JP2005284302A - Packaging structure of optical parts - Google Patents

Packaging structure of optical parts Download PDF

Info

Publication number
JP2005284302A
JP2005284302A JP2005129303A JP2005129303A JP2005284302A JP 2005284302 A JP2005284302 A JP 2005284302A JP 2005129303 A JP2005129303 A JP 2005129303A JP 2005129303 A JP2005129303 A JP 2005129303A JP 2005284302 A JP2005284302 A JP 2005284302A
Authority
JP
Japan
Prior art keywords
optical
electrode
optical component
substrate
light transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005129303A
Other languages
Japanese (ja)
Inventor
Seiji Sakami
省二 酒見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005129303A priority Critical patent/JP2005284302A/en
Publication of JP2005284302A publication Critical patent/JP2005284302A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Abstract

<P>PROBLEM TO BE SOLVED: To provide a packaging structure of optical parts with which optical axes are precisely aligned with each other by making optical transmission sections mutually closer while a packaging optical part that is to be packaged on a substrate through metallic bumps. <P>SOLUTION: In the packaging method of optical parts, an optical part 1, on which a first optical transmission section 3 and metallic bumps 2 are provided on the bottom surface, is packaged onto a substrate 4 on which a second transmission section 6 that transmits and receives to and from the first optical transmission section 3 is arranged and connecting electrodes 5, that are joined to the metallic bumps 2, are provided. The metallic bumps 2 are abutted to the connection electrodes 5 and loading and ultrasonic vibration are applied to the optical part 1 by a bonding tool 7 to metallically join the metallic bumps 2 to the connection electrodes 5. In the above metallic joining process, the heights of the electrodes of the metallic bumps 2 are reduced to make the bottom surface of the optical part 1 be close to the top surface of the substrate 4. Thus, the optical transmission sections are made closer to each other and the optical axes are precisely aligned with each other. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、光通信用の光モジュールや光素子などの光部品を基板に実装する光部品の実装構造に関するものである。   The present invention relates to an optical component mounting structure in which an optical component such as an optical module for optical communication or an optical element is mounted on a substrate.

近年情報通信の高速化・大容量化の要請に応えるため、光通信が広く用いられるようになっている。光通信用の機器には、従来の電気通信用の機器にはなかった光モジュールや光素子などの光部品が用いられる。これらの光部品には、部品相互や光部品が実装される基板との間で信号伝達媒体としての光の授受を行うために、発光部や受光部など光伝達部が設けられている。そしてこれらの光部品の基板への実装に際しては、相対応する光伝達部を対向させた状態で光部品を基板に接合する。この実装形態として、通常のBGAパッケージやフリップチップなどと同様に、半田バンプや金バンプなどの金属バンプによって基板に接合する方式が用いられるようになっている。   In recent years, optical communication has been widely used to meet the demand for higher speed and larger capacity of information communication. For optical communication devices, optical components such as optical modules and optical elements that are not found in conventional telecommunications devices are used. These optical components are provided with a light transmission unit such as a light emitting unit and a light receiving unit in order to exchange light as a signal transmission medium with each other and with a substrate on which the optical component is mounted. When mounting these optical components on the substrate, the optical components are bonded to the substrate with the corresponding light transmitting portions facing each other. As a mounting form, a method of joining to a substrate by a metal bump such as a solder bump or a gold bump is used as in a normal BGA package or flip chip.

しかしながら、上述の光部品を金属バンプによって実装する方法においては、従来より以下のような不都合があった。まず半田バンプを用いて半田接合を行う方法における問題点を説明する。半田接合において安定した接合品質を確保するためには、接合部の大きさに応じた適正な半田量を必要とするため、半田バンプの大きさは必然的に接合品質上求められる下限サイズよりも大きくなる。   However, the above-described method for mounting the optical component with metal bumps has the following disadvantages. First, problems in a method for performing solder bonding using solder bumps will be described. In order to ensure stable bonding quality in solder bonding, an appropriate amount of solder according to the size of the bonding portion is required. Therefore, the size of the solder bump is inevitably smaller than the lower limit size required for bonding quality. growing.

