JP2005286191A - Laminated electromagnetic wave absorber - Google Patents

Laminated electromagnetic wave absorber Download PDF

Info

Publication number
JP2005286191A
JP2005286191A JP2004099849A JP2004099849A JP2005286191A JP 2005286191 A JP2005286191 A JP 2005286191A JP 2004099849 A JP2004099849 A JP 2004099849A JP 2004099849 A JP2004099849 A JP 2004099849A JP 2005286191 A JP2005286191 A JP 2005286191A
Authority
JP
Japan
Prior art keywords
electromagnetic wave
layer
laminated
wave absorber
absorber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004099849A
Other languages
Japanese (ja)
Other versions
JP4311654B2 (en
Inventor
Tatsuya Kobayashi
達也 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Geltec Co Ltd
Original Assignee
Geltec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Geltec Co Ltd filed Critical Geltec Co Ltd
Priority to JP2004099849A priority Critical patent/JP4311654B2/en
Priority to PCT/JP2004/015488 priority patent/WO2005101941A1/en
Priority to US10/590,063 priority patent/US20070196671A1/en
Priority to TW94109236A priority patent/TWI278278B/en
Publication of JP2005286191A publication Critical patent/JP2005286191A/en
Priority to KR1020067018210A priority patent/KR101090743B1/en
Priority to HK07105966A priority patent/HK1098631A1/en
Application granted granted Critical
Publication of JP4311654B2 publication Critical patent/JP4311654B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laminated electromagnetic wave absorber that is formed by laminating a conductive electromagnetic wave reflecting layer upon an electromagnetic wave absorbing layer which absorbs unnecessary electromagnetic waves from the inside and outside of a resin-made enclosure, has such an adhesive property that the absorber can be stuck on the surface of an unnecessary electromagnetic wave radiating source, such as the high-speed arithmetic element etc., and such an adhesive strength that the absorber does not fall down even when the absorber is stuck to the horizontal glass ceiling surface of the resin-made enclosure. <P>SOLUTION: In the laminated electromagnetic wave absorber, a conductive electromagnetic wave reflecting layer is laminated upon an electromagnetic wave absorbing layer which absorbs unnecessary electromagnetic waves from the inside and outside of the resin-made enclosure, an adhesive agent layer is laminated upon the outside of the electromagnetic wave reflecting layer through an insulator layer, and releasable film layers are respectively laminated upon the outside of the electromagnetic wave absorbing layer and the outside of the adhesive agent layer. The electromagnetic wave absorbing layer has such an adhesive property that the layer can closely adhere to at least the surface of the high-speed arithmetic element and the adhesive agent layer has such an adhesive strength that the layer can adhere to at least the horizontal glass ceiling surface of the resin-made enclosure and does not fall down from the ceiling surface. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電磁波吸収層と電磁波反射層を有する積層電磁波吸収体に関し、特に、筐体天面にも、高速演算素子等の不要電磁波放射源の上にも貼り付け可能な電磁波吸収性、電磁波シールド性に優れる積層電磁波吸収体に関する。   The present invention relates to a laminated electromagnetic wave absorber having an electromagnetic wave absorbing layer and an electromagnetic wave reflecting layer, and in particular, an electromagnetic wave absorptive and electromagnetic wave that can be affixed to an upper surface of a housing and an unnecessary electromagnetic wave radiation source such as a high-speed arithmetic element. The present invention relates to a laminated electromagnetic wave absorber having excellent shielding properties.

近年、放送、移動体通信、レーダー、携帯電話、無線LANなどの電磁波利用が進むに伴い、生活空間に電磁波が散乱し、電磁波障害、電子機器の誤動作などの問題が頻発している。特に、電磁波を発生する機器内部の素子やプリント基板パターンから放射される不要電磁波(ノイズ)が干渉や共振現象を発生させ、機器の性能、信頼性の低下を誘発する近傍電磁界の電磁波対策、及び演算素子の高速化による発熱量の増大に対する放熱対策が急務となりつつある。
これらの問題を解決するための方法としては、主に、発生したノイズを反射させて発生源に帰還させる反射法、ノイズを安定電位面(接地部等)に誘導させるバイパス法、又はシールド法等がとられている。
しかしながら、最近の機器の小型・軽量化の要求による高密度実装に伴い、ノイズ対策部品実装のスペースが少なくなり、省電力化の要求による素子駆動の低電圧化に伴い、電源系に他媒体からの高周波が結合し易くなり、演算処理速度の急速な高速化の要求によりクロック信号の狭いことに伴い、高周波の影響を受け易くなり、樹脂筐体の急激な普及に伴い、電磁波が漏れ易い構造となり、利用周波数帯域の急増に伴い、相互に影響されやすい環境下におかれるようになる等の理由により、いずれの方法も近傍電磁界の電磁波対策と放熱対策を十分に両立させる方法とはなっていないのが現状である。
In recent years, with the progress of the use of electromagnetic waves such as broadcasting, mobile communication, radar, mobile phones, and wireless LANs, electromagnetic waves are scattered in the living space, and problems such as electromagnetic interference and malfunction of electronic devices are frequently occurring. In particular, electromagnetic waves in the vicinity of electromagnetic fields that cause interference and resonance phenomenon caused by unnecessary electromagnetic waves (noise) radiated from elements and printed circuit board patterns inside the equipment that generate electromagnetic waves, and reduce the performance and reliability of the equipment, In addition, heat radiation countermeasures against an increase in the amount of heat generated by increasing the speed of arithmetic elements are becoming urgent.
As a method for solving these problems, a reflection method in which the generated noise is reflected and returned to the generation source, a bypass method in which the noise is guided to a stable potential surface (grounding portion, etc.), a shield method, or the like Has been taken.
However, with recent high-density mounting due to the demand for smaller and lighter equipment, the space for mounting noise countermeasure components has decreased, and with the drive voltage reduction due to the demand for power saving, the power supply system has been switched from other media. A structure that is easy to couple high-frequency, and is susceptible to high-frequency due to the narrowness of the clock signal due to the demand for rapid increase in processing speed. Because of the rapid increase in the frequency band to be used, both methods are sufficiently compatible with both electromagnetic field countermeasures and heat radiation countermeasures in the vicinity of electromagnetic fields, for example, because they are placed in an environment that is susceptible to mutual influence. The current situation is not.

こうした問題点を解決するため、樹脂製筐体内の素子やプリント基板パターンから発生するノイズを熱エネルギーに変換する電磁波吸収体や、それとノイズを反射させる反射層を組み合わせた電磁波吸収体が使用され始めている。電磁波吸収体は、磁性損失特性を利用して発生するノイズの電磁波エネルギーを吸収して熱エネルギーに変換して筐体内での反射と透過を抑制する機能、及び基板パターンや素子端子をアンテナとして放出される電磁エネルギーに対してインピーダンス付加によりアンテナ効果を劣化させて、電磁エネルギーレベルを低下させる機能を有するものが必要であり、これらの機能を十分に有するものが望まれている。   In order to solve these problems, electromagnetic wave absorbers that convert noise generated from elements and printed circuit board patterns in resin casings into thermal energy and electromagnetic wave absorbers that combine this with reflective layers that reflect noise have begun to be used. Yes. The electromagnetic wave absorber absorbs noise electromagnetic wave energy generated using magnetic loss characteristics and converts it into thermal energy to suppress reflection and transmission inside the housing, and emits the substrate pattern and element terminal as an antenna It is necessary to have a function of lowering the electromagnetic energy level by deteriorating the antenna effect by adding impedance to the electromagnetic energy to be generated, and those having these functions sufficiently are desired.

このような問題に対応するものとして、電磁波エネルギー損失材と保持材を混合してなる可撓性を有するシート状電波吸収層と、有機繊維布に高導電性金属材料を無電解メッキしてなる電波反射層を積層した柔軟な薄型電磁波吸収体(例えば、特許文献1参照。)が提案されている。
また、機器外部への電磁波漏洩を防ぐため、金属板を電磁波シールド材として設置することや筐体に導電性を持たせて電磁波シールド性能を付与することが行われているが、このシールド材で反射、散乱した電磁波は機器内部に充満して電磁干渉を助長してしまうという問題や、機器内部に設置された複数の基板間での電磁干渉の問題を解決するため、導電性支持体と、軟磁性体粉末と有機結合剤からなる絶緑性軟磁性体層を積層した形の電磁波干渉抑制体(例えば、特許文献2参照。)が提案されている。
さらに、導電性充填剤をシリコーン樹脂中に分散させてなる電磁波反射層の少なくとも一方の面に、電磁波吸収性充填剤をシリコーン樹脂中に分散させてなる電磁波吸収層を積層したことを特徴とする電磁波吸収体(例えば、特許文献3参照。)が開示され、高い電磁波吸収性能、高い電磁波シールド性能を持つと共に、シリコーン樹脂自体の性質を反映して、加工性、柔軟性、耐候性、耐熱性に優れたものとなるとされている。
In order to cope with such problems, a sheet-like electromagnetic wave absorbing layer having a flexibility obtained by mixing an electromagnetic wave energy loss material and a holding material, and an organic fiber cloth is electrolessly plated with a highly conductive metal material. A flexible thin electromagnetic wave absorber (for example, see Patent Document 1) in which radio wave reflection layers are laminated has been proposed.
In addition, in order to prevent leakage of electromagnetic waves to the outside of the equipment, a metal plate is installed as an electromagnetic shielding material, or the casing is made conductive to impart electromagnetic shielding performance. In order to solve the problem that the reflected and scattered electromagnetic wave fills the inside of the device and promotes electromagnetic interference and the problem of electromagnetic interference between multiple substrates installed inside the device, a conductive support, There has been proposed an electromagnetic wave interference suppressor (see, for example, Patent Document 2) in a form in which a green soft magnetic layer made of soft magnetic powder and an organic binder is laminated.
Furthermore, an electromagnetic wave absorbing layer in which an electromagnetic wave absorbing filler is dispersed in a silicone resin is laminated on at least one surface of the electromagnetic wave reflecting layer in which the conductive filler is dispersed in the silicone resin. An electromagnetic wave absorber (see, for example, Patent Document 3) is disclosed, has high electromagnetic wave absorption performance and high electromagnetic wave shielding performance, and reflects the properties of the silicone resin itself, so that processability, flexibility, weather resistance, and heat resistance are achieved. It is said that it will be excellent.

