JP2005289680A - Hydrogen production apparatus and hydrogen production method - Google Patents

Hydrogen production apparatus and hydrogen production method Download PDF

Info

Publication number
JP2005289680A
JP2005289680A JP2004104257A JP2004104257A JP2005289680A JP 2005289680 A JP2005289680 A JP 2005289680A JP 2004104257 A JP2004104257 A JP 2004104257A JP 2004104257 A JP2004104257 A JP 2004104257A JP 2005289680 A JP2005289680 A JP 2005289680A
Authority
JP
Japan
Prior art keywords
hydrogen
metal
iron
hydrogen production
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004104257A
Other languages
Japanese (ja)
Inventor
Hitoshi Nakamura
仁 中村
Masakatsu Morioki
昌勝 盛興
Kiyoshi Otsuka
大塚  潔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Gas Co Ltd
Original Assignee
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Gas Co Ltd filed Critical Toho Gas Co Ltd
Priority to JP2004104257A priority Critical patent/JP2005289680A/en
Publication of JP2005289680A publication Critical patent/JP2005289680A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen supplying apparatus and a hydrogen supply method by which hydrogen can be produced at a reduced cost compared to a conventional method. <P>SOLUTION: In pressure chambers 18, 30 as a reducing means, hydrogen gas (hydrogen) is made to react with iron oxide (metal oxide) to separate the product into iron (metal) and steam. The reduced iron is stored as it is in the pressure chambers 18, 30. Further, in the pressure chambers 18, 30 as an oxidizing means, steam is made to react with iron to separate the product into hydrogen and iron oxide to produce hydrogen. Consequently, a compressor conventionally used to compress hydrogen is not required but the pressure chambers 18, 30 have only to be constituted so as not to oxidize iron, and the system can be realized at a lower cost than a conventional method. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、水素を製造するための装置および方法に関する。   The present invention relates to an apparatus and method for producing hydrogen.

従来は水素を製造するにあたって、製造または精製された水素を圧縮機で高圧に圧縮したうえで貯蔵装置に貯蔵しておき、貯蔵された高圧水素をディスペンサーで燃料電池自動車に充填していた(例えば特許文献1を参照)。
特開2003−118548号公報(第5−6頁,図2)
Conventionally, in producing hydrogen, the produced or purified hydrogen is compressed to a high pressure with a compressor and then stored in a storage device, and the stored high-pressure hydrogen is filled into a fuel cell vehicle with a dispenser (for example, (See Patent Document 1).
Japanese Unexamined Patent Publication No. 2003-118548 (page 5-6, FIG. 2)

しかし、従来の技術では、貯蔵装置に水素を貯蔵するために圧縮機(すなわち動力源)や、高圧に圧縮された状態のままで水素を貯蔵できる貯蔵装置が必要であった。よって、水素を製造する設備に相当のコストを要していた。
本発明はこのような点に鑑みてなしたものであり、従来よりもコストを低減したうえで、水素を製造できるように構成した水素製造装置および水素製造方法を提供することを目的とする。
However, in the prior art, a compressor (that is, a power source) for storing hydrogen in the storage device and a storage device that can store hydrogen while being compressed at a high pressure are required. Therefore, considerable cost is required for the facility for producing hydrogen.
This invention is made | formed in view of such a point, and it aims at providing the hydrogen production apparatus and hydrogen production method which were comprised so that hydrogen could be manufactured, after reducing cost conventionally.

(1)課題を解決するための手段(以下では単に「解決手段」と呼ぶ。)1は、水素を製造する水素製造装置であって、水素と金属酸化物とを反応させて金属と水蒸気とに分離する還元手段と、前記還元手段によって分離された金属を貯蔵する貯蔵手段と、水蒸気と前記貯蔵手段に貯蔵された金属とを反応させて水素と金属酸化物とに分離する酸化手段とを有することを要旨とする。 (1) Means for solving the problem (hereinafter, simply referred to as “solution means”) 1 is a hydrogen production apparatus for producing hydrogen, in which hydrogen and a metal oxide are reacted to produce metal and water vapor. A reducing means for separating the metal, a storage means for storing the metal separated by the reducing means, and an oxidizing means for reacting water vapor and the metal stored in the storage means to separate them into hydrogen and a metal oxide. It is summarized as having.

解決手段1によれば、還元手段では第1温度(例えば350℃)で水素と金属酸化物とを反応させると、金属と水蒸気とに分離できる。分離できた金属は酸化されないように貯蔵手段で貯蔵する。酸化手段では、温度は任意であるものの望ましくは上記第1温度よりも低い第2温度(例えば250℃)で水蒸気と貯蔵した金属とを反応させると、水素と金属酸化物とに分離することで水素を製造できる。従来のように水素を圧縮するための圧縮機を必要とせず、貯蔵手段は水素と水蒸気の圧力に耐え得る程度の肉厚にして構成すればよいので、従来よりも低コストで実現することができる。   According to the solution 1, when the reduction means reacts hydrogen and the metal oxide at a first temperature (for example, 350 ° C.), it can be separated into metal and water vapor. The separated metal is stored in a storage means so as not to be oxidized. In the oxidation means, although the temperature is arbitrary, it is preferable that when water vapor and the stored metal are reacted at a second temperature (for example, 250 ° C.) lower than the first temperature, hydrogen and metal oxide are separated. Hydrogen can be produced. A conventional compressor for compressing hydrogen is not required, and the storage means may be constructed with a thickness that can withstand the pressure of hydrogen and water vapor, so that it can be realized at a lower cost than in the past. it can.

