JP2005285578A - Battery manufacturing method - Google Patents

Battery manufacturing method Download PDF

Info

Publication number
JP2005285578A
JP2005285578A JP2004098432A JP2004098432A JP2005285578A JP 2005285578 A JP2005285578 A JP 2005285578A JP 2004098432 A JP2004098432 A JP 2004098432A JP 2004098432 A JP2004098432 A JP 2004098432A JP 2005285578 A JP2005285578 A JP 2005285578A
Authority
JP
Japan
Prior art keywords
battery
electrode group
side wall
protrusion
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004098432A
Other languages
Japanese (ja)
Other versions
JP4346485B2 (en
Inventor
Yoshihiro Shoji
良浩 小路
Masayuki Terasaka
雅行 寺坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004098432A priority Critical patent/JP4346485B2/en
Publication of JP2005285578A publication Critical patent/JP2005285578A/en
Application granted granted Critical
Publication of JP4346485B2 publication Critical patent/JP4346485B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a battery ensuring required electrolyte amount and preventing the whole exterior can from being compressed to obtain the exterior can having excellent mechanical strength and to improve battery capacity and cycle service life. <P>SOLUTION: This battery manufacturing method comprises: an electrode group storage process for storing a group 30 of electrodes in the bottomed and cylindrical exterior can 10 having a protruding part 12 formed in such a way that a part of a side wall of a main body part 11 protrudes toward the outside from the inside; a liquid pouring process for pouring electrolyte into the bottomed and cylindrical exterior can 10 storing the group 30 of electrodes; and a pressurizing molding process for pressurizing and molding the protruding part 12 so that a part of a side wall of the bottomed and cylindrical exterior can 10 protrudes toward the outside from the inside and it becomes substantially same face as an external wall face of the side wall. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、正極と負極の間にセパレータを介在させて形成した電極群を有底筒状の外装缶内に収納した後に電解液を注液して作製される電池の製造方法に関する。   The present invention relates to a battery manufacturing method in which an electrode group formed by interposing a separator between a positive electrode and a negative electrode is housed in a bottomed cylindrical outer can and then injected with an electrolytic solution.

近年、小型ビデオカメラ、携帯電話、ノートパソコン等の携帯用電子・通信機器の需要が高まるにつれて、その電源として、リチウムイオン電池で代表されるリチウム二次電池や、ニッケル−水素蓄電池、ニッケル−カドミウム蓄電池等のアルカリ蓄電池の需要が増大した。この種の電池は、携帯用電子・通信機器に用いられることから、高容量であることが要求されているため、活物質の充填量を増加させる必要がある。ところが、活物質の充填量を増加させた電極をセパレータを介して積層したり、これを渦巻状に巻回して電極群を構成すると、電極の厚みが増加していることから電極群の径や厚みが大きくなる。   In recent years, as demand for portable electronic / communication equipment such as small video cameras, mobile phones, and notebook computers increases, lithium secondary batteries represented by lithium ion batteries, nickel-hydrogen storage batteries, nickel-cadmium, etc. are used as power sources. The demand for alkaline storage batteries such as storage batteries has increased. Since this type of battery is used in portable electronic / communication equipment, it is required to have a high capacity, and therefore it is necessary to increase the filling amount of the active material. However, when an electrode group is formed by laminating an electrode with an increased active material filling amount via a separator or winding it in a spiral shape, the thickness of the electrode increases. Thickness increases.

ここで、電極群の径や厚みが大きくなると、この電極群が外装缶内で占める体積の割合が増加し、それに伴って電極群と外装缶の間の空間(残存する空間)の体積が減少する。活物質の充填量が増加することから電解液の注液量も増加させなければならないこととなるが、外装缶内の残存する空間の体積の減少により電解液が缶内に浸透しにくくなり、所望量の電解液が注液でないという問題が生じた。このような問題を解決するためには、外装缶の径を大きくすればよいが、携帯用電子・通信機器においては、電池を収容するためのスペースが限られているため、外装缶の径を大きくすることには限度が生じることとなる。   Here, as the diameter and thickness of the electrode group increase, the proportion of the volume occupied by the electrode group in the outer can increases, and accordingly the volume of the space between the electrode group and the outer can (remaining space) decreases. To do. Since the filling amount of the active material will increase, the amount of electrolyte injection will also have to be increased, but due to the decrease in volume of the remaining space in the outer can, the electrolyte will not easily penetrate into the can, There was a problem that the desired amount of electrolyte was not injected. In order to solve such a problem, the diameter of the outer can can be increased. However, in portable electronic / communication equipment, since the space for housing the battery is limited, the diameter of the outer can can be reduced. There is a limit to increasing it.

このため、電極群を挿入する場合においては、電極群の径よりも若干径が大きい外装缶を用い、この外装缶に電極群を挿入した後に外装缶の径を小さくする(これを縮径という)方法が、特許文献1等で提案されるようになった。この特許文献1にて提案された方法においては、最終完成電池における電池缶(外装缶)の外形寸法より大きい外形寸法の外装缶を使用し、この外装缶へ電極素子(電極群)を収納する。この後、縮径機によって、外装缶の外径を最終完成電池における外装缶の外形寸法まで縮径するというものである。この方法によれば、最終完成電池における外装缶の外形寸法より大きい外形寸法の外装缶を使用するので、電極群と外装缶の間の空隙を確保でき、縮径前に注液を行うことにより、所定量の電解液を効率よく外装缶内に注液することが可能となる。
特開平11−354084号公報
For this reason, when inserting an electrode group, an outer can whose diameter is slightly larger than the diameter of the electrode group is used, and after the electrode group is inserted into the outer can, the diameter of the outer can is reduced (this is called reduced diameter). ) Method has been proposed in Patent Document 1 and the like. In the method proposed in Patent Document 1, an outer can whose outer dimension is larger than the outer dimension of a battery can (outer can) in a final battery is used, and an electrode element (electrode group) is accommodated in the outer can. . Thereafter, the outer diameter of the outer can is reduced to the outer dimension of the outer can in the final battery by a diameter reducing machine. According to this method, since an outer can having an outer dimension larger than the outer dimension of the outer can in the final battery is used, a gap between the electrode group and the outer can can be secured, and liquid injection is performed before the diameter reduction. It is possible to efficiently inject a predetermined amount of electrolyte into the outer can.
Japanese Patent Laid-Open No. 11-354084

ところが、上述した特許文献1にて提案された方法においては、縮径機により外装缶の全体を圧縮するように加圧している。このため、加圧された外装缶の内壁により電極群の全体が押圧されることとなる。これにより、機械的強度が弱い極板を用いている場合には、極板に亀裂が生じたりあるいは極板が切断されたりして、極板あるいはセパレータが損傷し、所定の容量が維持できなくなってサイクル寿命が低下したり、内部短絡が発生するという問題も生じた。   However, in the method proposed in Patent Document 1 described above, pressurization is performed so that the entire outer can is compressed by a diameter reducing machine. For this reason, the whole electrode group will be pressed by the inner wall of the pressurized exterior can. As a result, when an electrode plate with weak mechanical strength is used, the electrode plate cracks or the electrode plate is cut, and the electrode plate or separator is damaged, making it impossible to maintain a predetermined capacity. As a result, the cycle life is shortened and internal short circuit occurs.

そこで、本発明は上記の如き課題を解決するためになされたものであって、必要な電解液量が確保できるとともに外装缶全体が圧縮されないようにして、電池容量とサイクル寿命が向上した電池を提供できるようにするとともに、機械的強度に優れた外装缶を持つ電池を提供できるようにすることを目的とする。   Therefore, the present invention has been made to solve the above-described problems, and a battery with improved battery capacity and cycle life can be obtained by securing the necessary amount of electrolyte and preventing the entire outer can from being compressed. An object of the present invention is to provide a battery having an outer can with excellent mechanical strength.

本発明は正極と負極の間にセパレータを介在させて形成した電極群を有底筒状の外装缶内に収納した後に電解液を注液して作製される電池の製造方法であり、上記目的を達成するため、側壁の一部が内部から外方に向けて突出するように形成された突出部を有する有底筒状の外装缶内に電極群を収納する電極群収納工程と、電極群が収納された有底筒状の外装缶内に電解液を注液する注液工程と、有底筒状の外装缶の側壁の突出部の外壁面をこの側壁の外壁面と略同一面となるように加圧成形する加圧成形工程とを備えたことを特徴とする。   The present invention is a method for producing a battery produced by injecting an electrolytic solution after accommodating an electrode group formed by interposing a separator between a positive electrode and a negative electrode in a bottomed cylindrical outer can, In order to achieve the above, an electrode group storage step for storing the electrode group in a bottomed cylindrical outer can having a protruding portion formed so that a part of the side wall protrudes outward from the inside, and the electrode group A liquid injection step of injecting an electrolyte into a bottomed cylindrical outer can in which is stored, and the outer wall surface of the protruding portion of the side wall of the bottomed cylindrical outer can is substantially flush with the outer wall surface of the side wall. And a pressure forming step of pressure forming so as to be.