しかしながら、いずれの技術においても、電磁波吸収体の構造は、フェライト等の磁性損失材料の粉末やカーボン等の誘電性損失材料の粉末をゴムやプラスチック等に均一に充填してなるものが用いられているが、その充填度に限界があると同時に被装着構造物の多様な形状に対応するための柔軟性に問題があった。
特に、電子機器内部の電子機器要素の高密度化、高集積化された部位に対する電磁波吸収体としては、電磁波吸収性能、高抵抗高絶縁性、熱伝導性能を有した部材が必要となるが、これら三つの性能を兼ね備えた部材は存在せず、この用途の場合、さらに柔軟性、耐熱性、難燃性なども必要とされるが、これらの性能を同時に満足するものはなかった。特に、電磁波反射機能を兼ね備えた吸収体にあっては、その設置場所が限られて、例えば、樹脂製筐体の天面等への設置は十分に行えないのが実情であった。
特許第3097343号公報 特開平7−212079号公報 特開2002−329995号公報
However, in any technique, the structure of the electromagnetic wave absorber is such that a powder of magnetic loss material such as ferrite or a powder of dielectric loss material such as carbon is uniformly filled in rubber or plastic. However, the degree of filling is limited, and at the same time, there is a problem in flexibility to cope with various shapes of the mounted structure.
In particular, as an electromagnetic wave absorber for the high density and highly integrated portion of the electronic device elements inside the electronic device, a member having electromagnetic wave absorption performance, high resistance and high insulation, and heat conduction performance is required. There is no member having these three performances, and in the case of this application, flexibility, heat resistance, flame retardancy and the like are further required, but none of these performances are satisfied at the same time. In particular, in an absorber having an electromagnetic wave reflection function, the installation location is limited, and for example, it is a fact that installation on a top surface of a resin casing cannot be performed sufficiently.
Japanese Patent No. 3097343 Japanese Patent Laid-Open No. 7-212079 JP 2002-329995 A

本発明の目的は、上記問題点等に鑑み、樹脂製筐体内外からの不要電磁波を吸収する、電磁波吸収層に導電性の電磁波反射層を積層した積層電磁波吸収体において、高速演算素子等の不要電磁波放射源の上に貼り付け可能な密着性を有し、かつ樹脂製筐体の水平なガラス面状の天井面に貼着しても落下しない粘着力を有する積層電磁波吸収体であって、電磁波吸収性、電磁波シールド性に優れる積層電磁波吸収体、さらに、磁性損失材料の高充填を可能にすることで、電磁波吸収性、熱伝導性、難燃性に優れ、温度依存性が少なく、かつ柔らかく、密着強度に優れ、高抵抗高絶縁特性を有し、貼り付け制限がない積層電磁波吸収体を提供することにある。   In view of the above-mentioned problems, the object of the present invention is to absorb unnecessary electromagnetic waves from inside and outside of a resin casing, and in a laminated electromagnetic wave absorber in which a conductive electromagnetic wave reflecting layer is laminated on an electromagnetic wave absorbing layer, A laminated electromagnetic wave absorber that has adhesiveness that can be affixed on an unnecessary electromagnetic radiation source, and has an adhesive force that does not drop even if it is affixed to a horizontal glass-like ceiling surface of a resin casing. , Laminated electromagnetic wave absorber excellent in electromagnetic wave absorbability, electromagnetic wave shielding property, and further, by enabling high filling of magnetic loss material, it is excellent in electromagnetic wave absorption, thermal conductivity, flame retardancy, less temperature dependence, Another object of the present invention is to provide a laminated electromagnetic wave absorber that is soft, has excellent adhesion strength, has high resistance and high insulation characteristics, and has no sticking restrictions.

本発明者は、かかる課題を解決するために鋭意研究の結果、電磁波吸収層が少なくとも高速演算素子等の不要電磁波放射源の上に密着できる密着性を有するバインダーを含み、粘着剤層が少なくとも樹脂製筐体の水平なガラス面状の天井面に貼着しても落下しない粘着力を有するようにした積層電磁波吸収体が、樹脂製筐体天面にも、高速演算素子等の上にも貼り付け可能であり、電磁波吸収性、電磁波シールド性に優れる積層電磁波吸収体となり、さらに、磁性損失材料の高充填を可能にすることで、電磁波吸収性、熱伝導性、難燃性に優れ、温度依存性が少なく、かつ柔らかく、密着強度に優れ、高抵抗高絶縁特性を有し、貼り付け制限がない積層電磁波吸収体になり得ることを見出し、本発明を完成した。   As a result of intensive studies to solve such problems, the present inventor has found that the electromagnetic wave absorbing layer contains at least a binder having an adhesive property that can adhere to an unnecessary electromagnetic radiation source such as a high-speed computing element, and the adhesive layer is at least a resin. A laminated electromagnetic wave absorber that has adhesive strength that does not drop even if it is attached to the horizontal glass-like ceiling surface of a plastic casing, is placed on the top surface of a plastic casing, on a high-speed computing element, etc. It becomes a laminated electromagnetic wave absorber with excellent electromagnetic wave absorbability and electromagnetic wave shielding properties that can be pasted, and further, by enabling high filling of magnetic loss materials, it has excellent electromagnetic wave absorption, thermal conductivity, flame retardancy, The present invention has been completed by finding that it can be a laminated electromagnetic wave absorber that has low temperature dependence, is soft, has excellent adhesion strength, has high resistance and high insulation characteristics, and has no sticking restrictions.

すなわち、本発明の第1の発明によれば、樹脂製筐体内外からの不要電磁波を吸収する、電磁波吸収層に導電性の電磁波反射層を積層し電磁波反射層の外側に絶縁体層を介して粘着剤層が積層され、電磁波吸収層の外側及び粘着剤層外側にそれぞれ剥離フィルム層が積層された積層電磁波吸収体であって、電磁波吸収層は少なくとも高速演算素子上に密着できる密着性を有し、粘着剤層は少なくとも水平なガラス天井面に貼着して落下しない粘着力を有することを特徴とする積層電磁波吸収体が提供される。   That is, according to the first aspect of the present invention, a conductive electromagnetic wave reflection layer is laminated on an electromagnetic wave absorption layer that absorbs unnecessary electromagnetic waves from inside and outside the resin casing, and an insulator layer is interposed outside the electromagnetic wave reflection layer. A laminated electromagnetic wave absorber in which a pressure-sensitive adhesive layer is laminated, and a release film layer is laminated on each of the outer side of the electromagnetic wave absorbing layer and the outer side of the pressure-sensitive adhesive layer, and the electromagnetic wave absorbing layer has an adhesive property that can adhere to at least a high-speed computing element. And a pressure-sensitive adhesive layer is provided at least on a horizontal glass ceiling surface and has an adhesive force that does not fall.

また、本発明の第2の発明によれば、第1の発明において、電磁波吸収層と電磁波反射層の間に絶縁体層を有することを特徴とする積層電磁波吸収体が提供される。   According to the second invention of the present invention, there is provided a laminated electromagnetic wave absorber characterized in that in the first invention, an insulating layer is provided between the electromagnetic wave absorbing layer and the electromagnetic wave reflecting layer.

また、本発明の第3の発明によれば、第1又は2の発明において、電磁波吸収層は、JIS K2207−1980(50g荷重)の針入度が5〜200のシリコーンゲルに電磁波吸収用充填剤を充填することを特徴とする積層電磁波吸収体が提供される。   According to the third invention of the present invention, in the first or second invention, the electromagnetic wave absorbing layer is filled with electromagnetic wave absorption into a silicone gel having a penetration of JIS K2207-1980 (50 g load) of 5 to 200. A laminated electromagnetic wave absorber characterized by being filled with an agent is provided.

また、本発明の第4の発明によれば、第1〜3のいずれかの発明において、電磁波反射層は、アルミニューム金属層であることを特徴とする積層電磁波吸収体が提供される。   According to a fourth aspect of the present invention, there is provided the laminated electromagnetic wave absorber according to any one of the first to third aspects, wherein the electromagnetic wave reflection layer is an aluminum metal layer.

また、本発明の第5の発明によれば、第1〜4のいずれかの発明において、粘着剤層は、アクリル系樹脂粘着剤層であることを特徴とする積層電磁波吸収体が提供される。   According to a fifth aspect of the present invention, there is provided the laminated electromagnetic wave absorber according to any one of the first to fourth aspects, wherein the pressure-sensitive adhesive layer is an acrylic resin pressure-sensitive adhesive layer. .

また、本発明の第6の発明によれば、第1〜5のいずれかの発明において、絶縁体層は、ポリエチレンテレフタレート樹脂層であることを特徴とする積層電磁波吸収体が提供される。   According to a sixth aspect of the present invention, there is provided the laminated electromagnetic wave absorber according to any one of the first to fifth aspects, wherein the insulator layer is a polyethylene terephthalate resin layer.

本発明の積層電磁波吸収体は、剥離フィルム層、電磁波吸収層、電磁波反射層、絶縁体層、粘着剤層、及び剥離フィルム層をこの順に積層した特殊な層構成を有しているので、一形態の製品でどのような使い方もでき、例えば、筐体の水平なガラス面状の天井面にも高速演算素子等の不要電磁波放射源の上にも貼り付け可能であり、電磁波吸収性、電磁波シールド性に優れる効果を奏するものである。   The laminated electromagnetic wave absorber of the present invention has a special layer structure in which a release film layer, an electromagnetic wave absorption layer, an electromagnetic wave reflection layer, an insulator layer, an adhesive layer, and a release film layer are laminated in this order. The product can be used in any way, for example, it can be attached to the horizontal glass surface of the casing on an unnecessary electromagnetic radiation source such as a high-speed computing element, It has the effect of excellent shielding properties.

