、熱源としては850℃以上の熱が得られるものならば何でも良く、高温ガス炉以外の原子炉あるいは焼却設備やコークス炉なども熱源として利用可能である。   First, a first embodiment of the present invention will be described with reference to FIGS. FIG. 3 shows an example of the material flow in the thermochemical hydrogen production facility. Here, the case where a high temperature gas furnace is used as a heat source will be described as an example. However, any heat source can be used as long as heat of 850 ° C. or higher can be obtained. Can also be used as a heat source.

先ず図1を参照して熱化学的水素製造設備の全体の概要について説明する。   First, an overview of the entire thermochemical hydrogen production facility will be described with reference to FIG.

熱化学的水素製造設備1は、熱源としての高温ガス炉2と、高温ガス炉2から熱を取り出すための一次系HeラインL2〜L5と、一次系HeラインL2〜L5から熱を取り出すための二次系HeラインL6,L7と、一次系HeラインL2と二次系HeラインL6,L7との間で熱交換を行う熱交換部HE3を有する中間熱交換器4と、一次系HeラインL2〜L5からの除熱量を調整するための一次加圧水冷却器5と、二次系HeラインL7からの除熱量を調整するための二次加圧水冷却器6と、原子炉隔離時の崩壊熱除去系である補助冷却器7とを備えている。一次加圧水冷却器5および二次加圧水冷却器6は循環ポンプP1を備えた熱交換器HE1にラインL61,L62を介して接続され、一次加圧水と二次加圧水が熱交換されるようになっている。また、補助冷却器7は循環ポンプP2を備えた熱交換器HE2にラインL71,L72を介して接続され、非常時の緊急冷却水が供給されるようになっている。   The thermochemical hydrogen production facility 1 includes a high-temperature gas furnace 2 as a heat source, a primary system He lines L2 to L5 for extracting heat from the high-temperature gas furnace 2, and a system for extracting heat from the primary system He lines L2 to L5. An intermediate heat exchanger 4 having a heat exchange section HE3 for exchanging heat between the secondary system He lines L6 and L7, the primary system He line L2 and the secondary system He lines L6 and L7, and the primary system He line L2 ~ Primary pressurized water cooler 5 for adjusting the heat removal amount from L5, Secondary pressurized water cooler 6 for adjusting the heat removal amount from the secondary system He line L7, and decay heat removal system at the time of reactor isolation The auxiliary cooler 7 is provided. The primary pressurized water cooler 5 and the secondary pressurized water cooler 6 are connected to a heat exchanger HE1 provided with a circulation pump P1 via lines L61 and L62 so that the primary pressurized water and the secondary pressurized water are heat-exchanged. . The auxiliary cooler 7 is connected to a heat exchanger HE2 provided with a circulation pump P2 via lines L71 and L72, and emergency emergency cooling water is supplied.

さらに、二次系HeラインL6,L7は、図2に示す流量配分調整弁V1,V2を介して本発明の水素製造設備1の熱交換ラインL8に接続されている。   Furthermore, the secondary system He lines L6 and L7 are connected to the heat exchange line L8 of the hydrogen production facility 1 of the present invention via the flow distribution adjusting valves V1 and V2 shown in FIG.

(第1の実施形態)
図2を参照して本発明の第1実施形態の熱化学的水素製造設備1について説明する。
第1の実施形態の設備1は、硫酸蒸発分解部8、ヨウ化水素分解部9、反応器10、二相分離器11、硫酸(H2SO4)濃縮器12、二次系HeバイパスラインL13、高温水ラインL14、排出ラインL15、廃棄物処理設備16、流量配分調整弁V1,V2,V4,V5、分岐弁V3および設備各部を監視するとともに設備各部の動作を制御する制御器(図示せず)を備えている。
(First embodiment)
A thermochemical hydrogen production facility 1 according to a first embodiment of the present invention will be described with reference to FIG.
The equipment 1 of the first embodiment includes a sulfuric acid evaporative decomposition unit 8, a hydrogen iodide decomposition unit 9, a reactor 10, a two-phase separator 11, a sulfuric acid (H 2 SO 4 ) concentrator 12, and a secondary He bypass line. L13, high-temperature water line L14, discharge line L15, waste treatment facility 16, flow distribution adjusting valves V1, V2, V4, V5, branch valve V3 and a controller that controls each part of the facility and controls the operation of each part of the facility (FIG. Not shown).

硫酸蒸発分解部8は、硫酸(H2SO4)蒸発器81およびSO3分解器82を有し、これらが二次系HeラインL6,L7に流量配分調整弁V1を介して接続された熱交換ラインL8とそれぞれ熱交換するように設計されている。すなわち、熱交換ラインL8の熱交換部HE4はSO3分解器82の内部流体(硫酸蒸気)と熱交換して、硫酸蒸気を約900℃に加熱するようになっている。また、熱交換ラインL8の熱交換部HE5は硫酸蒸発器81の内部流体(濃硫酸液)と熱交換して、濃硫酸液を約500℃に加熱するようになっている。 The sulfuric acid evaporative decomposition unit 8 has a sulfuric acid (H 2 SO 4 ) evaporator 81 and an SO 3 decomposer 82, and these are connected to the secondary system He lines L 6 and L 7 through the flow distribution adjusting valve V 1. It is designed to exchange heat with the exchange line L8. That is, the heat exchanging unit HE4 of the heat exchange line L8 exchanges heat with the internal fluid (sulfuric acid vapor) of the SO 3 decomposer 82 and heats the sulfuric acid vapor to about 900 ° C. Further, the heat exchanging unit HE5 of the heat exchange line L8 exchanges heat with the internal fluid (concentrated sulfuric acid solution) of the sulfuric acid evaporator 81 to heat the concentrated sulfuric acid solution to about 500 ° C.

流量配分調整弁V1は、熱媒流体である二次系Heを中間熱交換器4のラインL7と水素製造設備1の熱交換ラインL8とに所望の割合で分配するものであり、その動作は中央コントロールルームの制御器(図示せず)によって制御されるようになっている。また、流量配分調整弁V4は、二次系HeラインL6からバイパスラインL13が分岐するところに設けられ、二次系Heを熱交換ラインL8とバイパスラインL13とに所望の割合で分配するものであり、その動作は中央コントロールルームの主制御器(図示せず)によって制御されるようになっている。バイパスラインL13の下流側は、硫酸蒸発分解部8の出口側の弁V5を介して熱交換ラインL8に合流するように接続されている。   The flow distribution adjusting valve V1 distributes the secondary system He, which is a heat transfer fluid, to the line L7 of the intermediate heat exchanger 4 and the heat exchange line L8 of the hydrogen production facility 1 at a desired ratio. It is controlled by a controller (not shown) in the central control room. The flow distribution adjusting valve V4 is provided where the bypass line L13 branches from the secondary system He line L6, and distributes the secondary system He to the heat exchange line L8 and the bypass line L13 at a desired ratio. The operation is controlled by a main controller (not shown) in the central control room. The downstream side of the bypass line L13 is connected so as to join the heat exchange line L8 via a valve V5 on the outlet side of the sulfuric acid evaporative decomposition unit 8.