このように、電極群が収納された有底筒状外装缶の側壁の一部が内部から外方に向けて突出するように形成された突出部を有すると、この突出部と電極群との間に空間部が形成されるようになる。このため、この空間部が注液時に注液された電解液の貯留空間となるため、必要となる電解液量を十分に確保できるようになる。そして、電解液量を十分に確保できた状態で突出部を側壁の外壁面と略同一面となるように加圧成形すると、突出部以外の側壁は押圧されることがないため、機械的強度が弱い電極を使用している場合であっても、これらの電極に亀裂が生じたりあるいは切断されたりすることがない。   As described above, when a part of the side wall of the bottomed cylindrical outer can in which the electrode group is housed has a protrusion formed so as to protrude outward from the inside, the protrusion and the electrode group A space is formed between them. For this reason, since this space part becomes the storage space of the electrolyte solution poured at the time of liquid injection, it becomes possible to secure a sufficient amount of the electrolyte solution. Then, when the protruding portion is pressed to be substantially flush with the outer wall surface of the side wall with a sufficient amount of electrolyte, the side walls other than the protruding portion are not pressed, so the mechanical strength Even when weak electrodes are used, these electrodes are not cracked or cut.

この結果、所定の容量が維持できてサイクル寿命が向上するとともに、内部短絡が発生するという問題も生じなくなり、電池容量とサイクル寿命が向上した電池が得られるようになる。また、突出部が加圧されることにより、機械的強度に優れた外装缶が得られるようにもなる。この場合、円筒型電池における突出部の配置については、電極群への液浸透性が均等となるように、外装缶の側壁に均等に配置されることが望ましい。また、突出部は必ずしも缶底から開口部に至るまで連続して形成されている必要はないが、缶底から開口部まで連続して形成された方が、電極群への液浸透性が均等となるので望ましい。更に、突出部ではない側面のある任意部分から90°、180°、270°の位置には突出部がないような部分が存在するよう配置されることが望ましい。これは組電池にした場合、突出部(加圧成型後の略同一面に同じ)をこのような配置にすると、略同一面の微小な突出部分が邪魔することなく、所定の寸法に組電池を形成できるからである。   As a result, a predetermined capacity can be maintained, the cycle life is improved, and the problem of occurrence of an internal short circuit does not occur, and a battery with improved battery capacity and cycle life can be obtained. Further, when the protruding portion is pressurized, an outer can having excellent mechanical strength can be obtained. In this case, it is desirable that the protrusions in the cylindrical battery are arranged uniformly on the side wall of the outer can so that the liquid permeability to the electrode group is uniform. In addition, the protrusion does not necessarily have to be formed continuously from the bottom of the can to the opening, but the liquid permeability to the electrode group is more uniform if formed continuously from the bottom of the can to the opening. This is desirable. Furthermore, it is desirable to arrange such that there is a portion having no protrusion at 90 °, 180 °, and 270 ° from an arbitrary portion having a side surface that is not the protrusion. In the case of an assembled battery, if the projecting portion (same on the substantially same surface after pressure molding) is arranged in this way, the assembled battery has a predetermined size without obstructing a minute projecting portion on the substantially same surface. It is because it can form.

ついで、本発明の実施の形態を図1〜図5に基づいて以下に説明するが、本発明はこの実施の形態に何ら限定されるものでなく、本発明の目的を変更しない範囲で適宜変更して実施することが可能である。なお、図1は加圧成形される前の突出部を有する略円筒状の有底外装缶を模式的に示す斜視図である。図2は図1の突出部を有する略円筒状の有底外装缶を製造するための工程を模式的に示す断面図である。図3は、外装缶に電極群を収納した状態の横断面を模式的に示す断面図であり、図3(a)は図1の外装缶に電極群を収納した状態を示す断面図であり、図3(b)は円筒型外装缶に電極群を収納した状態を示す断面図である。   Next, an embodiment of the present invention will be described below with reference to FIGS. 1 to 5, but the present invention is not limited to this embodiment at all, and can be appropriately changed without changing the object of the present invention. Can be implemented. FIG. 1 is a perspective view schematically showing a substantially cylindrical bottomed outer can having a protrusion before being pressure-molded. FIG. 2 is a cross-sectional view schematically showing a process for manufacturing a substantially cylindrical bottomed outer can having the protruding portion of FIG. FIG. 3 is a cross-sectional view schematically showing a cross section in a state where the electrode group is housed in the outer can, and FIG. 3A is a cross-sectional view showing a state in which the electrode group is housed in the outer can of FIG. FIG. 3B is a cross-sectional view showing a state in which the electrode group is housed in the cylindrical outer can.

また、図4は電極群を収納した外装缶を加圧成形した状態を模式的に示す断面図であり、図4(a)は図3(a)の外装缶に形成された突出部を側壁の外壁面と略同一面となるように加圧成形した状態を示す断面図であり、図4(b)は図4(a)のZ部を拡大して示す図であり、図4(c)は図3(b)の外装缶を加圧することなくそのままの状態、あるいは図3(b)の外装缶の側壁を加圧して縮径した状態を示す断面図である。図5は略角筒状の有底外装缶を模式的に示す図であり、図5(a)は加圧成形される前の突出部を有する状態を模式的に示す断面図であり、図5(b)は図5(a)に示された突出部を側壁の外壁面と略同一面となるように加圧成形した状態を模式的に示す断面図である。また、図5(c)は突出部を有さない略角筒状の有底外装缶を模式的に示す断面図である。   4 is a cross-sectional view schematically showing a state where the outer can containing the electrode group is pressure-formed, and FIG. 4A is a side view of the protrusion formed in the outer can of FIG. FIG. 4B is a cross-sectional view showing a state of being pressure-molded so as to be substantially flush with the outer wall surface of FIG. 4, and FIG. 4B is an enlarged view of the Z portion of FIG. FIG. 4 is a cross-sectional view showing a state in which the outer can of FIG. 3B is not pressed, or a state in which the side wall of the outer can of FIG. FIG. 5 is a view schematically showing a bottomed outer can having a substantially rectangular tube shape, and FIG. 5 (a) is a cross-sectional view schematically showing a state having a protruding portion before being pressure-molded. 5 (b) is a cross-sectional view schematically showing a state in which the protrusion shown in FIG. 5 (a) is pressure-molded so as to be substantially flush with the outer wall surface of the side wall. FIG. 5C is a cross-sectional view schematically showing a substantially rectangular tube-shaped bottomed outer can having no protrusions.

1.外装缶
(1)実施例
本実施例の突出部12を有する外装缶10は、図1に示すように、鉄からなる基材にニッケルメッキが施され、厚み(缶厚)tが0.25mm(t=0.25mm)の略円筒状で有底の本体部11と、この本体部11の側壁の一部が内部から外方に向けて突出するように形成された8個の突出部12とからなる。本実施例においては、本体部11の内径Rは17.5mm(R=17.5mm)であり、突出部は、高さhが1.7mm(h=1.7mm)、底辺の長さlが2.7mm(l=2.7mm)の二等辺三角形状である。
1. Exterior Can (1) Example As shown in FIG. 1, the exterior can 10 having the projecting portion 12 of the present example has nickel plated on a base material made of iron and has a thickness (can thickness) t of 0.25 mm. (T = 0.25 mm) of a substantially cylindrical main body 11 having a bottom, and eight protrusions 12 formed so that a part of the side wall of the main body 11 protrudes outward from the inside. It consists of. In the present embodiment, the inner diameter R of the main body 11 is 17.5 mm (R = 17.5 mm), and the protrusion has a height h of 1.7 mm (h = 1.7 mm) and a bottom length l. Is an isosceles triangle having a size of 2.7 mm (l = 2.7 mm).