ところが半田バンプのサイズを大きくすると、実装後の光部品の下面と基板の上面との間の隙間が大きくなって、光伝達時の減衰が増大することによる性能低下が避けられなかった。またこの性能低下を避けようとすれば、光部品と基板の間にレンズや光増幅器を挿入する必要があり、コストアップを招いていた。   However, when the size of the solder bumps is increased, a gap between the lower surface of the optical component after mounting and the upper surface of the substrate becomes large, and performance degradation due to increased attenuation during light transmission cannot be avoided. Further, in order to avoid this performance degradation, it is necessary to insert a lens or an optical amplifier between the optical component and the substrate, resulting in an increase in cost.

そしてバンプとして金バンプを用いる方法では、金バンプを基板の電極に押圧して金属接合する圧着方式が用いられる。この方式によれば、金バンプを大きな押圧荷重により押しつぶして実装後のバンプ高さを減少させることができ、光部品の下面と基板の上面との間の隙間を小さくすることが可能となる。   In the method using gold bumps as the bumps, a pressure bonding method is used in which the gold bumps are pressed against the electrodes of the substrate and metal-bonded. According to this method, the gold bumps can be crushed by a large pressing load to reduce the bump height after mounting, and the gap between the lower surface of the optical component and the upper surface of the substrate can be reduced.

しかしながら、圧着において大きな押圧荷重を作用させると、基板の変形やバンプ高さのばらつきを招きやすく、実装後の光部品と基板との平行を保つことが難しい。この結果、実装後の状態において光部品と基板のそれぞれの光伝達部の光軸を精度良く合わせることができず、光伝達が正常に行えなくなるという難点がある。   However, when a large pressing load is applied in the pressure bonding, the substrate is easily deformed and the bump height is likely to vary, and it is difficult to keep the optical component after mounting and the substrate parallel. As a result, there is a problem in that the optical axes of the optical transmission parts of the optical component and the substrate cannot be accurately aligned in the state after mounting, and the optical transmission cannot be performed normally.

このように、金属バンプを介して光部品を基板に実装する光部品の実装においては、従来より光伝達部を相互に接近させて光軸を精度良く合わせることが困難であるという問題点があった。   As described above, in the mounting of the optical component in which the optical component is mounted on the substrate via the metal bump, it has been difficult to accurately align the optical axes by bringing the light transmitting portions closer to each other. It was.

そこで本発明は、金属バンプを介して光部品を基板に実装する光部品の実装において、光伝達部を相互に接近させて光軸を精度良く合わせることができる光部品の実装構造を提供することを目的とする。   Accordingly, the present invention provides a mounting structure for an optical component capable of accurately aligning the optical axis by bringing the optical transmission parts close to each other in mounting the optical component on which the optical component is mounted on the substrate via the metal bump. With the goal.

請求項1記載の光部品の実装構造は、下面に第1の光伝達部および第1の電極が設けら
れた光部品を、前記第1の光伝達部との間で光の授受を行う第2の光伝達部が設けられ前記第1の電極が接合される第2の電極を有する基板に実装して成る光部品の実装構造であって、前記第1の電極を前記第2の電極に当接させて光部品に荷重と超音波振動を印加することによって第1の電極の下面が第2の電極の上面と金属接合された金属接合面が形成されているとともに、実装過程において前記第1の電極もしくは第2の電極の高さ寸法が減少することにより光部品の下面と基板の上面との間の隙間が実装前よりも減少しており、且つ前記第1の電極と第2の電極との接合部の周囲に、第1の電極と第2の電極の接合部を補強するとともに外部からの光を遮光する遮光樹脂層が形成されている。
The mounting structure for an optical component according to claim 1 is a first configuration in which an optical component having a first light transmission portion and a first electrode on a lower surface is exchanged with the first light transmission portion. 2 is a mounting structure of an optical component that is mounted on a substrate having a second electrode to which the first electrode is joined, and the first electrode is used as the second electrode. By applying a load and ultrasonic vibration to the optical component by contact, a lower surface of the first electrode is formed into a metal bonded surface with the upper surface of the second electrode. Since the height dimension of the first electrode or the second electrode is reduced, the gap between the lower surface of the optical component and the upper surface of the substrate is smaller than that before mounting, and the first electrode and the second electrode Around the joint with the electrode, the joint between the first electrode and the second electrode is reinforced and externally Shielding resin layer for blocking light is formed.