硫酸蒸発分解部8は、二相分離器11、硫酸濃縮器12およびセパレータ13との間に循環回路L23〜L28を有するものである。二相分離器11で分離された硫酸はラインL23を通って硫酸濃縮器12へ送られ、濃縮された濃硫酸液はラインL24を通って硫酸蒸発分解部8の硫酸蒸発器81へ送られ、硫酸蒸気はラインL25を通って硫酸蒸発分解部8のSO3分解器82へ送られ、分解された二酸化硫黄と酸素および未分解の硫酸と水はラインL26を通ってセパレータ13へ送られる途中で熱交換部HE8とHE9においてラインL25および硫酸濃縮器12とそれぞれ熱交換された後に、セパレータ13によって二酸化硫黄/酸素と未分解硫酸/水とに分離され、前者はラインL27を通って反応器10へ送られ、後者はラインL28を通って硫酸濃縮器12へ送られるようになっている。一方、二相分離器11で分離されたヨウ化水素はラインL21,L22を通ってヨウ化水素分解部9の電解電気透析器91へ送られるようになっている。 The sulfuric acid evaporative decomposition unit 8 has circulation circuits L23 to L28 between the two-phase separator 11, the sulfuric acid concentrator 12, and the separator 13. The sulfuric acid separated by the two-phase separator 11 is sent to the sulfuric acid concentrator 12 through the line L23, and the concentrated concentrated sulfuric acid solution is sent to the sulfuric acid evaporator 81 of the sulfuric acid evaporative decomposition unit 8 through the line L24. The sulfuric acid vapor is sent to the SO 3 decomposer 82 of the sulfuric acid evaporative decomposition section 8 through the line L25, and the decomposed sulfur dioxide and oxygen and undecomposed sulfuric acid and water are sent to the separator 13 through the line L26. After heat exchange with the line L25 and the sulfuric acid concentrator 12 in the heat exchange parts HE8 and HE9, respectively, the separator 13 separates the sulfur dioxide / oxygen and undecomposed sulfuric acid / water into the reactor 10 through the line L27. The latter is sent to the sulfuric acid concentrator 12 through the line L28. On the other hand, the hydrogen iodide separated by the two-phase separator 11 is sent to the electrolytic electrodialyzer 91 of the hydrogen iodide decomposition unit 9 through lines L21 and L22.

ヨウ化水素分解部9は、順次直列に接続された電解電気透析器91、ヨウ化水素蒸留器92、ヨウ化水素分解器93およびセパレータ94を備えている。上述の熱交換ラインL8は、弁V5の下流側において、ヨウ化水素分解部9のヨウ化水素蒸留器92およびヨウ化水素分解器93とそれぞれ熱交換しうるように接触している。すなわち、熱交換ラインL8の熱交換部HE6はヨウ化水素分解器93の内部流体(ヨウ化水素蒸気)と熱交換して、ヨウ化水素蒸気を約450℃に加熱するようになっている。また、熱交換ラインL8の熱交換部HE7はヨウ化水素蒸留器92内部流体(透析ヨウ化水素)と熱交換して、透析ヨウ化水素を約120℃に加熱するようになっている。なお、ヨウ化水素分解部9のセパレータ94は、生成したヨウ素を未分解のヨウ化水素から分離してラインL32を通って反応器10へ送るとともに、未分解のヨウ化水素をラインL31を通ってヨウ化水素分解器93へ戻すものである。   The hydrogen iodide decomposition unit 9 includes an electrolytic electrodialyzer 91, a hydrogen iodide distiller 92, a hydrogen iodide decomposer 93, and a separator 94 that are sequentially connected in series. The heat exchange line L8 described above is in contact with the hydrogen iodide distiller 92 and the hydrogen iodide decomposer 93 of the hydrogen iodide decomposition unit 9 so as to be able to exchange heat on the downstream side of the valve V5. That is, the heat exchanging unit HE6 of the heat exchange line L8 exchanges heat with the internal fluid (hydrogen iodide vapor) of the hydrogen iodide decomposer 93 to heat the hydrogen iodide vapor to about 450 ° C. The heat exchange section HE7 of the heat exchange line L8 exchanges heat with the hydrogen iodide distiller 92 internal fluid (dialysis hydrogen iodide) to heat the dialysis hydrogen iodide to about 120 ° C. The separator 94 of the hydrogen iodide decomposition unit 9 separates the produced iodine from undecomposed hydrogen iodide and sends it to the reactor 10 through the line L32, and the undecomposed hydrogen iodide passes through the line L31. To return to the hydrogen iodide decomposer 93.

反応器10は、二酸化硫黄と水とヨウ素から硫酸とヨウ化水素を生成するために特殊な触媒と内部流路を備えている。この反応器10は、上述したヨウ化水素分解部9との間に循環回路を形成することなく、排出ラインL15によって廃棄物処理設備16に接続されている。反応器10内に蓄積されたヨウ素系廃棄物は、保守点検時に開閉弁V6を開けて、反応器10から廃棄物処理設備16へ排出される。   The reactor 10 includes a special catalyst and an internal flow path for producing sulfuric acid and hydrogen iodide from sulfur dioxide, water and iodine. The reactor 10 is connected to the waste treatment facility 16 by a discharge line L15 without forming a circulation circuit with the hydrogen iodide decomposition unit 9 described above. The iodine-based waste accumulated in the reactor 10 is discharged from the reactor 10 to the waste treatment facility 16 by opening the on-off valve V6 during maintenance inspection.

二相分離器11は、硫酸とヨウ化水素を比重の差を利用して分離するものである。すなわち、軽液としての硫酸は二相分離器11の上部から抜き取られ、重液としてのヨウ化水素は二相分離器11の底部から抜き取られる。   The two-phase separator 11 separates sulfuric acid and hydrogen iodide using the difference in specific gravity. That is, sulfuric acid as a light liquid is extracted from the top of the two-phase separator 11, and hydrogen iodide as a heavy liquid is extracted from the bottom of the two-phase separator 11.

硫酸濃縮器12は、硫酸溶液中に含まれる水を電気分解することによって硫酸を所望濃度に濃縮するものである。濃縮温度は例えば220℃である。   The sulfuric acid concentrator 12 concentrates sulfuric acid to a desired concentration by electrolyzing water contained in the sulfuric acid solution. The concentration temperature is, for example, 220 ° C.

二次系HeバイパスラインL13は、二次系Heを硫酸蒸発分解部8に通過させることなく、ヨウ化水素分解部9に直接送って熱交換部HE6,7で熱交換させるためのものである。バイパスラインL13は、硫酸蒸発分解部8の下流側において二次系HeラインL6から分岐し、硫酸蒸発分解部8の上流側において熱交換ラインL8に合流している。バイパスラインL13と二次系HeラインL6との分岐部には流量調整弁V4が取り付けられ、バイパスラインL13への二次系Heの流量と二次系HeラインL6への二次系Heの流量とを所望の割合に流量調整されるようになっている。また、バイパスラインL13と熱交換ラインL8との合流部には流量調整弁V5が取り付けられ、バイパスラインL13への二次系Heの流量と熱交換ラインL8への二次系Heの流量とを所望の割合に流量調整されるようになっている。   The secondary system He bypass line L13 is used to directly send the secondary system He to the hydrogen iodide decomposition unit 9 without passing it through the sulfuric acid evaporation decomposition unit 8 and to exchange heat with the heat exchange units HE6, 7. . The bypass line L13 branches from the secondary system He line L6 on the downstream side of the sulfuric acid evaporative decomposition unit 8 and joins the heat exchange line L8 on the upstream side of the sulfuric acid evaporative decomposition unit 8. A flow rate adjusting valve V4 is attached to a branch portion between the bypass line L13 and the secondary system He line L6, and the flow rate of the secondary system He to the bypass line L13 and the flow rate of the secondary system He to the secondary system He line L6. The flow rate is adjusted to a desired ratio. Further, a flow rate adjusting valve V5 is attached to the junction of the bypass line L13 and the heat exchange line L8, and the flow rate of the secondary system He to the bypass line L13 and the flow rate of the secondary system He to the heat exchange line L8 are adjusted. The flow rate is adjusted to a desired ratio.

高温水導入ラインL14は、二次加圧水冷却器6で発生した高温水(第3の流体)をヨウ化水素分解部9に導くために、ヨウ化水素輸送ラインL22と二次加圧水戻りラインL62との間に設けられている。この高温水導入ラインL14は、二次加圧水冷却器6の戻りラインL62から分岐している。この分岐部には流量調整弁V2が設けられている。流量調整弁V2は、高温水導入ラインL14への高温水の流量と戻りラインL62への高温水の流量とを所望の割合で分配するものである。なお、流量調整弁V1,V2,V4,V5の動作は中央コントロールルームの主制御器(図示せず)によって制御されるようになっている。また、高温水導入ラインL14は、二相分離器11よりも下流側で、かつ、ヨウ化水素分解部9よりも上流側にてヨウ化水素輸送ラインL22に合流している。この合流部には三方開閉弁V3が設けられている。三方開閉弁V3の開閉動作は上述した流量調整弁V2の動作と同期させるようにしてもよいし、別個独立に動作させてもよい。   The high-temperature water introduction line L14 includes a hydrogen iodide transport line L22, a secondary pressurized water return line L62, and a high-temperature water (third fluid) generated in the secondary pressurized water cooler 6 to guide the hydrogen iodide decomposition unit 9. It is provided between. The high temperature water introduction line L14 branches off from the return line L62 of the secondary pressurized water cooler 6. A flow rate adjusting valve V2 is provided at this branch portion. The flow rate adjusting valve V2 distributes the flow rate of the high temperature water to the high temperature water introduction line L14 and the flow rate of the high temperature water to the return line L62 at a desired ratio. The operations of the flow rate adjusting valves V1, V2, V4, V5 are controlled by a main controller (not shown) in the central control room. The high temperature water introduction line L14 joins the hydrogen iodide transport line L22 on the downstream side of the two-phase separator 11 and on the upstream side of the hydrogen iodide decomposition unit 9. A three-way on-off valve V3 is provided at this junction. The opening / closing operation of the three-way opening / closing valve V3 may be synchronized with the operation of the flow rate adjusting valve V2 described above, or may be operated independently.

次に、動作について説明する。
第1実施形態の水素製造設備1では、原子炉及び水素製造設備が通常の運転中であれば、900℃以上の二次系Heが熱交換ラインL8の全てに通流して硫酸蒸発分解部8の各部およびヨウ化水素分解部9の各部とそれぞれ熱交換する。すなわち、二次系Heは、SO3分解器82の温度を約900℃に昇温し、かつ硫酸蒸発器81の温度を約500℃に昇温した後に、さらにヨウ化水素分解部9と熱交換して、Hl分解器93を約450℃に昇温し、Hl蒸留器92を約250℃に昇温し、それぞれ反応に好適な温度条件に維持する。
Next, the operation will be described.
In the hydrogen production facility 1 of the first embodiment, if the nuclear reactor and the hydrogen production facility are in normal operation, the secondary system He at 900 ° C. or higher flows through all of the heat exchange line L8 and the sulfuric acid evaporative decomposition unit 8 And each part of the hydrogen iodide decomposition part 9 are respectively heat-exchanged. That is, after the temperature of the SO 3 decomposer 82 is raised to about 900 ° C. and the temperature of the sulfuric acid evaporator 81 is raised to about 500 ° C., the secondary system He further heats the hydrogen iodide decomposer 9 and the heat. In exchange, the Hl decomposer 93 is heated to about 450 ° C., and the Hl distiller 92 is heated to about 250 ° C., and each is maintained at a temperature suitable for the reaction.

反応器10ではヨウ素と二酸化硫黄と水との反応によりヨウ化水素と硫酸が生成され、生成されたヨウ化水素と硫酸は二相分離機11によって比重分離される。分離されたヨウ化水素は、ヨウ化水素分解部9の電解電気透析器91に送られて約120℃の温度で電解電気透析され、次いで蒸留器91において約250℃の温度で蒸留され、さらにHI分解器93において約450℃に加熱されてヨウ素と水素とに熱分解される。   In the reactor 10, hydrogen iodide and sulfuric acid are generated by the reaction of iodine, sulfur dioxide, and water, and the generated hydrogen iodide and sulfuric acid are separated by specific gravity by the two-phase separator 11. The separated hydrogen iodide is sent to the electrolytic electrodialyzer 91 of the hydrogen iodide decomposition section 9 and electroelectrodialyzed at a temperature of about 120 ° C., and then distilled in the distiller 91 at a temperature of about 250 ° C. The HI decomposer 93 is heated to about 450 ° C. and thermally decomposed into iodine and hydrogen.

生成された水素は、製品として図示しない容器に収集される。一方、生成されたヨウ素は、セパレータ94によって未分解のヨウ化水素を分離除去した後に、反応器10へ送られ、熱化学反応に供される。なお、未分解のヨウ化水素は、戻りラインL31を通ってHI分解器92へ戻され、再分解処理される。   The produced hydrogen is collected as a product in a container (not shown). On the other hand, the produced iodine is separated and removed from the undecomposed hydrogen iodide by the separator 94 and then sent to the reactor 10 to be subjected to a thermochemical reaction. The undecomposed hydrogen iodide is returned to the HI decomposer 92 through the return line L31 and re-decomposed.

一方、二相分離器11で分離された硫酸は、硫酸濃縮器12に送られて約220℃の温度で濃縮され、次いで硫酸蒸発・分解部8の蒸発器81において約500℃の温度で蒸発され、さらに分解器82において約900℃に加熱されて二酸化硫黄と酸素とに熱分解される。生成された二酸化硫黄と酸素は、セパレータ13によって未分解の硫酸を分離除去した後に、反応器10へ送られ、熱化学反応に供される。なお、未分解の硫酸は、戻りラインL28を通って硫酸濃縮器12へ戻され、硫酸蒸発・分解部8において再び濃縮、蒸発、分解処理される。   On the other hand, the sulfuric acid separated by the two-phase separator 11 is sent to the sulfuric acid concentrator 12 and concentrated at a temperature of about 220 ° C., and then evaporated at a temperature of about 500 ° C. in the evaporator 81 of the sulfuric acid evaporation / decomposition unit 8. Further, it is heated to about 900 ° C. in the decomposer 82 and thermally decomposed into sulfur dioxide and oxygen. The produced sulfur dioxide and oxygen are separated and removed by unseparated sulfuric acid by the separator 13 and then sent to the reactor 10 to be subjected to a thermochemical reaction. The undecomposed sulfuric acid is returned to the sulfuric acid concentrator 12 through the return line L28, and again concentrated, evaporated and decomposed in the sulfuric acid evaporation / decomposition unit 8.

ところで、水素製造設備の点検や補修などのために、原子炉を稼動したままの状態で水素製造設備1のみを停止するような場合には、まず硫酸の分解反応を停止させるために、二次系HeバイパスラインL13を用いて硫酸蒸発分解部8ヘの二次系Heの供給をバイパスして、硫酸蒸発分解部8の温度を低下させる。このとき、硫酸蒸発・分解による二次系Heの除熱分を二次加圧水冷却器6を用いて代替する。二次加圧水冷却器6を出た二次系Heは、ヨウ化水素分解部9に導かれ、ヨウ化水素分解部9の温度をヨウ素の析出温度である114℃以上に保持する。これによりヨウ素が析出するおそれがなくなり、ポンプ、弁、配管の閉塞が生じなくなる。同時に、二次加圧水冷却器6では二次系Heとの熱交換により高温水が発生する。   By the way, when only the hydrogen production facility 1 is stopped while the reactor is in operation for the inspection or repair of the hydrogen production facility, the secondary reaction is first performed to stop the decomposition reaction of sulfuric acid. By bypassing the supply of the secondary system He to the sulfuric acid evaporative decomposition unit 8 using the system He bypass line L13, the temperature of the sulfuric acid evaporative decomposition unit 8 is lowered. At this time, the secondary heat removal by the sulfuric acid evaporation / decomposition is replaced by the secondary pressurized water cooler 6. The secondary system He exiting the secondary pressurized water cooler 6 is guided to the hydrogen iodide decomposition unit 9 and maintains the temperature of the hydrogen iodide decomposition unit 9 at 114 ° C. or higher, which is the iodine precipitation temperature. As a result, there is no possibility that iodine is deposited, and the pump, valve, and piping are not blocked. At the same time, in the secondary pressurized water cooler 6, high-temperature water is generated by heat exchange with the secondary system He.

水素製造設備1の運転圧力が20気圧である場合には、熱交換器としての二次加圧水冷却器6の水側の圧力も20気圧とすることで、約220℃の飽和水が得られる。この高温水を高温水導入配管L14を用いてヨウ化水素分解部9に導入し、ヨウ化水素分解部9の各部に接続されている配管、バルブおよびポンプ等の機器を洗浄してヨウ素を除去する。洗浄後の流体は反応器10から排出ラインL15の配管を通って廃棄物処理設備16に導かれ、無害化するか又は再生処理を行う。   When the operating pressure of the hydrogen production facility 1 is 20 atm, saturated water at about 220 ° C. is obtained by setting the pressure on the water side of the secondary pressurized water cooler 6 as a heat exchanger to 20 atm. This high-temperature water is introduced into the hydrogen iodide decomposition unit 9 using the high-temperature water introduction pipe L14, and equipment such as pipes, valves and pumps connected to each part of the hydrogen iodide decomposition unit 9 is washed to remove iodine. To do. The fluid after washing is led from the reactor 10 through the piping of the discharge line L15 to the waste treatment facility 16 to be rendered harmless or to be regenerated.

ヨウ化水素分解部9の配管の洗浄終了後は、二次系HeバイパスラインL13を閉じ、二次系Heを二次加圧水冷却器6を通して除熱後、中間熱交換器4に戻す操作を行い、水素製造設備1を常温に戻す。   After completion of the cleaning of the piping of the hydrogen iodide decomposition unit 9, the secondary system He bypass line L 13 is closed, the secondary system He is removed through the secondary pressurized water cooler 6, and then returned to the intermediate heat exchanger 4. Return the hydrogen production facility 1 to room temperature.

本実施の形態によれば、水素製造設備を停止して常温に戻す前に、ヨウ素の析出温度よりも高温の水で洗浄するので、常温に戻した場合のヨウ素の析出を防止することができる。また、洗浄用の高温水の生成を、硫酸蒸発分解部8をバイパスした二次系Heの熱を利用して行うために、高温水生成のために特別な熱源を必要としない。さらに、洗浄用の高温水の準備中及び洗浄中を通して、ヨウ化水素分解部9が二次系Heでヨウ素析出温度よりも高い温度に維持されるため、プラント停止措置中のヨウ素の析出を有効に防止できる。   According to the present embodiment, before the hydrogen production facility is stopped and returned to room temperature, it is washed with water having a temperature higher than the precipitation temperature of iodine, so that precipitation of iodine when the temperature is returned to room temperature can be prevented. . Further, since the high-temperature water for cleaning is generated using the heat of the secondary system He bypassing the sulfuric acid evaporative decomposition unit 8, no special heat source is required for generating the high-temperature water. Furthermore, the hydrogen iodide decomposition unit 9 is maintained at a temperature higher than the iodine precipitation temperature by the secondary system He during the preparation and cleaning of the high-temperature water for washing, so that the precipitation of iodine during the plant shutdown is effective. Can be prevented.

(第2の実施形態)
次に、第2の実施形態の設備について図4を参照して説明する。なお、本実施形態が上記の実施形態と重複する部分は説明を省略する。
第2の実施形態の水素製造設備1Aは、二次加圧水冷却器6を分割して二段の冷却器61,62を設置したものである。第1段の二次加圧水冷却器61から出た二次系Heを第2段の二次加圧水冷却器62に導き、二次加圧水冷却器62から出た二次系Heは弁の切り替えによって中間熱交換器4に戻るか、二次系HeバイパスラインL13を通ってヨウ化水素分解部9の熱交換部HE6とHE7に導かれる。
(Second Embodiment)
Next, the equipment of the second embodiment will be described with reference to FIG. Note that the description of the same parts as the above embodiments will be omitted.
In the hydrogen production facility 1A of the second embodiment, the secondary pressurized water cooler 6 is divided and the two-stage coolers 61 and 62 are installed. The secondary system He exiting from the first-stage secondary pressurized water cooler 61 is guided to the second-stage secondary pressurized water cooler 62, and the secondary system He exiting from the secondary pressurized water cooler 62 is intermediated by switching the valve. It returns to the heat exchanger 4 or is led to the heat exchange units HE6 and HE7 of the hydrogen iodide decomposition unit 9 through the secondary system He bypass line L13.

二次加圧水冷却器61,62の加圧水循環系及び放熱部はそれぞれ独立しており、第1段の二次加圧水冷却器61の加圧水出口配管L64に高温水導入配管L14が接続されている。二次加圧水冷却器61の除熱能力は通常運転時に硫酸蒸発分解部8での消費熱量に相当するものとし、第1段の二次加圧水冷却器61と第2段の二次加圧水冷却器62とを合わせた除熱能力は通常運転時に水素製造設備で消費する熱量に相当するものとする。   The pressurized water circulation system and the heat radiating part of the secondary pressurized water coolers 61 and 62 are independent of each other, and a high temperature water introduction pipe L14 is connected to the pressurized water outlet pipe L64 of the first-stage secondary pressurized water cooler 61. The heat removal capacity of the secondary pressurized water cooler 61 corresponds to the amount of heat consumed in the sulfuric acid evaporative decomposition unit 8 during normal operation, and the first-stage secondary pressurized water cooler 61 and the second-stage secondary pressurized water cooler 62 The combined heat removal capacity corresponds to the amount of heat consumed in the hydrogen production facility during normal operation.