この場合、本体部11から突出して形成された突出部12の数は、上述のように8個に限られることはないが、図3(a)および図4(a)に示されるように、この外装缶10の長軸に対して垂直な断面において、0°、90°、180°、270°の位置にはそれぞれ突出部12が存在しないようにするのが望ましい。そして、後述する加圧部12aの端部が本体部11の外表面に引かれた垂線(直径に垂直な線)と交差することがないように、即ち、互いに平行な一対の垂線間(例えば、図4(a)のA−A間あるいはB−B間)の長さが、R(本体部の内径)+2t(t=0.25mm)となるように形成されているのが望ましい。ここで、互いに平行な一対の垂線間の長さR+2tは、後述する比較例1の円筒缶20の外形寸法(R+2t)と等しいことを意味する。このような配置にすると、略同一面のわずかにつき出た部分が邪魔することなく、所定の寸法に組電池を形成できるからである。   In this case, the number of the protrusions 12 formed to protrude from the main body 11 is not limited to eight as described above, but as shown in FIGS. 3 (a) and 4 (a), In the cross section perpendicular to the long axis of the outer can 10, it is desirable that the protrusions 12 do not exist at positions of 0 °, 90 °, 180 °, and 270 °, respectively. And the end part of pressurization part 12a mentioned below does not cross the perpendicular (line perpendicular to the diameter) drawn on the outer surface of main part 11, ie, between a pair of perpendiculars (for example, mutually parallel) It is desirable that the length between AA and BB in FIG. 4A is R (inner diameter of the main body) + 2t (t = 0.25 mm). Here, the length R + 2t between a pair of perpendicular lines parallel to each other means that the outer dimension (R + 2t) of a cylindrical can 20 of Comparative Example 1 described later is equal. This is because an assembled battery can be formed in a predetermined size without disturbing a slightly protruding portion of substantially the same surface.

ついで、上述のような構成となる外装缶10の作製方法を図2に基づいて以下に説明する。まず、鉄からなる基材にニッケルメッキが施された基板を圧延して厚みが0.5mmの板材を得た後、この板材を円形状あるいは正方形状に打ち抜いて、例えば、直径が50cmになるような円形板10aを形成した。ついで、図2(a)に示すような、図1に示す外装缶10の断面形状を有するポンチ15と絞りダイス16とを用いて、図2(b)に示すように、前絞り筒10bを成形した。この後、この前絞り筒10bを、筒内に挿入された保持部材と再絞りダイス(図示せず)とで保持した。   Next, a method for producing the outer can 10 having the above-described configuration will be described with reference to FIG. First, after rolling a substrate on which a nickel plating is applied to a base material made of iron to obtain a plate material having a thickness of 0.5 mm, the plate material is punched into a circular shape or a square shape, and the diameter becomes 50 cm, for example. Such a circular plate 10a was formed. Next, using the punch 15 having the cross-sectional shape of the outer can 10 shown in FIG. 1 and the drawing die 16 as shown in FIG. 2A, as shown in FIG. Molded. Thereafter, the front throttle cylinder 10b was held by a holding member inserted in the cylinder and a redrawing die (not shown).

ついで、保持部材および再絞りダイスと同軸にかつ保持部材内を出入りし得るように設けられた再絞りポンチと再絞りダイス(図示せず)とを互いに噛み合うように相対的に移動させる動作を繰り返した。これにより、図2(c)に示すように、前絞り筒10bを深絞り加工して側壁を延伸させた深絞り筒10cを成形した。ついで、このような動作を繰り返して、図2(d)に示すように、深絞り筒10cをさらに深絞り加工して、側壁をさらに延伸させた深絞り筒10dを成形した。最後に、開口部までの長さが所定の長さになるように切断して、側壁と底壁に継ぎ目のない側壁に突出部12を有する外装缶10を形成した。   Then, the operation of relatively moving the redrawing punch and the redrawing die (not shown) provided coaxially with the holding member and the redrawing die so as to be able to enter and exit the holding member is repeatedly performed. It was. As a result, as shown in FIG. 2 (c), the deep drawing cylinder 10c was formed by deep drawing the front drawing cylinder 10b and extending the side walls. Then, by repeating such an operation, as shown in FIG. 2D, the deep-drawn cylinder 10c was further deep-drawn to form a deep-drawn cylinder 10d in which the side walls were further extended. Finally, it cut | disconnected so that the length to an opening part might become predetermined length, and formed the exterior can 10 which has the protrusion part 12 on the side wall which has a seamless side wall and a bottom wall.

(2)比較例
一方、比較例の外装缶20は、図3(b)に示すように、鉄からなる基材にニッケルメッキが施され、厚み(缶厚)tが0.25mm(t=0.25mm)の円筒状で有底の本体部21から形成されている。この場合、この外装缶20の直径(内径)Rは実施例の外装缶10の本体部11の直径Rと等しくなるように形成されている。このような円筒状の外装缶20を作製する場合は、円形状の断面形状を有する図2(a)に示すようなポンチ15と絞りダイス16とを用いて、上述と同様に形成すればよい。また、外装缶10と内容積が等しくなるように、上述と同様に、直径(内径)が1.06Rの外装缶25も作製した。
(2) Comparative Example On the other hand, as shown in FIG. 3 (b), the outer can 20 of the comparative example is nickel-plated on a base material made of iron and has a thickness (can thickness) t of 0.25 mm (t = It is formed from a cylindrical body with a bottom of 0.25 mm) and a bottom. In this case, the diameter (inner diameter) R of the outer can 20 is formed to be equal to the diameter R of the main body 11 of the outer can 10 of the embodiment. In the case of producing such a cylindrical outer can 20, it may be formed in the same manner as described above using a punch 15 and a drawing die 16 having a circular cross-sectional shape as shown in FIG. . In addition, an outer can 25 having a diameter (inner diameter) of 1.06R was also produced in the same manner as described above so that the inner volume was equal to that of the outer can 10.

2.円筒形電池
(1)正極の作製
正極活物質としての平均粒径が約5μmのLiCoO2粉末と、導電剤としての人造黒鉛粉末を、質量比が9:1となるように混合して正極合剤を調製した。この正極合剤とポリビニリデンフルオライド(PVdF)をN−メチル−2−ピロリドン(NMP)からなる有機溶剤に5質量%溶解させた結着剤溶液とを、固形分質量比で95:5となるように混合して、正極スラリーを調製した。
2. Cylindrical battery (1) Preparation of positive electrode LiCoO 2 powder having an average particle diameter of about 5 μm as a positive electrode active material and artificial graphite powder as a conductive agent are mixed so that the mass ratio is 9: 1. An agent was prepared. The positive electrode material mixture and a binder solution obtained by dissolving 5% by mass of polyvinylidene fluoride (PVdF) in an organic solvent composed of N-methyl-2-pyrrolidone (NMP) was 95: 5 in terms of solid content mass ratio. Thus, a positive electrode slurry was prepared.

このスラリーを正極集電体としてのアルミニウム箔(厚みは15μm)の両面に、ドクターブレードを用いて均一に塗布して、活物質層を塗布した正極板を形成した。この場合、塗布質量は両面塗布部の乾燥後の質量で500g/m2(片面では250g/m2で、集電体の質量は除く)となるようにした。この後、乾燥機中を通過させて乾燥させた後、この乾燥正極板をロールプレス機により所定の厚みに圧延して、活物質の充填密度が3.7g/cm3となるようにした後、所定寸法に切断し、150℃で2時間真空乾燥して帯状正極を作製した。 This slurry was uniformly applied to both surfaces of an aluminum foil (thickness: 15 μm) as a positive electrode current collector using a doctor blade to form a positive electrode plate coated with an active material layer. In this case, the coating mass was 500 g / m 2 (250 g / m 2 on one side, excluding the mass of the current collector) after drying the double-side coated part. Thereafter, after passing through a dryer and drying, the dried positive plate is rolled to a predetermined thickness by a roll press so that the active material has a packing density of 3.7 g / cm 3. Then, it was cut into a predetermined size and vacuum dried at 150 ° C. for 2 hours to produce a strip-like positive electrode.

(2)負極の作製
一方、鱗片状黒鉛(d002値が3.356Åで、Lc値が1000Åで、平均粒径が20μmのもの)と、結着剤としてのスチレン−ブタジエンゴム(SBR)のディスパージョン(固形分は48%)を水に分散させた。この後、増粘剤となるカルボキシメチルセルロース(CMC)を添加して負極スラリーを調製した。この場合、乾燥後の固形分の質量比が黒鉛:SBR:CMCが100:3:2となるように調製した。
(2) Production of negative electrode On the other hand, flaky graphite (with a d 002 value of 3.356%, an Lc value of 1000%, and an average particle size of 20 μm) and styrene-butadiene rubber (SBR) as a binder Dispersion (solid content 48%) was dispersed in water. Thereafter, carboxymethyl cellulose (CMC) serving as a thickener was added to prepare a negative electrode slurry. In this case, the solid content after drying was adjusted so that the graphite: SBR: CMC was 100: 3: 2.

ついで、得られた負極スラリーを負極集電体としての銅箔(厚みは10μm)の両面にドクターブレードを用いて均一に塗布して、活物質層を塗布した負極板を形成した。この場合、塗布質量は両面塗布部の乾燥後の質量で200g/m2(片面では100g/m2で、集電体の質量は除く)となるようにした。乾燥後、所定の厚みに圧延して、活物質の充填密度が1.7g/cm3となるようにした後、所定寸法に切断し、110℃で2時間真空乾燥して帯状負極を作製した。 Next, the obtained negative electrode slurry was uniformly applied on both sides of a copper foil (thickness: 10 μm) as a negative electrode current collector using a doctor blade to form a negative electrode plate coated with an active material layer. In this case, the coating mass was 200 g / m 2 (100 g / m 2 on one side, excluding the mass of the current collector) after drying the double-side coated part. After drying, it was rolled to a predetermined thickness so that the packing density of the active material was 1.7 g / cm 3 , then cut to a predetermined size, and vacuum dried at 110 ° C. for 2 hours to produce a strip-shaped negative electrode. .

(3)円筒形非水電解質電池の作製
ついで、上述のようにして作製した帯状正極板と帯状負極板とを用意し、これらの間にポリプロピレン製微多孔膜からなるセパレータを介在させて重ね合わせて渦巻状に巻回して、渦巻状電極群30を作製した。この場合、渦巻状電極群30の直径は各外装缶10(20,25)の内径Rよりも小さくなるように巻回している。この電極群30を上述のように作製された外装缶10(20,25)の開口部より挿入した。なお、図3,図4に示された電極群30の渦巻の1本の曲線は、セパレータ、正極板、セパレータ、負極板の組み合わせを示している。ついで、電極群30の負極板より延出する負極集電タブ(図示せず)を外装缶10(20、25)の底部に溶接した。
(3) Production of Cylindrical Nonaqueous Electrolyte Battery Next, a belt-like positive electrode plate and a belt-like negative electrode plate produced as described above are prepared, and a separator made of a polypropylene microporous film is interposed between them. Thus, a spiral electrode group 30 was produced by spirally winding. In this case, the diameter of the spiral electrode group 30 is wound so as to be smaller than the inner diameter R of each outer can 10 (20, 25). This electrode group 30 was inserted from the opening of the outer can 10 (20, 25) produced as described above. In addition, one curve of the spiral of the electrode group 30 shown by FIG. 3, FIG. 4 has shown the combination of a separator, a positive electrode plate, a separator, and a negative electrode plate. Next, a negative electrode current collecting tab (not shown) extending from the negative electrode plate of the electrode group 30 was welded to the bottom of the outer can 10 (20, 25).

ついで、エチレンカーボネート(EC)とメチルエチルカーボネート(MEC)からなる混合溶媒(EC:MEC=30:70:体積比)にLiPF6を1モル/リットル溶解して電解液を調製した。この電解液を電極群30が収納された外装缶10(20,25)の開口部より注液し、減圧下で30分間放置して、電解液を電極群30に十分に含浸させた。この場合、注液後に注液前との質量差、即ち、注液量(g)を求めると、外装缶10内および外装缶25内には6.2gが注液されていることが分かった。また、外装缶20内には5.1gが注液されていることが分かった。ここで、外装缶20への注液量に対して、外装缶10内および外装缶25への注液量の増加分は、外装缶10においては突出部12による内容積の増加分、外装缶25においては径の増加分(0.06R)による内容積の増加分にほぼ一致していた。 Subsequently, 1 mol / liter of LiPF 6 was dissolved in a mixed solvent (EC: MEC = 30: 70: volume ratio) composed of ethylene carbonate (EC) and methyl ethyl carbonate (MEC) to prepare an electrolytic solution. This electrolyte solution was poured from the opening of the outer can 10 (20, 25) in which the electrode group 30 was housed, and was left under reduced pressure for 30 minutes to fully impregnate the electrode group 30 with the electrolyte solution. In this case, when the mass difference from before injection, that is, the injection amount (g), was determined, it was found that 6.2 g was injected into the outer can 10 and the outer can 25. . It was also found that 5.1 g was injected into the outer can 20. Here, with respect to the amount of liquid injected into the outer can 20, the amount of increase in the amount of liquid injected into the outer can 10 and the outer can 25 is equal to the increase in the internal volume due to the protrusion 12 in the outer can 10. No. 25 almost coincided with the increase in internal volume due to the increase in diameter (0.06R).

この後、外装缶10については、外装缶10の本体部11から突出して形成された突出部12をこの本体部11の外壁面と略同一面となるように加圧成形した。ここで、図示しない加圧成型器に外装缶10を通すことにより、図4(a)に示すように、突出部12が押圧されて加圧部12aが形成され、この加圧部12aの外表面が本体部11の外壁面と略同一面になるように加圧成形されている。図4(b)に加圧部12aを拡大した図を示しているが、このように突出部12は加圧されることにより一部が折り重なるように折り畳まれて折り畳み部14が形成されることになる。このため、電極群30を押圧するのはこの折り畳み部14のみとなる。また、外装缶25についても内径Rとなるように側壁の全面を縮径した。   Thereafter, with respect to the outer can 10, the protruding portion 12 formed to protrude from the main body portion 11 of the outer can 10 was pressure-molded so as to be substantially flush with the outer wall surface of the main body portion 11. Here, by passing the outer can 10 through a pressure molding machine (not shown), as shown in FIG. 4A, the protruding portion 12 is pressed to form a pressure portion 12a, and the outside of the pressure portion 12a is formed. It is pressure-molded so that the surface is substantially flush with the outer wall surface of the main body 11. FIG. 4B shows an enlarged view of the pressurizing part 12a. In this way, the protruding part 12 is folded so that a part of the projecting part 12 is folded and the folded part 14 is formed. become. For this reason, only the folding portion 14 presses the electrode group 30. In addition, the entire diameter of the side wall of the outer can 25 was reduced so as to have the inner diameter R.

ついで、図示しないが、電極群30の上部にスペーサを配置した後、電極群30の正極板より延出する正極リードを封口体に設けられた正極端子の内底部に溶接した。この後、絶縁ガスケットを介して封口体を外装缶10(20,25)の開口部に配置し、外装缶10(20,25)の開口部を封口体とかしめつけて電池内を気密に封止した。これにより、設計容量が1800mAhで18650サイズ(底面の直径が18mmで、高さが65mmのもの)の円筒形非水電解質電池(リチウム二次電池)A1,X1,Y1をそれぞれ作製した。ここで、外装缶10を用いたものを電池A1とし、外装缶20を用いたものを電池X1とし、外装缶25を用いたものを電池Y1とした。   Next, although not shown, after arranging a spacer on the upper part of the electrode group 30, a positive electrode lead extending from the positive electrode plate of the electrode group 30 was welded to the inner bottom part of the positive electrode terminal provided on the sealing body. After that, the sealing body is disposed in the opening of the outer can 10 (20, 25) via an insulating gasket, and the opening of the outer can 10 (20, 25) is caulked with the sealing body to hermetically seal the inside of the battery. did. Thereby, cylindrical nonaqueous electrolyte batteries (lithium secondary batteries) A1, X1, and Y1 having a design capacity of 1800 mAh and 18650 sizes (having a bottom diameter of 18 mm and a height of 65 mm) were produced. Here, the battery using the outer can 10 was designated as battery A1, the battery using the outer can 20 was designated as battery X1, and the battery using the outer can 25 was designated as battery Y1.

3.電池特性試験
(1)充放電サイクル試験
これらの各電池A1,X1,Y1をそれぞれ室温(約25℃)で、1800mA(1It)の充電電流で、電池電圧が4.2Vになるまで定電流充電し、4.2Vの定電圧で電流値が10mAに達するまで定電圧充電した。この後、1800mA(1It)の放電電流で、電池電圧が2.75Vに達するまで放電させるという充放電サイクルを500サイクル繰り返して行った。このとき、500サイクル目の放電容量と1サイクル目の放電容量の比を500サイクル後の容量維率として求めると、下記の表1に示すような結果となった。

Figure 2005285578
3. Battery Characteristics Test (1) Charge / Discharge Cycle Test Each of these batteries A1, X1, and Y1 is charged at a constant current at a room temperature (about 25 ° C.) with a charging current of 1800 mA (1 It) until the battery voltage reaches 4.2V. Then, constant voltage charging was performed until the current value reached 10 mA at a constant voltage of 4.2 V. Thereafter, a charge / discharge cycle of discharging at a discharge current of 1800 mA (1 It) until the battery voltage reached 2.75 V was repeated 500 times. At this time, when the ratio of the discharge capacity at the 500th cycle to the discharge capacity at the first cycle was determined as the capacity retention after 500 cycles, the results shown in Table 1 below were obtained.
Figure 2005285578

上記表1の結果から明らかなように、外装缶10を用いた電池A1および外装缶25を用いた電池Y1においては、電池内の電解液量が多いことから、500サイクル後の容量維持率(%)が大きいことが分かる。一方、外装缶20を用いた電池X1においては、電池内の電解液量が少ないことから、500サイクル後の容量維持率(%)が減少していることが分かる。これらのことから、外装缶10,25のように、電解液注液時に保持される十分な空隙のある外装缶を使うと、電解液の注液量が増大して、容量維持率(%)が向上して好ましいことが分かる。   As is clear from the results in Table 1 above, in the battery A1 using the outer can 10 and the battery Y1 using the outer can 25, since the amount of the electrolyte in the battery is large, the capacity retention rate after 500 cycles ( %) Is large. On the other hand, in the battery X1 using the outer can 20, since the amount of the electrolyte in the battery is small, it can be seen that the capacity retention rate (%) after 500 cycles is decreased. From these facts, when using an outer can having a sufficient gap that is retained during the injection of the electrolyte solution, such as the outer cans 10 and 25, the amount of electrolyte injected increases, and the capacity retention rate (%) It is understood that this is preferable.