本発明の積層電磁波吸収体は、電磁波吸収層と導電体の電磁波反射層を有し、剥離フィルム層、電磁波吸収層、電磁波反射層、絶縁体層、粘着剤層及び剥離フィルム層をこの順に積層した積層体である。以下、各層、層構成について詳細に説明する。   The laminated electromagnetic wave absorber of the present invention has an electromagnetic wave absorbing layer and an electromagnetic wave reflecting layer of a conductor, and a release film layer, an electromagnetic wave absorption layer, an electromagnetic wave reflection layer, an insulator layer, an adhesive layer, and a release film layer are laminated in this order. It is a laminated body. Hereinafter, each layer and layer configuration will be described in detail.

1.積層体の各層
(1)電磁波吸収層
本発明の積層電磁波吸収体で用いる電磁波吸収層は、電磁波吸収効果を有する層であれば特に制限はないが、電磁波吸収性、熱伝導性、難燃性に優れ、温度依存性が少なく、かつ柔らかく、密着強度に優れ、高抵抗高絶縁特性を有し、貼り付け制限がない効果を奏するものが好ましく、例えば、以下に説明する(a)ソフトフェライト、(b)扁平軟磁性金属粉、(c)マグネタイト等を(d)シリコーン樹脂に含有させる複合材が好ましい。
1. Each layer of laminated body (1) Electromagnetic wave absorbing layer The electromagnetic wave absorbing layer used in the laminated electromagnetic wave absorber of the present invention is not particularly limited as long as it has an electromagnetic wave absorbing effect. However, the electromagnetic wave absorbing property, thermal conductivity, flame retardancy are not limited. It is preferable that it is excellent in heat resistance, has low temperature dependency, is soft, has excellent adhesion strength, has high resistance and high insulation characteristics, and has an effect of having no sticking limitation. For example, (a) soft ferrite described below, A composite material in which (b) flat soft magnetic metal powder, (c) magnetite, etc. are contained in (d) silicone resin is preferable.

(a)ソフトフェライト
本発明の電磁波吸収層に用いることのできるソフトフェライトは、微弱な励磁電流でも磁気的機能を発揮するものである。ソフトフェライトとしては、特に限定されるものではないが、Ni−Zn系フェライト、Mn−Zn系フェライト、Mn−Mg系フェライト、Cu−Zn系フェライト、Ni−Zn−Cuフェライト、Fe−Ni−Zn−Cu系、Fe−Mg−Zn−Cu系及びFe−Mn−Zn系などのソフトフェライトが挙げられ、これらの中では、電磁波吸収特性、熱伝導性、価格等のバランスの面から、Ni−Zn系フェライトが好ましい。
(A) Soft ferrite The soft ferrite that can be used for the electromagnetic wave absorbing layer of the present invention exhibits a magnetic function even with a weak excitation current. Although it does not specifically limit as a soft ferrite, Ni-Zn system ferrite, Mn-Zn system ferrite, Mn-Mg system ferrite, Cu-Zn system ferrite, Ni-Zn-Cu ferrite, Fe-Ni-Zn -Cu-based, Fe-Mg-Zn-Cu-based, and Fe-Mn-Zn-based soft ferrites are mentioned. Among these, Ni-- from the balance of electromagnetic wave absorption characteristics, thermal conductivity, price, etc. Zn-based ferrite is preferred.

また、ソフトフェライトの形状は特に限定されるものではなく、球状、繊維状、不定形状等の所望の形状にすることができる。本発明においては、高い充填密度で充填することができ、より高い熱伝導性を得ることができるため、球状であることが好ましい。ソフトフェライトが球状の場合の粒径は、高い充填密度での充填をできるようにするとともに、粒子の凝集を防止して配合作業を容易にすることができる。
Ni−Zn系フェライトをこのような形状で用いることにより、後述するシリコーンゲルの硬化阻害を起こさせず、シリコーンゲル材料への分散性にも優れ、ある程度の熱伝導性が発揮できるようになる。
The shape of the soft ferrite is not particularly limited, and can be a desired shape such as a spherical shape, a fibrous shape, or an indefinite shape. In the present invention, since it can be filled with a high filling density and higher thermal conductivity can be obtained, it is preferably spherical. When the soft ferrite is spherical, the particle size can be filled at a high packing density, and the blending operation can be facilitated by preventing aggregation of the particles.
By using the Ni—Zn ferrite in such a shape, it does not cause inhibition of curing of the silicone gel described later, is excellent in dispersibility in the silicone gel material, and exhibits a certain degree of thermal conductivity.

さらに、ソフトフェライトの粒径分布D50は、1〜30μm、好ましくは10〜30μmである。ソフトフェライトの粒径分布D50が1μm未満であると500MHz以下の低い周波数帯域では電磁波吸収性能が低下する傾向があり、30μmを超えると電磁波吸収体としての平滑性が劣るようになり、好ましくない。
ここで、粒径分布D50とは、粒度分布計によって求められた粒径の小さい値から重量を累計して50%になったときの粒径の値の範囲を示すものである。
Furthermore, the particle size distribution D 50 of the soft ferrite, 1 to 30 [mu] m, preferably 10 to 30 [mu] m. The particle size distribution D 50 of 500MHz frequencies below is less than 1μm soft ferrite tends to electromagnetic wave absorption performance is lowered, more than 30μm when look like smoothness of the electromagnetic wave absorber is poor, undesirable .
Here, the particle size distribution D 50, shows the range of particle size value when it becomes 50% by total weight of smaller particle sizes determined by a particle size distribution meter.

本発明で用いるソフトフェライトは、ソフトフェライトの表面に存在する残留アルカリイオンの影響を抑えるために無官能基系シラン化合物で処理する必要がある。ソフトフェライトは、後述のシリコーン中に配合して用いるが、その表面に存在する残留アルカリイオンが、シリコーンの縮合型あるいは付加型の硬化機構において、硬化阻害の要因となる場合があり、硬化阻害を引き起こすと、ソフトフェライトを高充填することができず、さらに充填されたソフトフェライトの分散が十分でなくなる。
無官能基系シラン化合物でソフトフェライトの表面を処理することにより、無官能基系シラン化合物で表面処理されたソフトフェライトのpHを8.5以下、好ましくは8.2以下、より好ましくは7.8〜8.2にすることが好ましい。ソフトフェライトのpHを8.5以下にすることにより、シリコーンの硬化阻害を抑制し、どのようなシリコーンにも適用することができるようになる。また、ソフトフェライトとシリコーンのなじみが良好となり、その結果、シリコーン中へのソフトフェライトの充填量を増やすと同時に熱伝導性充填剤との混合性を高め、均一な成形体を得ることができる。
The soft ferrite used in the present invention needs to be treated with a non-functional silane compound in order to suppress the influence of residual alkali ions existing on the surface of the soft ferrite. Soft ferrite is used by blending it into silicone, which will be described later. Residual alkali ions existing on the surface of the ferrite may cause curing inhibition in the condensation type or addition type curing mechanism of the silicone. If it is caused, the soft ferrite cannot be highly filled, and further the dispersion of the filled soft ferrite becomes insufficient.
By treating the surface of the soft ferrite with a non-functional group silane compound, the pH of the soft ferrite surface-treated with the non-functional group silane compound is 8.5 or less, preferably 8.2 or less, more preferably 7. It is preferable to make it 8-8.2. By setting the pH of the soft ferrite to 8.5 or less, the inhibition of curing of the silicone is suppressed, and it can be applied to any silicone. In addition, the familiarity between soft ferrite and silicone is improved, and as a result, the amount of soft ferrite in silicone is increased, and at the same time, the mixing property with the heat conductive filler is increased, and a uniform molded body can be obtained.

本発明で用いることのできるソフトフェライトの表面処理用の無官能基系シラン化合物としては、メチルトリメトキシシラン、フェニルトリメトキシシラン、ジフェニルジメトキシシラン、メチルトリエトキシシラン、ジメチルジメトキシシラン、フェニルトリエトキシシラン、ジフェニルジエトキシシラン、イソブチルトリメトキシシラン、デシルトリメトキシシラン等が挙げられる。これらの中では、ジメチルジメトキシシラン、メチルトリメトキシシランが好ましい。なお、これらの無官能基系シラン化合物は、単独または二種類以上を組合せて用いることができる。
本発明のソフトフェライトの表面処理用シラン化合物として、フィラー等の表面処理に用いる通常のシランカップリング剤やエポキシ樹脂系表面処理剤を用いると加熱下の環境試験で硬度が上昇するという硬度変化が生じると、熱分解によるクラック等が発生し、形状維持ができなくなり外観損傷を起こし好ましくない。
Nonfunctional functional silane compounds for surface treatment of soft ferrite that can be used in the present invention include methyltrimethoxysilane, phenyltrimethoxysilane, diphenyldimethoxysilane, methyltriethoxysilane, dimethyldimethoxysilane, and phenyltriethoxysilane. , Diphenyldiethoxysilane, isobutyltrimethoxysilane, decyltrimethoxysilane and the like. Among these, dimethyldimethoxysilane and methyltrimethoxysilane are preferable. These non-functional group silane compounds can be used alone or in combination of two or more.
As a silane compound for the surface treatment of the soft ferrite of the present invention, if a normal silane coupling agent or an epoxy resin surface treatment agent used for the surface treatment of fillers is used, the hardness changes that the hardness increases in an environmental test under heating. If it occurs, cracks and the like due to thermal decomposition occur, and the shape cannot be maintained, resulting in appearance damage.

上記の無官能基系シラン化合物によるソフトフェライト表面の処理方法は、特に制限されず、通常のシラン化合物等による無機化合物の表面処理方法を用いることができる。例えば、ソフトフェライトをジメチルジメトキシシランの約5重量%のメチルアルコール溶液に浸漬・混合させ、次いで該溶液に水を加えて加水分解処理を行わせ、得られた処理物をヘンシェルミキサ等で粉砕・混合することにより得られる。無官能基系シラン化合物は、ソフトフェライトに対して約0.2〜10重量%であるのが好ましい。   The method for treating the surface of the soft ferrite with the non-functional group silane compound is not particularly limited, and a surface treatment method for an inorganic compound with a normal silane compound or the like can be used. For example, soft ferrite is immersed and mixed in a methyl alcohol solution of about 5% by weight of dimethyldimethoxysilane, then water is added to the solution for hydrolysis treatment, and the resulting processed product is pulverized with a Henschel mixer or the like. It is obtained by mixing. The non-functional group-based silane compound is preferably about 0.2 to 10% by weight with respect to the soft ferrite.

(b)扁平軟磁性金属粉
本発明の電磁波吸収層に用いることのできる(b)扁平軟磁性金属粉は、高周波数帯域で安定したエネルギー変換効率を有する効果を有する材料である。
(b)扁平軟磁性金属粉としては、特に限定されず、軟磁性を示し機械的な処理で扁平化できるものであれば良いが、高い透磁率を有し、かつ低自己酸化性を有し、形状的にもアスペクト比(平均粒径を平均厚さで除した値)が高いものが望ましい。具体的な金属粉としては、Fe−Ni合金系、Fe−Ni−Mo合金系、Fe−Ni−Si−B系、Fe−Si合金系、Fe−Si−Al合金系系、Fe−Si−B合金系、Fe−Cr合金系、Fe−Cr−Si合金系、Co−Fe−Si−B合金系、Al−Ni−Cr−Fe合金系、Si−Ni−Cr−Fe合金系等の軟磁性金属が例示され、これらの中では、特に自己酸化性の低さの点からAlまたはSi−Ni−Cr−Fe系合金が好ましい。また、これらは1種でも2種以上混合して用いても良い。
(B) Flat soft magnetic metal powder (b) Flat soft magnetic metal powder that can be used in the electromagnetic wave absorbing layer of the present invention is a material having an effect of having stable energy conversion efficiency in a high frequency band.
(B) The flat soft magnetic metal powder is not particularly limited as long as it has soft magnetism and can be flattened by mechanical treatment, but has high magnetic permeability and low self-oxidation property. Also, a shape having a high aspect ratio (a value obtained by dividing the average particle diameter by the average thickness) is desirable. Specific metal powders include Fe-Ni alloy system, Fe-Ni-Mo alloy system, Fe-Ni-Si-B system, Fe-Si alloy system, Fe-Si-Al alloy system, Fe-Si-. B alloy, Fe—Cr alloy, Fe—Cr—Si alloy, Co—Fe—Si—B alloy, Al—Ni—Cr—Fe alloy, Si—Ni—Cr—Fe alloy, etc. Magnetic metals are exemplified, and among these, Al or Si—Ni—Cr—Fe based alloys are particularly preferred from the viewpoint of low self-oxidation. These may be used alone or in combination of two or more.

自己酸化性は、加熱下の大気中で暴露試験を行い、試料の重量変化率から求めることができる。200℃の大気中に300時間暴露してその重量変化率が0.3%以下であるものが好ましい。扁平軟磁性金属粉の自己酸化性が低いと、透過性の高いシリコーンゲル等をバインダー樹脂として用いても、湿度などの周辺環境条件の変化による経年的な磁性特性の劣化を起こさない特徴を有する。したがって、どのようなバインダー樹脂でも用いることができるという利点を有する。
さらに、自己酸化性が低いと、粉塵爆発の危険性がなくなり、非危険物扱いのものとして、大量の貯蔵が可能になり、取り扱いが容易で生産効率を上げることができるという利点を有する。
Autooxidation can be determined from the rate of change in weight of a sample after an exposure test in the air under heating. Those having a weight change rate of 0.3% or less after being exposed to an atmosphere of 200 ° C. for 300 hours are preferable. If the flat soft magnetic metal powder has low self-oxidation property, even if a highly permeable silicone gel or the like is used as a binder resin, it will not deteriorate over time due to changes in ambient environmental conditions such as humidity. . Therefore, there is an advantage that any binder resin can be used.
Furthermore, if the self-oxidation property is low, there is no danger of dust explosion, and it has the advantage that it can be stored in a large amount as a non-hazardous material and can be handled easily and production efficiency can be increased.

扁平軟磁性金属粉のアスペクト比は、10〜150が好ましく、より好ましくは17〜20である。
また、扁平軟磁性金属粉の平均厚さは、0.01〜1μmが望ましい。0.01μmより薄くなると樹脂中での分散性が悪くなり、外部磁場による配向処理を施しても粒子が十分に一方方向に揃わない。同一組成の材料でも透磁率などの磁気特性が低下し、磁気シールド特性も低下してしまう。逆に、平均厚さが1μmを超えると、充填率が低下する。また、アスペクト比も小さくなるので反磁界の影響が大きくなり、透磁率が低下してしまうためシールド特性が不充分となる。
また、扁平軟磁性金属粉の粒径分布D50は、8〜42μmが好ましい。粒径分布D50が8μm未満ではエネルギー変換効率が低下し、42μmを超えると粒子の機械的強度が低下し、機械混合させた場合は破損し易くなる。
ここで、粒径分布D50とは、粒度分布計によって求められた粒径の小さい値から重量を累計して50%になったときの粒径の値の範囲を示すものである。
The aspect ratio of the flat soft magnetic metal powder is preferably 10 to 150, more preferably 17 to 20.
Further, the average thickness of the flat soft magnetic metal powder is preferably 0.01 to 1 μm. When the thickness is less than 0.01 μm, the dispersibility in the resin is deteriorated, and the particles are not sufficiently aligned in one direction even when an orientation treatment is performed by an external magnetic field. Even with materials of the same composition, magnetic properties such as magnetic permeability are lowered, and magnetic shield properties are also lowered. On the contrary, when the average thickness exceeds 1 μm, the filling rate decreases. Further, since the aspect ratio is small, the influence of the demagnetizing field is increased, and the magnetic permeability is lowered, so that the shield characteristics are insufficient.
The particle size distribution D 50 of the flat soft magnetic metal powder, 8~42Myuemu is preferred. Particle size reduces the energy conversion efficiency distribution D 50 of less than 8 [mu] m, and decreases the mechanical strength of the particles exceeds 42 .mu.m, if it is mechanically mixed easily damaged.
Here, the particle size distribution D 50, shows the range of particle size value when it becomes 50% by total weight of smaller particle sizes determined by a particle size distribution meter.

扁平軟磁性金属粉の比表面積は、0.8〜1.2m/gが好ましい。扁平軟磁性金属粉は、電磁誘導によるエネルギー変換機能を果たす材料であるから、比表面積が大きいほど、高エネルギー変換効率を維持することができるが、比表面積が大きいほど機械的強度が弱くなる。したがって、最適範囲を選択する必要がある。比表面積が0.8m/g未満では高充填は可能であるがエネルギー交換機能は低くなり、1.2m/gを超えると機械混合させた場合は破損し易く、形状保持が難しくなり、高充填してもエネルギー交換機能は低くなる。
ここで、比表面積は、BET測定装置で測定する値である。
The specific surface area of the flat soft magnetic metal powder is preferably 0.8 to 1.2 m 2 / g. Since the flat soft magnetic metal powder is a material that performs an energy conversion function by electromagnetic induction, the higher the specific surface area, the higher the energy conversion efficiency can be maintained. However, the larger the specific surface area, the weaker the mechanical strength. Therefore, it is necessary to select the optimum range. When the specific surface area is less than 0.8 m 2 / g, high filling is possible, but the energy exchange function is low, and when it exceeds 1.2 m 2 / g, it is easy to break when mechanically mixed, and shape retention becomes difficult, Even if the filling is high, the energy exchange function is low.
Here, the specific surface area is a value measured by a BET measuring device.

扁平軟磁性金属粉のタップ密度は0.55〜0.75g/mlが好ましい。また、これらの金属磁性体扁平形状粉の表面は、酸化防止剤が施されていることが好ましい。   The tap density of the flat soft magnetic metal powder is preferably 0.55 to 0.75 g / ml. Moreover, it is preferable that the surface of these metal magnetic body flat shaped powder is given antioxidant.

本発明で用いる扁平軟磁性金属粉は、マイクロカプセル化して用いることが好ましい。扁平軟磁性金属粉をソフトフェライト等と複合充填すると、体積抵抗と併せ、絶縁破壊強度が低下し易い。マイクロカプセル化を行うことにより、この絶縁破壊強度の低下を防止すると同時に、その強度を向上させることができる。
マイクロカプセル化の方法は、とくに限定されず、扁平軟磁性金属粉の表面をある程度の厚さに被覆し、扁平軟磁性金属粉のエネルギー変換機能を阻害しないような材料を用いて行う方法であれば、どのような方法であっても良い。
例えば、扁平軟磁性金属粉の表面を被覆する材料として、ゼラチンを用い、ゼラチンを溶解したトルエン溶液に軟磁性金属粉末を分散させ、その後トルエンを揮発除去して軟磁性金属粉をゼラチンで被覆カプセル化した扁平軟磁性金属粉を得ることできる。この場合、例えば、ゼラチン重量が20%で扁平軟磁性金属粉が80%程度の重量比のマイクロカプセル化物は約100μmの粒径を有するものとして得られ、それを用いた電磁波吸収体の絶縁破壊強度は、マイクロカプセル化を行わなかった場合の約2倍に向上させることができる。
The flat soft magnetic metal powder used in the present invention is preferably used after being microencapsulated. When the flat soft magnetic metal powder is combined and filled with soft ferrite or the like, the dielectric breakdown strength tends to be lowered together with the volume resistance. By performing microencapsulation, it is possible to prevent this decrease in dielectric breakdown strength and at the same time improve the strength.
The method of microencapsulation is not particularly limited, and may be a method of covering the surface of the flat soft magnetic metal powder to a certain thickness and using a material that does not hinder the energy conversion function of the flat soft magnetic metal powder. Any method may be used.
For example, gelatin is used as a material for coating the surface of a flat soft magnetic metal powder, and the soft magnetic metal powder is dispersed in a toluene solution in which gelatin is dissolved, and then the toluene is volatilized and the capsule is coated with the soft magnetic metal powder with gelatin. Flattened soft magnetic metal powder can be obtained. In this case, for example, a microencapsulated material having a gelatin weight of 20% and a flat soft magnetic metal powder with a weight ratio of about 80% is obtained having a particle size of about 100 μm, and dielectric breakdown of an electromagnetic wave absorber using the microencapsulated material is obtained. The strength can be improved about twice that without microencapsulation.

(c)マグネタイト
本発明の電磁波吸収層に用いることのできる(c)マグネタイトは、酸化鉄(Fe)であり、前記ソフトフェライトと共に用いることにより、電磁波吸収体に難燃性を付与すると同時に、熱伝導率を向上させ、さらに、マグネタイトの磁性特性付加による相乗効果により、電磁波吸収体全体の電磁波吸収効果を向上させることができる。
マグネタイトの粒径分布D50は、0.1〜0.4μmが好ましい。マグネタイトの粒径分布D50をソフトフェライトの粒径分布D50の約10分の1にすることによりソフトフェライトの高充填を可能にすることができる。また、マグネタイトの粒径分布D50が0.1μm未満であると取り扱いが困難となり、0.4μmを超えるとソフトフェライトとの高充填が出来なくなる。
ここで、粒径分布D50とは、粒度分布計によって求められた粒径の小さい値から重量を累計して50%になったときの粒径の値の範囲を示すものである。
(C) Magnetite (c) Magnetite that can be used in the electromagnetic wave absorbing layer of the present invention is iron oxide (Fe 3 O 4 ), and when used together with the soft ferrite, imparts flame retardancy to the electromagnetic wave absorber. At the same time, the thermal conductivity can be improved, and further, the electromagnetic wave absorption effect of the entire electromagnetic wave absorber can be improved by the synergistic effect by adding the magnetic properties of magnetite.
Particle size distribution D 50 of magnetite, 0.1 to 0.4 [mu] m is preferred. It may enable highly filled soft ferrite by the particle size distribution D 50 of the magnetite to about one-tenth of the particle size distribution D 50 of the soft ferrite. The particle size distribution D 50 of the magnetite becomes difficult to handle and is less than 0.1 [mu] m, it becomes impossible to highly filled with soft ferrite exceeds 0.4 .mu.m.
Here, the particle size distribution D 50, shows the range of particle size value when it becomes 50% by total weight of smaller particle sizes determined by a particle size distribution meter.

マグネタイトの形状は特に限定されるものではなく、球状、繊維状、不定形状等の所望の形状にすることができる。本発明においては、高い難燃性を得るためには、八面体形状微粒子であることが好ましい。マグネタイトが八面体形状微粒子の場合は、比表面積が大きく難燃性付与効果が高い。   The shape of the magnetite is not particularly limited, and can be a desired shape such as a spherical shape, a fibrous shape, or an indefinite shape. In the present invention, in order to obtain high flame resistance, octahedral fine particles are preferable. When magnetite is octahedral fine particles, the specific surface area is large and the effect of imparting flame retardancy is high.

(d)シリコーン
本発明の電磁波吸収層に用いることのできる(d)シリコーンは、上記ソフトフェライト、扁平軟磁性金属粉、マグネタイト等のバインダーとしての機能を果たすと共に、電磁波吸収層の温度依存性を少なくして−20〜150℃の広い温度範囲での使用を可能にする機能を有する。(d)シリコーンとしては、従来から知られ、市販されている種々のシリコーン材料として一般的に使用されているものを適宜選択して用いることができる。よって、加熱硬化型あるいは常温硬化型のもの、硬化機構が縮合型あるいは付加型のものなど、いずれも用いることができる。また、珪素原子に結合する基も特に限定されるものではなく、例えば、メチル基、エチル基、プロピル基等のアルキル基、シクロペンチル基、シクロヘキシル基等のシクロアルキル基、ビニル基、アリル基等のアルケニル基、フェニル基、トリル基等のアリール基のほか、これらの基の水素原子が部分的に他の原子又は結合基で置換されたものを挙げることができる。
(D) Silicone (d) Silicone that can be used in the electromagnetic wave absorbing layer of the present invention functions as a binder for the soft ferrite, flat soft magnetic metal powder, magnetite, and the like, and has the temperature dependency of the electromagnetic wave absorbing layer. It has a function that enables use in a wide temperature range of -20 to 150 ° C. (D) As silicone, what is conventionally used as various silicone materials conventionally known and marketed can be selected suitably, and can be used. Therefore, any of a heat curing type or a room temperature curing type, a condensation type or an addition type, etc. can be used. In addition, the group bonded to the silicon atom is not particularly limited, and examples thereof include alkyl groups such as methyl group, ethyl group, and propyl group, cycloalkyl groups such as cyclopentyl group and cyclohexyl group, vinyl groups, and allyl groups. In addition to aryl groups such as alkenyl groups, phenyl groups, and tolyl groups, those in which the hydrogen atoms of these groups are partially substituted with other atoms or linking groups can be mentioned.

本発明の電磁波吸収体で用いるシリコーンはゲル状態のものでもよく、例えば、硬化後におけるJIS K2207−1980(50g荷重)の針入度が5〜200のものを用いることができる。この程度の柔らかさのシリコーンゲルを用いると、成形体として用いるときの密着性で有利となる。
このようなシリコーンを用いることにより、本発明で用いる電磁波吸収層は少なくとも高速演算素子上に密着できる密着性を有するようになる。
The silicone used in the electromagnetic wave absorber of the present invention may be in a gel state. For example, a silicone having a penetration of JIS K2207-1980 (50 g load) of 5 to 200 after curing can be used. Use of such a soft silicone gel is advantageous in adhesion when used as a molded body.
By using such silicone, the electromagnetic wave absorbing layer used in the present invention has at least adhesiveness capable of being in close contact with the high-speed arithmetic element.

本発明の電磁波吸収層には、本発明の目的を損なわない範囲の種類及び量の他の成分を配合することができる。このような他の成分としては、触媒、硬化遅延剤、硬化促進剤、着色剤等を挙げることができる。   The electromagnetic wave absorbing layer of the present invention can be blended with other components within the range and type that do not impair the object of the present invention. Examples of such other components include a catalyst, a curing retarder, a curing accelerator, and a colorant.

本発明で用いる電磁波吸収層は、上記成分(a)〜(d)を目的に応じて組み合わせて用いた層にすることが好ましく、例えば、(i)高抵抗高絶縁性を目的とする(a)、(c)及び(d)からなる電磁波吸収層、(ii)2〜4GHz帯域で高電磁波吸収性を目的とする(b)、(c)及び(d)からなる電磁波吸収層、(iii)広帯域周波数特性を目的とする(a)、(b)、(c)及び(d)からなる電磁波吸収層、として用いることができる。   The electromagnetic wave absorbing layer used in the present invention is preferably a layer in which the above components (a) to (d) are used in combination according to the purpose. For example, the purpose is (i) high resistance and high insulation (a ), (C) and (d), (ii) an electromagnetic wave absorption layer consisting of (b), (c) and (d) for high electromagnetic wave absorption in the 2-4 GHz band, (iii) ) It can be used as an electromagnetic wave absorbing layer comprising (a), (b), (c) and (d) for the purpose of broadband frequency characteristics.

上記(i)を目的とする(a)、(c)及び(d)からなる電磁波吸収層にあっては、各成分の組成比は、(a)無官能基系シラン化合物で表面処理されたソフトフェライト60〜90重量%、(c)マグネタイト3〜25重量%、及び(d)シリコーン7〜15重量%を含有するように配合することが好ましい。上記(ii)を目的とする(b)、(c)及び(d)からなる電磁波吸収層にあっては、各成分の組成比は、(b)扁平軟磁性金属粉60〜70重量%、(c)マグネタイト3〜10重量%、及び(d)シリコーン20〜37重量%を含有するように配合することが好ましい。上記(iii)を目的とする(a)、(b)、(c)及び(d)からなる電磁波吸収層にあっては、各成分の組成比は、(a)無官能基系シラン化合物で表面処理されたソフトフェライト40〜60重量%、(b)扁平軟磁性金属粉20〜30重量%、(c)マグネタイト3〜10重量%、及び(d)シリコーン7〜25重量%を含有するように配合することが好ましい。   In the electromagnetic wave absorbing layer comprising (a), (c) and (d) for the purpose of (i) above, the composition ratio of each component was (a) surface-treated with a non-functional silane compound. It is preferable to blend so as to contain 60 to 90% by weight of soft ferrite, (c) 3 to 25% by weight of magnetite, and (d) 7 to 15% by weight of silicone. In the electromagnetic wave absorbing layer composed of (b), (c) and (d) for the purpose of (ii) above, the composition ratio of each component is (b) 60 to 70% by weight of flat soft magnetic metal powder, It is preferable to blend so as to contain (c) 3 to 10% by weight of magnetite and (d) 20 to 37% by weight of silicone. In the electromagnetic wave absorbing layer composed of (a), (b), (c) and (d) for the purpose of (iii) above, the composition ratio of each component is (a) a non-functional group silane compound. 40-60% by weight of the surface-treated soft ferrite, (b) 20-30% by weight of flat soft magnetic metal powder, (c) 3-10% by weight of magnetite, and (d) 7-25% by weight of silicone. It is preferable to blend in.

