JP2005286274A - Soldering method - Google Patents

Soldering method Download PDF

Info

Publication number
JP2005286274A
JP2005286274A JP2004102210A JP2004102210A JP2005286274A JP 2005286274 A JP2005286274 A JP 2005286274A JP 2004102210 A JP2004102210 A JP 2004102210A JP 2004102210 A JP2004102210 A JP 2004102210A JP 2005286274 A JP2005286274 A JP 2005286274A
Authority
JP
Japan
Prior art keywords
solder
temperature
solid
soldering
soldering method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004102210A
Other languages
Japanese (ja)
Inventor
Tomokuni Mitsui
朋晋 三井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uchihashi Estec Co Ltd
Original Assignee
Uchihashi Estec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchihashi Estec Co Ltd filed Critical Uchihashi Estec Co Ltd
Priority to JP2004102210A priority Critical patent/JP2005286274A/en
Publication of JP2005286274A publication Critical patent/JP2005286274A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/157Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2924/15738Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950 C and less than 1550 C
    • H01L2924/15747Copper [Cu] as principal constituent

Abstract

<P>PROBLEM TO BE SOLVED: To provide a soldering method for doing a die-bonding superior in heat resistance for a semiconductor chip such as transistors, IC, etc., especially, power transistors under easy temperature control. <P>SOLUTION: A solder having a Pb content of 75% or more and a sold-liquid phase line temperature difference of 20°C or higher is heated into a solid-liquid coexisting state to solder the interface in this state. The solder having the Pb content of 75% or more itself has a high heat resistance to heat cycles and, if the soldering temperature varies somewhat, surely can hold the solid-light coexistence state, this allowing a solder layer to be easily thick owing to a solid solution in the solid-liquid coexisting material. Thus the shearing strain γ applied to the solider layer under heat cycles, based on the difference between linear thermal expansion coefficients of works, is easily reduced and the heat resistance of the solder itself may be increased to satisfactorily prevent the breakdown (crack breakdown) of the solder layer. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明ははんだ付け方法に関し、特に半導体チップのダイボンディングに有用なものである。   The present invention relates to a soldering method, and is particularly useful for die bonding of semiconductor chips.

ウエハチップや集積回路の半導体チップを基板にダイボンディングし、半導体チップの電極とリードとをワイヤボンディングし、次いでパッケージする一連の半導体組立工程において、ダイボンディング部は半導体のプリント配線板へのはんだ付け温度やワイヤボンディング温度に耐え得るものでなくてはならず、そのボンディングには、金−シリコン共晶法、導電性接着剤法、はんだ法等が使用されている。
特に、パワートランジスタやパワーICにおいては、消費電力が大きく、ダイボンディング部を経ての放熱を促進して過熱を防止するためにダイボンディング部の熱抵抗を低くする必要があること、チップ裏面側を電極としており電気抵抗を低くする必要があること等の点から、はんだ法が使用されている。(非特許文献1)
最新の半導体アセンブリ技術とその高信頼化・全自動化、1990年、応用技術出版社発行の260−261頁
In a series of semiconductor assembly processes in which wafer chips and semiconductor chips of integrated circuits are die-bonded to a substrate, electrodes and leads of the semiconductor chip are wire-bonded, and then packaged, the die bonding part is soldered to the printed wiring board of the semiconductor It must be able to withstand the temperature and wire bonding temperature, and gold-silicon eutectic method, conductive adhesive method, solder method and the like are used for the bonding.
In particular, in power transistors and power ICs, power consumption is large, and it is necessary to reduce the thermal resistance of the die bonding part in order to promote heat dissipation through the die bonding part and prevent overheating. The solder method is used because it is an electrode and it is necessary to reduce the electrical resistance. (Non-Patent Document 1)
The latest semiconductor assembly technology and its high reliability and full automation, 1990, pages 260-261, published by Applied Technology Publishing Company

このはんだ法ダイボンディングに使用するはんだには、半導体のプリント配線板へのはんだ付け温度よりも高融点のはんだ組成を使用する必要があり、プリント配線板へのはんだ付けに、通常Sn−Pb合金の共晶組成に近いSn40%,Pb60%の融点ほぼ190℃のはんだが用いられているため、ダイボンディングのはんだには固相線温度が300℃、液相線温度が314℃のSn5%−Pb95%のはんだが使用されている。   It is necessary to use a solder composition having a melting point higher than the soldering temperature of the semiconductor to the printed wiring board as the solder used for this soldering die bonding. Usually, a Sn-Pb alloy is used for soldering to the printed wiring board. Sn 40%, Pb 60% melting point of about 190 ° C. is used, so that the die bonding solder has a solidus temperature of 300 ° C. and a liquidus temperature of 314 ° C. Sn 5% − Pb 95% solder is used.