(2)内部短絡率
ついで、上述のように各電池A1,X1,Y1を組み立てた後に、内部短絡の発生数を測定して、内部短絡率を求めると、下記の表2に示すような結果が得られた。

Figure 2005285578
(2) Internal short-circuit rate Next, after assembling the batteries A1, X1, and Y1, as described above, the number of internal short-circuits was measured and the internal short-circuit rate was obtained. The results shown in Table 2 below were obtained. was gotten.
Figure 2005285578

上記表2の結果から明らかなように、側壁全体を縮径した電池Y1は縮径のない電池X1に比べ内部短絡率が10倍に増加していることが分かる。一方、外装缶の一部のみを加圧成型した電池A1は、縮径のない電池X1と同等の内部短絡率であることが分かる。このことは、電池Y1のように外装缶の側壁全体を縮径したものに比べて、一部を加圧したのみである電池A1は、従来品である電池X1と同等の内部短絡率にできるとともに、サイクル特性を大きく改善できることを意味している。   As is clear from the results in Table 2 above, it can be seen that the battery Y1 whose diameter is reduced on the entire side wall has an internal short-circuit rate increased 10 times as compared with the battery X1 having no diameter reduction. On the other hand, it can be seen that the battery A1 obtained by pressure-molding only a part of the outer can has an internal short circuit rate equivalent to that of the battery X1 having no diameter reduction. This means that the battery A1, which is only partially pressurized as compared to the battery Y1 having a reduced diameter on the entire side wall of the outer can, can have an internal short circuit rate equivalent to that of the conventional battery X1. At the same time, it means that the cycle characteristics can be greatly improved.

(3)落下試験
まず、厚み(缶厚)が0.15mm(t=0.15mm)になるように本体部11を形成するとともに、図1と同様に8個の突出部12を備えた外装缶10を用いたこと以外は、上述の電池A1と同様に非水電解質電池を作製し、これを電池A2とした。また、厚み(缶厚)が0.15mm(t=0.15mm)になるように形成された本体部21を備えた円筒形外装缶20を用いたこと以外は、上述の電池X1と同様に非水電解質電池を作製し、これを電池X2とした。
(3) Drop test First, the main body 11 is formed so that the thickness (can thickness) is 0.15 mm (t = 0.15 mm), and the exterior is provided with eight protrusions 12 as in FIG. A nonaqueous electrolyte battery was produced in the same manner as the battery A1 except that the can 10 was used, and this was designated as a battery A2. Moreover, except using the cylindrical outer can 20 provided with the main-body part 21 formed so that thickness (can thickness) may be set to 0.15 mm (t = 0.15 mm), it is the same as that of the above-mentioned battery X1. A nonaqueous electrolyte battery was produced, and this was designated as battery X2.

ついで、電池A1,A2および電池X1,X2を用いて、これらの各電池A1,A2,X1,X2をそれぞれ室温(約25℃)で、1800mA(1It)の充電電流で、電池電圧が4.2Vになるまで定電流充電し、4.2Vの定電圧で電流値が10mAに達するまで定電圧充電して満充電状態とした。この後、これらの満充電状態の各電池A1,A2,X1,X2の内部抵抗を測定すると下記の表3に示すような結果が得られた。また、充電後のこれらの各電池A1,A2,X1,X2をそれぞれ1mの高さからコンクリート製の台座上に30回ずつ落下させた後、これらの各電池A1,A2,X1,X2の内部抵抗を測定すると下記の表3に示すような結果が得られた。

Figure 2005285578
Subsequently, using the batteries A1, A2 and the batteries X1, X2, each of the batteries A1, A2, X1, X2 was charged at a room temperature (about 25 ° C.) with a charging current of 1800 mA (1 It), and the battery voltage was 4. The battery was charged at a constant current until it reached 2 V, and charged at a constant voltage of 4.2 V until the current value reached 10 mA to obtain a fully charged state. Thereafter, when the internal resistances of these fully charged batteries A1, A2, X1, and X2 were measured, the results shown in Table 3 below were obtained. In addition, after each of these batteries A1, A2, X1, and X2 after charging was dropped 30 times onto a concrete base from a height of 1 m, the inside of each of these batteries A1, A2, X1, and X2 When the resistance was measured, the results shown in Table 3 below were obtained.
Figure 2005285578

上記表3の結果から明らかなように、電池A1,A2では、落下試験後も試験前とほぼ同等の内部抵抗値を示しているのに対して、電池X1,X2では、試験後の内部抵抗値が大きく低下していることが分かる。これは、電池X1,X2においては、落下試験により外装缶20が変形して、電池内部で微小な短絡が生じて内部抵抗値が大きく低下したためと考えられる。また、缶厚が0.25mm(t=0.25mm)の外装缶20を用いた電池X1より、缶厚が0.15mm(t=0.15mm)と薄い外装缶20を用いた電池X2の方が内部抵抗の低下量が大きいことが分かる。   As is clear from the results in Table 3 above, the batteries A1 and A2 showed the same internal resistance value after the drop test as before the test, whereas the batteries X1 and X2 showed the internal resistance after the test. It can be seen that the value is greatly reduced. This is considered to be because, in the batteries X1 and X2, the outer can 20 was deformed by a drop test, a minute short circuit occurred inside the battery, and the internal resistance value was greatly reduced. In addition, the battery X1 using the outer can 20 having a can thickness of 0.25 mm (t = 0.25 mm) is different from the battery X2 using the outer can 20 having a thin can thickness of 0.15 mm (t = 0.15 mm). It can be seen that the amount of decrease in internal resistance is larger.

これに対して、缶厚が0.25mmの外装缶10を用いた電池A1であっても、缶厚が0.15mmと薄い外装缶10を用いた電池A2であっても、内部抵抗の低下量がほとんど変化していないことが分かる。これは、外装缶10においては、本体部11から突出して形成された突出部12を電解液の注液後に、本体部11の側壁の外壁面と略同一面となるように加圧されて加圧部12aが形成されており、この加圧部12aにより外装缶10の強度が向上したためと考えられる。この結果、外装缶10の缶厚が薄くなっても内部抵抗が低下することはなく、即ち、電池内部での微小な短絡も生じなくなって、信頼性が各段に向上するようになる。   On the other hand, even if the battery A1 using the outer can 10 having a can thickness of 0.25 mm or the battery A2 using the outer can 10 having a thin can thickness of 0.15 mm, the internal resistance is reduced. It can be seen that the amount has hardly changed. This is because, in the outer can 10, the protrusion 12 formed to protrude from the main body portion 11 is pressurized and applied so as to be substantially flush with the outer wall surface of the side wall of the main body portion 11 after the electrolyte solution is injected. It is considered that the pressure part 12a is formed, and the strength of the outer can 10 is improved by the pressure part 12a. As a result, even if the can thickness of the outer can 10 is reduced, the internal resistance does not decrease, that is, a minute short circuit does not occur inside the battery, and the reliability is improved in each stage.

4.角形電池
ついで、図5(a)に示すように、アルミニウム製で厚み(缶厚)が0.20mm(t=0.20mm)の略角筒状で有底の本体部41と、この本体部41の側壁の一部が内部から外方に向けて突出するように形成された4個の突出部42とからなる角形外装缶40を用意し、これを外装缶40とした。また、図5(c)に示すように、アルミニウム製で厚み(缶厚)が0.20mm(t=0.20mm)で突出部が形成されていない角筒状で有底の本体部51を備えた角形外装缶50を用意し、これを外装缶50とした。
4). Next, as shown in FIG. 5 (a), the main body portion 41 is made of aluminum and has a bottom (can thickness) of approximately 0.20 mm (t = 0.20 mm) and a bottomed main body portion 41, and the main body portion. A rectangular outer can 40 comprising four projecting portions 42 formed so that a part of the side wall 41 protrudes outward from the inside was prepared. Further, as shown in FIG. 5 (c), the bottomed main body 51 is made of aluminum and has a thickness (can thickness) of 0.20 mm (t = 0.20 mm) and is not formed with a protruding portion. The provided square outer can 50 was prepared and used as an outer can 50.

ついで、上述と同様に作製された渦巻状電極群30を角形外装缶40(50)の平面形状に一致するように扁平状に押圧して扁平状電極群(図示せず)を形成した。この扁平状電極群を上述した角形外装缶40(50)に収納した。この後、これらの外装缶40(50)の開口部より上述と同様な電解液を注液し、減圧下で30分間放置して、電解液を電極群に十分に含浸させた。この場合、注液後に注液前との質量差、即ち、注液量(g)を求めると、外装缶40内には5.3gの電解液が注液されていることが分かった。また、外装缶50内には4.5gの電解液が注液されていることが分かった。   Subsequently, the spiral electrode group 30 produced in the same manner as described above was pressed flatly so as to match the planar shape of the rectangular outer can 40 (50) to form a flat electrode group (not shown). This flat electrode group was accommodated in the aforementioned rectangular outer can 40 (50). Thereafter, an electrolyte solution similar to that described above was injected from the opening of these outer cans 40 (50), and left under reduced pressure for 30 minutes to fully impregnate the electrode group with the electrolyte solution. In this case, when the mass difference from before injection, that is, the injection amount (g), was determined after injection, 5.3 g of electrolytic solution was injected into the outer can 40. It was also found that 4.5 g of electrolyte solution was injected into the outer can 50.

この後、外装缶40については、外装缶40の本体部41から突出して形成された突出部42をこの本体部41の側壁の外壁面と略同一面となるように加圧成形した。ここで、図示しない加圧成型器に外装缶40を通すことにより、図5(b)に示すように、突出部42が押圧されて加圧部42aが形成され、この加圧部42aの外表面が本体部41の外壁面と略同一面になるように加圧成形されている。   Thereafter, the outer can 40 was press-molded so that the protruding portion 42 formed to protrude from the main body 41 of the outer can 40 was substantially flush with the outer wall surface of the side wall of the main body 41. Here, by passing the outer can 40 through a pressure molding machine (not shown), as shown in FIG. 5B, the protruding portion 42 is pressed to form a pressure portion 42a, and the outside of the pressure portion 42a is formed. It is pressure-molded so that the surface is substantially flush with the outer wall surface of the main body 41.

ついで、図示しないが、電極群の上部にスペーサを配置した後、電極群の負極板より延出する負極集電タブを封口体に設けられた端子板の内底部に溶接し、電極群の正極板より延出する正極リードを外装缶40(50)と封口体との間に挟み込むようにして、封口体を外装缶40(50)の開口部に配置した。ついで、外装缶40(50)の開口部の周壁と封口体との間をレーザ溶接して電池内を気密に封止した。これにより、設計容量が1700mAhで103450サイズ(10mm×34mm×50mm)の角形非水電解質電池B1,Z1をそれぞれ作製した。ここで、外装缶40を用いたものを電池B1とし、外装缶50を用いたものを電池Z1とした。   Next, although not shown, after arranging a spacer on the upper part of the electrode group, a negative electrode current collecting tab extending from the negative electrode plate of the electrode group is welded to the inner bottom part of the terminal plate provided in the sealing body, and the positive electrode of the electrode group The sealing body was disposed in the opening of the outer can 40 (50) so that the positive electrode lead extending from the plate was sandwiched between the outer can 40 (50) and the sealing body. Next, the inside of the battery was hermetically sealed by laser welding between the peripheral wall of the opening of the outer can 40 (50) and the sealing body. As a result, 103450 size (10 mm × 34 mm × 50 mm) square nonaqueous electrolyte batteries B1 and Z1 having a design capacity of 1700 mAh were produced. Here, the battery using the outer can 40 was designated as battery B1, and the battery using the outer can 50 was designated as battery Z1.

これらの各電池B1,Z1をそれぞれ室温(約25℃)で、1700mA(1It)の充電電流で、電池電圧が4.2Vになるまで定電流充電し、4.2Vの定電圧で電流値が10mAに達するまで定電圧充電した。この後、1700mA(1It)の放電電流で、電池電圧が2.75Vに達するまで放電させるという充放電サイクルを500サイクル繰り返して行った。このとき、500サイクル目の放電容量と1サイクル目の放電容量の比を500サイクル後の容量維率として求めると、下記の表4に示すような結果となった。

Figure 2005285578
Each of these batteries B1 and Z1 is charged at a constant current at room temperature (about 25 ° C.) with a charging current of 1700 mA (1 It) until the battery voltage reaches 4.2V, and the current value at a constant voltage of 4.2V. The battery was charged at a constant voltage until it reached 10 mA. Thereafter, a charge / discharge cycle of discharging at a discharge current of 1700 mA (1 It) until the battery voltage reached 2.75 V was repeated 500 times. At this time, when the ratio of the discharge capacity at the 500th cycle to the discharge capacity at the first cycle was determined as the capacity retention after 500 cycles, the results shown in Table 4 below were obtained.
Figure 2005285578

上記表4の結果から明らかなように、電池B1においては、電池内の電解液量が多いことから、500サイクル後の容量維持率(%)が大きいことが分かる。一方、電池Z1においては、電池内の電解液量が少ないことから、500サイクル後の容量維持率(%)が減少していることが分かる。これらのことから、外装缶40のように、本体部41から突出して形成された突出部42を形成した外装缶40を用い、電解液の注液後に、この突出部42をこの本体部41の側壁の外壁面と略同一面となるように加圧成形すると、電解液の注液量が増大して、容量維持率(%)が向上して好ましいことが分かる。   As is clear from the results in Table 4 above, it can be seen that, in the battery B1, the capacity retention rate (%) after 500 cycles is large because the amount of the electrolyte in the battery is large. On the other hand, in the battery Z1, since the amount of electrolyte in the battery is small, it can be seen that the capacity retention rate (%) after 500 cycles is reduced. From these things, using the exterior can 40 which formed the protrusion part 42 which protruded and formed from the main-body part 41 like the exterior can 40, after injection | pouring of electrolyte solution, this protrusion part 42 of this main-body part 41 is used. It can be seen that it is preferable to perform pressure molding so as to be substantially flush with the outer wall surface of the side wall, because the amount of electrolyte injected is increased and the capacity retention rate (%) is improved.

ついで、上述のように作製した電池B1および電池Z1を用いて、これらの各電池B1,Z1をそれぞれ室温(約25℃)で、1700mA(1It)の充電電流で、電池電圧が4.2Vになるまで定電流充電し、4.2Vの定電圧で電流値が10mAに達するまで定電圧充電して満充電状態とした。これらの満充電状態の電池の中央部での厚みT1を測定した。その後、90℃の恒温槽中に2時間放置した。ついで、恒温槽から取り出して、電池の中央部での厚みT2を測定した。ついで、恒温槽に保存後の電池の厚みT2と、恒温槽に保存する前の電池の厚みT1との厚み差を膨れ量(δmm)として求めると、下記の表5に示すような結果が得られた。

Figure 2005285578
Next, using the battery B1 and the battery Z1 manufactured as described above, the batteries B1 and Z1 were each charged at a room temperature (about 25 ° C.) with a charging current of 1700 mA (1 It) and a battery voltage of 4.2 V. Until the current value reaches 10 mA at a constant voltage of 4.2 V and is fully charged. The thickness T1 at the center of these fully charged batteries was measured. Then, it was left to stand in a 90 degreeC thermostat for 2 hours. Next, the battery was taken out from the thermostat and the thickness T2 at the center of the battery was measured. Next, when the thickness difference between the battery thickness T2 after storage in the thermostat and the battery thickness T1 before storage in the thermostat is obtained as the amount of swelling (δ mm), the results shown in Table 5 below are obtained. It was.
Figure 2005285578

上記表5の結果から明らかなように、本体部41から突出して形成された突出部42を押圧して加圧部42aが本体部41の外壁面と略同一面になるように加圧成形された外装缶40を用いた電池B1の膨れ量(δ)が0.09mmと小さいのに対して、このような加圧部が形成されていない外装缶50を用いた電池Z1の膨れ量(δ)が1.36mmと大きいことが分かる。これは、外装缶40においては、加圧部42aが形成されているために外装缶40の強度が増大したためと考えられる。   As is apparent from the results in Table 5 above, the protrusion 42 formed by protruding from the main body 41 is pressed so that the pressurizing portion 42 a is substantially flush with the outer wall surface of the main body 41. The swelling amount (δ) of the battery B1 using the outer can 40 is as small as 0.09 mm, whereas the swelling amount (δ) of the battery Z1 using the outer can 50 in which such a pressure portion is not formed. ) Is as large as 1.36 mm. This is considered to be because the strength of the outer can 40 is increased in the outer can 40 because the pressurizing portion 42a is formed.

上述したように、本発明においては、外装缶の本体部11(41)に内部から外部に向けて突出する突出部12(42)が形成されており、電解液の注液後に、突出部12(42)を押圧して加圧部12a(42a)が本体部11(41)の外壁面と略同一面になるように加圧成形された外装缶10(40)を用いている。このため、電解液の注液時には、突出部12(42)により形成された空間部が電液の貯蔵空間となって、必要とする電解液量を容易に確保することが可能となる。また、電解液の注液後に形成された加圧部12a(42a)は外装缶10(40)の強度補強の役目を果たすようになる。このため、外装缶10(40)に膨れを生じたり、落下などにより電池内部に微小短絡や短絡が生じて内部抵抗が極端に低下するという事態も生じることもなくなり、信頼性が向上した電池が得られるようになる。   As described above, in the present invention, the projecting portion 12 (42) projecting from the inside toward the outside is formed in the main body portion 11 (41) of the outer can, and the projecting portion 12 is injected after the injection of the electrolytic solution. The outer can 10 (40) is formed by pressing (42) so that the pressurizing part 12a (42a) is substantially flush with the outer wall surface of the main body part 11 (41). For this reason, at the time of injecting the electrolytic solution, the space formed by the projecting portion 12 (42) becomes a storage space for the electrolytic solution, and the required amount of the electrolytic solution can be easily secured. In addition, the pressurizing part 12a (42a) formed after the electrolyte is poured serves to reinforce the strength of the outer can 10 (40). For this reason, the outer can 10 (40) does not swell, or a short-circuit or short-circuit occurs inside the battery due to dropping or the like, so that the internal resistance is not extremely reduced. It will be obtained.

なお、上述した実施の形態においては、本発明を非水電解質電池に適用するために、エチレンカーボネート(EC)とジエチルカーボネート(DEC)を混合した溶媒に、六フッ化リン酸リチウム(LiPF6)からなる溶質を溶解させた非水電解液を用いる例について説明したが、これ以外に種々の非水電解液を用いることができる。例えば、溶質としては、LiPF6以外に、LiBF4,LiCF3SO3,LiAsF6,LiN(CF3SO22,LiC(CF3SO23,LiCF3(CF23SO3等を用いてもよい。 In the above-described embodiment, in order to apply the present invention to a nonaqueous electrolyte battery, lithium hexafluorophosphate (LiPF 6 ) is added to a solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) are mixed. Although the example using the non-aqueous electrolyte solution in which the solute consisting of is dissolved has been described, various other non-aqueous electrolyte solutions can be used. For example, as the solute, in addition to LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiAsF 6 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiCF 3 (CF 2 ) 3 SO 3, etc. May be used.

また、溶媒としては、上述したECとDECとの混合溶媒以外に、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)、シクロペンタノン、スルホラン、3−メチルスルホラン、2,4−ジメトキシスルホラン、3−メチル−1,3−オキサゾリジン−2−オン、γ−ブチロラクトン(GBL)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ブチルメチルカーボネート(BMC)、エチルプロピルカーボネート(EPC)、ブチルエチルカーボネート(BEC)、ジプロピルカーボネート(DPC)、1,2−ジエトキシエタン(DEE)、1,2−ジメトキシエタン(DME)、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,3−ジオキソラン、酢酸メチル、酢酸エチル等の単体、これらの2成分あるいは3成分の混合溶媒を用いてもよい。   As the solvent, in addition to the above-mentioned mixed solvent of EC and DEC, for example, ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC), cyclopentanone, sulfolane, 3-methylsulfolane, 2,4-dimethoxysulfolane, 3-methyl-1,3-oxazolidine-2-one, γ-butyrolactone (GBL), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC ), Butyl methyl carbonate (BMC), ethyl propyl carbonate (EPC), butyl ethyl carbonate (BEC), dipropyl carbonate (DPC), 1,2-diethoxyethane (DEE), 1,2-dimethoxyethane (DME) , Te Rahidorofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, methyl acetate, alone such as ethyl acetate, may be used a mixed solvent of these two components or three components.

また、上述した実施の形態においては、負極活物質として鱗片状黒鉛を用いた例について説明したが、鱗片状黒鉛以外に、リチウムイオンを吸蔵・放出し得るカーボン系材料、例えば、カーボンブラック、コークス、ガラス状炭素、炭素繊維、またはこれらの焼成体、人造黒鉛、非晶質酸化物等の公知のものを用いてもよい。また、負極スラリーを調製する際に、結着剤としてSBRを用い、増粘剤としてCMCを用いる例について説明したが、結着剤および増粘剤はこれに限られることはない。   Further, in the above-described embodiment, an example in which scaly graphite is used as the negative electrode active material has been described. However, in addition to scaly graphite, a carbon-based material that can occlude / release lithium ions, such as carbon black, coke, etc. Glassy carbon, carbon fiber, or a fired body thereof, artificial graphite, amorphous oxide, or the like may be used. Moreover, when preparing negative electrode slurry, although the example which uses SBR as a binder and CMC as a thickener was demonstrated, a binder and a thickener are not restricted to this.

例えば、結着剤としてはメチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、(メタ)アクリロニトリル、ヒドロキシエチル(メタ)アクリレート等のエチレン性不飽和カルボン酸エステルを用いることができる。さらに、アクリル酸、イタコン酸、フマル酸、マレイン酸等のエチレン性不飽和カルボン酸を使用することができる。増粘剤としては、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、ポリアクリル酸(塩)、酸化スターチ、リン酸スターチ、カゼイン等を用いることができる。   For example, ethylenically unsaturated carboxylic acid esters such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, (meth) acrylonitrile, and hydroxyethyl (meth) acrylate can be used as the binder. . Furthermore, ethylenically unsaturated carboxylic acids such as acrylic acid, itaconic acid, fumaric acid and maleic acid can be used. As the thickener, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, polyacrylic acid (salt), oxidized starch, phosphoric acid starch, casein and the like can be used.

また、上述した実施の形態においては、正極活物質にコバルト酸リチウムを用いた例について説明したが、コバルト酸リチウム以外に、ニッケル酸リチウム、マンガン酸リチウム等のリチウム含有遷移金属複合酸化物あるいは二酸化マンガン(MnO2)、五酸化バナジウム、五酸化ニオブなどの金属酸化物、二硫化チタン、二硫化モリブデンなどの金属カルコゲン化物等も使用できる。 In the above-described embodiment, the example in which lithium cobaltate is used as the positive electrode active material has been described. In addition to lithium cobaltate, lithium-containing transition metal composite oxides such as lithium nickelate and lithium manganate, or dioxide dioxide Metal oxides such as manganese (MnO 2 ), vanadium pentoxide, niobium pentoxide, and metal chalcogenides such as titanium disulfide and molybdenum disulfide can also be used.

さらに、上述した実施の形態においては、本発明を非水電解質電池に適用する例について説明したが、本発明は上述した非水電解質電池に限らず、ニッケル−水素蓄電池、ニッケル−カドミウム等のアルカリ蓄電池や、固体電解質電池等の他の電池にも適用できることは明らかである。   Furthermore, in the above-described embodiment, an example in which the present invention is applied to a non-aqueous electrolyte battery has been described. However, the present invention is not limited to the above-described non-aqueous electrolyte battery, and an alkali such as a nickel-hydrogen storage battery or nickel-cadmium is used. It is obvious that the present invention can be applied to other batteries such as a storage battery and a solid electrolyte battery.

加圧成形される前の突出部を有する略円筒状の有底外装缶を模式的に示す斜視図である。It is a perspective view which shows typically the substantially cylindrical bottomed exterior can which has the protrusion part before pressure-molding. 図1の突出部を有する略円筒状の有底外装缶を製造するための工程を模式的に示す断面図である。It is sectional drawing which shows typically the process for manufacturing the substantially cylindrical bottomed exterior can which has the protrusion part of FIG. 外装缶に電極群を収納した状態の横断面を模式的に示す断面図であり、図3(a)は図1の外装缶に電極群を収納した状態を示す断面図であり、図3(b)は円筒型外装缶に電極群を収納した状態を示す断面図である。FIG. 3A is a cross-sectional view schematically showing a cross section of the state where the electrode group is housed in the outer can, and FIG. 3A is a cross-sectional view showing the state where the electrode group is housed in the outer can of FIG. b) is a cross-sectional view showing a state in which an electrode group is housed in a cylindrical outer can. 電極群を収納した外装缶を加圧成形した状態を模式的に示す断面図であり、図4(a)は図3(a)の外装缶に形成された突出部を側壁の外壁面と略同一面となるように加圧成形した状態を示す断面図であり、図4(b)は図4(a)のZ部を拡大して示す図であり、図4(c)は図3(b)の外装缶を加圧することなくそのままの状態、あるいは図3(b)の外装缶の側壁を加圧して縮径した状態を示す断面図である。FIG. 4A is a cross-sectional view schematically showing a state in which an outer can containing the electrode group is pressure-formed, and FIG. 4A is a schematic view of a protrusion formed on the outer can in FIG. FIG. 4B is a cross-sectional view showing a state of being pressure-molded so as to be on the same plane, FIG. 4B is an enlarged view of a Z portion in FIG. 4A, and FIG. FIG. 4 is a cross-sectional view showing a state where the outer can of b) is not pressed, or a state where the side wall of the outer can of FIG. 略角筒状の有底外装缶を模式的に示す図であり、図5(a)は加圧成形される前の突出部を有する状態を模式的に示す断面図であり、図5(b)は図5(a)に示された突出部を側壁の外壁面と略同一面となるように加圧成形した状態を模式的に示す断面図である。また、図5(c)は突出部を有さない略角筒状の有底外装缶を模式的に示す断面図である。FIG. 5A is a view schematically showing a bottomed outer can having a substantially rectangular tube shape, and FIG. 5A is a cross-sectional view schematically showing a state having a protrusion before being pressure-formed, and FIG. FIG. 5A is a cross-sectional view schematically showing a state in which the protrusion shown in FIG. 5A is press-molded so as to be substantially flush with the outer wall surface of the side wall. FIG. 5C is a cross-sectional view schematically showing a substantially rectangular tube-shaped bottomed outer can having no protrusions.

符号の説明Explanation of symbols

10…外装缶、10a…円形板、10b…前絞り筒、10c…深絞り筒、10d…延伸された深絞り筒、11…本体部、12…突出部、12a…加圧部、13…空間、14…折り畳み部、15…ポンチ、16…ダイス、20,25…円筒形外装缶、21…本体部、30…電極群、40…角形外装缶、41…本体部、42…突出部、42a…加圧部、50…角形外装缶、51…本体部
DESCRIPTION OF SYMBOLS 10 ... Exterior can, 10a ... Circular plate, 10b ... Front drawing cylinder, 10c ... Deep drawing cylinder, 10d ... Extended deep drawing cylinder, 11 ... Main-body part, 12 ... Projection part, 12a ... Pressurization part, 13 ... Space 14 ... Folding part, 15 ... Punch, 16 ... Dice, 20, 25 ... Cylindrical outer can, 21 ... Main body part, 30 ... Electrode group, 40 ... Rectangular outer can, 41 ... Main body part, 42 ... Protruding part, 42a ... Pressure part, 50 ... Square outer can, 51 ... Body part

Claims (4)

正極と負極の間にセパレータを介在させて形成した電極群を有底筒状の外装缶内に収納した後に電解液を注液して作製される電池の製造方法であって、
側壁の一部が内部から外方に向けて突出するように形成された突出部を有する有底筒状の外装缶内に前記電極群を収納する電極群収納工程と、
前記電極群が収納された前記有底筒状の外装缶内に電解液を注液する注液工程と、
前記有底筒状の外装缶の側壁の前記突出部の外壁面を前記側壁の外壁面と略同一面となるように加圧成形して加圧部を形成する加圧成形工程とを備えたことを特徴とする電池の製造方法。
A battery manufacturing method in which an electrode group formed by interposing a separator between a positive electrode and a negative electrode is housed in a bottomed cylindrical outer can and then injected with an electrolytic solution,
An electrode group storage step of storing the electrode group in a bottomed cylindrical outer can having a protruding portion formed so that a part of the side wall protrudes outward from the inside;
A liquid injection step of injecting an electrolyte into the bottomed cylindrical outer can in which the electrode group is housed;
A pressure forming step of forming a pressure part by pressure forming the outer wall surface of the protruding portion of the side wall of the bottomed cylindrical outer can so as to be substantially flush with the outer wall surface of the side wall. A battery manufacturing method characterized by the above.
前記突出部は前記外装缶の底面から開口部まで連続して形成されていることを特徴とする請求項1に記載の電池の製造方法。   The battery manufacturing method according to claim 1, wherein the protruding portion is formed continuously from the bottom surface of the outer can to the opening. 前記外装缶はその長軸に対して垂直な断面が前記突出部以外の部分が円形である略円筒状の外装缶であり、その断面の突出部以外の任意部分を基準にして、その基準から90°、180°、270°の位置には前記突出部が存在しないような部分が存在するように前記突出部が配置されていることを特徴とする請求項1または請求項2に記載の電池の製造方法。   The outer can is a substantially cylindrical outer can whose section other than the protrusion is circular in a cross section perpendicular to the major axis, and based on an arbitrary portion other than the protrusion of the cross section, from the reference 3. The battery according to claim 1, wherein the protrusion is arranged so that a portion where the protrusion does not exist is present at positions of 90 °, 180 °, and 270 °. Manufacturing method. 前記外装缶はその長軸に対して垂直な断面が前記突出部以外の部分が円形である略円筒状の外装缶であり、前記突出部がその断面の仮想円周上に均等に配置されることを特徴とする請求項1から請求項3のいずれかに記載の電池の製造方法。
The outer can is a substantially cylindrical outer can whose cross section perpendicular to the major axis is circular except for the protrusions, and the protrusions are evenly arranged on the virtual circumference of the cross section. The method for producing a battery according to any one of claims 1 to 3, wherein:
JP2004098432A 2004-03-30 2004-03-30 Battery manufacturing method Expired - Fee Related JP4346485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004098432A JP4346485B2 (en) 2004-03-30 2004-03-30 Battery manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004098432A JP4346485B2 (en) 2004-03-30 2004-03-30 Battery manufacturing method

Publications (2)

Publication Number Publication Date
JP2005285578A true JP2005285578A (en) 2005-10-13
JP4346485B2 JP4346485B2 (en) 2009-10-21

Family

ID=35183726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004098432A Expired - Fee Related JP4346485B2 (en) 2004-03-30 2004-03-30 Battery manufacturing method

Country Status (1)

Country Link
JP (1) JP4346485B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013251123A (en) * 2012-05-31 2013-12-12 Hitachi Vehicle Energy Ltd Square secondary battery
WO2014024522A1 (en) * 2012-08-06 2014-02-13 トヨタ自動車株式会社 Cell
WO2018193771A1 (en) * 2017-04-18 2018-10-25 株式会社村田製作所 Cell, method for manufacturing same, cell pack, and electronic device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013251123A (en) * 2012-05-31 2013-12-12 Hitachi Vehicle Energy Ltd Square secondary battery
WO2014024522A1 (en) * 2012-08-06 2014-02-13 トヨタ自動車株式会社 Cell
JP2014032936A (en) * 2012-08-06 2014-02-20 Toyota Motor Corp Battery
US9343731B2 (en) 2012-08-06 2016-05-17 Toyota Jidosha Kabushiki Kaisha Battery comprising a liquid inlet for electrolyte injection
WO2018193771A1 (en) * 2017-04-18 2018-10-25 株式会社村田製作所 Cell, method for manufacturing same, cell pack, and electronic device

Also Published As

Publication number Publication date
JP4346485B2 (en) 2009-10-21

Similar Documents

Publication Publication Date Title
JP4608735B2 (en) Non-aqueous electrolyte secondary battery charging method
JP4878687B2 (en) Lithium secondary battery
JP4961654B2 (en) Nonaqueous electrolyte secondary battery
KR20080075775A (en) Positive electrode for non-aqueous electrolyte secondary battery and method for producing it
JP2007273183A (en) Negative electrode and secondary battery
JPWO2011052126A1 (en) Electrode, secondary battery, and method for manufacturing secondary battery
JP2011034893A (en) Nonaqueous electrolyte secondary battery
JP5157062B2 (en) Nonaqueous electrolyte secondary battery
JP2009129721A (en) Non-aqueous secondary battery
JP4097443B2 (en) Lithium secondary battery
JP2011192561A (en) Manufacturing method for nonaqueous electrolyte secondary battery
JP5888512B2 (en) Non-aqueous electrolyte secondary battery positive electrode, manufacturing method thereof, and non-aqueous electrolyte secondary battery
JP2009105017A (en) Nonaqueous electrolyte secondary battery
JP3033563B2 (en) Non-aqueous electrolyte secondary battery
JP2006278184A (en) Square battery and its manufacturing method
JP4326323B2 (en) Non-aqueous electrolyte battery
JP3332781B2 (en) Lithium ion battery
JP2008243704A (en) Cylindrical type nonaqueous electrolyte battery
JP4346485B2 (en) Battery manufacturing method
JP2008243441A (en) Nonaqueous electrolyte secondary battery
JP2007242518A (en) Square battery
JP2007242519A (en) Square battery
JP4878690B2 (en) Lithium secondary battery
JP2010010144A (en) Flat nonaqueous electrolyte secondary battery
JP5447176B2 (en) Nonaqueous electrolyte secondary battery charging method and manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090616

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090714

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees