JP2005287196A - Brushless dc motor driving apparatus - Google Patents

Brushless dc motor driving apparatus Download PDF

Info

Publication number
JP2005287196A
JP2005287196A JP2004098075A JP2004098075A JP2005287196A JP 2005287196 A JP2005287196 A JP 2005287196A JP 2004098075 A JP2004098075 A JP 2004098075A JP 2004098075 A JP2004098075 A JP 2004098075A JP 2005287196 A JP2005287196 A JP 2005287196A
Authority
JP
Japan
Prior art keywords
phase
signal
pwm
position detection
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004098075A
Other languages
Japanese (ja)
Inventor
Junichi Ukai
純一 鵜飼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Corp
Original Assignee
Nidec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Corp filed Critical Nidec Corp
Priority to JP2004098075A priority Critical patent/JP2005287196A/en
Publication of JP2005287196A publication Critical patent/JP2005287196A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To smoothly rotate a three-phase brushless DC motor, and stably and rapidly activate and stop it without providing an expensive and large sensor such as a resolver and an incremental encoder and an expensive and large circuit such as a phase lock loop circuit (a PLL circuit) having a large circuit scale. <P>SOLUTION: An upper limit modulation rate of each phase is set based on each peak level in position detection signals V21-V23 of a rotation detecting section 1 sinusoidally changing in accordance with the rotation of the three-phase brushless DC motor M. Three-phase PWM signals V91-V93 have pulse widths sinusoidally changing in accordance with level changes of the signal V21-V23 and are outputted from a PWM modulation section 6. Currents carried to phases of the motor M are controlled by drive gate signals V41-V43 of a drive section 5 based on the signals V91-V93. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、3相ブラシレスDCモータを駆動するブラシレスDCモータ駆動装置に関するものである。   The present invention relates to a brushless DC motor driving apparatus that drives a three-phase brushless DC motor.

従来、3相ブラシレスDCモータを駆動する場合、その回転子の回転位置(回転角)を検出するため、ホール素子に代表される位置検出センサが用いられる(例えば、特許文献1参照。)。   Conventionally, when a three-phase brushless DC motor is driven, a position detection sensor represented by a Hall element is used to detect the rotational position (rotation angle) of the rotor (see, for example, Patent Document 1).

この位置検出センサを用いた従来のモータ駆動回路はほぼ図10に示すように構成され、3相ブラシレスDCモータMの回転子の周囲に例えば120度又は60度間隔で配置された3個のホール素子11、12、13が、図11の(a)、(b)、(c)に示すように、回転子回転に伴う磁界変化にしたがって正弦波形変化する信号V11a、V12a、V13aと、それらの逆相の負の信号V11b、V12b、V13bを出力する。   A conventional motor drive circuit using this position detection sensor is configured as shown in FIG. 10 and has three holes arranged around the rotor of the three-phase brushless DC motor M, for example, at intervals of 120 degrees or 60 degrees. As shown in FIGS. 11 (a), 11 (b), and 11 (c), the elements 11, 12, and 13 are signals V11a, V12a, and V13a that change in a sine waveform according to a magnetic field change accompanying the rotation of the rotor, Negative-phase negative signals V11b, V12b, and V13b are output.

そして、各ホール素子11〜13の正の信号V11a〜V13aと負の信号V11b〜V13bとが誤差増幅器21、22、23に入力され、各誤差増幅器21〜23は、V11a−V11b、V12a−V12b、V13a−V13bを演算し、それらの誤差出力の二値信号は、図11の(d)、(e)、(f)に示す120度ずつずれた矩形波形の3相の信号V21*、V22*、V23*になり、各信号V21*〜V23*及び、各信号V21*〜V23*を信号反転器(インバータゲート)31、32、33により反転した信号V31、V32、V33が、駆動ゲート部4*に供給される。   The positive signals V11a to V13a and the negative signals V11b to V13b of the hall elements 11 to 13 are input to the error amplifiers 21, 22, and 23. The error amplifiers 21 to 23 are V11a to V11b and V12a to V12b. , V13a-V13b are calculated, and the binary signals of the error outputs thereof are three-phase signals V21 *, V22 having a rectangular waveform shifted by 120 degrees as shown in (d), (e), and (f) of FIG. *, V23 *, and signals V21 * to V23 * and signals V31, V32, and V33 obtained by inverting the signals V21 * to V23 * by signal inverters (inverter gates) 31, 32, and 33 4 *.

この駆動ゲート部4*は、後段の3相フルブリッジインバータ構成の駆動部5の各アーム51、52、53の直列接続の上側のスイッチング素子51a、52a、53a及び、下側のスイッチング素子51b、52b、53bのスイッチングを制御するため、スイッチング素子51a、51bに図11の(g)、(h)のゲート信号V41a、V41bを供給するアンドゲート41a、41b、スイッチング素子52a、52bに図11の(i)、(j)のゲート信号V42a、V42bを供給するアンドゲート42a、42b、スイッチング素子53a、53aに図11の(k)、(l)のゲート信号V43a、V43bを供給するアンドゲート43a、43bを有する。   The drive gate unit 4 * includes upper switching elements 51a, 52a, 53a in series connection of the arms 51, 52, 53 of the drive unit 5 of the subsequent three-phase full-bridge inverter configuration, and a lower switching element 51b, In order to control the switching of 52b and 53b, the AND gates 41a and 41b for supplying the gate signals V41a and V41b of (g) and (h) of FIG. 11 to the switching elements 51a and 51b and the switching elements 52a and 52b of FIG. The AND gates 42a and 42b for supplying the gate signals V42a and V42b of (i) and (j), and the AND gate 43a for supplying the gate signals V43a and V43b of (k) and (l) of FIG. 11 to the switching elements 53a and 53a. 43b.

なお、通電電流スイッチとしての各スイッチング素子51a〜53bは、それぞれIGBT、電力用のFET等の半導体スイッチからなる。また、図中の+Vは正電圧の電源端子である。   Note that each of the switching elements 51a to 53b as the energization current switch is composed of a semiconductor switch such as an IGBT or a power FET. Further, + V in the figure is a positive voltage power supply terminal.

また、ゲート信号V41a、42a、43aは120度ずつずれた120度通電の矩形波信号であり、ゲート信号V41a、42a、43aから180度遅れたゲート信号V41b、42b、43bも120度ずつずれた120度通電の矩形波信号である。   Also, the gate signals V41a, 42a, 43a are 120 degree energized rectangular wave signals shifted by 120 degrees, and the gate signals V41b, 42b, 43b delayed 180 degrees from the gate signals V41a, 42a, 43a are also shifted by 120 degrees. It is a rectangular wave signal energized 120 degrees.

そして、各スイッチング素子51a〜53bのスイッチングにより、モータMのU、V、Wの各相に図11の(m)、(n)、(o)に示す各相の矩形波状の駆動電流Iu、Iv、Iwが流れ、Y結線のモータMが120度通電の矩形波駆動方式で駆動されて回転する。   Then, by the switching of the switching elements 51a to 53b, the rectangular wave-shaped drive current Iu of each phase shown in (m), (n), and (o) of FIG. Iv and Iw flow, and the Y-connected motor M is driven and rotated by a 120-degree energization rectangular wave drive system.

なお、駆動ゲート部4*の論理ゲートの変更等に基き、信号V41a〜V43bに基くスイッチング素子51a〜53bのスイッチングにより、モータMを180度通電で駆動することも行なわれている。   In addition, based on the change of the logic gate of the drive gate unit 4 *, etc., the motor M is also driven by energizing 180 degrees by switching of the switching elements 51a to 53b based on the signals V41a to V43b.

ところで、図10のモータ駆動装置の場合、駆動ゲート部4*の各信号41a〜43bは120度の通電期間中連続的にオンレベルになる矩形波の信号であり、これらの矩形波の信号に基く矩形波駆動方式でモータMを駆動するため、通電の始、終端でのモータMの各相の通電切り替えが大きな駆動電流Iu、Iv、Iwのまま急峻に行われ、その結果、モータMの回転時の騒音が大きくなるとともに、回転トルクの変動等が発生して回転のむらが発生する。   By the way, in the case of the motor drive device of FIG. 10, each signal 41a-43b of the drive gate section 4 * is a rectangular wave signal that is continuously turned on during a 120-degree energization period. Since the motor M is driven by the rectangular wave driving method based on it, the energization switching of each phase of the motor M at the start and end of energization is performed steeply with the large drive currents Iu, Iv and Iw. The noise during rotation increases, and fluctuations in rotational torque occur, resulting in uneven rotation.