(2)解決手段2は、解決手段1に記載した水素製造装置であって、酸化手段は還元手段で用いる水素よりも高圧の水蒸気を用いて金属と反応させるように構成したことを要旨とする。 (2) The solution means 2 is the hydrogen production apparatus described in the solution means 1, wherein the oxidation means is configured to react with the metal using steam having a pressure higher than that of hydrogen used in the reduction means. .

解決手段2によれば、例えば燃料電池などの燃料として水素を供給する際に当該水素を高圧にする必要がある場合には、高圧の水蒸気を用いて金属と反応させればよい。こうすれば反応によって発生する水素も高圧になるので、水素自体を圧縮する必要がない。水を昇圧するためのポンプと、水を熱するためのボイラーとが必要になる。しかし、水素を圧縮するための圧縮機と比べると、圧縮の際に動力を必要としないので安価で済む。したがって、全体としてみれば従来よりも低コストで実現することができる。   According to Solution 2, for example, when supplying hydrogen as a fuel for a fuel cell or the like, when the hydrogen needs to be at a high pressure, the high-pressure steam may be used to react with the metal. In this way, the hydrogen generated by the reaction also becomes high pressure, so there is no need to compress the hydrogen itself. A pump for boosting the water and a boiler for heating the water are required. However, as compared with a compressor for compressing hydrogen, power is not required for compression, so it is inexpensive. Therefore, when it sees as a whole, it can implement | achieve at lower cost than before.

(3)解決手段3は、解決手段1または2に記載した水素製造装置であって、金属または金属酸化物として、ナノサイズ微粒子のものを用いることを要旨とする。 (3) Solution means 3 is the hydrogen production apparatus described in Solution means 1 or 2, and uses a nano-sized fine particle as the metal or metal oxide.

解決手段3によれば、金属または金属酸化物としてナノサイズ微粒子(すなわち粒径が数ナノメートルから数十ナノメートルの粒子)のものを用いる。当該ナノサイズ微粒子は、同じ重量の金属酸化物と比べて全体の表面積が格段に大きくなり、しかも金属内部まで全て酸化還元反応が可能となるので、貯蔵できる水素や発生させる水素の容量も格段に大きくなる。一定容量の水素に対して必要な金属の重量を少なくできるので、貯蔵に必要な貯蔵手段の容積をコンパクトにできる。   According to Solution 3, a metal or metal oxide having nano-sized fine particles (that is, particles having a particle size of several nanometers to several tens of nanometers) is used. Compared to metal oxides of the same weight, the nano-sized fine particles have a significantly larger overall surface area, and all of the inside of the metal can undergo a redox reaction, so the capacity of storable hydrogen and generated hydrogen is also significantly higher. growing. Since the metal weight required for a certain volume of hydrogen can be reduced, the volume of the storage means required for storage can be made compact.

(4)解決手段4は、解決手段1から3のいずれか一項に記載した水素の製造装置であって、金属酸化物として酸化鉄を用いることを要旨とする。 (4) The solving means 4 is the hydrogen production apparatus according to any one of the solving means 1 to 3 and uses iron oxide as a metal oxide.

解決手段4によれば、酸化鉄は鉄を酸化したものであるが、鉄自体が安価で提供されているので全体のコストを安く抑えることができる。   According to the solution 4, the iron oxide is obtained by oxidizing iron. However, since the iron itself is provided at a low price, the overall cost can be reduced.

(5)解決手段5は、水素を製造する水素製造方法であって、水素と金属酸化物とを反応させて金属と水とに分離し、分離された金属を貯蔵し、水蒸気と貯蔵された金属とを反応させて水素と金属酸化物とに分離することを要旨とする。 (5) Solution 5 is a hydrogen production method for producing hydrogen, in which hydrogen and a metal oxide are reacted to separate into metal and water, and the separated metal is stored and stored as water vapor. The gist is to separate metal into hydrogen and metal oxide by reacting with metal.

解決手段5によれば、解決手段1と同様に水素を圧縮するための圧縮機を必要とせず、貯蔵手段は水素と水蒸気の圧力に耐え得る程度の肉厚にして構成すればよいので、従来よりも低コストで実現することができる。   According to the solution means 5, like the solution means 1, a compressor for compressing hydrogen is not required, and the storage means may be configured to have a thickness that can withstand the pressure of hydrogen and water vapor. Can be realized at lower cost.