このような水素製造設備1Aでは、原子炉及び水素製造設備が通常の運転中であれば、上記第1の実施形態の設備と同様に水素製造設備1Aを反応に好適な温度に維持する。一方、水素製造設備の点検や補修などのために、原子炉を稼動したままの状態で水素製造設備のみを停止するような場合には、まず硫酸の分解反応を停止させるために、二次系HeバイパスラインL13を用いて硫酸蒸発分解部8の二次系Heの供給をバイパスして、硫酸蒸発分解部8の温度を低下させる。このとき、硫酸蒸発分解による二次系Heの除熱分を第1段の二次加圧水冷却器61を用いて代替する。第1段の二次加圧水冷却器61への高圧水の循環を行い、第2段の二次加圧水冷却器62の高圧水の循環は停止しておく。こうすることで、硫酸蒸発ラインをバイパスした分の除熱を第1段の二次加圧水冷却器61で補うことができ、同時に高温水を生成してヨウ化水素分解部9の洗浄を行う。   In such a hydrogen production facility 1A, if the nuclear reactor and the hydrogen production facility are in normal operation, the hydrogen production facility 1A is maintained at a temperature suitable for the reaction as in the case of the facility of the first embodiment. On the other hand, when only the hydrogen production facility is shut down while the reactor is in operation for inspection or repair of the hydrogen production facility, the secondary system is first stopped to stop the decomposition reaction of sulfuric acid. The supply of the secondary system He of the sulfuric acid evaporative decomposition unit 8 is bypassed using the He bypass line L13, and the temperature of the sulfuric acid evaporative decomposition unit 8 is lowered. At this time, the heat removal of the secondary system He by sulfuric acid evaporative decomposition is substituted by using the first-stage secondary pressurized water cooler 61. The high-pressure water is circulated to the first-stage secondary pressurized water cooler 61, and the high-pressure water circulation of the second-stage secondary pressurized water cooler 62 is stopped. In this way, heat removal by bypassing the sulfuric acid evaporation line can be supplemented by the first-stage secondary pressurized water cooler 61, and at the same time, high-temperature water is generated to clean the hydrogen iodide decomposition unit 9.

二次加圧水冷却器61を出た二次系Heはヨウ化水素分解部9に導かれヨウ化水素分解部9の温度をヨウ素の析出温度である114℃以上に保つので、ヨウ素が析出するおそれがなくなり、ポンプ、弁、配管の閉塞が生じなくなる。ヨウ化水素分解部9の洗浄終了後は、ヨウ化水素分解ラインの洗浄終了時は、二次系HeバイパスラインL13を閉じ、第2段の二次加圧水冷却器62への高圧水供給を開始して、二次系Heを除熱後、中間熱交換器に戻す。   The secondary system He exiting the secondary pressurized water cooler 61 is guided to the hydrogen iodide decomposition unit 9 and keeps the temperature of the hydrogen iodide decomposition unit 9 at 114 ° C., which is the precipitation temperature of iodine, so that iodine may precipitate. This eliminates the blockage of pumps, valves, and piping. After the cleaning of the hydrogen iodide decomposition unit 9 is completed, when the cleaning of the hydrogen iodide decomposition line is completed, the secondary He bypass line L13 is closed and the supply of high-pressure water to the second-stage secondary pressurized water cooler 62 is started. Then, after removing heat from the secondary system He, it is returned to the intermediate heat exchanger.

本実施形態によれば、二次加圧水冷却器(61及び62)を除熱量に応じて複数設置することにより、水素製造設備の運転モードにあわせた温度管理が可能となる。なお、本実施形態では高温水を生成するために2段の二次加圧水冷却器を設けたが、本発明はこれのみに限定されるものではなく、3段、4段、5段、6段あるいはそれ以上の多段の二次冷却水冷却器を設けて、高温水を生成するようにしてもよい。   According to the present embodiment, by installing a plurality of secondary pressurized water coolers (61 and 62) according to the amount of heat removal, temperature management according to the operation mode of the hydrogen production facility can be performed. In this embodiment, a two-stage secondary pressurized water cooler is provided to generate high-temperature water. However, the present invention is not limited to this, and the third, fourth, fifth, and sixth stages. Or you may make it provide a multistage secondary cooling water cooler more than that, and produce | generate high temperature water.

(第3の実施形態)
次に、第3の実施形態の設備について図5を参照して説明する。なお、本実施形態が上記の実施形態の設備と重複する部分は説明を省略する。
第3の実施形態の設備1Bは、ヨウ化水素分解部9の上流側ラインL22(ヨウ化水素輸送ライン)に接続された高温水供給ラインL17と、この高温水供給ラインL17に高温水を供給するための加熱装置18とを上述の第2の実施形態の設備に付加したものである。加熱装置18には必要な熱量を確保できればどのようなものを用いても構わないが、例えば補助冷却器7を用いる。高温水供給ラインL17には流量調整弁V7が取り付けられ、高温水の流量が所望流量に調整されるようになっている。
(Third embodiment)
Next, the equipment of the third embodiment will be described with reference to FIG. In addition, description of the part which this embodiment overlaps with the installation of said embodiment is abbreviate | omitted.
The equipment 1B of the third embodiment supplies a high-temperature water supply line L17 connected to the upstream line L22 (hydrogen iodide transport line) of the hydrogen iodide decomposition unit 9, and supplies high-temperature water to the high-temperature water supply line L17. And a heating device 18 for adding to the equipment of the second embodiment described above. Any device can be used as the heating device 18 as long as a necessary amount of heat can be secured. For example, the auxiliary cooler 7 is used. A flow rate adjustment valve V7 is attached to the high temperature water supply line L17 so that the flow rate of the high temperature water is adjusted to a desired flow rate.

このような水素製造設備1Bでは、何らかの原因で水素製造設備への給熱が突然停止した場合に、加熱装置18を用いて高温水を直ちに作りだすことができ、この高温水でヨウ化水素分解部9を洗浄することができるため、水素製造設備各部へのヨウ素の析出が有効に防止される。熱源が高温ガス炉の場合、中間熱交換器4への一次系Heの循環が停止してしまい、二次系Heに熱が伝達されなくなったような事象では、補助冷却器7が作動して加圧水を用いて一次系Heの除熱を行い、原子炉の崩壊熱を除去する。そこで、熱源が高温ガス炉の場合には加熱装置18として補助冷却器7を用いることができる。また、熱源が焼却設備のような原子炉以外の設備の場合には、ボイラーを取り付けて加熱装置18として用いる。   In such a hydrogen production facility 1B, when the supply of heat to the hydrogen production facility is suddenly stopped for some reason, high-temperature water can be immediately created using the heating device 18, and the hydrogen iodide decomposition unit can be formed using this high-temperature water. Since 9 can be washed, precipitation of iodine in each part of the hydrogen production facility is effectively prevented. When the heat source is a HTGR, in the event that the circulation of the primary system He to the intermediate heat exchanger 4 is stopped and heat is not transferred to the secondary system He, the auxiliary cooler 7 is activated. The primary system He is removed using pressurized water, and the decay heat of the reactor is removed. Therefore, when the heat source is a high temperature gas furnace, the auxiliary cooler 7 can be used as the heating device 18. When the heat source is equipment other than the nuclear reactor such as incineration equipment, a boiler is attached and used as the heating device 18.

(第4の実施形態)
次に、第4の実施形態の設備について図6を参照して説明する。なお、本実施形態が上記の実施形態の設備と重複する部分は説明を省略する。
第4の実施形態の設備1Cは、ヨウ化水素分解部9の上流側ラインL22(ヨウ化水素輸送ライン)に接続された溶媒供給ラインL19と、溶媒供給ラインL19に溶媒を供給するための溶媒タンク20を上述の第2の実施形態に付加したものである。溶媒供給ラインL19には供給ポンプP3および流量配分調整弁V8が取り付けられている。
(Fourth embodiment)
Next, the equipment of the fourth embodiment will be described with reference to FIG. In addition, description of the part which this embodiment overlaps with the installation of said embodiment is abbreviate | omitted.
The equipment 1C of the fourth embodiment includes a solvent supply line L19 connected to the upstream line L22 (hydrogen iodide transport line) of the hydrogen iodide decomposition unit 9, and a solvent for supplying the solvent to the solvent supply line L19. The tank 20 is added to the above-described second embodiment. A supply pump P3 and a flow rate distribution adjusting valve V8 are attached to the solvent supply line L19.

このような水素製造設備1Cでは、何らかの原因で水素製造設備への給熱が突然停止した場合に、溶媒タンク20から溶媒をラインL19を介してヨウ化水素分解部9の上流ラインL22へ注入して洗浄することができるため、水素製造設備へのヨウ素の析出を有効に防止することができる。溶媒にはエタノールに代表されるようなヨウ素の溶解度が高い有機溶媒を用いる。本実施の形態によれば、熱源からの熱の供給がストップした場合にも、加熱装置を用いることなくヨウ化水素分解ラインを洗浄しヨウ素の析出を抑えることができる。   In such a hydrogen production facility 1C, when heat supply to the hydrogen production facility suddenly stops for some reason, the solvent is injected from the solvent tank 20 into the upstream line L22 of the hydrogen iodide decomposition unit 9 via the line L19. Therefore, it is possible to effectively prevent iodine from being deposited on the hydrogen production facility. As the solvent, an organic solvent having high iodine solubility such as ethanol is used. According to the present embodiment, even when the supply of heat from the heat source is stopped, the hydrogen iodide decomposition line can be cleaned without using a heating device to suppress iodine precipitation.

本発明は、熱化学法(IS法)を利用して水素を製造する設備において、熱源からの熱の供給停止時及び水素製造設備運転停止時にヨウ素の析出を起こすことなく設備を常温に戻すことのできる熱化学的水素製造設備に利用可能である。   In the present invention, in a facility for producing hydrogen using the thermochemical method (IS method), the facility is returned to room temperature without causing precipitation of iodine when the supply of heat from the heat source is stopped and when the operation of the hydrogen production facility is stopped. It can be used for a thermochemical hydrogen production facility capable of

本発明が適用される高温ガス炉の冷却系を示す概略構成図。The schematic block diagram which shows the cooling system of the high temperature gas furnace to which this invention is applied. 本発明の第1の実施形態に係る熱化学的水素製造設備を示す構成ブロック図。The block diagram which shows the thermochemical hydrogen production equipment which concerns on the 1st Embodiment of this invention. 第1実施形態の設備における物質の流れを示す物質収支図。The material balance figure which shows the flow of the substance in the installation of 1st Embodiment. 本発明の第2の実施形態に係る熱化学的水素製造設備を示す構成ブロック図。The block diagram which shows the thermochemical hydrogen production equipment which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る熱化学的水素製造設備を示す構成ブロック図。The block diagram which shows the thermochemical hydrogen production equipment which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る熱化学的水素製造設備を示す構成ブロック図。The block diagram which shows the thermochemical hydrogen production equipment which concerns on the 4th Embodiment of this invention.

符号の説明Explanation of symbols

1,1A,1B,1C…熱化学的水素製造設備、
2…高温ガス炉(熱源)、4…中間熱交換器、5…一次加圧水冷却器、
6,61,62…二次加圧水冷却器(第3の配管系の熱交換器)、
7…補助冷却器、8…硫酸蒸発分解部、9…ヨウ化水素分解部、
10…反応器、11…二相分離器、12…硫酸濃縮器、13,94…セパレータ、
14…高温水導入配管、15…排出配管、16…廃棄物処理設備、
17…高温水供給配管、18…加熱装置、19…溶媒供給配管、20…溶媒タンク、
HE1〜HE3…熱交換器、HE4〜HE9…熱交換部、
L2〜L5…一次系Heライン(第1の配管系)、
L6,L7…二次系Heライン(第2の配管系)、
L8…二次系Heの熱交換ライン(第2の配管系から分岐する熱交換配管)、
L13…二次系Heバイパスライン、
L14,L61,L62…高温水導入ライン(第3の配管系)、
L15…廃棄物排出ライン(排出管)、
L22…ヨウ化水素輸送ライン、
L23〜L25…硫酸分解ライン、
L26…硫酸分解物の熱交換ライン、
L27…分離物取出しライン、
L31〜L34…未反応物戻しライン、
L35…反応生成物取出しライン、
V1〜V8…流量配分調整弁(接続部)、P1,P2…循環ポンプ、P3…供給ポンプ。
1, 1A, 1B, 1C ... thermochemical hydrogen production facility,
2 ... HTGR (heat source), 4 ... intermediate heat exchanger, 5 ... primary pressurized water cooler,
6, 61, 62 ... secondary pressurized water cooler (heat exchanger of the third piping system),
7 ... Auxiliary cooler, 8 ... Sulfuric acid evaporative decomposition part, 9 ... Hydrogen iodide decomposition part,
10 ... reactor, 11 ... two-phase separator, 12 ... sulfuric acid concentrator, 13, 94 ... separator,
14 ... High temperature water introduction piping, 15 ... Discharge piping, 16 ... Waste treatment equipment,
17 ... High temperature water supply pipe, 18 ... Heating device, 19 ... Solvent supply pipe, 20 ... Solvent tank,
HE1 to HE3 ... heat exchanger, HE4 to HE9 ... heat exchange section,
L2-L5 ... Primary He line (first piping system),
L6, L7 ... Secondary He line (second piping system),
L8 ... secondary heat exchange line (heat exchange pipe branched from the second pipe system),
L13 ... Secondary He bypass line,
L14, L61, L62 ... high temperature water introduction line (third piping system),
L15 ... Waste discharge line (discharge pipe),
L22 ... Hydrogen iodide transport line,
L23 to L25 ... sulfuric acid decomposition line,
L26 ... Heat exchange line for sulfuric acid decomposition products,
L27 ... Separate take-out line,
L31 to L34 ... Unreacted substance return line,
L35 ... Reaction product take-out line,
V1 to V8: flow distribution adjusting valve (connecting portion), P1, P2: circulation pump, P3: supply pump.

Claims (9)

熱源2と、
前記熱源2と熱交換する第1の流体を輸送する第1の配管系L2〜L5と、
第2の流体を輸送する第2の配管系L6,L7と、
前記第1の配管系L3および前記第2の配管系L7にそれぞれ接続され、前記第1の流体と前記第2の流体とを熱交換させる中間熱交換器4と、
前記第2の流体と熱交換して硫酸を蒸発・分解する硫酸蒸発分解部8と、
前記第2の流体と熱交換してヨウ化水素を分離・分解するヨウ化水素分解部9と、
前記硫酸蒸発分解部8および前記ヨウ化水素分解部9にそれぞれセパレータを介して接続され、二酸化硫黄とヨウ素と水を反応させて硫酸およびヨウ化水素を生成する反応器10と、
前記第2の配管系L6,L7が前記硫酸蒸発分解部8と接する部分よりも上流側で前記第2の配管系L6,L7から分岐し、前記硫酸蒸発分解部8および前記ヨウ化水素分解部9とそれぞれ熱交換する熱交換配管L8と、
第3の流体を輸送する第3の配管系L61,L62と、
前記第2の配管系L6,L7を介して前記熱交換配管L8に接続され、前記第2の流体の熱を前記第3の流体に付与する熱交換器6と、
前記第2の配管系L6,L7から前記熱交換配管L8が分岐するところに設けられ、前記熱交換器6への前記第2の流体の流量と前記第2の配管系への前記第2の流体の流量との配分を調整する第1の弁V1と、
前記第3の配管系の熱交換器6の出口側で前記第3の配管系L62から分岐して、前記ヨウ化水素分解部9へ向かうヨウ化水素輸送配管L22に前記第3の流体を導入する第3の流体導入配管L14と、
前記第3の流体導入配管L14が前記第3の配管系L62から分岐するところに設けられ、前記第3の流体の流量を調整する第2の弁V2と、
前記第3の流体導入配管L14が前記ヨウ化水素輸送配管L22に接続されるところに設けられ、前記第3の流体を前記ヨウ化水素輸送配管L22内を流れるヨウ化水素に合流させる接続部V3と、
廃棄物を排出するための排出管L15を介して前記反応器10に接続された廃棄物処理設備16と、
前記熱交換配管L8が前記硫酸蒸発分解部8と接する部分よりも下流側で、かつ、前記熱交換配管L8が前記ヨウ化水素分解部9と接する部分よりも上流側に接続され、前記第2の流体を前記硫酸蒸発分解部8と熱交換することなく前記ヨウ化水素分解部9へバイパスさせるバイパス配管L13と、
前記バイパス配管L13が前記第2の配管系L6から分岐するところに設けられ、前記バイパス配管L13への前記第2の流体の流量と前記第2の配管系への前記第2の流体の流量との配分を調整する第4の弁V4と、
前記バイパス配管L13が前記熱交換配管L8に合流するところに設けられ、前記バイパス配管L13から前記熱交換配管L8へ流れ込む流量配分を調整する第5の弁V5と、を具備することを特徴とする熱化学的水素製造設備。
Heat source 2;
First piping systems L2 to L5 that transport a first fluid that exchanges heat with the heat source 2;
Second piping systems L6, L7 for transporting the second fluid;
An intermediate heat exchanger 4 connected to the first piping system L3 and the second piping system L7, respectively, for exchanging heat between the first fluid and the second fluid;
A sulfuric acid evaporative decomposition unit 8 for evaporating and decomposing sulfuric acid by exchanging heat with the second fluid;
A hydrogen iodide decomposition section 9 for separating and decomposing hydrogen iodide by exchanging heat with the second fluid;
A reactor 10 connected to the sulfuric acid evaporative decomposition unit 8 and the hydrogen iodide decomposition unit 9 via a separator, respectively, and reacting sulfur dioxide, iodine and water to produce sulfuric acid and hydrogen iodide;
The second piping system L6, L7 branches from the second piping system L6, L7 upstream of the portion in contact with the sulfuric acid evaporative decomposition unit 8, and the sulfuric acid evaporative decomposition unit 8 and the hydrogen iodide decomposition unit Heat exchange pipe L8 for exchanging heat with 9, respectively;
Third piping systems L61 and L62 for transporting the third fluid;
A heat exchanger 6 connected to the heat exchange pipe L8 via the second pipe systems L6, L7, and applying heat of the second fluid to the third fluid;
Provided where the heat exchange pipe L8 branches from the second pipe systems L6, L7, the flow rate of the second fluid to the heat exchanger 6 and the second flow to the second pipe system. A first valve V1 for adjusting the distribution of the fluid flow rate;
The third fluid is introduced into the hydrogen iodide transport pipe L22 that branches from the third pipe system L62 on the outlet side of the heat exchanger 6 of the third pipe system and goes to the hydrogen iodide decomposition section 9. A third fluid introduction pipe L14,
A second valve V2 that is provided where the third fluid introduction pipe L14 branches from the third pipe system L62, and adjusts the flow rate of the third fluid;
The third fluid introduction pipe L14 is provided at a place where it is connected to the hydrogen iodide transport pipe L22, and a connection portion V3 for joining the third fluid to hydrogen iodide flowing in the hydrogen iodide transport pipe L22. When,
A waste treatment facility 16 connected to the reactor 10 via a discharge pipe L15 for discharging waste;
The heat exchange pipe L8 is connected to the downstream side of the part in contact with the sulfuric acid evaporative decomposition part 8, and the heat exchange pipe L8 is connected to the upstream side of the part in contact with the hydrogen iodide decomposition part 9, and the second A bypass pipe L13 for bypassing the fluid to the hydrogen iodide decomposition unit 9 without exchanging heat with the sulfuric acid evaporation decomposition unit 8,
The bypass pipe L13 is provided where the second pipe system L6 branches, and the flow rate of the second fluid to the bypass pipe L13 and the flow rate of the second fluid to the second pipe system A fourth valve V4 for adjusting the distribution of
A fifth valve V5 that is provided where the bypass pipe L13 merges with the heat exchange pipe L8 and adjusts a flow rate distribution flowing from the bypass pipe L13 into the heat exchange pipe L8. Thermochemical hydrogen production facility.
前記熱交換器6は、複数の熱交換器61,62を有し、
前記複数の熱交換器61,62を接続する複数の第2の配管系L63〜L65を有することを特徴とする請求項1記載の水素製造設備。
The heat exchanger 6 includes a plurality of heat exchangers 61 and 62,
2. The hydrogen production facility according to claim 1, comprising a plurality of second piping systems L <b> 63 to L <b> 65 for connecting the plurality of heat exchangers 61 and 62.
前記熱交換器6は、複数の熱交換器61,62を有し、
前記第3の流体導入配管L14が、前記第1の弁V1に最も近い前記熱交換器61の前記第3の配管系L64から分岐していることを特徴とする請求項1又は2のいずれか1項記載の水素製造設備。
The heat exchanger 6 includes a plurality of heat exchangers 61 and 62,
The said 3rd fluid introduction piping L14 has branched from the said 3rd piping system L64 of the said heat exchanger 61 nearest to the said 1st valve V1, Either of Claim 1 or 2 characterized by the above-mentioned. The hydrogen production facility according to item 1.
さらに、前記ヨウ化水素分解部9と前記反応器10との間に第4の流体を導入する第4の配管系L17と、
前記第4の配管系L17の内部を流れる前記第4の流体を加熱する加熱装置18と、
前記第4の配管系L17から前記ヨウ化水素分解部9ヘ導入される前記第4の流体の流量を調整する弁V7と、
を具備することを特徴とする請求項1乃至3のいずれか1項記載の水素製造設備。
Furthermore, a fourth piping system L17 for introducing a fourth fluid between the hydrogen iodide decomposition unit 9 and the reactor 10,
A heating device 18 for heating the fourth fluid flowing in the fourth piping system L17;
A valve V7 for adjusting the flow rate of the fourth fluid introduced from the fourth piping system L17 to the hydrogen iodide decomposition unit 9;
The hydrogen production facility according to claim 1, comprising:
さらに、前記ヨウ化水素分解部9と前記反応器10との間に第4の流体を導入する第4の配管系L19と、
前記第4の配管系L19に接続され、前記第4の流体が収容された溶媒タンク20と、
前記第4の配管系L19に設けられ、前記ヨウ化水素分解9ヘ導入される第4の流体の流量を調整するポンプP3と、
を具備することを特徴とする請求項1乃至3のいずれか1項記載の水素製造設備。
Furthermore, a fourth piping system L19 for introducing a fourth fluid between the hydrogen iodide decomposition unit 9 and the reactor 10,
A solvent tank 20 connected to the fourth piping system L19 and containing the fourth fluid;
A pump P3 which is provided in the fourth piping system L19 and adjusts the flow rate of the fourth fluid introduced into the hydrogen iodide decomposition 9;
The hydrogen production facility according to claim 1, comprising:
前記第3の流体が水または水蒸気であることを特徴とする請求項1乃至5のいずれか1項記載の水素製造設備。 The hydrogen production facility according to claim 1, wherein the third fluid is water or steam. 前記第4の流体が水または水蒸気であることを特徴とする請求項4の記載の水素製造設備。 The hydrogen production facility according to claim 4, wherein the fourth fluid is water or steam. 前記第4の流体がエタノールであることを特徴とする請求項5記載の水素製造設備。 The hydrogen production facility according to claim 5, wherein the fourth fluid is ethanol. 前記熱源2が高温ガス炉であり、前記加熱装置18が高温ガス炉の一次加圧水冷却器5であり、前記第3の流体が前記一次加圧水冷却器5の加圧水であることを特徴とする請求項4記載の水素製造設備。 The heat source (2) is a high-temperature gas furnace, the heating device (18) is a primary pressurized water cooler (5) of the high-temperature gas furnace, and the third fluid is pressurized water of the primary pressurized water cooler (5). 4. The hydrogen production facility according to 4.
JP2004108110A 2004-03-31 2004-03-31 Thermochemical hydrogen production facility Expired - Fee Related JP4223985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004108110A JP4223985B2 (en) 2004-03-31 2004-03-31 Thermochemical hydrogen production facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004108110A JP4223985B2 (en) 2004-03-31 2004-03-31 Thermochemical hydrogen production facility

Publications (2)

Publication Number Publication Date
JP2005289740A true JP2005289740A (en) 2005-10-20
JP4223985B2 JP4223985B2 (en) 2009-02-12

Family

ID=35323126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004108110A Expired - Fee Related JP4223985B2 (en) 2004-03-31 2004-03-31 Thermochemical hydrogen production facility

Country Status (1)

Country Link
JP (1) JP4223985B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007203212A (en) * 2006-02-02 2007-08-16 Mitsubishi Heavy Ind Ltd Electrodialyzer used for hydrogen producing apparatus
JP2007204321A (en) * 2006-02-02 2007-08-16 Mitsubishi Heavy Ind Ltd Hydrogen production system using high-efficiency sulfuric acid concentrating method
JP2007314408A (en) * 2006-04-28 2007-12-06 Mitsubishi Heavy Ind Ltd Hydrogen production apparatus and hydrogen production method
JP2010511137A (en) * 2006-12-08 2010-04-08 コリア アトミック エナジー リサーチ インスティテュート High temperature high pressure corrosion resistant process heat exchanger for nuclear hydrogen production
US7815891B2 (en) 2006-01-12 2010-10-19 Kabushiki Kaisha Toshiba Device and method for producing hydrogen
JP2014015344A (en) * 2012-07-06 2014-01-30 Toyota Motor Corp Hydrogen production method
JP2019163180A (en) * 2018-03-19 2019-09-26 国立研究開発法人日本原子力研究開発機構 Bunsen reactor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7815891B2 (en) 2006-01-12 2010-10-19 Kabushiki Kaisha Toshiba Device and method for producing hydrogen
JP2007203212A (en) * 2006-02-02 2007-08-16 Mitsubishi Heavy Ind Ltd Electrodialyzer used for hydrogen producing apparatus
JP2007204321A (en) * 2006-02-02 2007-08-16 Mitsubishi Heavy Ind Ltd Hydrogen production system using high-efficiency sulfuric acid concentrating method
JP2007314408A (en) * 2006-04-28 2007-12-06 Mitsubishi Heavy Ind Ltd Hydrogen production apparatus and hydrogen production method
JP2010511137A (en) * 2006-12-08 2010-04-08 コリア アトミック エナジー リサーチ インスティテュート High temperature high pressure corrosion resistant process heat exchanger for nuclear hydrogen production
US8381803B2 (en) 2006-12-08 2013-02-26 Korea Atomic Energy Research Institute High temperature and high pressure corrosion resistant process heat exchanger for a nuclear hydrogen production system
JP2014015344A (en) * 2012-07-06 2014-01-30 Toyota Motor Corp Hydrogen production method
JP2019163180A (en) * 2018-03-19 2019-09-26 国立研究開発法人日本原子力研究開発機構 Bunsen reactor
JP7141612B2 (en) 2018-03-19 2022-09-26 国立研究開発法人日本原子力研究開発機構 bunsen reactor

Also Published As

Publication number Publication date
JP4223985B2 (en) 2009-02-12

Similar Documents

Publication Publication Date Title
US8696872B2 (en) Water desalination system
JP6386338B2 (en) Ammonia-containing wastewater treatment apparatus and treatment method
EA004968B1 (en) Process and plant for multi-stage desalination of water
JP4223985B2 (en) Thermochemical hydrogen production facility
JP5775267B2 (en) Water treatment system
RU2470869C2 (en) System of pipelines
KR20130102088A (en) Water treatment system and water treatment method
CN105060601A (en) Comprehensive disposal system special for zero emission of thermal power plant
JP4814077B2 (en) Turbine equipment, exhaust heat recovery boiler device, and operation method of turbine equipment
CN106587238A (en) Sea water desalination system and method with low temperature exhaust heat utilization function
KR20160008434A (en) Apparatus for treating radioactive waste with multi-membrane
CN111033121B (en) Double-loop nuclear reactor steam generating device with purging and draining system
JP2009162514A (en) System for purifying system water in secondary system of nuclear power plant with pressurized water reactor
JP2007263419A (en) Exhaust heat recovering system from industrial waste water
JP2007038098A (en) Apparatus and method for treating organic waste liquid
CN204778912U (en) Concentrated processing system of evaporation formula liquid
CN210367047U (en) Multistage flash distillation desulfurization effluent treatment plant
JP7263730B2 (en) Boiler water treatment equipment and treatment method
WO2022201480A1 (en) Device and method for vaporization of liquefied natural gas
JP3707940B2 (en) Condensate treatment system and condensate treatment method
CS249509B2 (en) Equipment for glycol&#39;s aqueous solution concentration by means of evaporation
AU2007201125B2 (en) A waste heat boiler (WHB) system
CN205061771U (en) Special integrated processing system to thermal power plant&#39;s zero release
JP2003136094A (en) Method and apparatus for treating boiler supply water
JP7053929B1 (en) Water supply device and water supply method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20081120

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20111128

LAPS Cancellation because of no payment of annual fees