これらの不都合を解消し、モータMを静粛に滑らかに回転して駆動するため、この種のブラシレスDCモータ駆動装置においては、前記の矩形波駆動方式に代えて、駆動電流Iu、Iv、Iwを正弦波形状に変化させる正弦波駆動方式を採用することが行われている(例えば、非特許文献1参照。)。   In order to eliminate these inconveniences and drive the motor M quietly and smoothly, in this kind of brushless DC motor driving device, instead of the rectangular wave driving method, the driving currents Iu, Iv, Iw are set. Adopting a sine wave driving method for changing to a sine wave shape is performed (for example, see Non-Patent Document 1).

また、各相の通電の切り替え前後の駆動電流Iu、Iv、Iwを正弦波形状になだらかに増減可変する台形波駆動方式(ソフトスイッチング方式)を採用することも行なわれている。   In addition, a trapezoidal wave drive method (soft switching method) is employed in which drive currents Iu, Iv, and Iw before and after switching of energization of each phase are gradually increased or decreased in a sine wave shape.

特開昭61−277396号公報(段落[0002]第2頁、第1図)JP 61-277396 A (paragraph [0002], page 2, FIG. 1) 見城尚志、永守重信 著「新・ブラシレスモータ」総合電子出版社、2001年6月1日、P.63−64Naoki Mijo and Shigenobu Nagamori “New Brushless Motor”, General Electronic Publishing Company, June 1, 2001, P.A. 63-64

前記の正弦波駆動方式や台形波駆動方式等の従来の静音化駆動方式でモータM等の3相ブラシレスDCモータを駆動する場合、回転子の回転位置(位相角)を高分解能で正確に検出する必要があり、前記非特許文献1のP.67、P75−76等にも記載されているように、図10の3個のホール素子11〜13の6ステップの位置検出では不十分で検出困難であるため、電磁式のレゾルバや光学式、磁気式のインクリメンタルエンコーダ等の高分解能の位置センサを設ける必要がある。   When a three-phase brushless DC motor such as the motor M is driven by a conventional silent driving method such as the sine wave driving method or the trapezoidal wave driving method, the rotational position (phase angle) of the rotor is accurately detected with high resolution. In the non-patent document 1, P.I. 67, P75-76, etc., as the 6-step position detection of the three Hall elements 11 to 13 in FIG. 10 is insufficient and difficult to detect, an electromagnetic resolver or optical type, It is necessary to provide a high-resolution position sensor such as a magnetic incremental encoder.

この場合、前記のレゾルバやインクリメンタルエンコーダ等は高価で大型であり、装置の低価格化、小型化を図ることができない問題がある。   In this case, the resolver, the incremental encoder, etc. are expensive and large, and there is a problem that the apparatus cannot be reduced in price and size.

また、位相同期回路(PLL回路)を設け、駆動中の位相同期をとることで3相ブラシレスDCモータの静音化を図ることが考えられるが、この場合は、モータの定速回転時以外は検出の位相同期が安定するまでに時間がかかり、モータの起動時、停止時等には制御困難で十分な静粛化を図ることができず、しかも、PLL回路構成であるため回路規模が膨大になり、高価で大型になる。   In addition, it is conceivable to provide a phase-locked loop (PLL circuit) to achieve quietness of the three-phase brushless DC motor by synchronizing the phase during driving. In this case, it is detected except when the motor rotates at a constant speed. It takes time to stabilize the phase synchronization of the motor, and it is difficult to control sufficiently when the motor is started and stopped, so that it cannot be sufficiently quieted. Moreover, because of the PLL circuit configuration, the circuit scale becomes enormous. Expensive and large.

本発明は、上記の諸点に留意してなされたものであり、前記のレゾルバやインクリメンタルエンコーダ等の高価で大型のセンサを設けることなく、また、前記の位相同期回路(PLL回路)のような回路規模が大きい、高価で大型の回路を備えることなく、3相ブラシレスDCモータを滑らかに回転して十分な静粛性が得られるようにし、しかも、その起動、停止が安定かつ速やかに行えるようにすることを目的とする。   The present invention has been made in consideration of the above-mentioned points, and without providing an expensive and large sensor such as the resolver or the incremental encoder, and a circuit such as the phase synchronization circuit (PLL circuit). The three-phase brushless DC motor can be smoothly rotated to obtain sufficient silence without providing a large, expensive and large circuit, and can be started and stopped stably and quickly. For the purpose.

上記した課題を解決するために、本発明のブラシレスDCモータ駆動装置は、3相ブラシレスDCモータの回転子の周囲に一定間隔で配置された3個の位置検出センサを有し、前記回転子の回転にしたがって正弦波状に変化する3相の位置検出信号を出力する回転検出部と、前記各位置検出信号それぞれのピークレベルに基づいて各相の上限変調率が設定され、前記各位置検出信号それぞれのレベル変化にしたがってパルス幅が正弦波形状に変化する3相のPWM信号を出力するPWM変調部と、前記各PWM信号に基づく3相の駆動ゲート信号により前記3相ブラシレスDCモータの各相の通電を制御する3相インバータ回路構成の駆動部とを備えたことを特徴としている(請求項1)。   In order to solve the above-described problems, a brushless DC motor driving device of the present invention has three position detection sensors arranged at regular intervals around the rotor of a three-phase brushless DC motor, A rotation detection unit that outputs a three-phase position detection signal that changes sinusoidally according to rotation, and an upper limit modulation rate for each phase is set based on the peak level of each position detection signal. A PWM modulation unit that outputs a three-phase PWM signal whose pulse width changes in a sine wave shape according to the level change, and a three-phase drive gate signal based on each PWM signal, for each phase of the three-phase brushless DC motor And a drive unit having a three-phase inverter circuit configuration for controlling energization (claim 1).

また、本発明のブラシレスDCモータ駆動装置は、駆動部に、各相の駆動ゲート信号の正又は負の半サイクルを各相のPWM信号により形成する駆動ゲート部を設けたことを特徴とし(請求項2)、PWM変調部に、U相、V相の位置検出信号の誤差、V相、W相の位置検出信号の誤差、W相、U相の位置検出信号の誤差を演算し、各相の位置検出信号の位相の3相ブラシレスDCモータの通電位相とのずれを移相調整する演算回路部を設けたことも特徴とし(請求項3)、各相の上限変調率が各位置検出信号のピークレベルに対応した100%の変調率に設定されることも特徴とし(請求項4)、PWM変調部に、各位置検出信号をレベル可変した各相の補正検出信号のピークレベルにしたがって、上限変調率を、前記各位置検出信号のピークレベルに対応した100%の変調率から可変する信号レベル調整手段を設けたことも特徴としている(請求項5)。   In the brushless DC motor driving device of the present invention, the driving unit is provided with a driving gate unit that forms positive or negative half cycles of the driving gate signal of each phase by the PWM signal of each phase. Item 2), the PWM modulation unit calculates the errors of the U-phase and V-phase position detection signals, the errors of the V-phase and W-phase position detection signals, and the errors of the W-phase and U-phase position detection signals. An arithmetic circuit unit is provided for adjusting the phase shift of the position detection signal phase from the energization phase of the three-phase brushless DC motor (Claim 3), and the upper limit modulation rate of each phase is the position detection signal. It is also characterized in that it is set to a modulation rate of 100% corresponding to the peak level (Claim 4), and in accordance with the peak level of the correction detection signal of each phase in which the level of each position detection signal is varied in the PWM modulator, The upper limit modulation rate is set to the peak of each position detection signal. Providing the signal level adjusting means for variably from 100% of the modulation factor corresponding to Kleber also characterized (claim 5).

さらに、本発明のブラシレスDCモータ駆動装置は、PWM変調部に、各相の位置検出信号をピークホールドするピークホールド部と、該ピークホールド部にホールドされた各相のピークレベルの信号に基づく充放電のくり返しにより、上限変調率のレベルから下限変調率のレベルの範囲で鋸歯波形状又は三角波形状にレベル変化する各相の周波数信号を形成し、前記各位置検出信号が前記各周波数信号以上のレベルになる期間に相当するパルス幅の各相のPWM信号を形成するPWM回路部とを設けたことを特徴としている(請求項6)、また、PWM変調部に、各相の位置検出信号をピークホールドするピークホールド部と、該ピークホールド部にホールドされた各相のピークレベルの信号に基づき、PWM制御の位相角範囲を設定する各相の2位相角のレベルの変調率設定信号を形成し、各相の前記両変調率設定信号の差信号に基づく充放電のくり返しにより、前記両変調率設定信号の変調率の範囲で鋸歯波形状又は三角波形状に変化する各相の周波数信号を形成し、前記各位置検出信号が前記各周波数信号以上のレベルになる期間のパルス幅の各相のPWM信号を形成するPWM回路部とを設けたことも特徴としている(請求項7)。   Furthermore, the brushless DC motor driving device of the present invention includes a PWM modulator that includes a peak hold unit that holds a peak of the position detection signal of each phase, and a charge based on the peak level signal of each phase that is held in the peak hold unit. By repeating the discharge, a frequency signal of each phase that changes in a sawtooth wave shape or a triangular wave shape in a range of the upper limit modulation rate level to the lower limit modulation rate level is formed, and each position detection signal is equal to or higher than each frequency signal. And a PWM circuit section for forming a PWM signal for each phase having a pulse width corresponding to a level period (Claim 6), and a position detection signal for each phase is provided to the PWM modulator section. Sets the phase angle range for PWM control based on the peak hold unit for peak hold and the peak level signal of each phase held in the peak hold unit. A modulation rate setting signal having a level of two phase angles of a phase is formed, and a sawtooth wave is generated in the range of the modulation rate of both modulation rate setting signals by repeating charge and discharge based on a difference signal between the both modulation rate setting signals of each phase. A PWM circuit unit that forms a frequency signal of each phase that changes into a shape or a triangular wave shape, and forms a PWM signal of each phase of a pulse width in a period in which each position detection signal is at a level equal to or higher than each frequency signal (7).

まず、請求項1の構成によれば、3相ブラシレスDCモータの回転子の周囲に配置された3個の位置検出センサを有する回転検出部のモータの回転にしたがって正弦波形状に変化する3相の位置検出信号に基づき、大型で高価なレゾルバやインクリメンタルエンコーダ等を設けることなく、PWM変調部から、3相ブラシレスDCモータの回転に即してパルス幅が正弦波形状に変化する3相のPWM信号が出力され、各PWM信号に基く3相の駆動ゲート信号により駆動部の各相の通電を制御し、正弦波駆動方式で3相ブラシレスDCモータを滑らかに回転し、十分な静粛性を得ることができる。   First, according to the configuration of the first aspect, the three-phase is changed into a sine wave shape according to the rotation of the motor of the rotation detection unit having the three position detection sensors arranged around the rotor of the three-phase brushless DC motor. Based on the position detection signal, a three-phase PWM whose pulse width changes in a sinusoidal shape in accordance with the rotation of the three-phase brushless DC motor from the PWM modulator without providing a large and expensive resolver or incremental encoder. A signal is output, and energization of each phase of the drive unit is controlled by a three-phase drive gate signal based on each PWM signal, and a three-phase brushless DC motor is smoothly rotated by a sine wave drive method to obtain sufficient silence. be able to.

さらに、回転検出部の3相の位置検出信号が3相ブラシレスDCモータの回転にしたがって正弦波形状に変化するため、回路規模が膨大で高価、大型の位相同期回路は不要であり、前記の3相の位置検出信号に基き、3相ブラシレスDCモータの起動時、停止時にもモータの回転位置に応じた3相のPWM信号が出力され、十分な静粛性で安定かつ速やかに3相ブラシレスDCモータの起動、停止が行える。   Further, since the three-phase position detection signal of the rotation detector changes into a sine wave shape according to the rotation of the three-phase brushless DC motor, the circuit scale is enormous and expensive, and a large phase synchronization circuit is not required. Based on the phase position detection signal, the 3-phase brushless DC motor is output stably and quickly with sufficient silence, even when the 3-phase brushless DC motor is started and stopped. Can be started and stopped.

したがって、レゾルバやインクリメンタルエンコーダ等の高価で大型のセンサを設けることなく、また、位相同期回路のような回路規模が大きい、高価で大型の回路を備えることなく、3相ブラシレスDCモータを滑らかに回転し、十分な静粛性を得ることができ、しかも、そのモータの起動、停止を十分な静粛性で安定かつ速やかに行なうことができる。   Therefore, it is possible to smoothly rotate a three-phase brushless DC motor without providing an expensive and large sensor such as a resolver or an incremental encoder, and without a large and expensive circuit such as a phase synchronization circuit. In addition, sufficient silence can be obtained, and the motor can be started and stopped stably and quickly with sufficient silence.

また、請求項2の構成によれば、駆動ゲート部により各相の駆動ゲート信号の正又は負の半サイクルをPWM信号としたため、駆動部の3相インバータの各アームを半サイクルずつPWM制御して3相ブラシレスDCモータの各相の通電を正弦波形状に制御することができ、各相の駆動ゲート信号の正、負の両サイクルをPWM信号にする場合より、構成及び制御を簡素化して請求項1の効果を奏することができる。   According to the second aspect of the present invention, since the positive or negative half cycle of the drive gate signal of each phase is set to the PWM signal by the drive gate unit, each arm of the three-phase inverter of the drive unit is PWM controlled by half cycle. Therefore, the energization of each phase of the three-phase brushless DC motor can be controlled in a sine wave shape, and the configuration and control are simplified compared to the case where both positive and negative cycles of each phase drive gate signal are PWM signals. The effect of claim 1 can be achieved.

さらに、請求項3の構成によれば、各位置検出センサの配置に基づく各相の位置検出信号の位相と3相ブラシレスDCモータの通電位相とのずれを、演算回路部の移相調整により容易に補正することができ、請求項4の構成によれば、各相のPWM信号の変調率の範囲を0〜100%にして請求項1の効果を奏することができ、請求項5の構成によれば、各位置検出信号のレベルを可変することにより、各相のPWM信号の上限変調率を100%から自在に可変設定し、3相ブラシレスDCモータの速度制御等を容易に行なうことができる利点もある。   Furthermore, according to the configuration of the third aspect, the shift between the phase of the position detection signal of each phase based on the arrangement of the position detection sensors and the energization phase of the three-phase brushless DC motor can be easily performed by phase shift adjustment of the arithmetic circuit unit. According to the configuration of claim 4, the range of the modulation rate of the PWM signal of each phase can be set to 0 to 100%, and the effect of claim 1 can be obtained. Therefore, by changing the level of each position detection signal, the upper limit modulation rate of the PWM signal of each phase can be variably set from 100%, and the speed control of the three-phase brushless DC motor can be easily performed. There are also advantages.

つぎに、請求項6の構成によれば、ピークホールド部、PWM回路部を設けたPWM変調部の具体的な構成を提供することができる。   Next, according to the configuration of claim 6, it is possible to provide a specific configuration of the PWM modulation unit provided with the peak hold unit and the PWM circuit unit.

また、請求項7の構成によれば、PWM回路部の各相のPWM信号が、各相の設定された2位相角の回転位置の間にのみ形成されるため、3相ブラシレスDCモータの各相の通電が、各相の2位相角の設定に基き、例えば通電相の切り替え前後の間のみ正弦波形状に増減し、台形波駆動方式で請求項1等と同様の効果が得られる。   According to the configuration of claim 7, since the PWM signal of each phase of the PWM circuit unit is formed only between the rotational positions of the two phase angles set for each phase, each of the three-phase brushless DC motors Based on the setting of the two phase angles of each phase, for example, the phase energization increases or decreases in a sinusoidal shape only before and after switching of the energized phases, and the trapezoidal wave driving method provides the same effect as in the first aspect.

本発明の実施形態について、図1〜図9を参照して説明する。   An embodiment of the present invention will be described with reference to FIGS.

(第1の実施形態)
まず、本発明の第1の実施形態について、図1のブロック図及び図2のフローチャートを参照して説明する。
(First embodiment)
First, a first embodiment of the present invention will be described with reference to the block diagram of FIG. 1 and the flowchart of FIG.