本発明によれば、光部品の第1の電極を基板の第2の電極に当接させ、光部品に荷重と超音波振動を印加して第1の電極の下面を第2の電極の上面に金属接合するとともに、金属バンプの高さ寸法を減少させて光部品の下面と基板の上面とを接近させることにより、光伝達部を相互に接近させて光軸を精度良く合わせることができる。   According to the present invention, the first electrode of the optical component is brought into contact with the second electrode of the substrate, and a load and ultrasonic vibration are applied to the optical component so that the lower surface of the first electrode is the upper surface of the second electrode. In addition, the height dimension of the metal bumps is reduced and the lower surface of the optical component and the upper surface of the substrate are brought closer to each other, so that the light transmission portions can be brought closer to each other and the optical axis can be accurately aligned.

図1は本発明の実施の形態1の光部品の実装方法の工程説明図、図2は本発明の実施の形態1の光部品の実装構造の断面図、図3は本発明の実施の形態1の光部品および基板の断面図である。   1 is a process explanatory diagram of an optical component mounting method according to Embodiment 1 of the present invention, FIG. 2 is a cross-sectional view of the optical component mounting structure according to Embodiment 1 of the present invention, and FIG. 3 is an embodiment of the present invention. It is sectional drawing of 1 optical component and a board | substrate.

まず図1を参照して、光部品の実装方法について説明する。この光部品の実装方法は、光モジュールや光素子などの光部品を金属バンプを介して基板に接合するとともに、光部品と基板にそれぞれ設けられた光伝達部を光の授受のための適正位置に位置合わせするものである。   First, an optical component mounting method will be described with reference to FIG. In this optical component mounting method, an optical component such as an optical module or an optical element is bonded to a substrate via a metal bump, and an optical transmission portion provided on each of the optical component and the substrate is placed at an appropriate position for transmitting and receiving light. To align with.

図1(a)において、光部品1の下面の中央部には第1の光伝達部3が設けられており、第1の光伝達部3の両側方には第1の電極としての金属バンプ2が設けられている。光部品1が実装される基板4の上面には、第1の光伝達部3との間で光の授受を行う第2の光伝達部6が設けられており、第2の光伝達部6の両側には金属バンプ2が接合される第2の電極としての接続用電極5が設けられている。   In FIG. 1A, a first light transmission unit 3 is provided at the center of the lower surface of the optical component 1, and metal bumps as first electrodes are provided on both sides of the first light transmission unit 3. 2 is provided. On the upper surface of the substrate 4 on which the optical component 1 is mounted, a second light transmission unit 6 that transmits and receives light to and from the first light transmission unit 3 is provided. On both sides, connection electrodes 5 are provided as second electrodes to which the metal bumps 2 are bonded.

第1の光伝達部3としては、発光機能のみを有したもの、受光機能のみを有したもの、また発光・受光の双方の機能を備えたものが、光部品1の種類によって用いられる。そして第2の光伝達部6は、基板4の内部に設けられた導波部6aに接続されており、基板4に実装または接続された他部品と光部品1との間で導波部6aを介して光の授受が行われる。   As the first light transmission unit 3, one having only a light emitting function, one having only a light receiving function, or one having both light emitting and light receiving functions is used depending on the type of the optical component 1. The second light transmission unit 6 is connected to a waveguide unit 6 a provided inside the substrate 4, and the waveguide unit 6 a is connected between the optical component 1 and another component mounted or connected to the substrate 4. Light is exchanged via

光部品1を基板4に実装する際には、図1(b)に示すように、光部品1をボンディングツール7によって保持し、第1の光伝達部3を第2の光伝達部6に位置あわせした状態で、金属バンプ2を接続用電極5に当接させる。そしてこの後、ボンディングツール7によって光部品1に下向きの荷重と水平方向の超音波振動を印加する。これにより、金属バンプ2の下面は、図1(c)に示すように接続用電極5の上面に固層拡散接合によって金属接合される。   When the optical component 1 is mounted on the substrate 4, as shown in FIG. 1B, the optical component 1 is held by the bonding tool 7, and the first light transmission unit 3 is attached to the second light transmission unit 6. The metal bump 2 is brought into contact with the connection electrode 5 in the aligned state. Thereafter, a downward load and a horizontal ultrasonic vibration are applied to the optical component 1 by the bonding tool 7. As a result, the lower surface of the metal bump 2 is metal bonded to the upper surface of the connection electrode 5 by solid layer diffusion bonding as shown in FIG.

そして金属接合過程において、光部品1に作用する押圧荷重と超音波振動によって金属バンプ2と接続用電極5の接合界面が塑性変形して高さ寸法が減少し、この高さ減少によって、光部品1の下面と基板4の上面との間の隙間は、図1(b)に示す実装前の状態における高さ寸法H1から、図1(c)に示す金属接合後の状態における高さ寸法H2まで減少する。このとき、単に金属バンプ2を押圧荷重で押しつぶすことによって光部品1を圧着する従来の実装方法と比較して、低荷重で隙間を大幅に減少させて実装を完了させる
ことができる。なお上記実装過程において、押圧荷重と超音波振動とともに、基板4を150℃程度まで加熱すると、より効率的に実装を行うことができる。
In the metal bonding process, the bonding interface between the metal bump 2 and the connection electrode 5 is plastically deformed by the pressing load and ultrasonic vibration acting on the optical component 1 to reduce the height dimension. The gap between the lower surface of 1 and the upper surface of the substrate 4 is changed from a height dimension H1 in a state before mounting shown in FIG. 1B to a height dimension H2 in a state after metal bonding shown in FIG. To decrease. At this time, as compared with the conventional mounting method in which the optical component 1 is pressure-bonded by simply crushing the metal bumps 2 with a pressing load, the gap can be greatly reduced and the mounting can be completed. In the mounting process, when the substrate 4 is heated to about 150 ° C. together with the pressing load and the ultrasonic vibration, the mounting can be performed more efficiently.

図2は、このようにして光部品1を基板4に超音波接合によって実装した実装構造を示している。この実装構造においては、金属バンプ2の高さを減少させることによって、第1の光伝達部3と第2の光伝達部6との距離を極力接近させた構成となっている。また、実装過程において過大な押圧荷重を作用させる必要がないことから、基板4の変形や各金属バンプの変形のばらつきが小さく、第1の光伝達部3と第2の光伝達部6の平行度が良好な精度で確保されている。このように、第1の光伝達部3と第2の光伝達部6とを極力接近した位置でしかも高い位置精度で対向させて光軸を高精度で一致させた実装構造が実現でき、光部品1と基板4との間での光伝達時の減衰を防止することができる。   FIG. 2 shows a mounting structure in which the optical component 1 is thus mounted on the substrate 4 by ultrasonic bonding. In this mounting structure, the height of the metal bumps 2 is reduced so that the distance between the first light transmission unit 3 and the second light transmission unit 6 is as close as possible. In addition, since it is not necessary to apply an excessive pressing load during the mounting process, the variation in deformation of the substrate 4 and deformation of each metal bump is small, and the first light transmission unit 3 and the second light transmission unit 6 are parallel. The degree is secured with good accuracy. In this way, a mounting structure in which the first optical transmission unit 3 and the second optical transmission unit 6 are opposed to each other as close as possible with high positional accuracy and the optical axes are aligned with high accuracy can be realized. Attenuation at the time of light transmission between the component 1 and the substrate 4 can be prevented.

なお上記実施の形態では、金属バンプ2が設けられた光部品1を接続用電極5が設けられた基板4に実装する構成例を示しているが、図3に示すように下面に接続用電極2Aが設けられた光部品1Aを、上面に金属バンプ5Aが設けられた基板4Aに超音波接合を用いて、図1に示す方法と同様の方法で実装するようにしてもよい。   In the above embodiment, the configuration example in which the optical component 1 provided with the metal bumps 2 is mounted on the substrate 4 provided with the connection electrodes 5 is shown. However, as shown in FIG. The optical component 1A provided with 2A may be mounted on the substrate 4A provided with the metal bump 5A on the upper surface by ultrasonic bonding in the same manner as shown in FIG.

(実施の形態2)
図4は本発明の実施の形態2の光部品の実装方法の工程説明図である。本実施の形態2においては、実施の形態1と同様の光部品1を基板4に実装するに際し、基板4上に予め封止用の樹脂を供給するようにしたものである。光部品1および基板4は実施の形態1において示すものと同様である。
(Embodiment 2)
FIG. 4 is a process explanatory diagram of the optical component mounting method according to the second embodiment of the present invention. In the second embodiment, when the same optical component 1 as in the first embodiment is mounted on the substrate 4, a sealing resin is supplied onto the substrate 4 in advance. The optical component 1 and the substrate 4 are the same as those shown in the first embodiment.

図4(a)において、金属バンプ2を接続用電極5に当接させる搭載動作に先立って、基板4の上面の接続用電極5の周囲には、エポキシ樹脂などの熱硬化性の樹脂接着材8が供給される。樹脂接着材8の供給に際しては、接続用電極5の周囲の所定範囲のみに適正量を供給し、第2の光伝達部6が樹脂接着材8によって覆われることがないような供給方法を用いる。たとえば、接続用電極5の配置に応じた形状に予め成形された樹脂シートを貼着する方法や、吐出量の制御が高精度で行えるディスペンサを用い、塗布位置を制御しながら塗布する方法などが用いられる。   In FIG. 4A, prior to the mounting operation in which the metal bump 2 is brought into contact with the connection electrode 5, a thermosetting resin adhesive such as an epoxy resin is provided around the connection electrode 5 on the upper surface of the substrate 4. 8 is supplied. When supplying the resin adhesive 8, a supply method is used in which an appropriate amount is supplied only to a predetermined range around the connection electrode 5 and the second light transmission unit 6 is not covered with the resin adhesive 8. . For example, there are a method of sticking a resin sheet pre-formed into a shape corresponding to the arrangement of the connection electrodes 5, a method of applying while controlling the application position using a dispenser capable of controlling the discharge amount with high accuracy, and the like. Used.

実装過程においては、図4(b)に示すように、実施の形態1と同様に光部品1をボンディングツール7によって保持し、第1の光伝達部3を第2の光伝達部6に位置あわせして、金属バンプ2を樹脂接着材8を介して接続用電極5に当接させる。そしてこの後、ボンディングツール7によって光部品1に下向きの荷重と水平方向の超音波振動を印加する。これにより、金属バンプ2の下面は、図4(c)に示すように接続用電極5の上面に固層拡散接合によって金属接合される。   In the mounting process, as shown in FIG. 4B, the optical component 1 is held by the bonding tool 7 as in the first embodiment, and the first light transmission unit 3 is positioned at the second light transmission unit 6. At the same time, the metal bump 2 is brought into contact with the connection electrode 5 through the resin adhesive 8. Thereafter, a downward load and a horizontal ultrasonic vibration are applied to the optical component 1 by the bonding tool 7. Thereby, the lower surface of the metal bump 2 is metal bonded to the upper surface of the connection electrode 5 by solid layer diffusion bonding as shown in FIG.

この後、基板4を加熱して樹脂接着材8を熱硬化させる。この樹脂硬化過程において、樹脂接着材8は金属バンプ2の表面に沿って光部品1の下面まで這い上がる。そしてこの状態で樹脂接着材8が熱硬化することにより、第1の光伝達部3と第2の光伝達部6とを囲んだ配置の封止樹脂部8Aが形成される。   Thereafter, the substrate 4 is heated to thermally cure the resin adhesive 8. In this resin curing process, the resin adhesive 8 crawls up to the lower surface of the optical component 1 along the surface of the metal bump 2. In this state, the resin adhesive 8 is thermally cured, thereby forming a sealing resin portion 8A arranged so as to surround the first light transmission portion 3 and the second light transmission portion 6.

この封止樹脂部8Aは、実装後において金属バンプ2と接続用電極5の接合部を補強するとともに、使用状態において外部からの光が第1の光伝達部3と第2の光伝達部6との対向面に到達することを遮断する遮光樹脂層として機能する。これにより、実施の形態1に示す効果とともに、外部からのノイズが確実に遮断された高品質の光伝達を行うことができる。   The sealing resin portion 8A reinforces the joint portion between the metal bump 2 and the connection electrode 5 after mounting, and light from the outside is in use in the first light transmission portion 3 and the second light transmission portion 6. It functions as a light-blocking resin layer that blocks the arrival at the opposite surface. Thereby, in addition to the effects shown in the first embodiment, it is possible to perform high-quality optical transmission in which external noise is reliably blocked.

なお上記実施の形態では、金属バンプ2が設けられた光部品1を接続用電極5が設けら
れた基板4に実装する構成例を示しているが、図3に示すように下面に接続用電極2Aが設けられた光部品1Aを、上面に金属バンプ5Aが設けられた基板4Aに実装する場合においても、本実施の形態2に示す実装方法を適用することができる。
In the above embodiment, the configuration example in which the optical component 1 provided with the metal bumps 2 is mounted on the substrate 4 provided with the connection electrodes 5 is shown. However, as shown in FIG. Even when the optical component 1A provided with 2A is mounted on the substrate 4A provided with the metal bump 5A on the upper surface, the mounting method shown in the second embodiment can be applied.

本発明によれば、光部品の第1の電極を基板の第2の電極に当接させた状態で光部品に荷重と超音波振動を印加して第1の電極の下面を第2の電極の上面に金属接合するとともに、金属バンプの高さ寸法を減少させて光部品の下面と基板の上面とを接近させることにより、光伝達部を相互に接近させて光軸を精度良く合わせることができるので、光通信用の光モジュールや光素子などの光部品を基板に実装する光部品の実装構造として特に有用である。   According to the present invention, a load and ultrasonic vibration are applied to the optical component in a state where the first electrode of the optical component is in contact with the second electrode of the substrate, and the lower surface of the first electrode is applied to the second electrode. In addition to metal bonding to the upper surface of the substrate, the height dimension of the metal bumps is reduced, and the lower surface of the optical component and the upper surface of the substrate are brought closer to each other so that the light transmission parts can be brought closer to each other and the optical axis can be accurately aligned Therefore, it is particularly useful as a mounting structure for optical components in which optical components such as optical modules for optical communication and optical elements are mounted on a substrate.

本発明の実施の形態1の光部品の実装方法の工程説明図Process explanatory drawing of the mounting method of the optical component of Embodiment 1 of this invention 本発明の実施の形態1の光部品の実装構造の断面図Sectional drawing of the mounting structure of the optical component of Embodiment 1 of this invention 本発明の実施の形態1の光部品および基板の断面図Sectional drawing of the optical component and board | substrate of Embodiment 1 of this invention 本発明の実施の形態2の光部品の実装方法の工程説明図Process explanatory drawing of the optical component mounting method of Embodiment 2 of this invention

符号の説明Explanation of symbols

1,1A 光部品
2,5A 金属バンプ
3 第1の光伝達部
4,4A 基板
5,2A 接続用電極
6 第2の光伝達部
8 樹脂接着材
8A 封止樹脂部
DESCRIPTION OF SYMBOLS 1,1A Optical component 2,5A Metal bump 3 1st light transmission part 4,4A Board | substrate 5,2A Connection electrode 6 2nd light transmission part 8 Resin adhesive material 8A Sealing resin part

Claims (1)

下面に第1の光伝達部および第1の電極が設けられた光部品を、前記第1の光伝達部との間で光の授受を行う第2の光伝達部が設けられ前記第1の電極が接合される第2の電極を有する基板に実装して成る光部品の実装構造であって、前記第1の電極を前記第2の電極に当接させて光部品に荷重と超音波振動を印加することによって第1の電極の下面が第2の電極の上面と金属接合された金属接合面が形成されているとともに、実装過程において前記第1の電極もしくは第2の電極の高さ寸法が減少することにより光部品の下面と基板の上面との間の隙間が実装前よりも減少しており、且つ前記第1の電極と第2の電極との接合部の周囲に、第1の電極と第2の電極の接合部を補強するとともに外部からの光を遮光する遮光樹脂層が形成されていることを特徴とする光部品の実装構造。
An optical component having a first light transmission portion and a first electrode provided on the lower surface is provided with a second light transmission portion that transmits and receives light to and from the first light transmission portion. A mounting structure of an optical component that is mounted on a substrate having a second electrode to which an electrode is bonded, wherein the first electrode is brought into contact with the second electrode and a load and ultrasonic vibration are applied to the optical component. Is applied to form a metal bonding surface in which the lower surface of the first electrode is metal bonded to the upper surface of the second electrode, and the height dimension of the first electrode or the second electrode in the mounting process Is reduced, the gap between the lower surface of the optical component and the upper surface of the substrate is smaller than that before mounting, and the first electrode and the second electrode are disposed around the joint portion of the first electrode. A light shielding resin layer that reinforces the joint between the electrode and the second electrode and shields light from the outside is formed. Mounting structure of an optical component, characterized in that there.
JP2005129303A 2005-04-27 2005-04-27 Packaging structure of optical parts Pending JP2005284302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005129303A JP2005284302A (en) 2005-04-27 2005-04-27 Packaging structure of optical parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005129303A JP2005284302A (en) 2005-04-27 2005-04-27 Packaging structure of optical parts

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002203815A Division JP3693043B2 (en) 2002-07-12 2002-07-12 Mounting method of optical components

Publications (1)

Publication Number Publication Date
JP2005284302A true JP2005284302A (en) 2005-10-13

Family

ID=35182667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005129303A Pending JP2005284302A (en) 2005-04-27 2005-04-27 Packaging structure of optical parts

Country Status (1)

Country Link
JP (1) JP2005284302A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007199657A (en) * 2005-12-28 2007-08-09 Kyocera Corp Optical wiring module
KR100978307B1 (en) 2008-09-16 2010-08-26 한국광기술원 Active and passive optical alignment method, optical element packaging system and optical module which it uses
WO2013179522A1 (en) * 2012-05-31 2013-12-05 日本メクトロン株式会社 Method for producing opto-electric hybrid flexible printed wiring board, and opto-electric hybrid flexible printed wiring board

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007199657A (en) * 2005-12-28 2007-08-09 Kyocera Corp Optical wiring module
KR100978307B1 (en) 2008-09-16 2010-08-26 한국광기술원 Active and passive optical alignment method, optical element packaging system and optical module which it uses
WO2013179522A1 (en) * 2012-05-31 2013-12-05 日本メクトロン株式会社 Method for producing opto-electric hybrid flexible printed wiring board, and opto-electric hybrid flexible printed wiring board
JP2013250416A (en) * 2012-05-31 2013-12-12 Nippon Mektron Ltd Manufacturing method of photoelectric hybrid flexible printed wiring board, and photoelectric hybrid flexible printed wiring board
CN104508522A (en) * 2012-05-31 2015-04-08 日本梅克特隆株式会社 Method for producing opto-electric hybrid flexible printed wiring board, and opto-electric hybrid flexible printed wiring board
US9310575B2 (en) 2012-05-31 2016-04-12 Nippon Mektron, Ltd. Manufacturing method of opto-electric hybrid flexible printed circuit board and opto-electric hybrid flexible printed circuit board
CN104508522B (en) * 2012-05-31 2017-11-24 日本梅克特隆株式会社 The manufacture method and optical/electrical mixed mounting flexible printing wiring board of optical/electrical mixed mounting flexible printing wiring board

Similar Documents

Publication Publication Date Title
US7242433B2 (en) Small-sized image pickup device having a solid-state image pickup element and a lens holder mounted on opposite sides of a transparent substrate
US6834133B1 (en) Optoelectronic packages and methods to simultaneously couple an optoelectronic chip to a waveguide and substrate
KR101294419B1 (en) Camera module and manufacturing method thereof
CN102800662B (en) Layered semiconductor device and manufacturing method thereof
CN101071777B (en) Method of manufacturing a semiconductor device
US8138018B2 (en) Manufacturing method of semiconductor device having underfill resin formed without void between semiconductor chip and wiring board
JP4766053B2 (en) SD memory card and SD memory card manufacturing method
KR20170123596A (en) Manufacturing method of semiconductor packages
KR20000062375A (en) Method and device for mounting electronic component on circuit board
JP4864810B2 (en) Manufacturing method of chip embedded substrate
US8980692B2 (en) Semiconductor device manufacturing method
TWI539586B (en) Flip chip bonding method, and method for manufacturing solid-state imaging device including the flip chip bonding method
JP2005284302A (en) Packaging structure of optical parts
KR100748558B1 (en) Chip size package and method of fabricating the same
JP2002373914A (en) Electronic component connection structure
JP5228479B2 (en) Manufacturing method of electronic device
JP3693043B2 (en) Mounting method of optical components
KR100936781B1 (en) Flip chip bonding apparatus and bonding method using the same
JP2005302750A (en) Ultrasonic flip-chip mounting method
JP4200090B2 (en) Manufacturing method of semiconductor device
CN101266961A (en) Covering crystal encryption structure and its making method
JP4483016B2 (en) Solid-state imaging device and manufacturing method thereof
KR20060057098A (en) Bonding head and flip chip bonder having the same
JP3147106B2 (en) Semiconductor device
JP2003249603A (en) Electronic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050704

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070619

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070724