本発明によれば、水素を圧縮するための圧縮機を必要とせず、貯蔵手段は金属が酸化されない程度で構成すればよい。そのため、従来よりもコストを低減したうえで、水素を製造することができる。   According to the present invention, a compressor for compressing hydrogen is not required, and the storage means may be configured so that the metal is not oxidized. Therefore, hydrogen can be produced while reducing the cost as compared with the prior art.

本発明を実施するための最良の形態について、図1〜図3を参照しながら説明する。まず図1には、酸化鉄を用いた水素製造ステーションを模式的にブロック図で表す。   The best mode for carrying out the present invention will be described with reference to FIGS. FIG. 1 is a block diagram schematically showing a hydrogen production station using iron oxide.

図1に示す水素製造ステーション10は、制御盤12や、圧力容器18,32、ボイラー16、冷却器22、貯水槽24、ポンプ26、ディスペンサー34などを有する。当該水素製造ステーション10は水素製造装置に相当する。圧力容器18,32は、鉄(または酸化鉄)を貯蔵する機能を果たす点で貯蔵手段に相当し、所定の条件下で鉄(または酸化鉄)と水蒸気とを反応させる。この場合の鉄は、ナノサイズ微粒子のものを用いる。制御盤12は、圧力容器18,32のうち一方の容器で還元反応を行い、他方の容器で酸化反応を行い、各反応を交互に切り換えて運転できるように、電磁弁14a,14b,20a,20b,28a,28b,30a,30bの開閉を個別に制御する。ポンプ26は貯水槽24に貯まっている水をボイラー16に送り、当該ボイラー16は水を水蒸気に熱して圧力容器18,32に送る。冷却器22は、圧力容器18,32から出た水蒸気を水に冷やして貯水槽24に送る。ディスペンサー34は、圧力容器18,32で発生させた水素を燃料電池自動車36に充填する。   A hydrogen production station 10 shown in FIG. 1 includes a control panel 12, pressure vessels 18 and 32, a boiler 16, a cooler 22, a water tank 24, a pump 26, a dispenser 34, and the like. The hydrogen production station 10 corresponds to a hydrogen production apparatus. The pressure vessels 18 and 32 correspond to storage means in that they function to store iron (or iron oxide), and cause iron (or iron oxide) and water vapor to react under predetermined conditions. The iron in this case is nano-sized fine particles. The control panel 12 performs a reductive reaction in one of the pressure vessels 18 and 32, an oxidation reaction in the other vessel, and the solenoid valves 14a, 14b, 20a, The opening / closing of 20b, 28a, 28b, 30a, 30b is individually controlled. The pump 26 sends water stored in the water storage tank 24 to the boiler 16, and the boiler 16 heats the water to steam and sends it to the pressure vessels 18 and 32. The cooler 22 cools the water vapor from the pressure vessels 18 and 32 into water and sends it to the water storage tank 24. The dispenser 34 fills the fuel cell vehicle 36 with hydrogen generated in the pressure vessels 18 and 32.

上述した各要素を繋ぐ配管の構成例を簡単に説明する。まず、供給源と圧力容器18,32との間は、供給源から供給される水素ガスが電磁弁28a,28bを経て圧力容器18,32に送るように配管されている。圧力容器18,32と貯水槽24との間は、圧力容器18,32から貯水槽24に向かう第1系統と、貯水槽24から圧力容器18,32に向かう第2系統とに分かれる。第1系統では、圧力容器18,32で発生した水蒸気が電磁弁28a,28bと冷却器22を経て、貯水槽24に送るように配管されている。第2系統では、貯水槽24に貯まっている水をポンプ26で送り、ボイラー16で水蒸気になるように熱し、電磁弁14a,14bを経て圧力容器18,32に送るように配管されている。圧力容器18,32とディスペンサー34との間は、圧力容器18,32で発生させた水素ガスが電磁弁30a,30bを経て、ディスペンサー34に送るように配管されている。   A configuration example of a pipe connecting the above-described elements will be briefly described. First, piping is provided between the supply source and the pressure vessels 18 and 32 so that hydrogen gas supplied from the supply source is sent to the pressure vessels 18 and 32 through the electromagnetic valves 28a and 28b. The space between the pressure vessels 18 and 32 and the water storage tank 24 is divided into a first system from the pressure containers 18 and 32 toward the water storage tank 24 and a second system from the water storage tank 24 to the pressure containers 18 and 32. In the first system, the water vapor generated in the pressure vessels 18 and 32 is piped so as to be sent to the water storage tank 24 through the electromagnetic valves 28 a and 28 b and the cooler 22. In the second system, the water stored in the water storage tank 24 is sent by a pump 26, heated to become steam by the boiler 16, and sent to the pressure vessels 18 and 32 via the electromagnetic valves 14a and 14b. Between the pressure vessels 18 and 32 and the dispenser 34, hydrogen gas generated in the pressure vessels 18 and 32 is piped so as to be sent to the dispenser 34 through the electromagnetic valves 30a and 30b.

図2,図3を参照して、供給源から供給される水素ガスを水素製造ステーション10で貯蔵し、燃料電池自動車36に供給するまでの工程について説明する。   With reference to FIGS. 2 and 3, a process from storing hydrogen gas supplied from a supply source in the hydrogen production station 10 to supplying it to the fuel cell vehicle 36 will be described.

まず図2では、図中「(還元)」で示すように圧力容器18で還元反応を行い、同じく図中「(酸化)」で示すように圧力容器32で酸化反応を行う。そのため制御盤12は、電磁弁14b,20a,28a,30bを開け、電磁弁14a,20b,28b,30aを閉めるように制御する。供給源から供給される水素ガスは、電磁弁28aを経て圧力容器18に送り込まれる。このときの圧力容器18の内部は、低圧(例えば大気圧程度)かつ高温(例えば350℃程度)の雰囲気に調整されている。貯蔵されている酸化鉄(具体的には四酸化三鉄)に対して送り込まれてきた水素ガスを接触させると、次に示す還元反応式に従って鉄(すなわち鉄元素)と水蒸気とに分離される。   First, in FIG. 2, the reduction reaction is performed in the pressure vessel 18 as indicated by “(reduction)” in the drawing, and the oxidation reaction is carried out in the pressure vessel 32 as indicated by “(oxidation)” in the drawing. Therefore, the control panel 12 performs control so that the electromagnetic valves 14b, 20a, 28a, and 30b are opened and the electromagnetic valves 14a, 20b, 28b, and 30a are closed. Hydrogen gas supplied from the supply source is fed into the pressure vessel 18 through the electromagnetic valve 28a. The inside of the pressure vessel 18 at this time is adjusted to a low pressure (for example, about atmospheric pressure) and high temperature (for example, about 350 ° C.) atmosphere. When the hydrogen gas that has been sent to the stored iron oxide (specifically, triiron tetroxide) is brought into contact, it is separated into iron (that is, iron element) and water vapor according to the following reduction reaction formula. .

〔還元反応式〕
4H2+Fe34→3Fe+4H2
(Reduction reaction formula)
4H 2 + Fe 3 O 4 → 3Fe + 4H 2 O

この工程における圧力容器18は、酸化鉄を鉄に還元する点で還元手段に相当する。還元反応式に従って発生した水蒸気は、電磁弁20aから冷却器22を経て、再利用が可能となるように水の状態で貯水槽24に貯められる。したがって、供給源から供給された水素ガス(水素)は水の状態で貯水槽24に貯蔵することになる。   The pressure vessel 18 in this step corresponds to a reducing means in that iron oxide is reduced to iron. Water vapor generated according to the reduction reaction equation is stored in the water storage tank 24 in the water state so that it can be reused through the cooler 22 from the electromagnetic valve 20a. Therefore, the hydrogen gas (hydrogen) supplied from the supply source is stored in the water tank 24 in a water state.

一方、貯水槽24に貯められている水はポンプ26によってボイラー16まで送られ、当該ボイラー16で加熱されて水蒸気になる。この水蒸気は電磁弁14bを経て圧力容器32に送り込まれる。このときの圧力容器32の内部は、還元反応を行なっている圧力容器18よりも低い温度(例えば250℃程度)の雰囲気に調整するのが反応を促進する点で望ましい。同じ温度下では水が水蒸気になると圧力が高まる。そのため、ボイラー16から供給される水蒸気は、圧力容器18と比べて高い圧力になり、圧力容器32内もこの圧力になる。還元され貯蔵された鉄と送り込まれてきた水蒸気とを接触させると、次に示す酸化反応式に従って酸化鉄と水素ガスとに分離される。   On the other hand, the water stored in the water storage tank 24 is sent to the boiler 16 by the pump 26 and heated by the boiler 16 to become steam. This water vapor is fed into the pressure vessel 32 through the electromagnetic valve 14b. It is desirable to adjust the inside of the pressure vessel 32 at this time to an atmosphere having a temperature (for example, about 250 ° C.) lower than that of the pressure vessel 18 performing the reduction reaction in order to promote the reaction. Under the same temperature, the pressure increases when the water becomes water vapor. Therefore, the water vapor supplied from the boiler 16 has a higher pressure than the pressure vessel 18, and the pressure vessel 32 also has this pressure. When the reduced and stored iron is brought into contact with the fed steam, it is separated into iron oxide and hydrogen gas according to the following oxidation reaction formula.

〔酸化反応式〕
3Fe+4H2O→4H2+Fe34
[Oxidation reaction formula]
3Fe + 4H 2 O → 4H 2 + Fe 3 O 4

この工程における圧力容器32は、鉄を酸化鉄に酸化する点で酸化手段に相当する。酸化反応式に従って発生する水素ガスは、圧力容器32における圧力と同等の圧力となる。当該水素ガスは、電磁弁30bを経てディスペンサー34で行う充填により、燃料として燃料電池自動車36に供給される。   The pressure vessel 32 in this step corresponds to an oxidizing means in that iron is oxidized to iron oxide. The hydrogen gas generated according to the oxidation reaction formula has a pressure equivalent to the pressure in the pressure vessel 32. The hydrogen gas is supplied to the fuel cell vehicle 36 as fuel by filling with the dispenser 34 through the electromagnetic valve 30b.

次に図3では、図中「(酸化)」で示すように圧力容器18で酸化反応を行い、同じく図中「(還元)」で示すように圧力容器32で還元反応を行う。そのため制御盤12は、電磁弁14a,20b,28b,30aを開け、電磁弁14b,20a,28a,30bを閉めるように制御する。供給源から供給される水素ガスは電磁弁28bを経て圧力容器32に送り込まれ、ボイラー16で加熱された水蒸気は電磁弁14aを経て圧力容器18に送り込まれる。図3では、圧力容器18と圧力容器32とでは図2の反応と入れ換えた反応が行われ、水素や水蒸気が通る配管の経路が異なるだけである。したがって、還元反応および酸化反応は図2と同様であるので説明を省略する。   Next, in FIG. 3, an oxidation reaction is performed in the pressure vessel 18 as indicated by “(oxidation)” in the drawing, and a reduction reaction is performed in the pressure vessel 32 as indicated by “(reduction)” in the drawing. Therefore, the control panel 12 performs control so that the electromagnetic valves 14a, 20b, 28b, 30a are opened and the electromagnetic valves 14b, 20a, 28a, 30b are closed. Hydrogen gas supplied from a supply source is sent to the pressure vessel 32 through the electromagnetic valve 28b, and water vapor heated by the boiler 16 is sent to the pressure vessel 18 through the electromagnetic valve 14a. In FIG. 3, the pressure vessel 18 and the pressure vessel 32 are exchanged with the reaction of FIG. 2, and the only difference is the piping path through which hydrogen and water vapor pass. Therefore, the reduction reaction and the oxidation reaction are the same as in FIG.

上述した実施の形態によれば、以下に示す各効果を得ることができる。
(1)還元手段(図2では圧力容器18,図3では圧力容器32)では、約350℃(第1温度)で水素ガス(水素)と酸化鉄(金属酸化物)とを反応させて鉄と水蒸気とに分離した〔第1工程〕。こうして還元された鉄は、圧力容器18,32内にそのまま貯蔵した〔第2工程〕。さらに酸化手段(図2では圧力容器32,図3では圧力容器18)では、約250℃(第2温度)で水蒸気と鉄とを反応させて水素と酸化鉄とに分離することで水素を製造した〔第3工程〕。したがって、従来のように水素を圧縮するための圧縮機を必要とせず、圧力容器18,32は水素と水蒸気の圧力に耐え得る程度の肉厚にして構成すればよいので、従来よりも低コストで実現することができる。
According to the embodiment described above, the following effects can be obtained.
(1) In the reducing means (the pressure vessel 18 in FIG. 2 and the pressure vessel 32 in FIG. 3), hydrogen gas (hydrogen) and iron oxide (metal oxide) are reacted at about 350 ° C. (first temperature) to produce iron. And water vapor [first step]. The iron thus reduced was directly stored in the pressure vessels 18 and 32 [second step]. Further, in the oxidizing means (pressure vessel 32 in FIG. 2, pressure vessel 18 in FIG. 3), hydrogen is produced by reacting water vapor and iron at about 250 ° C. (second temperature) and separating them into hydrogen and iron oxide. [Third step]. Accordingly, a compressor for compressing hydrogen as in the prior art is not required, and the pressure vessels 18 and 32 may be configured to have a thickness that can withstand the pressure of hydrogen and water vapor. Can be realized.

(2)還元反応を行うために圧力容器で発生する水蒸気の圧力と、酸化反応を行うためにボイラー16から送り込む水蒸気の圧力とでは、ポンプ26で水を昇圧し、ボイラー16で加熱する分だけ後者のほうが高い。こうすれば酸化反応によって発生する水素も高圧になるので、水素自体を圧縮する必要がない(もしくは少ない)。ポンプ26やボイラー16は、従来用いていた水素を圧縮するための圧縮機よりは圧縮の際に動力を必要としないので安価で済む。したがって、全体としてみれば従来よりも低コストで実現することができる。 (2) With the pressure of the water vapor generated in the pressure vessel for performing the reduction reaction and the pressure of the water vapor sent from the boiler 16 for performing the oxidation reaction, the pressure is increased by the pump 26 and heated by the boiler 16. The latter is higher. In this way, the hydrogen generated by the oxidation reaction also becomes high pressure, so it is not necessary (or less) to compress the hydrogen itself. The pump 26 and the boiler 16 require less power than the conventional compressor for compressing hydrogen, so that power is not required for compression. Therefore, when it sees as a whole, it can implement | achieve at lower cost than before.

(3)酸化還元反応で用いる鉄または酸化鉄はナノサイズ微粒子のものであるので、同じ重量の鉄と比べると全体の表面積が格段に大きい。鉄と水蒸気(水)との酸化還元反応は当該鉄の表面だけでなく、金属内部まで全て可能となるので、貯蔵できる水素や発生させる水素の容量も格段に大きくなる。一定容量の水素に対して必要な鉄の重量を少なくできるので、圧力容器18,32の容積をコンパクトにできる。 (3) Since iron or iron oxide used in the oxidation-reduction reaction is nano-sized fine particles, the entire surface area is much larger than iron of the same weight. Since the oxidation-reduction reaction between iron and water vapor (water) can be performed not only on the surface of the iron but also inside the metal, the capacity of hydrogen that can be stored or generated is greatly increased. Since the iron weight required for a certain amount of hydrogen can be reduced, the volume of the pressure vessels 18 and 32 can be made compact.

(4)鉄自体が安価で提供されているので、金属酸化物として酸化鉄を用いた。したがって、水素製造ステーション10全体のコストを安く抑えることができる。 (4) Since iron itself is provided at low cost, iron oxide was used as a metal oxide. Therefore, the cost of the entire hydrogen production station 10 can be reduced.

〔他の実施の形態〕
以上、本発明を実施するための最良の形態について説明したが、本発明は当該形態に何ら限定されるものではない。言い換えれば、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施することが可能である。例えば、次に示す各形態を実現してもよい。
[Other Embodiments]
As mentioned above, although the best form for implementing this invention was demonstrated, this invention is not limited to the said form at all. In other words, the present invention can be implemented in various forms without departing from the gist of the present invention. For example, the following forms may be realized.

(1)上述した形態では、金属として鉄を適用した。この形態に代えて、他の金属を適用してもよい。例えば、アルファ鉄,ガンマ鉄,コバルト・マグネタイト鉄,超微粒子チタン,インジウム・錫(ITO),亜鉛,タングステン,電解二マンガンなどが該当する。他の金属を適用した場合であっても、還元反応および酸化反応を行わせることができる。また、水素を圧縮するための圧縮機を必要とせず、圧力容器18,32は金属が酸化されない程度で構成すれば足りる。そのため、従来よりもコストを低減したうえで、水素を製造することができる。 (1) In the form mentioned above, iron was applied as a metal. Instead of this form, other metals may be applied. For example, alpha iron, gamma iron, cobalt magnetite iron, ultrafine titanium, indium tin (ITO), zinc, tungsten, electrolytic dimanganese, and the like are applicable. Even when other metals are applied, the reduction reaction and the oxidation reaction can be performed. Further, a compressor for compressing hydrogen is not required, and it is sufficient that the pressure vessels 18 and 32 are configured so that the metal is not oxidized. Therefore, hydrogen can be produced while reducing the cost as compared with the prior art.

(2)上述した形態では、製造した水素を供給する対象として、燃料電池自動車36(すなわち水素を使用して動力を発生する車両)を適用した。この形態に代えて、水素を供給可能な対象物であれば、任意に適用できる。例えば、燃料電池鉄道車両や燃料電池船舶などの輸送用機器、化学プラントなどのように水素を資源として用いるプラント、水素ボンベなどが該当する。 (2) In the above-described embodiment, the fuel cell vehicle 36 (that is, a vehicle that generates power using hydrogen) is applied as a target for supplying the produced hydrogen. It can replace with this form and can apply arbitrarily if it is a target object which can supply hydrogen. For example, a transport device such as a fuel cell railway vehicle or a fuel cell ship, a plant using hydrogen as a resource, such as a chemical plant, a hydrogen cylinder, and the like are applicable.

(3)上述した形態では、水素製造ステーション10として二つの圧力容器18,32を備えた。この形態に代えて、貯蔵し供給する水素の容積に合わせて任意の数の圧力容器を備える構成としてもよい。この場合、制御盤12から電磁弁を制御することによって、使用する圧力容器の数を調整すれば、貯蔵し供給する水素の容積に見合う構成を弾力的に行うことが容易にできる。また、酸化反応と還元反応とをバッチ式で行う水素製造ステーションの場合では、一つの圧力容器のみを備える構成とすることができる。 (3) In the embodiment described above, the two pressure vessels 18 and 32 are provided as the hydrogen production station 10. Instead of this form, an arbitrary number of pressure vessels may be provided according to the volume of hydrogen to be stored and supplied. In this case, by controlling the solenoid valve from the control panel 12 and adjusting the number of pressure vessels to be used, it is possible to easily perform a configuration that is commensurate with the volume of hydrogen to be stored and supplied. Moreover, in the case of the hydrogen production station which performs an oxidation reaction and a reduction reaction by a batch type, it can be set as the structure provided with only one pressure vessel.

(4)上述した形態では、還元反応を350℃程度で行い、酸化反応を250℃程度で行なった。この形態に代えて、反応媒体となる金属の材質によっては、酸化反応を行う温度(すなわち第2温度)が還元反応を行う温度(すなわち第1温度)とほぼ同じ温度か低い温度であれば、任意の温度で実現することができる。例えば、還元反応と酸化反応とを同じ温度(例えば250℃程度)で行うことも可能である。酸化還元温度が同じであれば、昇温や降温を行う必要がないので、そのための設備も必要としない。設備コストが安くなるので、水素の製造コストもさらに安くできる。 (4) In the embodiment described above, the reduction reaction was performed at about 350 ° C., and the oxidation reaction was performed at about 250 ° C. Instead of this form, depending on the material of the metal serving as the reaction medium, if the temperature at which the oxidation reaction is performed (that is, the second temperature) is substantially the same as or lower than the temperature at which the reduction reaction is performed (that is, the first temperature), It can be realized at any temperature. For example, the reduction reaction and the oxidation reaction can be performed at the same temperature (for example, about 250 ° C.). If the oxidation-reduction temperature is the same, there is no need to raise or lower the temperature, so no equipment for that is required. Since the equipment cost is reduced, the hydrogen production cost can be further reduced.

本発明の構成例を模式的に表すブロック図である。It is a block diagram showing typically the example of composition of the present invention. 水素ガスを貯蔵し供給する工程を説明する図である。It is a figure explaining the process of storing and supplying hydrogen gas. 水素ガスを貯蔵し供給する工程を説明する図である。It is a figure explaining the process of storing and supplying hydrogen gas.

符号の説明Explanation of symbols

10 水素製造ステーション(水素製造装置)
12 制御盤
14a,14b,20a,20b,28a,28b,30a,30b 電磁弁
16 ボイラー(加熱手段)
18,32 圧力容器(還元手段,酸化手段,貯蔵手段)
22 冷却器(冷却手段)
24 貯水槽
26 ポンプ
34 ディスペンサー(充填手段)
36 燃料電池自動車(水素を使用して動力を発生する車両)
10 Hydrogen production station (hydrogen production equipment)
12 Control panel 14a, 14b, 20a, 20b, 28a, 28b, 30a, 30b Solenoid valve 16 Boiler (heating means)
18, 32 Pressure vessel (reduction means, oxidation means, storage means)
22 Cooler (cooling means)
24 water storage tank 26 pump 34 dispenser (filling means)
36 Fuel cell vehicles (vehicles that generate power using hydrogen)

Claims (5)

水素を製造する水素製造装置であって、
水素と金属酸化物とを反応させて、金属と水蒸気とに分離する還元手段と、
前記還元手段によって分離された金属を貯蔵する貯蔵手段と、
水蒸気と前記貯蔵手段に貯蔵された金属とを反応させて、水素と金属酸化物とに分離する酸化手段とを有する水素製造装置。
A hydrogen production apparatus for producing hydrogen,
Reducing means for reacting hydrogen and metal oxide to separate into metal and water vapor;
Storage means for storing the metal separated by the reducing means;
An apparatus for producing hydrogen, comprising: an oxidation means for reacting water vapor with a metal stored in the storage means to separate hydrogen into a metal oxide.
請求項1に記載した水素製造装置であって、
酸化手段は、還元手段で用いる水素よりも高圧の水蒸気を用いて金属と反応させるように構成した水素製造装置。
The hydrogen production apparatus according to claim 1,
The hydrogen production apparatus configured to cause the oxidation means to react with the metal using steam having a pressure higher than that of hydrogen used in the reduction means.
請求項1または2に記載した水素製造装置であって、
金属または金属酸化物として、ナノサイズ微粒子のものを用いる水素製造装置。
The hydrogen production apparatus according to claim 1 or 2,
A hydrogen production apparatus using nano-sized fine particles as metal or metal oxide.
請求項1から3のいずれか一項に記載した水素製造装置であって、
金属酸化物として酸化鉄を用いる水素製造装置。
The hydrogen production apparatus according to any one of claims 1 to 3,
Hydrogen production equipment that uses iron oxide as the metal oxide.
水素を製造する水素製造方法であって、
水素と金属酸化物とを反応させて金属と水とに分離し、
分離された金属を貯蔵し、
水蒸気と貯蔵された金属とを反応させて水素と金属酸化物とに分離する水素製造方法。
A hydrogen production method for producing hydrogen, comprising:
Hydrogen and metal oxide are reacted to separate into metal and water,
Store the separated metal,
A hydrogen production method in which water vapor and stored metal are reacted to separate into hydrogen and metal oxide.
JP2004104257A 2004-03-31 2004-03-31 Hydrogen production apparatus and hydrogen production method Pending JP2005289680A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004104257A JP2005289680A (en) 2004-03-31 2004-03-31 Hydrogen production apparatus and hydrogen production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004104257A JP2005289680A (en) 2004-03-31 2004-03-31 Hydrogen production apparatus and hydrogen production method

Publications (1)

Publication Number Publication Date
JP2005289680A true JP2005289680A (en) 2005-10-20

Family

ID=35323068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004104257A Pending JP2005289680A (en) 2004-03-31 2004-03-31 Hydrogen production apparatus and hydrogen production method

Country Status (1)

Country Link
JP (1) JP2005289680A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005289681A (en) * 2004-03-31 2005-10-20 Toho Gas Co Ltd Hydrogen refining apparatus and hydrogen refining method
JP2007112672A (en) * 2005-10-21 2007-05-10 Toho Gas Co Ltd Apparatus and method for producing hydrogen
WO2012020834A1 (en) * 2010-08-12 2012-02-16 トヨタ自動車株式会社 Method and apparatus for production of hydrogen
WO2012043271A1 (en) * 2010-09-29 2012-04-05 コニカミノルタホールディングス株式会社 Secondary battery type fuel cell system
JPWO2011077969A1 (en) * 2009-12-24 2013-05-02 コニカミノルタホールディングス株式会社 Reaction vessel and fuel cell system using the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005289681A (en) * 2004-03-31 2005-10-20 Toho Gas Co Ltd Hydrogen refining apparatus and hydrogen refining method
JP2007112672A (en) * 2005-10-21 2007-05-10 Toho Gas Co Ltd Apparatus and method for producing hydrogen
JPWO2011077969A1 (en) * 2009-12-24 2013-05-02 コニカミノルタホールディングス株式会社 Reaction vessel and fuel cell system using the same
US8637198B2 (en) 2009-12-24 2014-01-28 Konica Minolta Holdings, Inc. Reaction container and fuel cell system equipped with same
JP5549732B2 (en) * 2010-08-12 2014-07-16 トヨタ自動車株式会社 Hydrogen production method and apparatus
WO2012020834A1 (en) * 2010-08-12 2012-02-16 トヨタ自動車株式会社 Method and apparatus for production of hydrogen
DE112011102702T5 (en) 2010-08-12 2013-05-16 Toyota Jidosha Kabushiki Kaisha Process and apparatus for producing hydrogen
CN103140435A (en) * 2010-08-12 2013-06-05 丰田自动车株式会社 Method and apparatus for production of hydrogen
JPWO2012020834A1 (en) * 2010-08-12 2013-10-28 トヨタ自動車株式会社 Hydrogen production method and apparatus
US8951497B2 (en) 2010-08-12 2015-02-10 Toyota Jidosha Kabushiki Kaisha Method and apparatus for producing hydrogen
WO2012043271A1 (en) * 2010-09-29 2012-04-05 コニカミノルタホールディングス株式会社 Secondary battery type fuel cell system
JP5617928B2 (en) * 2010-09-29 2014-11-05 コニカミノルタ株式会社 Secondary battery type fuel cell system
JPWO2012043271A1 (en) * 2010-09-29 2014-02-06 コニカミノルタ株式会社 Secondary battery type fuel cell system

Similar Documents

Publication Publication Date Title
Libowitz et al. Hydride formation by BCC solid solution alloys
US11661339B1 (en) High pressure gas generation system for hydrogen production and other applications
Gosselin et al. First hydrogenation enhancement in TiFe alloys for hydrogen storage
JP2005289680A (en) Hydrogen production apparatus and hydrogen production method
JP4754320B2 (en) Hydrogen production equipment
CN112974858A (en) Gas supply device and method for manufacturing device, atomizing device, 3D stacking and forming device, stacking and forming system, and formed object
JP2005289716A (en) Hydrogen production apparatus and hydrogen production method
Fernández et al. Hydriding/dehydriding behavior of Mg2CoH5 produced by reactive mechanical milling
Jin et al. Microstructures and hydrogen storage properties of Mg-Y-Zn rare earth magnesium alloys with different Zn content: Experimental and first-principles studies
Zhihan et al. A green process for selective REEs recovery from Rare earth waste through mechanochemical activation
Lee et al. EBSD microstructural analysis of AB-type TiFe hydrogen storage alloys
JP2008121096A (en) Method for reducing metal oxide, and method for producing hydrogen
JP2003314792A (en) Method of filling hydrogen into high pressure container
EP3351509B1 (en) Laves phase intermetallic compound, catalyst using intermetallic compound, and method for producing ammonia
JP2005289681A (en) Hydrogen refining apparatus and hydrogen refining method
Goshome et al. Evaluation of the pressure dependence of the cycle durability and thermodynamics of a metal hydride compressor composed of ternary V40 and V70TiCr
US20060037678A1 (en) Gas quenching installation and the corresponding quenching method
CN114672714A (en) High-entropy hydrogen storage alloy and preparation method thereof
JP4817794B2 (en) Method and apparatus for transferring natural gas hydrate
JP2005255505A (en) Hydrogen supply method
JP4846634B2 (en) Titanium-based hydrogen storage alloy manufacturing method and titanium-based hydrogen storage alloy manufacturing apparatus
de Lima Andreani et al. Hydrogen storage properties of 2 Mg–Fe mixtures processed by hot extrusion: Effect of ram speeds
US11440796B2 (en) Metal hydride compressor control device and method
JP2009179526A (en) Method for reducing metal oxide, method for producing hydrogen, and hydrogen storage device
Tarasov et al. Preparation of hydrides of intermetallic compounds