JP2005289651A - METHOD FOR MANUFACTURING GaN SINGLE CRYSTAL - Google Patents

METHOD FOR MANUFACTURING GaN SINGLE CRYSTAL Download PDF

Info

Publication number
JP2005289651A
JP2005289651A JP2001159939A JP2001159939A JP2005289651A JP 2005289651 A JP2005289651 A JP 2005289651A JP 2001159939 A JP2001159939 A JP 2001159939A JP 2001159939 A JP2001159939 A JP 2001159939A JP 2005289651 A JP2005289651 A JP 2005289651A
Authority
JP
Japan
Prior art keywords
single crystal
substrate
gan single
buffer layer
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001159939A
Other languages
Japanese (ja)
Other versions
JP3749454B2 (en
Inventor
Shinichi Watabe
信一 渡部
Kazuyuki Tadatomo
一行 只友
Hiroaki Okagawa
広明 岡川
Kazumasa Hiramatsu
和政 平松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP2001159939A priority Critical patent/JP3749454B2/en
Publication of JP2005289651A publication Critical patent/JP2005289651A/en
Application granted granted Critical
Publication of JP3749454B2 publication Critical patent/JP3749454B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a GaN single crystal having enough thickness to be independently used as a substrate. <P>SOLUTION: A GaN single crystal 3 having enough thickness to be independently used as a substrate is grown via a buffer layer 2 formed of ZnO on a three-layer structure substrate 1 consisting of a sapphire crystal substrate 1c, an AlN buffer layer 1b formed on the sapphire crystal substrate 1c, and a GaN single crystal surface layer 1c formed on the buffer layer 1b. The ZnO buffer layer 2 is removed by etching to obtain the thick GaN single crystal 3. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
本発明は、青色LED等のGaN単結晶基板として好適に用いることができるGaN単結晶の製造方法に関する。
【0002】
【従来の技術】
発光ディスプレイ等における多色化の要求や、通信・記録等におけるデータ密度向上の要求によって、青色から紫外線波長領域に至る短波長の発光が可能な半導体デバイスの出現が強く求められている。この青色〜紫外発光デバイス用の半導体材料として、 III−V系化合物半導体では最もバンドギャップの広い窒化物であるGaN系単結晶が着目されている。GaNは、直接遷移型バンド構造を有するため高効率の発光が可能であり、かつ、室温でのバンドギャップが約3.4eVと大きいため青色〜紫外発光を呈し、上記半導体デバイスの要求に好適な材料である。しかし、GaNは、結晶成長温度が高く、また結晶成長温度付近での窒素の平衡解離圧が高いため、融液から高品質で大型の単結晶を製造することは極めて困難である。従って、GaN系単結晶の成長は、耐熱性に優れたサファイア基板またはSiC基板上への、MOCVD技術またはMBE技術による非平衡反応に基づくヘテロエピタキシャル成長法によって行われていた。これに対して、近年、ZnOやAlNをバッファ層としてサファイア基板上に成膜した上にGaN単結晶を成長させる方法が提案され、上記サファイア基板上への直接的な結晶成長にくらべGaN系単結晶薄膜の品質は向上した。
【0003】
【発明が解決しようとする課題】
ところが、上記従来の方法によってバッファ層上に形成されるGaN単結晶は、あくまで薄膜状のものであって、該GaN単結晶を単独に分離して用いることは機械的強度上の問題等から困難であり、該GaN単結晶はもとの基板上に形成された状態で用いることを余儀なくされていた。また、ZnOバッファ層上にGaN単結晶を成長させていた従来の技術(例えば、特願平5−253098)では、得られたGaN単結晶中には、未だ結晶構造の欠陥や不純物が残存するという問題があった。本発明の目的は、結晶構造の欠陥や不純物が極めて少ない高品質な、しかもGaN単結晶だけを単独で基板として用いることが可能なほど十分な厚みを有するGaN単結晶をも製造しうるGaN単結晶の製造方法を提供することである。以下、結晶構造の欠陥や不純物を含んでいても実質的に全体が1つのGaN単結晶であるような基板を、表層だけがGaN単結晶であるような基板と区別して「GaN単結晶単独の基板」という。
【0004】
【課題を解決するための手段】
本発明者等は、従来、GaN単結晶の成長の基礎として用いていたサファイア基板の代わりに、サファイア基板とGaxAl1-xN(式中の添字xは、この化合物の組成比を示すものであり、その範囲は0≦x≦1である。以下、同様)からなるバッファ層とGaN単結晶の表層とからなる三層構造のものを基板として用いることによって、該三層構造の基板上に、GaN単結晶単独の基板として用いるのに十分な厚みで、且つ良質のGaN単結晶が成長可能であることを見いだし本発明を完成した。
【0005】
即ち、本発明のGaN単結晶の製造方法は、サファイア結晶基板と、該サファイア結晶基板上に形成されるGaxAl1-xN(ただし、式中の添字xは、0〜1の値をとる)からなるバッファ層と、該バッファ層上に形成されるGaN単結晶の表層とからなる、三層構造の基板上に、ZnOからなるバッファ層を介して、単独で基板として用いることが可能な厚さを有するGaN単結晶を成長し、次いで前記ZnOバッファ層をエッチング除去して厚肉のGaN単結晶を得ることを特徴とするものである。
【0006】
以下、本発明の製造方法の一例を詳細に説明する。図1は、本発明の製造方法によって形成されたGaN単結晶の一例を模式的に示す図である。本発明のGaN単結晶の製造方法は、同図に示すように、サファイア結晶基板1a・GaxAl1-xNバッファ層1b・GaN単結晶の表層1cからなる三層構造の基板1上に、ZnOからなるバッファ層2を介して、製造目的のGaN単結晶3を成長させる工程を有する製造方法である。以下、サファイア結晶基板・GaxAl1-xNバッファ層・GaN単結晶の表層からなる上記三層構造の基板を、単に「三層構造の基板」という。
【0007】
三層構造の基板1は、サファイア結晶基板1a上にGaxAl1-xNバッファ層1bを形成し、さらに該GaxAl1-xNバッファ層1b上にGaN単結晶の表層1cを形成して得られるものである。サファイア結晶基板1a上へのGaxAl1-xNバッファ層1bの形成方法、およびGaxAl1-xNバッファ層1b上へのGaN単結晶の表層1cの形成方法は、各々、形成の基礎となる層の結晶構造に対してエピタキシャル成長しうる方法が好ましい。エピタキシャル成長しうる方法としては、上記MOVPE法、MBE法の他、HVPE法(Hydride Vapor Phase Epitaxy :ハイドライド気相エピタキシャル成長法)、LPE法(液相エピタキシャル成長法)、GS−MBE法(ガスソースMBE法)、CBE法(ケミカルビームエピタキシャル成長法)等が有効な方法として挙げられる。上記種々の成長方法の中でも、MOVPE法は非平衡状態で、且つ、ある程度高温下で結晶成長ができるため、良質な結晶を得るのに好ましい成長方法である。また、MBE法は膜厚制御の点から好ましい方法であるが、前記MOVPE法の方が特に好ましい方法である。また、GaxAl1-xNバッファ層1bの形成とGaN単結晶の表層1cの形成とを、同じエピタキシャル成長方法を用いて行なえば、材料の供給を変えるだけでGaxAl1-xNからGaNへと、その場での連続的な成長が可能となるので好ましい。従って、サファイア結晶基板1a上にGaxAl1-xNを結晶成長させる方法、及びその上にGaNを結晶成長させる方法が共にMOVPE法であることが、最も好ましい基板1の形成方法の1つであるといえる。
【0008】
バッファ層1bとなるGaxAl1-xNの組成比xは、その上に表層1cとして形成されるGaN単結晶と格子整合性が良好となるように決定すればよいが、該組成比xは、GaN単結晶に対してただ1つの値として限定されるものではなく、製造条件(例えば、成長温度・成長圧力・原料の供給速度等)に対応して変更すればよい。該バッファ層1bの厚みは限定されるものではないが、50Å〜1000Å程度であれば、該バッファ層上に成長するGaN単結晶の結晶性が最も良質なものとなるため、バッファ層としては適当な厚みである。GaN単結晶の表層1cの厚みもまた限定されるものではないが、0.3μm以上であれば、目的のGaN単結晶3を成長する際の良質な基板と成り得るため、GaN単結晶の表層1cとしては好ましい厚みである。
【0009】
目的のGaN単結晶3を三層構造の基板1上に成長させるにあたり、該三層構造の基板1上にはZnOからなるバッファ層2が形成される。
【0010】
このバッファ層2に用いられる物質は、本来GaN単結晶との格子整合性が良好なものであればよい。ここでGaN単結晶との格子整合性が良好な物質とは、結晶格子におけるa軸の格子定数が、GaN単結晶のそれに対して±10%以内、好ましくは±5%以内であって、ウルツァイト型の結晶構造を持つものを言う。かかる物質としてZnO、BeO、ZnBeO等が挙げられるが、本発明では酸によるエッチング除去性が良好であり、目的のGaN単結晶単独の基板を容易に分離することができる点に着目して、ZnOをバッファ層2に用いる。
【0011】
バッファ層2の形成方法は、前述の三層構造の基板1を形成する方法と同じく、MOVPE法、HVPE法、LPE法、MBE法等のエピタキシャル成長法の他、スパッタ法、CVD法等の成膜法が有効な方法として挙げられる。特に、MOVPE法は非平衡状態で、且つある程度の厚みを有する膜を形成可能であるため、バッファ層2の形成には好適である。また、バッファ層2の形成と目的のGaN単結晶3の形成とを、同じエピタキシャル成長方法を用いて行なえば、上記三層構造の基板1の場合と同様に、材料の供給を変えるだけでバッファ層2からGaN単結晶へと、その場での連続的な成長が可能となる。バッファ層2の厚みは、限定されるものではなく、0.1μm以上あれば良いが、エッチング除去性を考慮すれば0.5μm以上が好ましい。
【0012】
目的のGaN単結晶3をエピタキシャル成長させる方法としては、MOVPE法、MBE法、HVPE法、LPE法、GS−MBE法、CBE法等が有効な方法として挙げられる。特に、HVPE法は、従来のサファイア基板の代わりに用いる三層構造の基板1表面の良質な結晶構造を十分に生かすことができるエピタキシャル成長法であり、この方法によって得られるGaN単結晶は、良質で、GaN単結晶単独の基板として用いることが可能なほど十分な厚みとなり得る。
【0013】
本発明の製造方法によって得られたGaN単結晶3を、GaN単結晶単独の基板とする場合には、該GaN単結晶3の成長の基礎となった結晶層(基板1)を除去する必要がある。このような方法としては、酸等による化学的な除去方法を好適に用いることができる。即ち、ZnOバッファ層2がGaN単結晶3及び基板1のGaN単結晶表層1cに対してエッチングの選択性を有するので、GaN単結晶3の基板1からの除去が容易に行える。
【0014】
【作用】
本発明では、GaN単結晶を成長させるために従来用いられていたサファイア基板の代わりとして、上記のように、サファイア結晶基板・GaxAl1-xNバッファ層・GaN単結晶の表層からなる三層構造の基板を用いている。この三層構造の基板は、表面が高品質のGaN単結晶であるために、該基板上にGaN単結晶を直接エピタキシャル成長させることによって、高品質な結晶構造を有するGaN単結晶が得られる。また同様に、該三層構造の基板上にZnOバッファ層を形成するので、従来のサファイア基板上に形成していたバッファ層に比べて高品質な結晶構造を有するバッファ層となり、ひいては、その上に形成されるGaN単結晶も高品質な結晶構造となる。
【0015】
【実施例】
以下、実施例を挙げて本発明をさらに詳細に説明する。本実施例では、本発明の製造方法によってGaN単結晶を形成し、さらにGaN単結晶単独の基板が得られるに至る製造例を示す。図1に示すように、先ず、厚み300μm、面積5cm×5cmのサファイア結晶基板1aを用い、該サファイア結晶基板1a上に、バッファ層1bとしてAlN(即ち、GaxAl1-xNの組成比xが0の場合)をMOVPE法によって厚み500Åまでエピタキシャル成長させ、その状態のままで材料ガスを切替え、同じMOVPE法によってGaNを厚み2μmまでエピタキシャル成長させて表層1cとし、サファイア結晶基板1a・AlNバッファ層1bとGaN単結晶の表層1cとからなる総厚約302μmの三層構造の基板1を作成した。次いで、三層構造の基板1上に、MOVPE法によってZnOを厚み0.5μmまでエピタキシャル成長させてバッファ層2とし、その後異なる反応管内でHVPE法によってGaNを厚み500μmまでエピタキシャル成長させて、目的のGaN単結晶3とした。最後に、エッチングによってZnOバッファ層を除去してGaN単結晶3だけを分離し、基板として用いるに十分な厚み500μmを有するGaN単結晶単独の基板を得ることができた。
【0016】
上記実施例において得られたGaN単結晶単独の基板を、X線回折、フォトルミネッセンス(PL)法、Hall効果測定で評価したところ、ロッキングカーブの半値幅で約4min、低温PL法ではエキシトンに関与する鋭いピークのみが観察された。 Mobility は室温において2×1017cm-3で約400cm2 /V・sであり、高品質なGaN単結晶単独の基板であることが確認された。即ち、本発明が、高品質でしかも300μm以上の十分な厚みのGaN単結晶の製造も可能であることがわかった。
【0017】
【発明の効果】
本発明のGaN単結晶の製造方法によって、従来に比べてさらに高品質なGaN単結晶が得られる。また、基板の高品質化によって、目的のGaN単結晶が高品質化するに伴い、単独の基板として十分な厚みのものも製造が可能となる。従って、従来では得ることが困難であったGaN単結晶の単独基板が容易に得られ、高効率の青色発光を呈するLEDや、紫外線レーザーダイオード、または耐熱性の良好な半導体デバイス用に好適なGaN単結晶の単独基板を提供することができる。
【図面の簡単な説明】
【図1】本発明の製造方法によって形成されたGaN単結晶の一例を模式的に示す図である。
【符号の説明】
1 基板
1a サファイア基板
1b GaxAl1-xNバッファ層
1c GaN単結晶の表層
2 バッファ層
3 GaN単結晶
[0001]
[Industrial application fields]
The present invention relates to a method for producing a GaN single crystal that can be suitably used as a GaN single crystal substrate such as a blue LED.
[0002]
[Prior art]
Due to demands for multicolorization in light emitting displays and the like, and demands for improving data density in communication and recording, etc., there has been a strong demand for the appearance of semiconductor devices capable of emitting light of a short wavelength from blue to the ultraviolet wavelength region. As a semiconductor material for this blue to ultraviolet light emitting device, a GaN-based single crystal, which is a nitride having the widest band gap among the III-V-based compound semiconductors, has attracted attention. Since GaN has a direct transition type band structure, it can emit light with high efficiency, and has a large band gap of about 3.4 eV at room temperature, so it emits blue to ultraviolet light and is suitable for the demands of the above semiconductor devices. Material. However, since GaN has a high crystal growth temperature and a high equilibrium dissociation pressure of nitrogen near the crystal growth temperature, it is extremely difficult to produce a large-quality single crystal from a melt. Therefore, the growth of GaN-based single crystals has been performed by a heteroepitaxial growth method based on a non-equilibrium reaction by MOCVD technology or MBE technology on a sapphire substrate or SiC substrate having excellent heat resistance. On the other hand, in recent years, a method for growing a GaN single crystal on a sapphire substrate with ZnO or AlN as a buffer layer has been proposed. Compared to the direct crystal growth on the sapphire substrate, a GaN-based single crystal is proposed. The quality of the crystal thin film has improved.
[0003]
[Problems to be solved by the invention]
However, the GaN single crystal formed on the buffer layer by the above conventional method is a thin film, and it is difficult to separate and use the GaN single crystal alone due to problems in mechanical strength. Therefore, the GaN single crystal has been forced to be used in a state of being formed on the original substrate. Further, in the conventional technique (for example, Japanese Patent Application No. 5-253098) in which a GaN single crystal is grown on a ZnO buffer layer, defects and impurities in the crystal structure still remain in the obtained GaN single crystal. There was a problem. It is an object of the present invention to produce a GaN single crystal that can produce a high-quality GaN single crystal with extremely few defects and impurities in the crystal structure, and a sufficient thickness that allows only a GaN single crystal to be used alone as a substrate. It is to provide a method for producing crystals. Hereinafter, a substrate that is substantially entirely composed of one GaN single crystal even if it contains defects or impurities in the crystal structure is distinguished from a substrate in which only the surface layer is a GaN single crystal. It is called “substrate”.
[0004]
[Means for Solving the Problems]
The present inventors have used a sapphire substrate and Ga x Al 1-x N (subscript x in the formula indicates the composition ratio of this compound) instead of the sapphire substrate conventionally used as the basis for the growth of GaN single crystals. The range is 0 ≦ x ≦ 1, and the same applies hereinafter), and a three-layer structure substrate comprising a GaN single crystal surface layer is used as the substrate. Further, the present invention has been completed by finding that a GaN single crystal having a sufficient thickness to be used as a single substrate for a GaN single crystal can be grown.
[0005]
That is, the method for producing a GaN single crystal according to the present invention includes a sapphire crystal substrate and Ga x Al 1-x N formed on the sapphire crystal substrate (where the subscript x in the formula has a value of 0 to 1). Can be used alone as a substrate through a buffer layer made of ZnO on a three-layer substrate made of a buffer layer made of GaN and a surface layer of a GaN single crystal formed on the buffer layer. A GaN single crystal having a sufficient thickness is grown, and then the ZnO buffer layer is removed by etching to obtain a thick GaN single crystal.
[0006]
Hereinafter, an example of the manufacturing method of the present invention will be described in detail. FIG. 1 is a diagram schematically showing an example of a GaN single crystal formed by the manufacturing method of the present invention. The method for producing a GaN single crystal according to the present invention comprises a sapphire crystal substrate 1a, a Ga x Al 1-x N buffer layer 1b, and a GaN single crystal surface layer 1c on a substrate 1 having a three-layer structure as shown in FIG. , A manufacturing method including a step of growing a GaN single crystal 3 for manufacturing purpose through a buffer layer 2 made of ZnO. Hereinafter, the above three-layer structure substrate composed of a sapphire crystal substrate, a Ga x Al 1-x N buffer layer, and a GaN single crystal surface layer is simply referred to as a “three-layer structure substrate”.
[0007]
The substrate 1 having a three-layer structure includes a Ga x Al 1-x N buffer layer 1b formed on a sapphire crystal substrate 1a, and a GaN single crystal surface layer 1c formed on the Ga x Al 1-x N buffer layer 1b. Is obtained. Method of forming a Ga x Al 1-x N buffer layer 1b of the sapphire crystal substrate 1a on, and a method of forming the Ga x Al 1-x N surface 1c of the GaN single crystal onto the buffer layer 1b are each formed of A method capable of epitaxial growth with respect to the crystal structure of the underlying layer is preferred. As a method capable of epitaxial growth, in addition to the above MOVPE method and MBE method, HVPE method (Hydride Vapor Phase Epitaxy), LPE method (liquid phase epitaxial growth method), GS-MBE method (gas source MBE method) The CBE method (chemical beam epitaxial growth method) is an effective method. Among the various growth methods described above, the MOVPE method is a preferable growth method for obtaining a good quality crystal because it can be grown in a non-equilibrium state and at a certain high temperature. The MBE method is a preferable method from the viewpoint of film thickness control, but the MOVPE method is particularly preferable. Further, if the formation of the Ga x Al 1-x N buffer layer 1b and the formation of the surface layer 1c of the GaN single crystal are performed by using the same epitaxial growth method, the Ga x Al 1-x N can be formed by simply changing the material supply. GaN is preferred because continuous growth in situ is possible. Therefore, one of the most preferable methods for forming the substrate 1 is that the MOVPE method is a method for growing Ga x Al 1-x N on the sapphire crystal substrate 1a and a method for growing GaN on the sapphire crystal substrate 1a. You can say that.
[0008]
The composition ratio x of Ga x Al 1-x N to be the buffer layer 1b may be determined so as to have good lattice matching with the GaN single crystal formed as the surface layer 1c thereon, but the composition ratio x Is not limited to a single value for the GaN single crystal, but may be changed in accordance with manufacturing conditions (for example, growth temperature, growth pressure, raw material supply rate, etc.). The thickness of the buffer layer 1b is not limited. However, if the thickness is about 50 to 1000 mm, the crystallinity of the GaN single crystal grown on the buffer layer will be the highest quality, and therefore suitable as the buffer layer. Thickness. The thickness of the surface layer 1c of the GaN single crystal is also not limited. However, if the thickness is 0.3 μm or more, the surface layer of the GaN single crystal can be a good substrate for growing the target GaN single crystal 3. 1c is a preferable thickness.
[0009]
When the target GaN single crystal 3 is grown on the substrate 1 having a three-layer structure, a buffer layer 2 made of ZnO is formed on the substrate 1 having the three-layer structure.
[0010]
The material used for the buffer layer 2 may be any material that originally has good lattice matching with the GaN single crystal. Here, a substance having a good lattice matching with a GaN single crystal means that the a-axis lattice constant in the crystal lattice is within ± 10%, preferably within ± 5% of that of the GaN single crystal. It has a crystal structure of the type. Examples of such materials include ZnO, BeO, ZnBeO, etc. In the present invention, it is noted that ZnO is excellent in etching removability by an acid, and the target GaN single crystal single substrate can be easily separated. Is used for the buffer layer 2.
[0011]
The method for forming the buffer layer 2 is the same as the method for forming the substrate 1 having the three-layer structure described above, in addition to the epitaxial growth methods such as the MOVPE method, the HVPE method, the LPE method, and the MBE method, and the film formation such as the sputtering method and the CVD method. Method is an effective method. In particular, the MOVPE method is suitable for forming the buffer layer 2 because a film having a certain thickness can be formed in a non-equilibrium state. Further, if the formation of the buffer layer 2 and the formation of the target GaN single crystal 3 are performed using the same epitaxial growth method, the buffer layer can be simply changed by changing the material supply as in the case of the substrate 1 having the three-layer structure. Continuous growth in situ from 2 to GaN single crystal is possible. The thickness of the buffer layer 2 is not limited and may be 0.1 μm or more, but is preferably 0.5 μm or more in consideration of etching removability.
[0012]
Examples of effective methods for epitaxially growing the target GaN single crystal 3 include MOVPE, MBE, HVPE, LPE, GS-MBE, CBE, and the like. In particular, the HVPE method is an epitaxial growth method that can make full use of the high-quality crystal structure on the surface of the three-layered substrate 1 used in place of the conventional sapphire substrate, and the GaN single crystal obtained by this method has a good quality. The GaN single crystal can be a sufficient thickness to be used as a single substrate.
[0013]
When the GaN single crystal 3 obtained by the manufacturing method of the present invention is used as a single GaN single crystal substrate, it is necessary to remove the crystal layer (substrate 1) that is the basis for the growth of the GaN single crystal 3. is there. As such a method, a chemical removal method using an acid or the like can be preferably used. That is, since the ZnO buffer layer 2 has etching selectivity with respect to the GaN single crystal 3 and the GaN single crystal surface layer 1c of the substrate 1, the GaN single crystal 3 can be easily removed from the substrate 1.
[0014]
[Action]
In the present invention, instead of a sapphire substrate conventionally used for growing a GaN single crystal, as described above, three layers comprising a sapphire crystal substrate, a Ga x Al 1-x N buffer layer, and a surface layer of the GaN single crystal are used. A substrate having a layer structure is used. Since the substrate of this three-layer structure is a high-quality GaN single crystal, a GaN single crystal having a high-quality crystal structure can be obtained by directly epitaxially growing the GaN single crystal on the substrate. Similarly, since the ZnO buffer layer is formed on the substrate having the three-layer structure, the buffer layer has a higher quality crystal structure than the buffer layer formed on the conventional sapphire substrate. The GaN single crystal formed in this way also has a high quality crystal structure.
[0015]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples. In this example, a manufacturing example in which a GaN single crystal is formed by the manufacturing method of the present invention and a GaN single crystal single substrate is obtained is shown. As shown in FIG. 1, first, a sapphire crystal substrate 1a having a thickness of 300 μm and an area of 5 cm × 5 cm is used. On the sapphire crystal substrate 1a, a composition ratio of AlN (that is, Ga x Al 1-x N) is formed as a buffer layer 1b. (when x is 0) is epitaxially grown to a thickness of 500 mm by the MOVPE method, the material gas is switched in that state, and GaN is epitaxially grown to a thickness of 2 μm by the same MOVPE method to form the surface layer 1c. A substrate 1 having a three-layer structure having a total thickness of about 302 μm composed of 1b and a surface layer 1c of GaN single crystal was prepared. Next, ZnO is epitaxially grown to a thickness of 0.5 μm on the three-layer structure substrate 1 by the MOVPE method to form a buffer layer 2, and then GaN is epitaxially grown to a thickness of 500 μm by a HVPE method in a different reaction tube. Crystal 3 was obtained. Finally, the ZnO buffer layer was removed by etching, and only the GaN single crystal 3 was separated, and a GaN single crystal single substrate having a thickness of 500 μm sufficient for use as a substrate could be obtained.
[0016]
The substrate of the GaN single crystal obtained in the above examples was evaluated by X-ray diffraction, photoluminescence (PL) method, and Hall effect measurement, and the rocking curve half-width was about 4 min. Only sharp peaks were observed. Mobility was about 400 cm 2 / V · s at 2 × 10 17 cm −3 at room temperature, and it was confirmed that this was a high-quality GaN single crystal single substrate. That is, it was found that the present invention can produce a high-quality GaN single crystal having a sufficient thickness of 300 μm or more.
[0017]
【The invention's effect】
According to the method for producing a GaN single crystal of the present invention, a higher quality GaN single crystal can be obtained than in the prior art. Further, as the target GaN single crystal is improved in quality due to the higher quality of the substrate, it is possible to manufacture a substrate having a sufficient thickness as a single substrate. Accordingly, a single substrate of GaN single crystal, which has been difficult to obtain in the past, can be easily obtained, and GaN suitable for LEDs that exhibit high-efficiency blue light emission, ultraviolet laser diodes, or semiconductor devices with good heat resistance. A single crystal single substrate can be provided.
[Brief description of the drawings]
FIG. 1 is a diagram schematically showing an example of a GaN single crystal formed by the manufacturing method of the present invention.
[Explanation of symbols]
1 substrate 1a sapphire substrate 1b Ga x Al 1-x N surface 2 buffer layer of the buffer layer 1c GaN single crystal 3 GaN single-crystal

Claims (1)

サファイア結晶基板と、該サファイア結晶基板上に形成されるGaxAl1-xN(ただし、式中の添字xは、0〜1の値をとる)からなるバッファ層と、該バッファ層上に形成されるGaN単結晶の表層とからなる、三層構造の基板上に、ZnOからなるバッファ層を介して、単独で基板として用いることが可能な厚さを有するGaN単結晶を成長し、次いで前記ZnOバッファ層をエッチング除去して厚肉のGaN単結晶を得ることを特徴とするGaN単結晶の製造方法。A buffer layer composed of a sapphire crystal substrate, Ga x Al 1-x N (provided that the subscript x takes a value of 0 to 1) formed on the sapphire crystal substrate, and on the buffer layer A GaN single crystal having a thickness capable of being used alone as a substrate is grown on a three-layer structure substrate composed of a surface layer of the GaN single crystal to be formed via a buffer layer made of ZnO, and then A method for producing a GaN single crystal, wherein the ZnO buffer layer is removed by etching to obtain a thick GaN single crystal.
JP2001159939A 2001-05-29 2001-05-29 GaN single crystal manufacturing method Expired - Lifetime JP3749454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001159939A JP3749454B2 (en) 2001-05-29 2001-05-29 GaN single crystal manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001159939A JP3749454B2 (en) 2001-05-29 2001-05-29 GaN single crystal manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP6281594A Division JPH07267796A (en) 1993-10-08 1994-03-31 Production of gallium nitride single crystal

Publications (2)

Publication Number Publication Date
JP2005289651A true JP2005289651A (en) 2005-10-20
JP3749454B2 JP3749454B2 (en) 2006-03-01

Family

ID=35323039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001159939A Expired - Lifetime JP3749454B2 (en) 2001-05-29 2001-05-29 GaN single crystal manufacturing method

Country Status (1)

Country Link
JP (1) JP3749454B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007072984A1 (en) * 2005-12-20 2007-06-28 Tohoku Techno Arch Co., Ltd. Semiconductor substrate manufacturing method and element structure manufacturing method
JP2011509530A (en) * 2008-01-08 2011-03-24 モクストロニクス,インコーポレイテッド High performance heterostructure light emitting device and method
CN113206003A (en) * 2021-04-07 2021-08-03 北京大学 Method for growing single crystal gallium nitride film on random self-supporting substrate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007072984A1 (en) * 2005-12-20 2007-06-28 Tohoku Techno Arch Co., Ltd. Semiconductor substrate manufacturing method and element structure manufacturing method
JP2011509530A (en) * 2008-01-08 2011-03-24 モクストロニクス,インコーポレイテッド High performance heterostructure light emitting device and method
CN113206003A (en) * 2021-04-07 2021-08-03 北京大学 Method for growing single crystal gallium nitride film on random self-supporting substrate

Also Published As

Publication number Publication date
JP3749454B2 (en) 2006-03-01

Similar Documents

Publication Publication Date Title
JP4092927B2 (en) Group III nitride compound semiconductor, group III nitride compound semiconductor element, and method for manufacturing group III nitride compound semiconductor substrate
JP5023318B2 (en) 3-5 nitride semiconductor multilayer substrate, 3-5 nitride semiconductor free-standing substrate manufacturing method, and semiconductor device
JP3749498B2 (en) Crystal growth substrate and ZnO-based compound semiconductor device
JP3184717B2 (en) GaN single crystal and method for producing the same
JP4140606B2 (en) GaN-based semiconductor light emitting device manufacturing method
JP5371430B2 (en) Semiconductor substrate, method for manufacturing a self-supporting semiconductor substrate by hydride vapor phase epitaxy, and mask layer used therefor
JP3620269B2 (en) GaN-based semiconductor device manufacturing method
JP2000106455A (en) Nitride semiconductor structure, fabrication thereof and light emitting element
JP2005343713A (en) Group iii-v nitride-based semiconductor self-standing substrate, its producing method, and group iii-v nitride-based semiconductor
JP2007048869A (en) METHOD FOR MANUFACTURING GaN SEMICONDUCTOR LIGHT-EMITTING ELEMENT
JPH07273367A (en) Manufacture of semiconductor substrate and light-emitting device
JP2004319711A (en) Porous substrate for epitaxial growth and its manufacturing method, and method of manufacturing group iii nitride semiconductor substrate
JP2005236261A (en) Group iii nitride crystal substrate, its manufacturing method, and group iii nitride semiconductor device
JP2006013467A (en) Gallium nitride based semiconductor multi-layer structure, its manufacturing method, compound semiconductor element using it, and luminous element
JPH07267796A (en) Production of gallium nitride single crystal
JPH11274560A (en) Semiconductor element and manufacture thereof
JPH11135889A (en) Substrate for crystal growth and light-emitting device using the same
JPH07273048A (en) Manufacture method of compound semiconductor single crystal and single crystal substrate using such method
JP2009067658A (en) Nitride semiconductor ground substrate, nitride semiconductor-stacked substrate, nitride semiconductor self-standing substrate and method for producing nitride semiconductor ground substrate
JP3463736B2 (en) Semiconductor light emitting device and method of adjusting light emission intensity thereof
JPH09283799A (en) Semiconductor light-emitting element
JP3749454B2 (en) GaN single crystal manufacturing method
JP6004550B2 (en) Seed crystal substrate, composite substrate and functional element
JP4960621B2 (en) Nitride semiconductor growth substrate and manufacturing method thereof
JP2005179173A (en) Method for growing nitride semiconductor crystal containing aluminum

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051201

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081209

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091209

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091209

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121209

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131209

Year of fee payment: 8

EXPY Cancellation because of completion of term