パワートランジスタやパワーIC等においては、p−n接合部での消費電力が大きいために、実装された電子機器の断続動作に応じ発熱と自然冷却が繰り返される際、熱ヒートサイクルを受け、ボンディングされた両部材、すなわちパワートランジスタ等と基板との線熱膨張係数が異なると、接合界面のはんだ層が繰り返し剪断ストレスに曝される。
すなわち、図1に示すように、ダイボンディング部の巾をw、はんだ層3の厚みをhとし、パワートランジスタ等1の線熱膨張係数をα、基板2(例えば、銅製リードフレーム)の線熱膨張係数をβ(β>α)、温度上昇をΔTとすると、熱ヒートサイクルによりはんだ層に加わる最大剪断歪みγは、
In power transistors, power ICs, etc., the power consumption at the pn junction is large, so when heat generation and natural cooling are repeated according to the intermittent operation of the mounted electronic device, it undergoes a thermal heat cycle and is bonded. If the linear thermal expansion coefficients of the two members, that is, the power transistor and the substrate are different, the solder layer at the joint interface is repeatedly exposed to shear stress.
That is, as shown in FIG. 1, the width of the die bonding portion is w, the thickness of the solder layer 3 is h, the linear thermal expansion coefficient of the power transistor 1 or the like is α, and the linear heat of the substrate 2 (for example, a copper lead frame). When the expansion coefficient is β (β> α) and the temperature rise is ΔT, the maximum shear strain γ applied to the solder layer by the thermal heat cycle is

γ=w・ΔT・(β−α)/h
で与えられ、最大剪断応力τは、剪断弾性係数をGとすると、
γ = w · ΔT · (β−α) / h
The maximum shear stress τ is given by G as the shear modulus.

τ=γ/G
で与えられる。
この最大剪断応力τの繰返しによるダイボンディング界面の疲労破壊を抑制するには、はんだ自体の耐疲労性を高くすることが有効であり、従来のPb95%,Pb5%のはんだでは、Pb含有量が多いためにそれよりもPbが少ないPb−Sn二元はんだよりも耐疲労性に優れている。
しかしながら、Pb95%−Sn5%はんだでは、固相線温度と液相線温度との差が小さく、はんだを固液共存状態に保持するための温度調整が困難であり、はんだ付け中に、はんだが完全に液相化されてはんだ層厚みhの薄肉化が避けられず、前記した剪断歪みγが大きくなり、はんだ層の早期疲労破壊が余儀なくされる。
τ = γ / G
Given in.
In order to suppress fatigue failure at the die bonding interface due to the repetition of the maximum shear stress τ, it is effective to increase the fatigue resistance of the solder itself. In conventional Pb 95% and Pb 5% solder, the Pb content is low. Because of its large amount, it has better fatigue resistance than a Pb—Sn binary solder with less Pb.
However, with Pb95% -Sn5% solder, the difference between the solidus temperature and the liquidus temperature is small, and it is difficult to adjust the temperature to maintain the solder in a solid-liquid coexistence state. Since the liquid phase is completely changed to make the solder layer thickness h thinner, the above-described shear strain γ is increased, and the early fatigue fracture of the solder layer is unavoidable.

本発明の目的は、トランジスタやIC等の半導体チップ、特にパワートランジスタの耐熱性に優れたダイボンディングを、容易な温度管理のもとで行い得るはんだ付け方法を提供することにある。   An object of the present invention is to provide a soldering method capable of performing die bonding excellent in heat resistance of semiconductor chips such as transistors and ICs, particularly power transistors, under easy temperature control.

請求項1に係るはんだ付け方法は、Pb75%以上で、かつ固液相線温度差が15℃以上のはんだを固液共存状態とするように加熱し、この状態で界面をはんだ付けすることを特徴とするはんだ付け方法。
請求項2に係るはんだ付け方法は、請求項1記載のはんだ付け方法において、Ag、Cu、Sb、Pd、Ni、Zn、Gd、Ptの1種または2種以上が0.1〜25%、残部がPbであるはんだを使用することを特徴とする請求項1記載のはんだ付け方法。
請求項3に係るはんだ付け方法は、請求項2記載のはんだ付け方法において、はんだに、In、Bi、Sn、Auの1種または2種以上を0.1〜10%添加することを特徴とする。
請求項4に係るはんだ付け方法は、請求項1〜3何れか記載のはんだ付け方法において、はんだに、P、Ga、Geの1種または2種以上を0.001〜0.1%添加することを特徴とする。
請求項5に係るはんだ付け方法は、請求項1〜4何れかのはんだ付け方法において、半導体チップのダイボンディングに使用することを特徴とする。
The soldering method according to claim 1 is to heat a solder having Pb of 75% or more and a solid-liquid phase temperature difference of 15 ° C. or more to be in a solid-liquid coexistence state, and solder the interface in this state. A characteristic soldering method.
The soldering method according to claim 2 is the soldering method according to claim 1, wherein one or more of Ag, Cu, Sb, Pd, Ni, Zn, Gd, and Pt is 0.1 to 25%. The soldering method according to claim 1, wherein the remaining solder is Pb.
The soldering method according to claim 3 is characterized in that in the soldering method according to claim 2, 0.1 to 10% of one or more of In, Bi, Sn, and Au is added to the solder. To do.
The soldering method according to claim 4 is the soldering method according to any one of claims 1 to 3, wherein 0.001 to 0.1% of one or more of P, Ga and Ge is added to the solder. It is characterized by that.
A soldering method according to a fifth aspect is characterized in that the soldering method according to any one of the first to fourth aspects is used for die bonding of a semiconductor chip.

Pb含有量が75%以上のはんだを使用しているから、はんだ自体の熱サイクルに対する耐疲労性(以下、耐熱性と称する)を高くできる。
更に、固液相線温度差を15℃以上として固液共存状態(固溶体と融液との混合状態)を保持できる温度巾を広くしているから、はんだ付け中に、はんだ付け温度が多少変動しても、固液共存状態を確実に保ち得、固液共存物中の固溶体のためにはんだ層の厚みhを容易に厚くできる。従って、被接合部材の線熱膨張係数の差に基づき熱サイクル下で、はんだ層に加えられる前記した剪断歪みγを良好に軽減でき、かつはんだ自体の耐熱性を高くできるので、はんだ層の破壊(クラック破壊)を良好に防止できる。
特に、請求項2では、PbにAg、Cu、Sb、Pd、Ni、Zn、Gd、Ptの少なくとを一種を0.1〜25%添加したはんだを使用しているから、Pb含有量75%以上に基づくはんだ自体の熱サイクルに対する優れた耐熱性をよく保持させて液相線温度を高くでき、固液相線温度差15℃以上の設定を容易に行い得る。
特に、請求項3では、In、Bi、Sn、Auの1種または2種以上の添加によりはんだの濡れ性が向上され、界面の接合強度を高めることができる。
特に、請求項4では、P、Ga、Geの1種または2種以上がはんだ溶融時に優先的に酸化して他の元素の酸化を防止し、P、Ga、Ge等の酸化物が溶融はんだ表面に浮いて巻き込まれ難いから、はんだ層の酸化による機械的強度の低下をよく抑えて前記したはんだ自体の耐熱性を良好に維持させ得る。
Since the solder having a Pb content of 75% or more is used, the fatigue resistance (hereinafter referred to as heat resistance) of the solder itself against the thermal cycle can be increased.
Furthermore, the temperature range for maintaining the solid-liquid coexistence state (mixed state of solid solution and melt) is widened by setting the solid-liquid phase line temperature difference to 15 ° C or higher, so the soldering temperature varies somewhat during soldering. Even so, the solid-liquid coexistence state can be reliably maintained, and the thickness h of the solder layer can be easily increased due to the solid solution in the solid-liquid coexisting material. Therefore, the above-described shear strain γ applied to the solder layer can be satisfactorily reduced and the heat resistance of the solder itself can be increased under a thermal cycle based on the difference in coefficient of linear thermal expansion of the members to be joined. (Crack fracture) can be prevented well.
In particular, in claim 2, since a solder in which 0.1 to 25% of at least one of Ag, Cu, Sb, Pd, Ni, Zn, Gd, and Pt is added to Pb is used, the Pb content is 75. %, The liquidus temperature can be increased while maintaining excellent heat resistance against the thermal cycle of the solder itself based on% or more, and a solid-liquidus temperature difference of 15 ° C. or more can be easily set.
In particular, the wettability of the solder can be improved by adding one or more of In, Bi, Sn, and Au, and the bonding strength at the interface can be increased.
In particular, in claim 4, one or more of P, Ga, and Ge are preferentially oxidized when the solder is melted to prevent oxidation of other elements, and oxides such as P, Ga, and Ge are molten solder. Since it is difficult to float and get caught on the surface, the heat resistance of the solder itself can be maintained well by suppressing the decrease in mechanical strength due to oxidation of the solder layer.

以下、パワートランジスタのダイボンディングを例にして本発明の実施形態を説明する。
図1において、1はパワートランジスタであり、中・大電力増幅、大電流スイッチング、電源のレギュレータ等に使用されるコレクタ損失600mw以上のトランジスタであり、裏面には、はんだと接合可能なメタライズ層が設けられている。2は基板、例えばリードフレームであり、ダイマウント部にAgメッキ等したパット21が設けられている。
3ははんだ層であり、パット21上にはんだ箔を載せ、そのうえにパワートランジスタ1を載せ、錘やばねで荷重を加え、加熱によりはんだ箔を溶融させ、次いで冷却して溶融はんだを凝固させてある。
はんだ箔に代え、はんだボール、クリームはんだ、はんだ線を使用することもできる。
Hereinafter, embodiments of the present invention will be described by taking die bonding of a power transistor as an example.
In FIG. 1, reference numeral 1 denotes a power transistor, which is a transistor having a collector loss of 600 mw or more used for medium / high power amplification, large current switching, a power supply regulator, and the like. Is provided. Reference numeral 2 denotes a substrate, for example, a lead frame, and a pad 21 made of Ag plating or the like is provided on the die mount portion.
Reference numeral 3 denotes a solder layer. A solder foil is placed on the pad 21, the power transistor 1 is placed thereon, a load is applied with a weight or a spring, the solder foil is melted by heating, and then cooled to solidify the molten solder. .
Instead of the solder foil, solder balls, cream solder, or solder wires may be used.

前記のはんだ箔等には、Pb含有量が75%以上で、かつ固液相線温度差が15℃以上、好ましくは50℃以上、より好ましくは100℃以上のはんだを使用し、はんだの加熱温度に多少の温度変動があっても、はんだの固液共存状態を確保できるように加熱基準温度を設定してある。   For the solder foil, etc., a solder having a Pb content of 75% or more and a solid-liquid phase temperature difference of 15 ° C. or more, preferably 50 ° C. or more, more preferably 100 ° C. or more is used. The heating reference temperature is set so that the solid-liquid coexistence state of the solder can be ensured even if the temperature varies somewhat.

図2は二元共晶系合金の状態図(説明図)を示している。図2において、Sαはα固溶体を、Sβはβ固溶体を、(Sα+Sβ)は両固溶体の混合体を、Lは融液を、aは固相線温度を、bは液相線温度を、(Sα+L)は固溶体Sαと融液Lとの混合体を、(Sβ+L)は固溶体Sβと融液Lとの混合体をそれぞれ示し、ある組成の合金の固相線温度をT、液相線温度Tに対し、はんだの加熱温度が基準温度T0に対し±ΔT変動しても、固液相線温度差(T−T)が充分に大であれば、はんだの状態を固液共存状態に留め得、かかる状態のはんだでは、混在する固溶体のために圧潰変形され難く、はんだ層の厚みを充分に厚くできる。
而るに、本発明に係るはんだ付け方法では、固液相線温度差(T−T)を20℃以上としているので、最低限(T+10℃)を基準温度とすれば、±10℃の温度変動があっても、確実に固液共存状態を保持してはんだ付けでき、はんだ層の厚みを充分に厚くできる。
FIG. 2 shows a phase diagram (description) of the binary eutectic alloy. In FIG. 2, S α is an α solid solution, S β is a β solid solution, (S α + S β ) is a mixture of both solid solutions, L is a melt, a is a solidus temperature, and b is a liquid phase. (S α + L) indicates the mixture of the solid solution S α and the melt L, and (S β + L) indicates the mixture of the solid solution S β and the melt L, respectively. Even if the heating temperature of the solder fluctuates by ± ΔT with respect to the reference temperature T0 with respect to the phase line temperature T s and the liquidus temperature T 1 , the solid-liquid phase temperature difference (T 1 −T s ) is sufficiently large. If so, the state of the solder can be kept in a solid-liquid coexistence state, and the solder in such a state is not easily crushed and deformed due to the mixed solid solution, and the thickness of the solder layer can be sufficiently increased.
Therefore, in the soldering method according to the present invention, the solid-liquidus temperature difference (T 1 −T s ) is set to 20 ° C. or more, so if the minimum (T s + 10 ° C.) is set as the reference temperature, ± Even if there is a temperature fluctuation of 10 ° C., the solder can be reliably soldered while maintaining the solid-liquid coexistence state, and the thickness of the solder layer can be made sufficiently thick.

図2において、温度T0での固溶体:融液の重量比は(ao−o)の距離:(bo−o)の距離の比で与えられ、固相比率を5〜90%、好ましくは15〜70%とするように、合金の組成(固相線温度と液相線温度)や基準加熱温度T0を設定してある。固相比率を5〜90%とする理由は、5%未満では、軟らか過ぎてはんだ層を厚くし難く、90%を超えるとはんだの濡れ性が低下し過ぎ作業性を担保できないからである。
はんだのPb含有量を75%以上とする理由は、Pbが適度の延性を有し、Pb含有量を75%以上とすることにより、熱サイクルに対する優れた耐疲労性を確保することにある。
Ag、Cu、Sb、Pd、Ni、Zn、Gd、Ptの1種または2種以上を0.1〜25%含有させると、液相線温度を上昇させ得て固液相線温度差を広くできる。添加量を0.1〜25%に限定する理由は、0.1%未満では液相線温度の上昇を満足に得ることができず、25%を超えると、前記した耐熱性(熱サイクルに対する優れた耐疲労性)を維持し難く、固相線温度が高くなり過ぎてダイボンディング作業に支障をきたすからである。
In、Bi、Sn、Auの1種または2種以上を0.1〜10%含有させると、濡れ性が良くなり、接合作業の作業性の向上や界面接合強度の向上が得られる。添加量を0.1〜10%に限定する理由は、0.1%未満では濡れ性が実質的に変わらず、10%を超えると、固相線温度が低なり過ぎてダイボンディング部に所望の耐熱温度を付与し難くなるからである。
はんだにP、Ga、Geの1種または2種以上を0.001〜0.1%添加すれば、はんだ溶融時にP、Ga、Geが優先的に酸化して他の元素の酸化が防止され、そのP、Ga、Ge等の酸化物が溶融はんだ表面に浮いて溶融はんだへの巻き込が抑えられるから、はんだ層の酸化による機械的強度の低下をよく抑えて前記したはんだ自体の耐熱性を良好に維持できる。添加量を0.001〜0.1%に限定する理由は、0.001%以下では前記酸化防止を満足に得ることができず、0.1%を超えると、前記した耐熱性を維持し難いからである。
はんだとしては、Ag5〜15%,残部Pb、またはこの組成100重量部にIn、Cu、Sb、Au、Pd、Ni、Bi、Zn、Sn、Gd、Ptの一種または二種以上を0.2〜7重量部添加したものを好適に使用できる。
In FIG. 2, the weight ratio of the solid solution to the melt at the temperature T0 is given by the ratio of the distance (ao-o) :( bo-o), and the solid phase ratio is 5 to 90%, preferably 15 to The alloy composition (solidus temperature and liquidus temperature) and the reference heating temperature T0 are set so as to be 70%. The reason for setting the solid phase ratio to 5 to 90% is that if it is less than 5%, it is too soft and it is difficult to make the solder layer thick, and if it exceeds 90%, the wettability of the solder is too low to ensure workability.
The reason why the Pb content of the solder is set to 75% or more is to ensure excellent fatigue resistance against thermal cycling by making Pb have an appropriate ductility and setting the Pb content to 75% or more.
Inclusion of 0.1 to 25% of one or more of Ag, Cu, Sb, Pd, Ni, Zn, Gd, and Pt can increase the liquidus temperature and widen the solid-liquidus temperature difference. it can. The reason for limiting the addition amount to 0.1 to 25% is that if the amount is less than 0.1%, the increase in the liquidus temperature cannot be obtained satisfactorily. This is because it is difficult to maintain (excellent fatigue resistance) and the solidus temperature becomes too high, which hinders die bonding work.
When 0.1 to 10% of one or more of In, Bi, Sn, and Au is contained, the wettability is improved, and the workability of the joining work and the interface joining strength are improved. The reason for limiting the addition amount to 0.1 to 10% is that the wettability is not substantially changed if it is less than 0.1%, and if it exceeds 10%, the solidus temperature is too low and desired in the die bonding part. It is because it becomes difficult to provide the heat-resistant temperature.
If 0.001 to 0.1% of one or more of P, Ga, and Ge is added to the solder, P, Ga, and Ge are preferentially oxidized during the melting of the solder, and oxidation of other elements is prevented. The oxide of P, Ga, Ge, etc. floats on the surface of the molten solder, and the entrainment of the molten solder is suppressed. Can be maintained well. The reason for limiting the addition amount to 0.001 to 0.1% is that if the amount is 0.001% or less, the above-mentioned antioxidant cannot be obtained satisfactorily, and if it exceeds 0.1%, the above heat resistance is maintained. It is difficult.
As the solder, Ag 5 to 15%, the balance Pb, or 0.2 or more of In, Cu, Sb, Au, Pd, Ni, Bi, Zn, Sn, Gd, and Pt in 100 parts by weight of this composition. What added -7 weight part can be used conveniently.

本発明に係るはんだ付け方法によりパワートランジスタをダイボンディングした後は、リードフレームの内部リードとパワートランジスタのアルミ電極との間をワイヤーボンディングし、更にトランスファーモールド法により樹脂パッケージングし、而るのち、リードフレームの外側部分を除去してパワートランジスタの組立てを終了する。
このようにして組み立てられたパワートランジスタは、プリント配線板にリフロー法やフロー法によりはんだ付けされる。
ダイボンディングに使用したはんだの固相線温度はこのリフロー温度やフロー温度よりも充分に高くされており、リフロー法はんだ付けやフロー法はんだ付けに対し前記のダイボンディング部を安定に保持できる。
After die bonding of the power transistor by the soldering method according to the present invention, wire bonding is performed between the internal lead of the lead frame and the aluminum electrode of the power transistor, and further resin packaging is performed by a transfer molding method. The outer portion of the lead frame is removed to finish the assembly of the power transistor.
The power transistor thus assembled is soldered to the printed wiring board by a reflow method or a flow method.
The solidus temperature of the solder used for die bonding is sufficiently higher than the reflow temperature and flow temperature, and the die bonding portion can be stably held against reflow soldering and flow soldering.

パワートランジスタにおいては、コレクタ損失が600mw以上と大きく、実装された電子機器の断続動作に応じp−n接合部での発熱と自然冷却との繰返しによりダイボンディング界面のはんだ層が熱サイクルストレスに曝される。
このストレスはダイボンディング界面の巾をw、はんだ層の厚みをhとし、パワートランジスタの線熱膨張係数をα、基板(例えば、銅製リードフレーム)の線熱膨張係数をβ(β>α)、温度上昇をΔT、剪断弾性係数をGとすると、
In the power transistor, the collector loss is as large as 600 mw or more, and the solder layer at the die bonding interface is exposed to thermal cycle stress by repeating heat generation and natural cooling at the pn junction according to the intermittent operation of the mounted electronic device. Is done.
The stress is such that the width of the die bonding interface is w, the thickness of the solder layer is h, the linear thermal expansion coefficient of the power transistor is α, the linear thermal expansion coefficient of the substrate (for example, a copper lead frame) is β (β> α), If the temperature rise is ΔT and the shear elastic modulus is G,

τ=w・ΔT・(β−α)/(Gh)
で与えられる。
而るに、本発明に係るはんだ付け方法によれば、はんだ自体の繰返し熱ストレスに対する耐熱性を高くでき、しかもはんだ層の厚みhを容易に厚くできるので、前記熱サイクルに対する耐熱性を良好に向上できる(勿論、ダイボンディングを錘やばねによる所定の加圧下で行っているので、はんだ層とパワートランジスタとの界面及びはんだ層とリードフレームとの界面にボイド等の非溶着部が発生するのを防止でき、応力集中による破壊もよく防止できる)。
τ = w · ΔT · (β−α) / (Gh)
Given in.
Thus, according to the soldering method of the present invention, the heat resistance against repeated thermal stress of the solder itself can be increased, and the thickness h of the solder layer can be easily increased. (Of course, since die bonding is performed under a predetermined pressure by a weight or a spring, non-welded portions such as voids are generated at the interface between the solder layer and the power transistor and the interface between the solder layer and the lead frame. And can be well prevented by stress concentration).

はんだの組成をPb−Ag10%−Sn1%とした。このはんだの固相線温度は296℃、液相線温度は440℃であり、固液相線温度差が144℃である。温度330℃での固相比率は63%、温度350℃での固相比率は53%、温度370℃での固相比率は44%である。
このはんだを使用し、加熱基準温度を350℃とし、±10℃の範囲で加熱温度を変動させてパワートランジスタを銅リードフレームにダイボンディングしたところ、はんだ層の厚みは50±3μmであった。
The composition of the solder was Pb-Ag10% -Sn1%. The solder has a solidus temperature of 296 ° C., a liquidus temperature of 440 ° C., and a solid-liquid phase temperature difference of 144 ° C. The solid phase ratio at a temperature of 330 ° C. is 63%, the solid phase ratio at a temperature of 350 ° C. is 53%, and the solid phase ratio at a temperature of 370 ° C. is 44%.
When this solder was used, the heating reference temperature was set to 350 ° C., and the heating temperature was varied in the range of ± 10 ° C., and the power transistor was die-bonded to the copper lead frame, the thickness of the solder layer was 50 ± 3 μm.

はんだの組成をPb−Ag10%とした。このはんだの固相線温度は304℃、液相線温度は450℃であり、固液相線温度差が146℃である。温度330℃での固相比率は63%、温度350℃での固相比率は53%、温度370℃での固相比率は44%である。
このはんだを使用し、加熱基準温度を350℃とし、±10℃の範囲で加熱温度を変動させてパワートランジスタを銅リードフレームにダイボンディングしたところ、はんだ層の厚みは54±3μmであった。
The composition of the solder was Pb-Ag 10%. The solder has a solidus temperature of 304 ° C., a liquidus temperature of 450 ° C., and a solid-liquid phase temperature difference of 146 ° C. The solid phase ratio at a temperature of 330 ° C. is 63%, the solid phase ratio at a temperature of 350 ° C. is 53%, and the solid phase ratio at a temperature of 370 ° C. is 44%.
When this solder was used, the heating reference temperature was set to 350 ° C., and the heating temperature was varied in the range of ± 10 ° C., and the power transistor was die-bonded to the copper lead frame, the thickness of the solder layer was 54 ± 3 μm.

はんだの組成をPb−Ag10%−In5%とした。このはんだの固相線温度は420℃、液相線温度は290℃であり、固液相線温度差が130℃である。温度330℃での固相比率は55%、温度350℃での固相比率は45%、温度370℃での固相比率は44%である。
このはんだを使用し、加熱基準温度を350℃とし、±10℃の範囲で加熱温度を変動させてパワートランジスタを銅リードフレームにダイボンディングしたところ、はんだ層の厚みは45±3μmであった。
The composition of the solder was Pb—Ag 10% —In 5%. The solder has a solidus temperature of 420 ° C., a liquidus temperature of 290 ° C., and a solid-liquid phase temperature difference of 130 ° C. The solid phase ratio at a temperature of 330 ° C. is 55%, the solid phase ratio at a temperature of 350 ° C. is 45%, and the solid phase ratio at a temperature of 370 ° C. is 44%.
When this solder was used, the heating reference temperature was set to 350 ° C., and the heating temperature was varied in the range of ± 10 ° C., and the power transistor was die-bonded to the copper lead frame, the thickness of the solder layer was 45 ± 3 μm.

はんだの組成をPb−Ag10%−Ni0.5%とした。このはんだの固相線温度は304℃、液相線温度は450℃であり、固液相線温度差が100℃である。温度330℃での固相比率は64%、温度350℃での固相比率は54%、温度370℃での固相比率は45%である。
このはんだを使用し、加熱基準温度を350℃とし、±10℃の範囲で加熱温度を変動させてパワートランジスタを銅リードフレームにダイボンディングしたところ、はんだ層の厚みは49±3μmであった。
The composition of the solder was Pb-Ag 10% -Ni 0.5%. The solder has a solidus temperature of 304 ° C., a liquidus temperature of 450 ° C., and a solid-liquid phase temperature difference of 100 ° C. The solid phase ratio at a temperature of 330 ° C. is 64%, the solid phase ratio at a temperature of 350 ° C. is 54%, and the solid phase ratio at a temperature of 370 ° C. is 45%.
Using this solder, the heating reference temperature was set to 350 ° C., the heating temperature was varied in the range of ± 10 ° C., and the power transistor was die-bonded to the copper lead frame. The thickness of the solder layer was 49 ± 3 μm.

〔比較例〕
はんだの組成はPb−Sn5%−Ag1.5%の共晶合金であり、共晶温度は296℃である。
このはんだを使用し、加熱基準温度を350℃とし、±10℃の範囲で加熱温度を変動させてパワートランジスタを銅リードフレームにダイボンディングしたところ、はんだ層の厚みは20±1μmであった。
[Comparative example]
The composition of the solder is a Pb—Sn 5% -Ag 1.5% eutectic alloy, and the eutectic temperature is 296 ° C.
When this solder was used, the heating reference temperature was set to 350 ° C., and the heating temperature was varied within a range of ± 10 ° C., and the power transistor was die-bonded to the copper lead frame, the thickness of the solder layer was 20 ± 1 μm.

これら実施例及び比較例で組み立てたパワートランジスタをプリント配線板に、通常のPb−Sn60%はんだを使用して実装し、サーフルファーティーグテスト(1分間オン/2分間オフさせ、その間の温度差をほぼ100℃になるようにしてダイボンディング部が破壊するサイクル数を測定する)を行ったところ、実施例品は何れも10kサイクル以上であり、比較例に較べ優れていた。   The power transistors assembled in these examples and comparative examples were mounted on a printed wiring board using normal Pb-Sn 60% solder, and a surfer fatigue test (1 minute on / 2 minutes off, the temperature difference between them was measured. When the number of cycles at which the die bonding part breaks was measured so that the temperature became approximately 100 ° C.), all of the products of the examples had 10 k cycles or more, which was superior to the comparative example.

なお、本発明に係るはんだ付け方法は、パワートランジスタ等の半導体チップとリードフレームとの間のボンディングの外、半導体チップとパッケージ容器底面との間のボンディング、更には、組み立てられた半導体とプリント配線板との接合にも使用可能である。   The soldering method according to the present invention includes bonding between the semiconductor chip such as a power transistor and the lead frame, bonding between the semiconductor chip and the bottom of the package container, and further, the assembled semiconductor and printed wiring. It can also be used for joining with plates.

本発明に係るはんだ付け方法を使用した半導体チップのダイボンディグ部を示す図面である。It is drawing which shows the die bonding part of the semiconductor chip using the soldering method which concerns on this invention. 本発明に係るはんだ付け方法における加熱温度を説明するために使用した合金の状態図である。It is a state figure of the alloy used in order to explain the heating temperature in the soldering method concerning the present invention.

符号の説明Explanation of symbols

1 半導体チップ
2 基板
3 はんだ層
a 固相線温度
b 液相線温度
T0 基準加熱温度
1 Semiconductor chip 2 Substrate 3 Solder layer a Solidus temperature b Liquidus temperature T0 Reference heating temperature

Claims (5)

Pbが75%以上で、かつ固液相線温度差が15℃以上のはんだを固液共存状態とするように加熱し、この状態で界面をはんだ付けすることを特徴とするはんだ付け方法。 A soldering method comprising heating a solder having a Pb of 75% or more and a solid-liquid phase temperature difference of 15 ° C. or more to be in a solid-liquid coexistence state, and soldering the interface in this state. Ag、Cu、Sb、Pd、Ni、Zn、Gd、Ptの1種または2種以上が0.1〜25%、残部がPbであるはんだを使用することを特徴とする請求項1記載のはんだ付け方法。 The solder according to claim 1, wherein one or more of Ag, Cu, Sb, Pd, Ni, Zn, Gd, and Pt is 0.1 to 25%, and the balance is Pb. Attaching method. はんだに、In、Bi、Sn、Auの1種または2種以上を0.1〜10%添加することを特徴とする2記載のはんだ付け方法。 3. The soldering method according to 2, wherein 0.1 to 10% of one or more of In, Bi, Sn, and Au is added to the solder. はんだに、P、Ga、Geの1種または2種以上を0.001〜0.1%添加することを特徴とする請求項1〜3何れか記載のはんだ付け方法。 The soldering method according to any one of claims 1 to 3, wherein 0.001 to 0.1% of one or more of P, Ga, and Ge is added to the solder. 半導体チップのダイボンディングに使用することを特徴とする請求項1〜4何れか記載のはんだ付け方法。 The soldering method according to claim 1, wherein the soldering method is used for die bonding of a semiconductor chip.
JP2004102210A 2004-03-31 2004-03-31 Soldering method Withdrawn JP2005286274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004102210A JP2005286274A (en) 2004-03-31 2004-03-31 Soldering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004102210A JP2005286274A (en) 2004-03-31 2004-03-31 Soldering method

Publications (1)

Publication Number Publication Date
JP2005286274A true JP2005286274A (en) 2005-10-13

Family

ID=35184268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004102210A Withdrawn JP2005286274A (en) 2004-03-31 2004-03-31 Soldering method

Country Status (1)

Country Link
JP (1) JP2005286274A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007034791A1 (en) * 2005-09-26 2007-03-29 Dowa Electronics Materials Co., Ltd. Solder layer, heat sink using such solder layer and method for manufacturing such heat sink
WO2008061406A1 (en) * 2006-11-26 2008-05-29 Changshu Huayin Filler Metals Co., Ltd. A cadmium less silver brazing filter metal
CN102047398A (en) * 2009-04-30 2011-05-04 松下电器产业株式会社 Bonded structure and bonding method for bonded structure
CN102179588A (en) * 2011-04-29 2011-09-14 重庆理工大学 Method for coating brazing filler metal on surface of aluminum alloy and aluminum compound material by stirring at semi-solid state
JP2013049067A (en) * 2011-08-30 2013-03-14 Mitsubishi Electric Corp Solder material and semiconductor device
JP2013132643A (en) * 2011-12-22 2013-07-08 Hitachi Chemical Co Ltd Solder adhesion body
US20220331913A1 (en) * 2015-05-05 2022-10-20 Indium Corporation High reliability lead-free solder alloys for harsh environment electronics applications

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007034791A1 (en) * 2005-09-26 2007-03-29 Dowa Electronics Materials Co., Ltd. Solder layer, heat sink using such solder layer and method for manufacturing such heat sink
US8310047B2 (en) 2005-09-26 2012-11-13 Dowa Electronics Materials Co., Ltd. Solder layer, heat sink using such a solder layer and method for manufacturing such a heat sink
WO2008061406A1 (en) * 2006-11-26 2008-05-29 Changshu Huayin Filler Metals Co., Ltd. A cadmium less silver brazing filter metal
US7985374B2 (en) 2006-11-26 2011-07-26 Changshu Huayin Filler Metals Co., Ltd. Cadmium-free silver brazing filler metal
CN102047398A (en) * 2009-04-30 2011-05-04 松下电器产业株式会社 Bonded structure and bonding method for bonded structure
CN102047398B (en) * 2009-04-30 2014-04-02 松下电器产业株式会社 Bonded structure and bonding method for bonded structure
CN102179588A (en) * 2011-04-29 2011-09-14 重庆理工大学 Method for coating brazing filler metal on surface of aluminum alloy and aluminum compound material by stirring at semi-solid state
JP2013049067A (en) * 2011-08-30 2013-03-14 Mitsubishi Electric Corp Solder material and semiconductor device
JP2013132643A (en) * 2011-12-22 2013-07-08 Hitachi Chemical Co Ltd Solder adhesion body
US20220331913A1 (en) * 2015-05-05 2022-10-20 Indium Corporation High reliability lead-free solder alloys for harsh environment electronics applications

Similar Documents

Publication Publication Date Title
US6563225B2 (en) Product using Zn-Al alloy solder
US7075183B2 (en) Electronic device
US20210407953A1 (en) Solder material for semiconductor device
US20040007384A1 (en) Electronic device
JP2009060101A (en) Electronic device
JP4453612B2 (en) Lead-free solder alloy
JPH10118783A (en) Soldering material, and electronic parts using it
JP2002301588A (en) Solder foil, semiconductor device and electronic device
JP5578326B2 (en) Lead component, manufacturing method thereof, and semiconductor package
JP2002305213A (en) Solder foil, semiconductor device, and electronic device
JP6810915B2 (en) Solder material
JP2004114093A (en) High temperature brazing filler metal
JP2005340268A (en) Transistor package
JP2005286274A (en) Soldering method
JP6877600B1 (en) Semiconductor device
JP6529632B1 (en) Semiconductor device using solder alloy, solder paste, molded solder, and solder alloy
JP4432541B2 (en) Electronics
US7973412B2 (en) Semiconductor device using lead-free solder as die bonding material and die bonding material not containing lead
JP6038187B2 (en) Solder alloy for die bonding
JP2020518461A (en) Solder material and die attachment method
JP2011222823A (en) Circuit device and manufacturing method thereof
JP2005177842A (en) Brazing material, manufacturing method of semiconductor device using the same and semiconductor device
US20230402420A1 (en) Semiconductor device and method for manufacturing the same
JP2006247690A (en) Brazing filler metal, method for manufacturing semiconductor device using the same, and semiconductor device
JP2017060984A (en) Joint material and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090106