図1において、図10と同一符号は同一のものを示し、回転検出部1は位置検出センサとしてのホール素子11〜13、誤差増幅器21〜23からなり、ホール素子11〜13の配置とモータMの通電位相との30°のずれを位相調整して補正するため、誤差増幅器21〜23の図2の(a)に示すU、V、Wの3相の位置検出信号V21、V22、V23を、二値化することなく、変調回路部6に設けられた演算回路部7の各相の演算回路71、72、73の非反転入力端子(+)、演算回路72、73、71の反転入力端子(−)に供給する。   In FIG. 1, the same reference numerals as those in FIG. 10 denote the same components, and the rotation detection unit 1 includes Hall elements 11 to 13 and error amplifiers 21 to 23 as position detection sensors, and the arrangement of the Hall elements 11 to 13 and the motor M In order to correct the 30 ° deviation from the energization phase by adjusting the phase, the three-phase position detection signals V21, V22, and V23 of U, V, and W shown in FIG. Without being binarized, the non-inverting input terminals (+) of the arithmetic circuits 71, 72, 73 of each phase of the arithmetic circuit unit 7 provided in the modulation circuit unit 6, and the inverting inputs of the arithmetic circuits 72, 73, 71 Supply to terminal (-).

そして、演算回路71は、図2の(b)に示すU相の正弦波形状の信号V71(=V21−V22)、その逆相の信号V71nを出力し、演算回路72は、同様のV相の正弦波形状の信号V72(=V22−V23)、その逆相の信号V72nを出力し、演算回路73はW相の信号V73(=V23−V21)、その逆相の信号V63nを出力する。このとき、差分をとることによって奇数次特に3次高調波が除去される利点もある。   Then, the arithmetic circuit 71 outputs a U-phase sinusoidal signal V71 (= V21−V22) and a signal V71n of the opposite phase shown in FIG. 2B, and the arithmetic circuit 72 has the same V-phase. The sine wave shaped signal V72 (= V22-V23) and its opposite phase signal V72n are output, and the arithmetic circuit 73 outputs the W phase signal V73 (= V23-V21) and its opposite phase signal V63n. At this time, by taking the difference, there is also an advantage that odd-numbered harmonics, particularly third-order harmonics are removed.

そして、これら3相の信号V71〜V73をピークホールド部8の各相のピークホールド回路81、82、83に入力して信号V71〜V73のピークレベルを検出し、図2の(b)に示す信号V71のピークレベルのホールド信号V81、同様の信号V72、V73のピークレベルのホールド信号V82、V83を形成する。   Then, these three-phase signals V71 to V73 are input to the peak hold circuits 81, 82 and 83 of the respective phases of the peak hold unit 8 to detect the peak levels of the signals V71 to V73, as shown in FIG. A hold signal V81 having a peak level of the signal V71 and hold signals V82 and V83 having a peak level of similar signals V72 and V73 are formed.

さらに、モータMの正弦波駆動が、駆動部5の各アーム51〜53の2個のスイッチング素子51a〜53bの両方をPWM制御しなくても、各2個のスイッチング素子51a〜53bのいずれか一方のPWM制御でも行えることから、この実施形態にあっては、部品数の低減、制御の簡素化等を図るため、各アーム51〜53の上側のスイッチング素子51a、52a、53aをPWM制御でスイッチングし、各アーム51〜53の下側のスイッチング素子51b、52b、53bは、従来と同様、各相の正、負によって、半サイクル毎にスイッチングする。   Furthermore, even if the sine wave drive of the motor M does not perform PWM control of both of the two switching elements 51a to 53b of the arms 51 to 53 of the driving unit 5, any one of the two switching elements 51a to 53b is possible. Since one PWM control can be used, in this embodiment, the switching elements 51a, 52a, 53a on the upper side of the arms 51 to 53 are controlled by the PWM control in order to reduce the number of parts and simplify the control. The switching elements 51b, 52b, and 53b below the arms 51 to 53 are switched every half cycle according to the positive and negative of each phase as in the prior art.

すなわち、3相の信号V71〜V73、ピークレベルのホールド信号V81〜V83に基づき、PWM回路部9の各相のPWM回路81、82、83により、上限変調率を100%に設定し、信号V81〜V83のピークレベルを100%変調レベルとする3相のPWM信号V91、V92、V93を形成する。   That is, based on the three-phase signals V71 to V73 and the peak level hold signals V81 to V83, the upper limit modulation rate is set to 100% by the PWM circuits 81, 82, and 83 of each phase of the PWM circuit unit 9, and the signal V81 Three-phase PWM signals V91, V92, and V93 having a peak level of .about.V83 as a 100% modulation level are formed.

このとき、PWM信号V91は図2の(c)に示すように、0〜100%の変調率の範囲でパルス幅が正弦波形状に変化するPWM波形の信号であり、PWM信号V92、93も同様のPWM波形の信号である。   At this time, as shown in FIG. 2 (c), the PWM signal V91 is a PWM waveform signal whose pulse width changes in a sine wave shape in the range of the modulation rate of 0 to 100%, and the PWM signals V92 and 93 are also shown. The same PWM waveform signal.

ところで、PWM回路91〜93は、図3のPWM回路91に示すように、定電流源回路CCS、比較器CMP1、CMP2、時定数用のコンデンサC、放電制御用のスイッチング素子SWにより同一回路構成に形成される。   By the way, as shown in the PWM circuit 91 of FIG. 3, the PWM circuits 91 to 93 have the same circuit configuration by a constant current source circuit CCS, comparators CMP1, CMP2, a capacitor C for time constant, and a switching element SW for discharge control. Formed.

そして、図3の各部の波形を示した図4を参照して図3のPWM回路91の動作を説明すると、ピークレベルの信号V81のレベル(電圧)により定電流源回路CCSの電流を可変し、定電流源回路CCSの電流によりコンデンサCを充電する。   The operation of the PWM circuit 91 in FIG. 3 will be described with reference to FIG. 4 showing the waveforms of the respective parts in FIG. 3. The current of the constant current source circuit CCS is varied according to the level (voltage) of the peak level signal V81. The capacitor C is charged by the current of the constant current source circuit CCS.

さらに、比較器CMP1により、コンデンサCの充電電圧Vaと信号V81の電圧とを比較し、充電電圧Vaが信号V81の電圧(ピークレベルの電圧)に達する毎に放電制御のパルス信号Vbを発生し、この信号によってスイッチング素子SWを瞬時オンし、コンデンサCを放電して充電電圧Vaを0にリセットする。   Further, the comparator CMP1 compares the charging voltage Va of the capacitor C with the voltage of the signal V81, and generates a discharge control pulse signal Vb each time the charging voltage Va reaches the voltage of the signal V81 (peak level voltage). The switching element SW is instantly turned on by this signal, the capacitor C is discharged, and the charging voltage Va is reset to zero.

このコンデンサCの充電と放電のくり返しにより充電電圧Vaを鋸歯波形状に可変し、信号V81のレベルに応じた振幅値の鋸歯波形状の周波数信号を形成し、この周波数信号と信号V71とのレベル(電圧)を比較し、信号V71を充電電圧Vaの周波数信号によって変調し、V71≧Vaの期間のパルス幅、前記周波数信号の周期のPWM信号V91を形成する。   The charging voltage Va is changed to a sawtooth waveform by repeatedly charging and discharging the capacitor C, and a sawtooth waveform frequency signal having an amplitude value corresponding to the level of the signal V81 is formed. The level of this frequency signal and the signal V71 (Voltage) is compared, and the signal V71 is modulated by the frequency signal of the charging voltage Va to form a PWM signal V91 having a pulse width of a period of V71 ≧ Va and a period of the frequency signal.

このPWM信号V91は、信号V81の電圧(ピークレベルの電圧)を100%変調レベル、信号V81の基準電位である例えば0Vを0%変調レベルとするPWM波形の信号であり、信号V71がピークレベルになる電気角120度の回転位置でパルス幅が最も大きくなる正弦波形状である。   The PWM signal V91 is a PWM waveform signal in which the voltage (peak level voltage) of the signal V81 is 100% modulation level and the reference potential of the signal V81, for example, 0V is 0% modulation level, and the signal V71 is the peak level. This is a sine wave shape in which the pulse width becomes the largest at the rotational position of the electrical angle of 120 degrees.

そして、PWM回路92、93によっても、同様にしてPWM信号V92、V93を形成し、PWM信号V91、V92、V93と、アナログレベル・デジタルレベル整合用のレベル調整器100a、101a、102aを介した3相の信号V71〜V73とを駆動ゲート部4のアンドゲート41、42、43に入力する。   The PWM circuits 92 and 93 form the PWM signals V92 and V93 in the same manner, via the PWM signals V91, V92 and V93, and the level adjusters 100a, 101a and 102a for analog level / digital level matching. The three-phase signals V71 to V73 are input to the AND gates 41, 42, and 43 of the drive gate unit 4.

そして、アンドゲート41〜43の駆動ゲート信号V41〜V43は、例えば図2の(d)に示すように変化し、信号V71の正の半サイクルに、アンドゲート41からスイッチング素子51aにPWM信号V91を出力し、PWM信号V91にしたがってスイッチング素子51aをスイッチングし、信号V72の正の半サイクルに、アンドゲート42からスイッチング素子52aにPWM信号V92を出力し、PWM信号V92にしたがってスイッチング素子52aをスイッチングし、信号V73の正の半サイクルにアンドゲート43からスイッチング素子53aにPWM信号V93を出力し、PWM信号V93にしたがってスイッチング素子53aをスイッチングする。   The drive gate signals V41 to V43 of the AND gates 41 to 43 change, for example, as shown in FIG. 2D, and the PWM signal V91 is sent from the AND gate 41 to the switching element 51a in the positive half cycle of the signal V71. The switching element 51a is switched according to the PWM signal V91, the PWM signal V92 is output from the AND gate 42 to the switching element 52a in the positive half cycle of the signal V72, and the switching element 52a is switched according to the PWM signal V92. Then, the PWM signal V93 is output from the AND gate 43 to the switching element 53a in the positive half cycle of the signal V73, and the switching element 53a is switched according to the PWM signal V93.

また、レベル調整器100b、101b、102bを介した3相の信号V71n〜V73nを各アーム51,52、53の下側のスイッチング素子51b、52b、53bに出力し、U相の負の半サイクルにスイッチング素子51bをオンし、V相の負の半サイクルにスイッチング素子52bをオンし、W相の負の半サイクルにスイッチング素子53bをオンする。   Further, the three-phase signals V71n to V73n via the level adjusters 100b, 101b, and 102b are output to the lower switching elements 51b, 52b, and 53b of the arms 51, 52, and 53, and the negative half cycle of the U-phase is output. Then, the switching element 51b is turned on, the switching element 52b is turned on in the negative half cycle of the V phase, and the switching element 53b is turned on in the negative half cycle of the W phase.

そして、電気角で120度ずつずれた3相の各正の半サイクルに、スイッチング素子51b〜53bがPWM信号V91〜V93にしたがってスイッチングし、3相の各負の半サイクルにスイッチング素子51b〜53bがオンすることにより、図2の(e)、(f)、(g)の電流Iu、Iv、IwがモータMのU、V、Wの各相を流れる。   The switching elements 51b to 53b are switched according to the PWM signals V91 to V93 in each of the three-phase positive half cycles shifted by 120 degrees in electrical angle, and the switching elements 51b to 53b are switched in each of the three-phase negative half cycles. 2 is turned on, the currents Iu, Iv, and Iw in FIGS. 2E, 2F, and 2G flow through the U, V, and W phases of the motor M, respectively.

このとき、PWM信号V91〜V93の切り替え周期が短くなる程、モータMのU、V、Wの各相の電流Iu、Iv、Iwは、モータMの回転に応じた正弦波形の信号になり、180度通電駆動でモータMが滑らか回転する。   At this time, as the switching cycle of the PWM signals V91 to V93 is shortened, the currents Iu, Iv, and Iw of the U, V, and W phases of the motor M become sine waveform signals corresponding to the rotation of the motor M, The motor M rotates smoothly by 180-degree energization drive.

そして、回転検出部1のモータ回転にしたがって正弦波形状に変化する3相の位置検出信号V21〜V23に基づき、大型で高価なレゾルバやインクリメンタルエンコーダ等を設けることなく、PWM変調部6から、3相ブラシレスDCモータMの回転に即してパルス幅が正弦波形状に変化する3相のPWM信号V91〜V93が出力され、各PWM信号V91〜V93に基く3相の駆動ゲート信号V41〜V43により駆動部5の各相の通電を制御し、正弦波駆動方式でモータMを滑らかに回転し、十分な静粛性を得ることができる。   Then, based on the three-phase position detection signals V21 to V23 that change in a sine wave shape according to the rotation of the motor of the rotation detection unit 1, the PWM modulation unit 6 can perform 3 to 3 without providing a large and expensive resolver or incremental encoder. Three-phase PWM signals V91 to V93 whose pulse width changes in a sine wave shape in accordance with the rotation of the phase brushless DC motor M are output, and the three-phase drive gate signals V41 to V43 based on the PWM signals V91 to V93 are output. The energization of each phase of the drive unit 5 is controlled, and the motor M is smoothly rotated by a sine wave drive method, so that sufficient silence can be obtained.

また、回路規模が膨大で高価、大型の位相同期回路は不要であり、回転検出部1の3相の位置検出信号V21〜V23がモータMの回転にしたがって正弦波形状に変化するため、位置検出信号V21〜V23に基き、モータMの起動時、停止時にもモータMの回転位置に応じた3相のPWM信号V91〜V93が出力され、安定かつ速やかにモータMの起動、停止が行える。   Further, the circuit scale is enormous, expensive, and a large phase synchronization circuit is unnecessary, and the three-phase position detection signals V21 to V23 of the rotation detection unit 1 change into a sine wave shape as the motor M rotates. Based on the signals V21 to V23, three-phase PWM signals V91 to V93 corresponding to the rotational position of the motor M are output even when the motor M is started and stopped, so that the motor M can be started and stopped stably and quickly.

したがって、レゾルバやインクリメンタルエンコーダ等の高価で大型のセンサを設けることなく、また、位相同期回路のような回路規模が大きい、高価で大型の回路を備えることなく、3相ブラシレスDCモータMを滑らかに回転し、十分な静粛性を得ることができ、しかも、そのモータMの起動、停止を十分な静粛性で迅速に行なうことができる。   Therefore, the three-phase brushless DC motor M can be made smooth without providing an expensive and large sensor such as a resolver or an incremental encoder, or without a large and expensive circuit such as a phase synchronization circuit. The motor M can be rotated to obtain sufficient silence, and the motor M can be started and stopped quickly with sufficient silence.

さらに、この実施形態の場合、PWM変調部6の演算回路部7により各相の位置検出信号V21〜V23の位相とモータMの通電位相とのずれを移相調整して容易に補正し、180度通電の駆動制御が行なえる利点がある。   Further, in the case of this embodiment, the arithmetic circuit unit 7 of the PWM modulation unit 6 easily corrects the shift between the phase of the position detection signals V21 to V23 of each phase and the energization phase of the motor M by performing phase shift adjustment. There is an advantage that the drive control of the power supply can be performed.

また、駆動ゲート部4により、各相の駆動ゲート信号V41〜V43の正の半サイクルをPWM信号としたため、駆動部5の3相インバータの各アーム51〜53を正の半サイクルずつPWM制御してモータMの各相の通電を0〜100%の変調率で正弦波形状に制御することができ、各相の駆動ゲート信号V41〜V43の正、負の両サイクルをPWM信号にする場合より、駆動ゲート部4等の構成及び制御を簡素化することができる。   In addition, since the positive half cycle of the drive gate signals V41 to V43 of each phase is converted into a PWM signal by the drive gate unit 4, each arm 51 to 53 of the three-phase inverter of the drive unit 5 is PWM-controlled by positive half cycle. Thus, the energization of each phase of the motor M can be controlled in a sinusoidal shape with a modulation rate of 0 to 100%, and both positive and negative cycles of the drive gate signals V41 to V43 of each phase are converted to PWM signals. The configuration and control of the drive gate unit 4 and the like can be simplified.

(第2の実施形態)
つぎに、第2の実施形態について、図5、図6を参照して説明する。
(Second Embodiment)
Next, a second embodiment will be described with reference to FIGS.

図5は図1、図3のPWM回路91に代わるPWM回路91αのブロック図、図6はその動作説明用の波形図であり、それらの図面において、図3、図4と同一符号は同一のものを示す。   5 is a block diagram of a PWM circuit 91α that replaces the PWM circuit 91 of FIGS. 1 and 3, and FIG. 6 is a waveform diagram for explaining the operation. In these drawings, the same reference numerals as those in FIGS. Show things.

そして、この実施形態にあっては、PWM回路部9に、PWM回路91〜93に代えて図5の構成のPWM回路91α、92α、93αを設け、モータMの速度制御等に基いてPWM変調の上限変調率を可変設定する。   In this embodiment, the PWM circuit unit 9 is provided with PWM circuits 91α, 92α, and 93α having the configuration shown in FIG. 5 instead of the PWM circuits 91 to 93, and PWM modulation is performed based on the speed control of the motor M or the like. The upper limit modulation rate is variably set.

そのため、例えば図5のPWM回路91αにおいては、演算回路71の信号V71を信号レベル調整手段としての利得可変増幅器VGAを介して比較器CMP1に供給し、増幅器VGAの利得を、例えばモータMの速度制御に基いてレベル変化する制御端子Ginの利得制御信号(減衰量制御信号)Vcntにしたがって可変し、モータMの制御速度に比例して信号V71のピークレベルを増減補正した信号(補正検出信号)V71αを形成する。   Therefore, for example, in the PWM circuit 91α of FIG. 5, the signal V71 of the arithmetic circuit 71 is supplied to the comparator CMP1 via the variable gain amplifier VGA as the signal level adjusting means, and the gain of the amplifier VGA is set to the speed of the motor M, for example. A signal (correction detection signal) that is varied according to the gain control signal (attenuation amount control signal) Vcnt of the control terminal Gin whose level changes based on the control, and is corrected to increase or decrease in proportion to the control speed of the motor M. V71α is formed.

そして、信号V71に代えて信号V71αを比較器CMP1に供給し、V71α≧充電電圧Vaの期間のパルス幅のPWM信号V91を比較器CMP1から出力する。   Then, the signal V71α is supplied to the comparator CMP1 instead of the signal V71, and the PWM signal V91 having a pulse width during the period of V71α ≧ charge voltage Va is output from the comparator CMP1.

この場合、PWM信号V91の上限変調率は、図6からも明らかなように、信号V81のピークレベルの100%に固定されるのでなく、信号V71αのピークレベルの変化に基き、例えばモータMの速度制御にしたがった任意の変調率に設定される。   In this case, the upper limit modulation factor of the PWM signal V91 is not fixed to 100% of the peak level of the signal V81, as is apparent from FIG. 6, but based on the change of the peak level of the signal V71α, for example, An arbitrary modulation rate is set according to speed control.

そして、図示省略したPWM回路92α、93αについても、PWM回路91αと同様にして、PWM信号V92、93の上限変調率が、信号V71αに相当する信号V72α、V73αのピークレベルの変化に基き、例えばモータMの速度制御にしたがった任意の変調率に設定される。   For the PWM circuits 92α and 93α (not shown), the upper limit modulation rate of the PWM signals V92 and 93 is based on the change in the peak levels of the signals V72α and V73α corresponding to the signal V71α, as in the PWM circuit 91α. An arbitrary modulation rate is set according to the speed control of the motor M.

したがって、この実施形態の場合、PWM信号V91〜V93の上限変調率を例えばモータMの速度制御にしたがて可変し、モータMの制御速度等に応じた任意の上限変調率のPWM制御でモータMを駆動することができ、モータMを正弦波駆動するとともに、その平均駆動電流を制御し、例えば、その速度制御に応じた速度で滑らかに回転することができる。   Therefore, in the case of this embodiment, the upper limit modulation rate of the PWM signals V91 to V93 is varied according to, for example, the speed control of the motor M, and the motor is controlled by PWM control of an arbitrary upper limit modulation rate according to the control speed of the motor M and the like. M can be driven, the motor M is driven in a sine wave, and the average driving current is controlled, and for example, the motor M can be smoothly rotated at a speed corresponding to the speed control.

(第3の実施形態)
つぎに、第3の実施形態について、図7、図8を参照して説明する。
(Third embodiment)
Next, a third embodiment will be described with reference to FIGS.

図7は図1、図3のPWM回路91に代わるPWM回路91βのブロック図、図8はその動作説明用の波形図であり、それらの図面において、図3、図4と同一符号は同一もしくは相当するものを示す。   7 is a block diagram of a PWM circuit 91β in place of the PWM circuit 91 in FIGS. 1 and 3, and FIG. 8 is a waveform diagram for explaining the operation. In these drawings, the same reference numerals as those in FIGS. The equivalent is shown.

そして、この実施形態にあっては、図1のPWM回路部9にPWM回路91〜93に代えて図7の構成のPWM回路91β、92β、93Ββを設け、モータMが設定された位相角(電気角)の範囲のときにのみ、PWM制御に切り替えて従来の台形波制御相当の制御を行なう。   In this embodiment, PWM circuits 91β, 92β, 93Ββ having the configuration shown in FIG. 7 are provided in the PWM circuit unit 9 shown in FIG. Only in the range of electrical angle), control equivalent to conventional trapezoidal wave control is performed by switching to PWM control.

そのため、例えば図5のPWM回路91βにおいては、例えばメモリ(図示せず)に予め設定されの正弦波駆動の各位相角における正弦波値のデータから、制御条件の設定等に基いて、手動操作又は自動制御により選択された小さいほうから順の2位相角Φ1、Φ2のデータD(Φ1)、D(Φ2)が位相角データ端子D1in、D2inに与えられ、これらのデータD(Φ1)、D(Φ2)をデジタル/アナログ変換器DAC1、DAC2により、アナログレベル(電圧)に変換した後、両変換器DAC1、DAC2の基準端子refに供給された信号(ピークレベルの信号)V81を乗算し、正弦波駆動の2位相角Φ1、Φ2のレベルの変調率設定信号、すなわち、2位相角Φ1、Φ2の制御電圧Vdca1、Vdca2(Vdca1<Vdca2)の信号を形成する。   Therefore, for example, in the PWM circuit 91β of FIG. 5, for example, a manual operation is performed based on the setting of the control condition from the data of the sine wave value at each phase angle of the sine wave drive preset in the memory (not shown). Alternatively, data D (Φ1) and D (Φ2) of two phase angles Φ1 and Φ2 in order from the smallest selected by automatic control are given to the phase angle data terminals D1in and D2in, and these data D (Φ1) and D (Φ2) is converted into an analog level (voltage) by the digital / analog converters DAC1 and DAC2, and then multiplied by a signal (peak level signal) V81 supplied to the reference terminal ref of both converters DAC1 and DAC2. Modulation rate setting signals of two phase angles Φ1 and Φ2 of sine wave drive, that is, control voltages Vdca1 and Vdca2 (Vdca1 <Vdca2) of the two phase angles Φ1 and Φ2. 2) is formed.

さらに、比較器CMP3により、両制御電圧Vdca1、Vdca2の差信号Vdif(=Vdca2−Vdca1)を演算し、この差信号Vdifと制御電圧Vdca1の基準レベルとにより、定電流制御回路CCSの電流を制御してコンデンサCの充電電圧Vaβを回転位相角Φ1、Φ2の差に応じた電圧に制御する。   Further, a difference signal Vdif (= Vdca2−Vdca1) between the control voltages Vdca1 and Vdca2 is calculated by the comparator CMP3, and the current of the constant current control circuit CCS is controlled by the difference signal Vdif and the reference level of the control voltage Vdca1. Then, the charging voltage Vaβ of the capacitor C is controlled to a voltage corresponding to the difference between the rotational phase angles Φ1 and Φ2.

そして、比較器CMP2により、PWM制御のピーク電圧としての電圧Vdc2と充電電圧Vaβとを比較し、例えば10度毎のリセットの信号Vbβを形成し、信号bβによってコンデンサCを瞬時放電リセットし、このコンデンサCの充電と放電とのくり返しにより、図8に示す電圧Vdca1〜電圧Vdca2の範囲で鋸歯状に変化する周波数信号Vbβを形成する。   Then, the comparator CMP2 compares the voltage Vdc2 as the PWM control peak voltage with the charging voltage Vaβ, for example, forms a reset signal Vbβ every 10 degrees, and instantaneously resets the capacitor C by the signal bβ. By repeating charging and discharging of the capacitor C, a frequency signal Vbβ that changes in a sawtooth shape in the range of the voltage Vdca1 to the voltage Vdca2 shown in FIG. 8 is formed.

さらに、比較器CMP1により信号V71、Vbβを比較し、信号V71が周波数信号Vbβ以上になる期間のパルス幅のPWM駆信号をPWM信号V91として形成する。   Further, the comparator CMP1 compares the signals V71 and Vbβ, and a PWM drive signal having a pulse width during which the signal V71 is equal to or higher than the frequency signal Vbβ is formed as the PWM signal V91.

このとき、図8からも明らかなように、U相のPWM信号V91は、位相角(電気角)0度〜90度の期間に変調率が0〜100%に変化し、それ以外の期間は100%変調状態に保持される。   At this time, as is apparent from FIG. 8, the U-phase PWM signal V91 changes in the modulation rate to 0 to 100% during the phase angle (electrical angle) of 0 degrees to 90 degrees, and during the other periods. 100% modulation state is maintained.

なお、差信号Vdifによって定電流制御回路CCSの電流を制御するため、PWM制御の周期は、電圧Vdca1、Vdca2よらず、一定になる。   Since the current of the constant current control circuit CCS is controlled by the difference signal Vdif, the PWM control cycle is constant regardless of the voltages Vdca1 and Vdca2.

そして、図示省略したPWM回路92β、93βもPWM回路91βと同様動作し、その結果、V相、W相のPWM信号V92、93は、U相の0度〜9度に相当する回転位相角(電気角)120度〜210度、240度〜330度の期間に変調率が0〜100%に変化し、それ以外の期間は100%変調状態に保持される。   The PWM circuits 92β and 93β (not shown) operate in the same manner as the PWM circuit 91β. As a result, the V-phase and W-phase PWM signals V92 and 93 have rotational phase angles (0 to 9 degrees corresponding to the U-phase). Electrical angle) The modulation factor changes to 0 to 100% during the period of 120 degrees to 210 degrees and 240 degrees to 330 degrees, and is maintained in the 100% modulation state during the other periods.

したがって、この実施形態の場合は、いわゆる台形波駆動相当の駆動制御により、モータMを滑らかに回転して駆動して、前記第1の実施形態と同様の効果を得ることができる。   Therefore, in the case of this embodiment, the motor M can be smoothly rotated and driven by the drive control equivalent to so-called trapezoidal wave driving, and the same effect as in the first embodiment can be obtained.

なお、この第3の実施形態においては、上限変調率を100%に固定したが、上限変調率を任意の変調率に設定してもよく、また、前記第2の実施形態と同様に、上限変調率を例えばモータMの回転速度に応じて可変設定するようにしてもよい。   In the third embodiment, the upper limit modulation rate is fixed at 100%. However, the upper limit modulation rate may be set to an arbitrary modulation rate, and the upper limit modulation rate may be set as in the second embodiment. For example, the modulation rate may be variably set according to the rotation speed of the motor M.

そして、本発明は上記した実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行うことが可能であり、例えば図1の信号V71n〜V73nをピークホールド回路81〜83、PWM回路91〜93に供給し、3相の負の半サイクルに、駆動ゲート部4の各アンドゲート41〜43から図2、図4、図6、図8のPWM信号と同様のPWM信号を出力し、駆動部5の各アーム51、52、53の下側のスイッチング素子51b、52b、53bをPWM制御でスイッチングするようにしてもよく、また、場合によっては、例えば、第4の実施形態のブロック図である図9に示すように、図1の構成に絶対値回路110、111、112及びアンドゲート41n、42n、43nを追加し、絶対値回路110〜112により、信号V71〜V73の絶対値波形の信号を形成し、駆動ゲート信号V41〜V43、V41n〜V43nにより、駆動部5の各アーム51、52、53の上、下側のスイッチング素子51a、51b、52a、52b、53a、53bを、共にPWM制御でスイッチングするようにしてもよい。   The present invention is not limited to the above-described embodiment, and various modifications other than those described above can be made without departing from the spirit thereof. For example, the signals V71n to V73n in FIG. The PWM signals shown in FIGS. 2, 4, 6, and 8 are supplied from the AND gates 41 to 43 of the drive gate unit 4 to the hold circuits 81 to 83 and the PWM circuits 91 to 93 and in the negative half cycle of the three phases. The same PWM signal may be output, and the lower switching elements 51b, 52b, 53b of the arms 51, 52, 53 of the drive unit 5 may be switched by PWM control. As shown in FIG. 9 which is a block diagram of the fourth embodiment, absolute value circuits 110, 111, 112 and AND gates 41n, 42n, 43n are added to the configuration of FIG. The absolute value circuits 110 to 112 form absolute value waveform signals V71 to V73, and the drive gate signals V41 to V43 and V41n to V43n provide the upper and lower sides of the arms 51, 52 and 53 of the drive unit 5. The switching elements 51a, 51b, 52a, 52b, 53a, and 53b may be switched by PWM control.

つぎに、例えば図1においては、ホール素子11〜13の取り付け位置に起因する30度のずれを補正して180度通電駆動を行なうため、演算回路61〜63を設けたが、この補正が不要な場合は演算回路61〜63を省くことができる。   Next, for example, in FIG. 1, arithmetic circuits 61 to 63 are provided in order to perform a 180-degree energization drive by correcting a 30-degree shift caused by the mounting positions of the Hall elements 11 to 13, but this correction is unnecessary. In such a case, the arithmetic circuits 61 to 63 can be omitted.

つぎに、各実施形態において、モータMの起動時、少なくともピークホールド回路71〜73が最初にピーク値を検出して信号V71〜V73を出力するまではPWM制御の駆動を禁止し、その間、例えば100%変調相当の定電流駆動を行うことにより、起動初期の不要な制御を防止して一層滑らかな回転を実現するようにしてもよい。   Next, in each embodiment, when the motor M is started, the PWM control drive is prohibited until at least the peak hold circuits 71 to 73 first detect the peak value and output the signals V71 to V73. By performing constant current driving corresponding to 100% modulation, unnecessary control at the initial stage of startup may be prevented to achieve smoother rotation.

そして、位置検出センサはホール素子に限られるものでなく、位置検出センサの配置間隔は120度、60度に限られるものではない。   The position detection sensor is not limited to the Hall element, and the arrangement interval of the position detection sensors is not limited to 120 degrees and 60 degrees.

また、PWM回路部9の各PWM回路91〜93において、鋸歯波形状の周波数信号に代えて三角波形状の周波数信号を形成するようにしてもよい。   Further, each PWM circuit 91 to 93 of the PWM circuit unit 9 may form a triangular wave-shaped frequency signal instead of the sawtooth wave-shaped frequency signal.

この発明の第1の実施形態のブロック図である。It is a block diagram of a 1st embodiment of this invention. 図1の動作説明用の波形図である。It is a wave form diagram for operation | movement description of FIG. 図1の一部の詳細なブロック図である。FIG. 2 is a detailed block diagram of a part of FIG. 1. 図3の動作説明用の波形図である。It is a wave form diagram for operation | movement description of FIG. この発明の第2の実施形態のブロック図である。It is a block diagram of 2nd Embodiment of this invention. 図5の動作説明用の波形図である。FIG. 6 is a waveform diagram for explaining the operation of FIG. 5. この発明の第3の実施形態のブロック図である。It is a block diagram of 3rd Embodiment of this invention. 図7の動作説明用の波形図である。FIG. 8 is a waveform diagram for explaining the operation of FIG. 7. この発明の第4の実施形態のブロック図である。It is a block diagram of 4th Embodiment of this invention. 従来例のブロック図である。It is a block diagram of a prior art example. 図10の動作説明用の波形図である。It is a wave form diagram for operation | movement description of FIG.

符号の説明Explanation of symbols

1 回転検出部
11、12、13 ホール素子
5 駆動部
6 PWM変調部
7 演算回路部
8 ピークホールド部
9 PWM回路部
M 3相ブラシレスDCモータ
V21〜V23 位置検出信号
V41〜V43、V41n〜V43n 駆動ゲート信号
V91〜V93 PWM信号
DESCRIPTION OF SYMBOLS 1 Rotation detection part 11, 12, 13 Hall element 5 Drive part 6 PWM modulation part 7 Arithmetic circuit part 8 Peak hold part 9 PWM circuit part M 3 phase brushless DC motor V21-V23 Position detection signal V41-V43, V41n-V43n drive Gate signal V91 to V93 PWM signal

Claims (7)

3相ブラシレスDCモータの回転子の周囲に一定間隔で配置された3個の位置検出センサを有し、前記回転子の回転にしたがって正弦波状に変化する3相の位置検出信号を出力する回転検出部と、
前記各位置検出信号それぞれのピークレベルに基づいて各相の上限変調率が設定され、前記各位置検出信号それぞれのレベル変化にしたがってパルス幅が正弦波形状に変化する3相のPWM信号を出力するPWM変調部と、
前記各PWM信号に基づく3相の駆動ゲート信号により前記3相ブラシレスDCモータの各相の通電を制御す3相インバータ回路構成の駆動部とを備えたことを特徴とするブラシレスDCモータ駆動装置。
Rotation detection that has three position detection sensors arranged at regular intervals around the rotor of a three-phase brushless DC motor and outputs a three-phase position detection signal that changes sinusoidally according to the rotation of the rotor. And
The upper limit modulation rate of each phase is set based on the peak level of each position detection signal, and a three-phase PWM signal whose pulse width changes in a sine wave shape according to the level change of each position detection signal is output. A PWM modulator;
A brushless DC motor drive apparatus comprising: a drive unit having a three-phase inverter circuit configuration for controlling energization of each phase of the three-phase brushless DC motor by a three-phase drive gate signal based on each PWM signal.
駆動部に、各相の駆動ゲート信号の正又は負の半サイクルを各相のPWM信号により形成する駆動ゲート部を設けたことを特徴とする請求項1に記載のブラシレスDCモータ駆動装置。   2. The brushless DC motor driving apparatus according to claim 1, wherein the driving unit is provided with a driving gate unit that forms positive or negative half cycles of the driving gate signal of each phase by a PWM signal of each phase. PWM変調部に、U相、V相の位置検出信号の誤差、V相、W相の位置検出信号の誤差、W相、U相の位置検出信号の誤差を演算し、各相の位置検出信号の位相の3相ブラシレスDCモータの通電位相とのずれを移相調整する演算回路部を設けたことを特徴とする請求項1又は2に記載のブラシレスDCモータ駆動装置。   The PWM modulation unit calculates the errors of the U-phase and V-phase position detection signals, the errors of the V-phase and W-phase position detection signals, and the errors of the W-phase and U-phase position detection signals. The brushless DC motor driving device according to claim 1, further comprising an arithmetic circuit unit that adjusts a phase shift of a phase difference between the phase and the energization phase of the three-phase brushless DC motor. 各相の上限変調率が各位置検出信号のピークレベルに対応した100%の変調率に設定されることを特徴とする請求項1〜3のいずれかに記載のブラシレスDCモータ駆動装置。   4. The brushless DC motor driving apparatus according to claim 1, wherein the upper limit modulation rate of each phase is set to a modulation rate of 100% corresponding to the peak level of each position detection signal. PWM変調部に、各位置検出信号をレベル可変した各相の補正検出信号のピークレベルにしたがって、上限変調率を、前記各位置検出信号のピークレベルに対応した100%の変調率から可変する信号レベル調整手段を設けたことを特徴とする請求項1〜3のいずれかに記載のブラシレスDCモータ駆動装置。   A signal for varying the upper limit modulation rate from a modulation rate of 100% corresponding to the peak level of each position detection signal according to the peak level of the correction detection signal of each phase whose level is changed for each position detection signal. 4. The brushless DC motor driving apparatus according to claim 1, further comprising a level adjusting unit. PWM変調部に、各相の位置検出信号をピークホールドするピークホールド部と、該ピークホールド部にホールドされた各相のピークレベルの信号に基づく充放電のくり返しにより、上限変調率のレベルから下限変調率のレベルの範囲で鋸歯波形状又は三角波形状にレベル変化する各相の周波数信号を形成し、前記各位置検出信号が前記各周波数信号以上のレベルになる期間に相当するパルス幅の各相のPWM信号を形成するPWM回路部とを設けたことを特徴とする請求項1〜5のいずれかに記載のブラシレスDCモータ駆動装置。   The PWM modulation unit has a peak hold unit for peak-holding the position detection signal of each phase, and charging and discharging are repeated based on the peak level signal of each phase held in the peak hold unit. Each frequency signal having a pulse width corresponding to a period in which each position detection signal is higher than each frequency signal is formed by forming a frequency signal of each phase that changes in a sawtooth waveform or a triangular waveform in the range of the modulation factor level. 6. A brushless DC motor driving apparatus according to claim 1, further comprising a PWM circuit section for generating a PWM signal. PWM変調部に、各相の位置検出信号をピークホールドするピークホールド部と、該ピークホールド部にホールドされた各相のピークレベルの信号に基づき、PWM制御の位相角範囲を設定する各相の2位相角のレベルの変調率設定信号を形成し、各相の前記両変調率設定信号の差信号に基づく充放電のくり返しにより、前記両変調率設定信号の変調率の範囲で鋸歯波形状又は三角波形状に変化する各相の周波数信号を形成し、前記各位置検出信号が前記各周波数信号以上のレベルになる期間のパルス幅の各相のPWM信号を形成するPWM回路部とを設けたことを特徴とする請求項1〜5のいずれかに記載のブラシレスDCモータ駆動装置。   Based on the peak hold unit for peak-holding the position detection signal of each phase in the PWM modulation unit and the signal of the peak level of each phase held in the peak hold unit, the phase angle range of the PWM control is set. A modulation rate setting signal having a level of two phase angles is formed, and by repeating charge / discharge based on a difference signal between the two modulation rate setting signals of each phase, a sawtooth waveform or A PWM circuit unit is provided that forms a frequency signal of each phase that changes to a triangular wave shape, and forms a PWM signal of each phase with a pulse width in a period in which each position detection signal is at a level equal to or higher than each frequency signal. The brushless DC motor drive device according to any one of claims 1 to 5.
JP2004098075A 2004-03-30 2004-03-30 Brushless dc motor driving apparatus Withdrawn JP2005287196A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004098075A JP2005287196A (en) 2004-03-30 2004-03-30 Brushless dc motor driving apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004098075A JP2005287196A (en) 2004-03-30 2004-03-30 Brushless dc motor driving apparatus

Publications (1)

Publication Number Publication Date
JP2005287196A true JP2005287196A (en) 2005-10-13

Family

ID=35184997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004098075A Withdrawn JP2005287196A (en) 2004-03-30 2004-03-30 Brushless dc motor driving apparatus

Country Status (1)

Country Link
JP (1) JP2005287196A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008153092A1 (en) * 2007-06-15 2008-12-18 Daikin Industries, Ltd. Rotor position detection device and rotor position detection method
US8593100B2 (en) 2010-04-22 2013-11-26 On Semiconductor Trading, Ltd. Motor drive circuit
CN117792155A (en) * 2024-02-23 2024-03-29 晶艺半导体有限公司 Soft commutation control circuit and method for motor drive and motor drive system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008153092A1 (en) * 2007-06-15 2008-12-18 Daikin Industries, Ltd. Rotor position detection device and rotor position detection method
US8593100B2 (en) 2010-04-22 2013-11-26 On Semiconductor Trading, Ltd. Motor drive circuit
CN117792155A (en) * 2024-02-23 2024-03-29 晶艺半导体有限公司 Soft commutation control circuit and method for motor drive and motor drive system
CN117792155B (en) * 2024-02-23 2024-06-07 晶艺半导体有限公司 Soft commutation control circuit and method for motor drive and motor drive system

Similar Documents

Publication Publication Date Title
US6828752B2 (en) Driving equipment and semiconductor equipment for alternating-current motor
CN108141158B (en) Linear hall effect sensor for multiphase permanent magnet motor with PWM drive
US7365506B2 (en) Motor driving device, motor driving method, and motor apparatus
JP5872623B2 (en) Optimal control of synchronous motor
KR101322985B1 (en) Motor drive circuit, method, and disc device using the same
US20060197480A1 (en) Apparatus and method for driving the multiphase motor using the magnetic pole position detector
JP2018531570A6 (en) Linear Hall Effect Sensor for Multiphase Permanent Magnet Motor with PWM Drive
JP2014239637A (en) Optimum control of synchronous motor
CN1077065A (en) Power-converting device
JP4722002B2 (en) PWM inverter control device, PWM inverter control method, and refrigeration air conditioner
JP2005287196A (en) Brushless dc motor driving apparatus
JP6087537B2 (en) Control device and stepping motor control method
JP5428796B2 (en) Motor drive control device
JP2006074951A (en) Controller for ac motor
JP2008295205A (en) Apparatus and method for motor drive
JP6619382B2 (en) Motor drive control device and control method of motor drive control device
JP2005304133A (en) Motor driving method and motor driving unit
JP2006121798A (en) Motor driving device
JP2006081322A (en) Ac motor control unit
JP3355018B2 (en) Drive circuit for brushless motor
JP7129632B2 (en) Motor drive control device and projection type image display device
US11374526B2 (en) Motor control circuit
KR101539850B1 (en) Back elecromotive force detecting circuit and motor driving apparatus using the same
JP2002272163A (en) Controller of brushless motor
JP2006034049A (en) Brushless motor controller and brushless motor device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070605