本発明で用いる電磁波吸収層は、前述のように、シリコーンにソフトフェライト、扁平軟磁性金属粉、マグネタイト等を高充填した混合物から得られるが、通常シリコーンゴムにフェライト、扁平軟磁性金属粉、マグネタイト等の無機フィラーを高充填すると粘度が高くなりロ−ル混練、バンバリ−混練、ニ−ダ−混練が困難である。仮に混練を行なってもコンパウンドの粘度が高く、圧縮成形では均一な厚さに成形することが出来ないが、シリコーンゲルを用いると、高充填を行ってもケミカルミキサーで混練が容易になり、通常のシート成形機で均一な厚さのシート成形が容易になる。また、ソフトフェライトを無官能基系シラン化合物でその表面を処理しているため、混練等が容易にできる効果を有する。さらに、通常シリコーンにフェライトを高充填しロ−ル混練するとシリコーンのフェライトを保持する強度が不足し、まとまりがなくなり、更にロ−ルにコンパウドが粘着して均一なコンパウンドが出来ないが、ソフトフェライトを無官能基系シラン化合物でその表面を処理しているため、シリコーン中への分散性に優れ、フェライトを含有したシート等の成形が容易であるという効果を有する。また、扁平軟磁性金属粉をマイクロカプセル化したものを用いる場合は、混練等をさらに容易にする効果を有する。   As described above, the electromagnetic wave absorbing layer used in the present invention is obtained from a mixture in which silicone is highly filled with soft ferrite, flat soft magnetic metal powder, magnetite and the like. Usually, ferrite, flat soft magnetic metal powder, magnetite are mixed with silicone rubber. When the inorganic filler such as the above is highly filled, the viscosity becomes high and roll kneading, banbury kneading, and kneader kneading are difficult. Even if kneading is carried out, the viscosity of the compound is high, and compression molding cannot form a uniform thickness. However, when silicone gel is used, kneading with a chemical mixer is easy even if high filling is performed. This makes it easy to form a sheet having a uniform thickness. Moreover, since the surface of soft ferrite is treated with a non-functional group silane compound, there is an effect that kneading and the like can be easily performed. In addition, when silicone is highly filled with ferrite and kneaded in a roll, the strength of holding the ferrite of the silicone is insufficient, the cohesion is lost, and further, the compound adheres to the roll and a uniform compound cannot be formed. Since the surface is treated with a non-functional group-based silane compound, it is excellent in dispersibility in silicone and has an effect of facilitating molding of a ferrite-containing sheet or the like. Moreover, when using what made the flat soft magnetic metal powder microcapsule has an effect which makes kneading | mixing etc. easier.

電磁波吸収層の形状は、特に限定されるものではなく、用途に応じた所望の形状にすることができる。例えば、シート状にする場合には、厚みが0.5mm〜5.0mmであることが好ましく、単独でも、2〜3枚を張り合わせて用いても良い。   The shape of the electromagnetic wave absorbing layer is not particularly limited, and can be a desired shape according to the application. For example, when making it into a sheet form, it is preferable that thickness is 0.5 mm-5.0 mm, and you may use it individually or 2-3 sheets.

(2)電磁波反射層
本発明の積層電磁波吸収体において、電磁波吸収層と反射層を設けることにより、簡単に安価で、かつ薄シート品であってもシールド効果による連続反射減衰と電磁波吸収層の熱エネルギー変換により、電磁エネルギーの減衰性能を向上させることができる。電磁波反射層は、特に制限されないが、アルミニューム、銅、ステンレス等の導電体を用いることができ、アルミニューム箔であっても、樹脂フィルム等に蒸着したアルミニューム層であっても良い。
本発明で用いる反射層は上記電磁波吸収層に直接積層してもよく、絶縁体層を介して電磁波吸収層に積層しても良い。
(2) Electromagnetic wave reflection layer In the laminated electromagnetic wave absorber of the present invention, by providing the electromagnetic wave absorption layer and the reflection layer, the continuous reflection attenuation due to the shielding effect and the electromagnetic wave absorption layer can be easily produced at low cost and even in a thin sheet product. The thermal energy conversion can improve the attenuation performance of electromagnetic energy. The electromagnetic wave reflection layer is not particularly limited, and a conductor such as aluminum, copper, and stainless steel can be used. The electromagnetic wave reflection layer may be an aluminum foil or an aluminum layer deposited on a resin film or the like.
The reflective layer used in the present invention may be laminated directly on the electromagnetic wave absorbing layer, or may be laminated on the electromagnetic wave absorbing layer via an insulator layer.

(3)絶縁体層
本発明の積層電磁波吸収体において、電磁波吸収層に積層された電磁波反射層の上に絶縁体層を設ける必要がある。絶縁体層は、ポリエチレンテレフタレート(PET)樹脂フィルム、ポリプロピレン樹脂フィルム、ポリスチレン樹脂フィルム等の絶縁材料から構成され、電磁波吸収体の絶縁破壊強度の低下を抑えると同時に、その強度を向上させることができる。
また、絶縁体層は、必要に応じて、さらに電磁波吸収層と電磁波反射層の間に設けることもできる。
絶縁体層の厚みは、25〜75μmが好ましい。
なお、絶縁体層の積層はアクリル系樹脂の接着剤等を用いることができる。
(3) Insulator layer In the laminated electromagnetic wave absorber of the present invention, it is necessary to provide an insulator layer on the electromagnetic wave reflecting layer laminated on the electromagnetic wave absorbing layer. The insulator layer is made of an insulating material such as a polyethylene terephthalate (PET) resin film, a polypropylene resin film, a polystyrene resin film, and the like, and can suppress the decrease in dielectric breakdown strength of the electromagnetic wave absorber and at the same time improve its strength. .
Moreover, an insulator layer can also be provided between the electromagnetic wave absorption layer and the electromagnetic wave reflection layer as necessary.
The thickness of the insulator layer is preferably 25 to 75 μm.
Note that an acrylic resin adhesive or the like can be used for laminating the insulator layers.

(4)粘着層
本発明の積層電磁波吸収体においては、電磁波反射層に積層された絶縁体層の外側に、少なくとも水平なガラス面状の天井面に貼着して落下しない粘着力を有する粘着剤層を設ける。このような粘着剤層を設けることにより、筐体の天面や側面への適用が可能になり、その適用範囲を拡大することができる。
粘着剤層の粘着剤は、特に限定されないが、アクリル系樹脂の粘着剤を用いることができる。
さらに、PETフィルム等の絶縁体層の一方に粘着層/剥離フィルムを設けて一体成形するようにして得られるものが好ましい。
(4) Adhesive layer In the laminated electromagnetic wave absorber of the present invention, an adhesive having an adhesive force that does not drop and adheres to at least a horizontal glass surface ceiling surface outside the insulator layer laminated on the electromagnetic wave reflecting layer. An agent layer is provided. By providing such a pressure-sensitive adhesive layer, it can be applied to the top and side surfaces of the housing, and the application range can be expanded.
The pressure-sensitive adhesive of the pressure-sensitive adhesive layer is not particularly limited, but an acrylic resin pressure-sensitive adhesive can be used.
Furthermore, what is obtained by providing an adhesive layer / release film on one of the insulator layers such as a PET film and integrally forming it is preferable.

(5)剥離フィルム層
本発明の積層電磁波吸収体においては、電磁波吸収層の外側及び粘着剤層の外側に剥離フィルム層を設ける。剥離フィルム層は、PET樹脂フィルム、ポリプロピレン樹脂フィルム、ポリスチレン樹脂フィルム等の絶縁性フィルムを用い、厚みは20〜30μmが好ましい。剥離フィルム層は、電磁波吸収層のシリコーンゲルのタック性及び粘着剤層の粘着力で積層される。
(5) Release Film Layer In the laminated electromagnetic wave absorber of the present invention, a release film layer is provided on the outside of the electromagnetic wave absorption layer and the outside of the pressure-sensitive adhesive layer. For the release film layer, an insulating film such as a PET resin film, a polypropylene resin film, or a polystyrene resin film is used, and the thickness is preferably 20 to 30 μm. The release film layer is laminated with the tackiness of the silicone gel of the electromagnetic wave absorbing layer and the adhesive force of the adhesive layer.

2.積層体の層構成と使用法
本発明の積層電磁波吸収体は、上記の各層を積層して得られ、例えば、図1に示すような断面図を有する積層体となる。図1において、1は電磁波吸収層、2は電磁波反射層、3は絶縁体層、4は粘着剤層、5、6は剥離フィルム層である。
本発明の積層電磁波吸収体の使用に当たっては、不要電磁波の入射方向に対して常に電磁波吸収層/電磁波反射層の積層順序となるようにして用いられる。図2〜4でその使用例を説明する。例えば、高速演算素子、ケーブル、パターン等よりの不要電磁波放射源が特定できる場合、すなわち、図2において基板10上の高速演算素子11が不要電磁波放射源であると特定した場合は、その高速演算素子11の上に電磁波吸収層1の外側の剥離フィルム5を剥がし、電磁波吸収層1の有するタック性により、矢印の方向(11の拡大図)に直接高速演算素子に貼着する。不要電磁波放射源が特定できない場合で基板に貼り付けが可能な場合も電磁波吸収層1の外側の剥離フィルム5を剥がし、基板上に貼着することができる。基板が多層構造になっているケースでは、基板間に積層することができ、例えば、上部に位置する基板の下側に粘着剤層を貼り付ける場合、すなわち、図3において、基板10と10’との間で基板10’に対する基板10の高速演算素子11、12等からの不要電磁波の影響を防ぐためには、接着剤層4の外側の剥離フィルム6を剥がし、基板10’の下側に矢印の方向に粘着剤層4を貼着する。さらに、不要電磁波放射源が特定できず、基板に貼り付けも出来ない場合、すなわち、図4において、筐体20内の基板15上のケーブル、パターン、素子等のいずれが不要電磁波放射線源かが特定できず、形状的にも貼り付けが不可能な場合は、接着剤層4の外側の剥離フィルム6を剥がし、粘着剤層4を筐体の天板21に矢印の方向に貼り付けて用い筐体外側への不要電磁波の反射及び透過を防止する。このように本発明の積層電磁波吸収体は、一形態の製品であらゆる不要電波放射源のケースに対応できる。
2. Laminated structure and usage method of laminated body The laminated electromagnetic wave absorber of the present invention is obtained by laminating each of the above-mentioned layers. For example, it becomes a laminated body having a cross-sectional view as shown in FIG. In FIG. 1, 1 is an electromagnetic wave absorption layer, 2 is an electromagnetic wave reflection layer, 3 is an insulator layer, 4 is an adhesive layer, and 5 and 6 are release film layers.
In using the laminated electromagnetic wave absorber of the present invention, the electromagnetic wave absorbing layer / electromagnetic wave reflecting layer is always laminated in the order in which the unnecessary electromagnetic waves are incident. Examples of use will be described with reference to FIGS. For example, when an unnecessary electromagnetic radiation source from a high-speed computing element, a cable, a pattern, or the like can be specified, that is, when the high-speed computing element 11 on the substrate 10 is identified as an unnecessary electromagnetic radiation source in FIG. The release film 5 outside the electromagnetic wave absorption layer 1 is peeled off on the element 11, and is directly attached to the high-speed arithmetic element in the direction of the arrow (enlarged view of 11) due to the tack property of the electromagnetic wave absorption layer 1. Even when an unnecessary electromagnetic radiation source cannot be specified and can be attached to the substrate, the release film 5 outside the electromagnetic wave absorption layer 1 can be peeled off and attached to the substrate. In the case where the substrates have a multilayer structure, they can be laminated between the substrates. For example, in the case where an adhesive layer is attached to the lower side of the substrate located on the upper side, that is, in FIGS. In order to prevent the influence of unnecessary electromagnetic waves from the high-speed computing elements 11, 12 of the substrate 10 on the substrate 10 ′, the release film 6 on the outer side of the adhesive layer 4 is peeled off, and the arrow on the lower side of the substrate 10 ′ Adhesive layer 4 is stuck in the direction of. Further, when the unnecessary electromagnetic radiation source cannot be specified and cannot be attached to the substrate, that is, in FIG. 4, which of the cables, patterns, elements, etc. on the substrate 15 in the housing 20 is the unnecessary electromagnetic radiation source. If it cannot be specified and cannot be attached even in shape, the release film 6 outside the adhesive layer 4 is peeled off, and the adhesive layer 4 is attached to the top plate 21 of the housing in the direction of the arrow. Prevents reflection and transmission of unwanted electromagnetic waves to the outside of the housing. As described above, the laminated electromagnetic wave absorber according to the present invention is a product of one form and can be applied to cases of any unnecessary radio wave radiation sources.

本発明を実施例に基づいて詳細に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例中の物性値は、下記の方法で測定した。
(1)針入度:JIS K 2207−1980に準拠して求めた。
(2)磁性損失(透磁率):透磁率&誘導率測定システム(アンリツ&キーコム社製Sパラメーター方式同軸管 er,μr測定器システム)を用いて測定した。
(3)体積抵抗:JIS K 6249に準拠して測定した。
(4)絶縁破壊強度:JIS K 6249に準拠して測定した。
(5)熱伝導率:QTM法(京都電子工業株式会社)に準拠して求めた。
(6)難燃性:UL94に準拠して測定した。
(7)耐熱性:150℃恒温下に放置して、針入度、熱伝導率を測定し、経時変化を観察。変化が観察されるまでの時間。
(8)吸収率:近傍界用電磁波吸収材料測定装置(キーコム社製)で測定した。
The present invention will be described in detail based on examples, but the present invention is not limited to these examples. In addition, the physical-property value in an Example was measured with the following method.
(1) Penetration: Determined according to JIS K 2207-1980.
(2) Magnetic loss (permeability): Measured using a magnetic permeability & inductivity measurement system (S-parameter system coaxial tube er, μr measuring instrument system manufactured by Anritsu & Keycom).
(3) Volume resistance: measured in accordance with JIS K 6249.
(4) Dielectric breakdown strength: measured in accordance with JIS K 6249.
(5) Thermal conductivity: determined in accordance with the QTM method (Kyoto Electronics Industry Co., Ltd.).
(6) Flame retardancy: measured in accordance with UL94.
(7) Heat resistance: Leave at a constant temperature of 150 ° C., measure the penetration and thermal conductivity, and observe changes with time. The time until a change is observed.
(8) Absorption rate: Measured with a near-field electromagnetic wave absorbing material measuring device (manufactured by Keycom).

(実施例1)
粒径分布D5010〜30μmのNi−Zn系ソフトフェライト(BSE−828(商品名):戸田工業(株)製)をメチルトリメトキシシランで表面処理したソフトフェライト83重量%、粒径分布D500.1〜0.4μmの八面体形状マグネタイト微粒子(KN−320(商品名):戸田工業(株)製)5重量%、及び及びJISK2207−1980(50g荷重)の針入度が150のシリコーンゲル(CF−5106(商品名):東レ・ダウコーニング・シリコーン(株)製)12重量%を混合し、真空脱泡の後、空気を巻き込まないようガラス板間に流し込み、70℃で60分間加熱プレス成形して、厚さが1mmの表面が平滑な電磁波吸収用シートを得た。
次に、得られた電磁波吸収用シートを用い、厚さ20μmのPETフィルム剥離フィルム、電磁波吸収用シート、アルミニューム箔、厚さ50μmのPETフィルム、厚さ1μmの粘着剤層、厚さ20μmのPETフィルム剥離フィルムをこの順に積層し、積層電磁波吸収体を得た。この積層電磁波吸収体の近傍電磁界電磁波吸収率を測定した。その結果は、図5に示すAであった。なお、図5には、比較のために、アルミニューム箔を積層しない電磁波吸収体の近傍電磁界電磁波吸収率の値をBとして示した。
なお、得られた積層電磁波吸収体は、磁性損失μ”(1GHz):4.0、体積抵抗:2×1011Ω・m、絶縁破壊強度:4.5kV/mm、熱伝導率:1.2W/m・K、比重:2.8、針入度:60、難燃性(UL94):V−0相当、耐熱性:1000時間以上、であった。
(Example 1)
Particle size distribution D 50 10% to 30 μm Ni—Zn soft ferrite (BSE-828 (trade name) manufactured by Toda Kogyo Co., Ltd.) surface-treated with methyltrimethoxysilane 83% by weight soft ferrite, particle size distribution D 50 0.1% to 0.4 μm octahedral magnetite fine particles (KN-320 (trade name): manufactured by Toda Kogyo Co., Ltd.) 5% by weight, and JISK2207-1980 (50 g load) penetration is 150 Silicone gel (CF-5106 (trade name): manufactured by Toray Dow Corning Silicone Co., Ltd.) 12% by weight was mixed, vacuum degassed, and then poured between glass plates so as not to entrain air. Heat-press molding was performed for 1 minute to obtain an electromagnetic wave absorbing sheet having a thickness of 1 mm and a smooth surface.
Next, using the obtained electromagnetic wave absorbing sheet, a PET film release film having a thickness of 20 μm, an electromagnetic wave absorbing sheet, an aluminum foil, a PET film having a thickness of 50 μm, an adhesive layer having a thickness of 1 μm, and a thickness of 20 μm. A PET film release film was laminated in this order to obtain a laminated electromagnetic wave absorber. The near electromagnetic field electromagnetic wave absorption rate of this laminated electromagnetic wave absorber was measured. The result was A shown in FIG. In FIG. 5, for comparison, the value of the near electromagnetic field electromagnetic wave absorption rate of an electromagnetic wave absorber not laminated with aluminum foil is shown as B.
The obtained laminated electromagnetic wave absorber has a magnetic loss μ ″ (1 GHz): 4.0, volume resistance: 2 × 10 11 Ω · m, dielectric breakdown strength: 4.5 kV / mm, thermal conductivity: 1. 2 W / m · K, specific gravity: 2.8, penetration: 60, flame retardancy (UL94): equivalent to V-0, heat resistance: 1000 hours or more.

本発明の積層電磁波吸収体は、剥離フィルム層、電磁波吸収層、電磁波反射層、絶縁体層、粘着剤層、及び剥離フィルム層をこの順に積層しているので、筐体天面にも高速演算素子等の上にも貼り付け可能であり、電磁波吸収性、電磁波シールド性に優れる効果を奏し、特に、放送、携帯電話、無線LAN等の近傍電磁界における不要電磁波吸収の用途に用いることができる。   The laminated electromagnetic wave absorber of the present invention has a release film layer, an electromagnetic wave absorption layer, an electromagnetic wave reflection layer, an insulator layer, an adhesive layer, and a release film layer laminated in this order. Can be affixed on devices and the like, and has an effect of being excellent in electromagnetic wave absorption and electromagnetic wave shielding properties. In particular, it can be used for absorbing unnecessary electromagnetic waves in nearby electromagnetic fields such as broadcasting, cellular phones, and wireless LANs. .

本発明の積層電磁波吸収体の一例の断面図である。It is sectional drawing of an example of the laminated electromagnetic wave absorber of this invention. 本発明の積層吸収体の使用法の一例を説明する図である。It is a figure explaining an example of the usage method of the lamination | stacking absorber of this invention. 本発明の積層吸収体の使用法の一例で説明する図である。It is a figure demonstrated by an example of the usage method of the laminated | stacked absorber of this invention. 本発明の積層吸収体の使用法の一例で説明する図である。It is a figure demonstrated by an example of the usage method of the laminated | stacked absorber of this invention. 実施例の近傍電磁界電磁波吸収率の測定結果を示す図である。It is a figure which shows the measurement result of the near electromagnetic field electromagnetic wave absorptivity of an Example.

符号の説明Explanation of symbols

1 電磁波吸収層
2 電磁波反射層
3 絶縁体層
4 粘着剤層
5、6 剥離フィルム層
10、10’、15 基板
11、11’、12、12’ 高速演算素子
20 筐体
21 筐体天面
DESCRIPTION OF SYMBOLS 1 Electromagnetic wave absorption layer 2 Electromagnetic wave reflection layer 3 Insulator layer 4 Adhesive layer 5, 6 Peeling film layer 10, 10 ', 15 Board | substrate 11, 11', 12, 12 'High-speed arithmetic element 20 Case 21 Case top

Claims (6)

樹脂製筐体内外からの不要電磁波を吸収する、電磁波吸収層に導電性の電磁波反射層を積層し電磁波反射層の外側に絶縁体層を介して粘着剤層が積層され、電磁波吸収層の外側及び粘着剤層外側にそれぞれ剥離フィルム層が積層された積層電磁波吸収体であって、電磁波吸収層は少なくとも高速演算素子上に密着できる密着性を有し、粘着剤層は少なくとも水平なガラス天井面に貼着して落下しない粘着力を有することを特徴とする積層電磁波吸収体。   Absorbs unnecessary electromagnetic waves from inside and outside of the resin casing. A conductive electromagnetic wave reflection layer is laminated on the electromagnetic wave absorption layer, and an adhesive layer is laminated outside the electromagnetic wave reflection layer via an insulator layer. And a laminated electromagnetic wave absorber in which a release film layer is laminated on the outside of the adhesive layer, the electromagnetic wave absorbing layer having at least adhesiveness that can adhere to the high-speed computing element, and the adhesive layer is at least a horizontal glass ceiling surface A laminated electromagnetic wave absorber, characterized in that it has an adhesive force that does not drop when stuck to a film. 電磁波吸収層と電磁波反射層の間に絶縁体層を有することを特徴とする請求項1に記載の積層電磁波吸収体。   The laminated electromagnetic wave absorber according to claim 1, further comprising an insulator layer between the electromagnetic wave absorbing layer and the electromagnetic wave reflecting layer. 電磁波吸収層は、JIS K2207−1980(50g荷重)の針入度が5〜200のシリコーンゲルに電磁波吸収用充填剤を充填することを特徴とする請求項1又は2に記載の積層電磁波吸収体。   The laminated electromagnetic wave absorber according to claim 1 or 2, wherein the electromagnetic wave absorbing layer is filled with an electromagnetic wave absorbing filler in a silicone gel having a penetration of JIS K2207-1980 (50 g load) of 5 to 200. . 電磁波反射層は、アルミニューム金属層であることを特徴とする請求項1〜3のいずれか1項に記載の積層電磁波吸収体。   The laminated electromagnetic wave absorber according to any one of claims 1 to 3, wherein the electromagnetic wave reflection layer is an aluminum metal layer. 粘着剤層は、アクリル系樹脂粘着剤層であることを特徴とする請求項1〜4のいずれか1項に記載の積層電磁波吸収体。   The laminated electromagnetic wave absorber according to any one of claims 1 to 4, wherein the pressure-sensitive adhesive layer is an acrylic resin pressure-sensitive adhesive layer. 絶縁体層は、ポリエチレンテレフタレート樹脂層であることを特徴とする請求項1〜5のいずれか1項に記載の積層電磁波吸収体。   The laminated electromagnetic wave absorber according to claim 1, wherein the insulator layer is a polyethylene terephthalate resin layer.
JP2004099849A 2004-03-30 2004-03-30 Laminated electromagnetic wave absorber Expired - Fee Related JP4311654B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2004099849A JP4311654B2 (en) 2004-03-30 2004-03-30 Laminated electromagnetic wave absorber
PCT/JP2004/015488 WO2005101941A1 (en) 2004-03-30 2004-10-20 Electromagnetic wave absorber
US10/590,063 US20070196671A1 (en) 2004-03-30 2004-10-20 Electromagnetic wave absorber
TW94109236A TWI278278B (en) 2004-03-30 2005-03-25 Electromagnetic waves absorber
KR1020067018210A KR101090743B1 (en) 2004-03-30 2006-09-07 Electromagnetic wave absorber
HK07105966A HK1098631A1 (en) 2004-03-30 2007-06-06 Electromagnetic wave absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004099849A JP4311654B2 (en) 2004-03-30 2004-03-30 Laminated electromagnetic wave absorber

Publications (2)

Publication Number Publication Date
JP2005286191A true JP2005286191A (en) 2005-10-13
JP4311654B2 JP4311654B2 (en) 2009-08-12

Family

ID=35184209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004099849A Expired - Fee Related JP4311654B2 (en) 2004-03-30 2004-03-30 Laminated electromagnetic wave absorber

Country Status (1)

Country Link
JP (1) JP4311654B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1860929A1 (en) * 2006-05-23 2007-11-28 Research In Motion Limited Mobile wireless communications device having an absorber for reducing energy radiated from an RF component
US7310067B1 (en) 2006-05-23 2007-12-18 Research In Motion Limited Mobile wireless communications device with reduced interfering RF energy into RF metal shield secured on circuit board
JP2008109075A (en) * 2006-09-26 2008-05-08 Bridgestone Corp Electric wave absorbing material
CN103619155A (en) * 2013-12-09 2014-03-05 保定乐凯新材料股份有限公司 Electromagnetic wave shielding film with high barrier property
JP2016032081A (en) * 2014-07-30 2016-03-07 公益財団法人鉄道総合技術研究所 Electromagnetic wave shielding material and equipment housing body
KR20230051146A (en) * 2017-03-13 2023-04-17 스태츠 칩팩 피티이. 엘티디. Semiconductor device and method of forming magnetic field shielding with ferromagnetic material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103619154B (en) * 2013-12-09 2016-09-14 保定乐凯新材料股份有限公司 A kind of electromagnetic protection film with high-efficiency shielding and electromagnetic absorption

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8164539B2 (en) 2006-05-23 2012-04-24 Research In Motion Limited Mobile wireless communications device with reduced interfering RF energy into RF metal shield secured on circuit board
US7310067B1 (en) 2006-05-23 2007-12-18 Research In Motion Limited Mobile wireless communications device with reduced interfering RF energy into RF metal shield secured on circuit board
US7477202B2 (en) 2006-05-23 2009-01-13 Research In Motion Mobile wireless communications device with reduced interfering RF energy into RF metal shield secured on circuit board
US7825870B2 (en) 2006-05-23 2010-11-02 Research In Motion Limited Mobile wireless communications device with reduced interfering RF energy into RF metal shield secured on circuit board
US7928925B2 (en) 2006-05-23 2011-04-19 Research In Motion Limited Mobile wireless communications device with reduced interfering RF energy into RF metal shield secured on circuit board
EP1860929A1 (en) * 2006-05-23 2007-11-28 Research In Motion Limited Mobile wireless communications device having an absorber for reducing energy radiated from an RF component
US8314747B2 (en) 2006-05-23 2012-11-20 Research In Motion Limited Mobile wireless communications device with reduced interfering RF energy into RF metal shield secured on circuit board
US8446333B2 (en) 2006-05-23 2013-05-21 Research In Motion Limited Mobile wireless communications device with reduced interfering RF energy into RF metal shield secured on circuit board
JP2008109075A (en) * 2006-09-26 2008-05-08 Bridgestone Corp Electric wave absorbing material
CN103619155A (en) * 2013-12-09 2014-03-05 保定乐凯新材料股份有限公司 Electromagnetic wave shielding film with high barrier property
JP2016032081A (en) * 2014-07-30 2016-03-07 公益財団法人鉄道総合技術研究所 Electromagnetic wave shielding material and equipment housing body
KR20230051146A (en) * 2017-03-13 2023-04-17 스태츠 칩팩 피티이. 엘티디. Semiconductor device and method of forming magnetic field shielding with ferromagnetic material
KR102547530B1 (en) 2017-03-13 2023-06-26 스태츠 칩팩 피티이. 엘티디. Semiconductor device and method of forming magnetic field shielding with ferromagnetic material

Also Published As

Publication number Publication date
JP4311654B2 (en) 2009-08-12

Similar Documents

Publication Publication Date Title
TWI278278B (en) Electromagnetic waves absorber
JP4764220B2 (en) Thermally conductive sheet
US6716904B2 (en) Heat-radiating electromagnetic wave absorber
JP4849220B2 (en) Electromagnetic interference suppression sheet and manufacturing method thereof, flat cable for high-frequency signal, and flexible printed circuit board
US20090114440A1 (en) Conductive Magnetic Filler, Resin Composition Containing the Filler, Electromagnetic Interference Suppressing Sheet Using the Resin Composition and Applications Thereof, and Process for Producing the Electromagnetic Interference Suppressing Sheet
JP4311653B2 (en) Electromagnetic wave absorber
CN103929933B (en) Structure for inhibition of electromagnetic wave interference and flexible printed circuit comprising same
KR101560570B1 (en) Composition for complex sheet with EMI shielding and absorbing, thermal dissipation and electric insulation, and complex sheet comprising the same
KR101549986B1 (en) Composition for complex sheet, complex sheet comprising the same, and preparation method of the complex sheet
CN104972709A (en) High-heat-dissipation wave-absorbing composite film and manufacturing method thereof
CN213951063U (en) Noise-suppressing graphite articles and assemblies
JP2004200534A (en) Electromagnetic wave absorbing thermal conductive sheet
JP4311654B2 (en) Laminated electromagnetic wave absorber
JP2004336028A (en) Electromagnetic wave absorbing material
JP2009295671A (en) Magnetic sheet and method for manufacturing the same
KR102065952B1 (en) The composite sheet for absorption of radiant heat and electromagnetic waves
JP4859028B2 (en) Electromagnetic wave prevention sheet, electromagnetic wave prevention sheet manufacturing method, and electromagnetic wave prevention structure of electronic component
JP4311655B2 (en) Electromagnetic wave absorber with broadband frequency characteristics
WO2013024809A1 (en) Electromagnetically absorbing, thermally conductive sheet and electronic instrument
JP2005286195A (en) Extrudable crosslinked grease-like electromagnetic wave absorber, container packing and encapsulating absorber, method of manufacturing cotnainer, and method for electromagnetic wave absorption utilizing them
JP2006093414A (en) Conduction noise suppressor and conduction noise countermeasure method
JP2003273568A (en) Capsule type electromagnetic wave absorption material
KR101948025B1 (en) Noise suppression sheet for near-field
JP2012222076A (en) Electromagnetic interference suppressor
JP4611698B2 (en) EMC countermeasure member and EMC countermeasure method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060928

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20061003

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070130

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090508

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4311654

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140522

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees