JP2005283553A - Patch clump device - Google Patents

Patch clump device Download PDF

Info

Publication number
JP2005283553A
JP2005283553A JP2004129010A JP2004129010A JP2005283553A JP 2005283553 A JP2005283553 A JP 2005283553A JP 2004129010 A JP2004129010 A JP 2004129010A JP 2004129010 A JP2004129010 A JP 2004129010A JP 2005283553 A JP2005283553 A JP 2005283553A
Authority
JP
Japan
Prior art keywords
temperature
copper
living cell
peltier element
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004129010A
Other languages
Japanese (ja)
Inventor
Shigetoshi Oiki
成稔 老木
Miyuki Kuno
みゆき 久野
Yoshinobu Abe
可伸 安部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004129010A priority Critical patent/JP2005283553A/en
Publication of JP2005283553A publication Critical patent/JP2005283553A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a patch clamp device instantaneously varying a single biological cell temperature, and responsively measuring a temperature change of a single biological cell. <P>SOLUTION: A solution supply copper pipe to the single biological cell is heated or cooled by a Peltier element, and the single biological cell temperature is measured by a thermocouple wire of a diameter of 13 μm or below. The single biological cell temperature change is speeded up to 50°C/msec, while a temperature measurement response speed is speeded up to 70 msec. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

発明の詳細な説明Detailed Description of the Invention

産業上の利用分野Industrial application fields

本発明は主として生物の生体内情報伝達メカニズムを評価するパッチクランプ装置に関する。  The present invention mainly relates to a patch clamp apparatus for evaluating an in vivo information transmission mechanism of a living organism.

従来の技術としては、加熱槽内で昇温した溶液をプラスチック管又はガラス管を経由して単一生体細胞に供給していた。通常これら配管長さは最低でも50cm程度必要であった。又、直径約1ミリ以上のサーミスタ温度計を細胞を入れた容器内に差し込んでいた。  As a conventional technique, a solution heated in a heating tank is supplied to a single living cell via a plastic tube or a glass tube. Usually, these pipe lengths are required to be at least about 50 cm. Further, a thermistor thermometer having a diameter of about 1 mm or more was inserted into a container containing cells.

発明が解決しようとする課題Problems to be solved by the invention

上記した従来の装置では、溶液の供給速度を高めると生体細胞が流される可能性があり一般に低速度で供給しているが、配管途中での自然放熱により単一生体細胞を高温にすることが極めて困難であり又昇温に時間がかかり例えば10℃/分程度の昇温速度しか得られなかった。又、使用温度計はサーミスタを使用することが一般的であり、このサーミスタ先端部の感温部がおおよそ直径1ミリ位はあり溶液の比較的長時間における平均温度は計測できるが、単一生体細胞の刻々に変わる温度を正確に計測できなかった。すなわち、サーミスタ感温部の熱容量が大きいことから温度計測応答速度が遅く、数十ミリ秒内のごく瞬間的な温度変化を計測することができないという欠点があった。  In the above-described conventional apparatus, when the solution supply rate is increased, biological cells may be flowed, and the cells are generally supplied at a low speed. However, it is possible to increase the temperature of a single biological cell by natural heat dissipation in the middle of the piping. It was extremely difficult, and it took time to raise the temperature. For example, only a heating rate of about 10 ° C./min was obtained. In addition, a thermistor is generally used as the thermometer, and the temperature sensitive part at the tip of the thermistor is approximately 1 mm in diameter, and the average temperature of the solution over a relatively long time can be measured. The temperature which changes every moment of the cell could not be measured accurately. That is, since the heat capacity of the thermistor temperature sensing part is large, the temperature measurement response speed is slow, and there is a drawback that a very instantaneous temperature change within several tens of milliseconds cannot be measured.

課題を解決するための手段Means for solving the problem

この発明は上記の問題点を解決すべく提案されたもので、まず第一の問題点である急速な温度上昇を実現するため、熱伝導率の優れた銅管を2本ならべて固定し、2本の銅管の根元の部分に各々銅板を接合し、この銅板に各々微小ペルチェ素子を搭載し、さらにこの微小ペルチェ素子に各々放熱板または放熱板のついたヒートパイプを取り付ける。更に銅管部を断熱材で被覆する。定電流電源によりペルチェ素子の温度をコントロールすることにより、銅板を介し銅管内の溶液温度を制御しようとするものである。更に第二の問題点である温度測定応答速度の向上のため直径13μm以下の微細なクロメルアルメル熱電対線を使用し、先端感温部を線径に比較し大きな玉コロ状とすることなく単に熱電対線の先端同士を一部溶接したごく熱容量の小さい感温部を単一生体細胞のごく近傍に固定する。  The present invention has been proposed to solve the above-mentioned problems. First, in order to realize a rapid temperature rise, which is the first problem, two copper tubes having excellent thermal conductivity are arranged and fixed, A copper plate is joined to each of the base portions of the two copper pipes, a micro Peltier element is mounted on each copper plate, and a heat pipe or a heat pipe with a heat sink is attached to the micro Peltier element. Further, the copper pipe part is covered with a heat insulating material. By controlling the temperature of the Peltier element with a constant current power source, the solution temperature in the copper tube is controlled through the copper plate. Furthermore, in order to improve the temperature measurement response speed, which is a second problem, a fine chromel alumel thermocouple wire with a diameter of 13 μm or less is used, and the tip temperature sensing portion is simply compared with the wire diameter without making a large ball roller shape. A thermosensitive part having a very small heat capacity, in which the tips of thermocouple wires are partially welded, is fixed in the vicinity of a single living cell.

作用Action

本考案のパッチクランプ装置では以上の通り、生体細胞へ供給する溶液の加熱方式により単一生体細胞温度変化が50℃/ミリ秒となり、直径13μm以下の微小熱電対線により温度測定応答速度が最終到達温度の2/3達成時間として70ミリ秒となった。  As described above, the patch clamp apparatus of the present invention changes the temperature of a single living cell to 50 ° C./millisecond by the heating method of the solution supplied to the living cell, and the final temperature measurement response speed is achieved by a micro thermocouple wire having a diameter of 13 μm or less. The time for achieving 2/3 of the temperature reached 70 milliseconds.

別紙1図は本考案の実施例を図示したものである。電流計プローブ1の先端に固定された単一生体細胞2がチャンバー3内のチャンバーバス18内の溶液中に吊り下げられた状態で設置され、加熱槽4内の溶液槽5及び溶液槽6から各々溶液がチューブ8を経由して各々銅管9、9′に入り温度コントロールされ銅管9、9′に接続された内径200μmのガラス管22,22′から単一生体細胞2へ供給される。各々銅管9、9′には銅板10を介しペルチェ素子11が搭載され、さらにペルチェ素子11の裏面にはマイクロヒートパイプ12が設置されており、マイクロヒートパイプ12には放熱板12′が取り付けられている。各々銅管9、9′は断熱材21で包まれ保温されている。単一生体細胞2近傍の溶液温度を変えるには2ケのペルチェ素子11に極性も含め異なる電流を直流電源13から通電し、銅管9、9′から吐出される2種類の溶液温度を変える。ピエゾ素子使用往復作動装置14および往復作動クランプ15により2連銅管9、9′が瞬間的に移動することにより、たとえば低温銅管9から吐出された低温溶液で包まれた単一生体細胞2が一瞬のうちに高温銅管9′から吐出された高温溶液で包まれ急昇温される。更に逆の操作により、瞬時に単一生体細胞2を元の低温状態に戻すこともできる。又、単一生体細胞2の温度を測定するには、直径13μm以下の微細なクロメルアルメル熱電対線16を使用し、先端感温部17を線径に比較し大きな玉コロ状とすることなく単に線の先端同士を一部溶接したごく熱容量の小さい先端感温部17を単一生体細胞2のごく近傍に固定する。なお、チャンバーバス用溶液槽7から溶液がチューブ8を通りチャンバーバス温度コントローラー19を経由してチャンバーバス18に注がれチャンバーバス18の温度を制御している。なお、図2は電流計1と内径約200μmのガラス管22,22′の先端部と直径13μmの微細なクロメルアルメル熱電対線16の先端感温部17を使用した写真である。また図3は図2の拡大写真であり、直径約7μmの単一生体細胞17と電流計1の先端部および、直径13μmの微細なクロメルアルメル熱電対線16の先端感温部17を示している。顕微鏡20は単一生体細胞の観察に使用される。  The attached sheet 1 shows an embodiment of the present invention. A single living cell 2 fixed to the tip of the ammeter probe 1 is installed in a state of being suspended in a solution in a chamber bath 18 in the chamber 3, and from the solution tank 5 and the solution tank 6 in the heating tank 4. Each solution enters the copper tubes 9 and 9 ′ via the tube 8 and is supplied to the single living cell 2 from the glass tubes 22 and 22 ′ having an inner diameter of 200 μm connected to the copper tubes 9 and 9 ′. . Each of the copper tubes 9 and 9 'is mounted with a Peltier element 11 through a copper plate 10. Further, a micro heat pipe 12 is installed on the back surface of the Peltier element 11, and a heat radiating plate 12' is attached to the micro heat pipe 12. It has been. Each of the copper tubes 9 and 9 'is wrapped with a heat insulating material 21 and kept warm. In order to change the solution temperature in the vicinity of the single living body cell 2, different currents including polarities are supplied to the two Peltier elements 11 from the DC power supply 13, and the two types of solution temperatures discharged from the copper tubes 9 and 9 ′ are changed. . When the double copper pipes 9 and 9 ′ are instantaneously moved by the reciprocating device 14 using the piezo element and the reciprocating clamp 15, for example, a single living cell 2 wrapped with a low temperature solution discharged from the low temperature copper pipe 9. Is wrapped in a high-temperature solution discharged from the high-temperature copper tube 9 'in an instant, and the temperature is rapidly raised. Further, the single living cell 2 can be instantaneously returned to the original low-temperature state by the reverse operation. Further, in order to measure the temperature of the single living cell 2, a fine chromel alumel thermocouple wire 16 having a diameter of 13 μm or less is used, and the tip temperature sensing part 17 is not made into a large ball roller shape compared to the wire diameter. The tip temperature sensing part 17 having a very small heat capacity, in which the tips of the wires are partly welded, is fixed in the very vicinity of the single living cell 2. A solution is poured from the chamber bath solution tank 7 through the tube 8 to the chamber bath 18 via the chamber bath temperature controller 19 to control the temperature of the chamber bath 18. FIG. 2 is a photograph using the ammeter 1, the tips of glass tubes 22 and 22 ′ having an inner diameter of about 200 μm, and the tip temperature sensing portion 17 of a fine chromel alumel thermocouple wire 16 having a diameter of 13 μm. FIG. 3 is an enlarged photograph of FIG. 2, showing a single living cell 17 having a diameter of about 7 μm, the tip of the ammeter 1, and the tip temperature sensing part 17 of a fine chromel alumel thermocouple wire 16 having a diameter of 13 μm. Yes. The microscope 20 is used for observation of a single living cell.

発明の効果The invention's effect

上記の考案により、単一生体細胞2の温度を瞬間的に即ち数ミリ秒以内に50℃変化させることができる。従来50℃における単一生体細胞2の挙動は単一生体細胞2が高温で死滅するため評価することはできなかった。しかし、一般に単一生体細胞2は50℃の高温でも瞬間的であれば死滅することは無く、本考案により高温での単一生体細胞2の挙動を把握できることが可能となった。単一生体細胞2の温度を計測するために、13μmの微細熱電対感温部17を使用し、単一生体細胞2から数μmの位置に設置することにより、単一生体細胞2の直径は10μm〜20μmであるので、十分に単一生体細胞2近傍の温度を測定できる。ピエゾ素子使用往復作動装置14、往復作動クランプ15及びペルチェ素子11による加熱冷却により高温への温度ジャンプだけではなく、低温へのジャンプも瞬間的に数ミリ秒以内で、何度でも繰り返し自由なタイミングで行えた。50℃の高温でも直ちに元の温度に戻してやることによって単一生体細胞2に対するダメージはほとんどなく、続けて実験可能となった。なお、パッチクランプ法の場合、ピコアンペア(pA:10−12A)という微小な電流を測定するのでノイズを完全に排除することが不可欠である。ペルチェ素子11は直流電源13で駆動することができるので50Hz、60Hzの商用波を除外することができる。発熱体または冷却体としてペルチェ素子11を使用したこれ以外の利点は、電流の向きによって発熱体と冷却体を兼ねることができる。又、コンパクトで軽いため、ピエゾ素子使用往復作動装置14および往復作動クランプ15への負荷を軽減できる。With the above-described device, the temperature of the single living cell 2 can be changed instantaneously, that is, within 50 milliseconds, within a few milliseconds. Conventionally, the behavior of the single living cell 2 at 50 ° C. could not be evaluated because the single living cell 2 died at a high temperature. However, in general, the single living cell 2 does not die if it is instantaneous even at a high temperature of 50 ° C., and the present invention makes it possible to grasp the behavior of the single living cell 2 at a high temperature. In order to measure the temperature of the single living cell 2, the diameter of the single living cell 2 can be obtained by using a 13 μm fine thermocouple temperature sensing unit 17 and installing it at a position several μm from the single living cell 2. Since it is 10 micrometers-20 micrometers, the temperature of the single living cell 2 vicinity can fully be measured. The reciprocating device 14 using the piezo element, the reciprocating clamp 15 and the Peltier element 11 allow not only the temperature jump to a high temperature but also the jump to a low temperature instantaneously within a few milliseconds, and a free timing as many times as possible I was able to do it. By immediately returning to the original temperature even at a high temperature of 50 ° C., there was almost no damage to the single living cell 2 and it was possible to continue the experiment. In the case of the patch clamp method, since a minute current of picoampere (pA: 10-12 A) is measured, it is indispensable to completely eliminate noise. Since the Peltier element 11 can be driven by the DC power source 13, commercial waves of 50 Hz and 60 Hz can be excluded. Other advantages of using the Peltier element 11 as a heating element or a cooling element can be combined with the heating element and the cooling element depending on the direction of current. Moreover, since it is compact and light, the load on the reciprocating device 14 using the piezo element and the reciprocating clamp 15 can be reduced.

請求項1および請求項2の例を示す斜視図である。It is a perspective view which shows the example of Claim 1 and Claim 2. 内径200μmの2連銅管9、9′先端部と微細な熱電対先端感温部17を示す写真である。It is a photograph which shows the double copper pipes 9 and 9 'inside diameter 200micrometer, and the fine thermocouple tip temperature sensing part 17. FIG. 直径約7μmの単一生体細胞17と電流計1の先端部および、微細な熱電対先端感温部17を示す写真である。It is the photograph which shows the single biological cell 17 about 7 micrometers in diameter, the front-end | tip part of the ammeter 1, and the fine thermocouple front-end | tip temperature sensing part 17. FIG.

符号の説明Explanation of symbols

1 電流計プローブ
2 単一生体細胞
3 チャンバー
4 加熱槽
5 低温用溶液槽
6 高温用溶液槽
7 チャンバーバス用溶液槽
8 チューブ
9 銅管
9′銅管
10 銅板
11 ペルチェ素子
12 マイクロヒートパイプ
12′放熱板
13 直流電源
14 ピエゾ素子使用往復作動装置
15 往復作動クランプ
16 クロメルアルメル熱電対線
17 先端感温部
18 チャンバーバス
19 チャンバーバス温度コントローラー
20 顕微鏡
21 断熱材
22 内径200μmのガラス管
22′内径200μmのガラス管
DESCRIPTION OF SYMBOLS 1 Ammeter probe 2 Single biological cell 3 Chamber 4 Heating tank 5 Low temperature solution tank 6 High temperature solution tank 7 Chamber bath solution tank 8 Tube 9 Copper tube 9 'Copper tube 10 Copper plate 11 Peltier element 12 Micro heat pipe 12' Heat sink 13 DC power supply 14 Reciprocating device using piezo element 15 Reciprocating clamp 16 Chromel alumel thermocouple wire 17 Tip temperature sensing part 18 Chamber bath 19 Chamber bath temperature controller 20 Microscope 21 Heat insulating material 22 Glass tube 22 'inner diameter 200μm inner diameter 200μm Glass tube

Claims (2)

2本の銅管の根元の部分に各々銅板を接合し、この銅板に各々微小ペルチェ素子を搭載し、さらにこの微小ペルチェ素子に各々放熱板またはヒートパイプを取り付け、更に銅管部を断熱材で被覆し、定電流電源によりペルチェ素子の温度をコントロールすることにより、銅板を介し銅管内の溶液温度を制御することを特徴とするパッチクランプ装置。Each copper plate is joined to the base part of two copper tubes, each Peltier element is mounted on this copper plate, each radiator plate or heat pipe is attached to this minute Peltier element, and the copper tube part is further insulated with a heat insulating material. A patch clamp device characterized by controlling the temperature of a solution in a copper tube through a copper plate by coating and controlling the temperature of a Peltier element with a constant current power source. 直径13μm以下の熱電対線の先端感温部を生体細胞のごく近傍に設置したことを特徴とするパッチクランプ装置A patch clamp device characterized in that a thermosensitive wire tip temperature sensing portion having a diameter of 13 μm or less is installed in the vicinity of a living cell.
JP2004129010A 2004-03-30 2004-03-30 Patch clump device Pending JP2005283553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004129010A JP2005283553A (en) 2004-03-30 2004-03-30 Patch clump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004129010A JP2005283553A (en) 2004-03-30 2004-03-30 Patch clump device

Publications (1)

Publication Number Publication Date
JP2005283553A true JP2005283553A (en) 2005-10-13

Family

ID=35182075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004129010A Pending JP2005283553A (en) 2004-03-30 2004-03-30 Patch clump device

Country Status (1)

Country Link
JP (1) JP2005283553A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109029759A (en) * 2018-06-06 2018-12-18 东南大学 A kind of high-precision unicellular temp measuring system in real time
CN111089971A (en) * 2019-12-11 2020-05-01 浙江大学 Protein interaction quantitative detection device under membrane potential regulation and control

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109029759A (en) * 2018-06-06 2018-12-18 东南大学 A kind of high-precision unicellular temp measuring system in real time
CN111089971A (en) * 2019-12-11 2020-05-01 浙江大学 Protein interaction quantitative detection device under membrane potential regulation and control
CN111089971B (en) * 2019-12-11 2021-01-15 浙江大学 Protein interaction quantitative detection device under membrane potential regulation and control

Similar Documents

Publication Publication Date Title
US7244913B2 (en) Temperature regulator for microchemical chip
US8151575B2 (en) Temperature variation apparatus
TWI310890B (en) Apparatus for controlling fluid temperature and method thereof
TWI591174B (en) A non contact real time micro polymerase chain reaction system and method thereof
CN102053100B (en) Automatic measuring instrument for parameter of thermoelectric material
JP2008035859A (en) Instrument for heating and cooling
CN104263634B (en) A kind of streaming aggregate polymerase chain reaction circulating-heating instrument based on capillary tube and heating means
CN206741339U (en) A kind of quick accuracy-control system of Miniature biochemical analysis instrument sample detection room temperature
EP2015041A1 (en) An apparatus and a method for measuring the body core temperature for elevated ambient temperatures
CN206624885U (en) The module mechanism of PCR gene amplification instrument
TWI342958B (en) Cooling control device for use in a press coupling mechanism of a testing machine
JP2005283553A (en) Patch clump device
CN101735949B (en) Temperature change device
Wielgoszewski et al. Standard-based direct calibration method for scanning thermal microscopy nanoprobes
JP7046099B2 (en) A device for measuring the velocity or flow rate of gas
CN100559175C (en) Peltier low temperature differential heat analyzer
CN103374510B (en) PCR (Polymerase Chain Reaction) device based on low-melting-point metal liquid drop and implantation method of PCR device
JP2000258491A (en) Heating and cooling device and electrical characteristic evaluation device
WO2005068066A1 (en) Temperature controller and protein crystallizer utilizing the same
JP4851822B2 (en) Micro chemical chip
JP2009097882A (en) Device for measuring amount of insulated heat
RU2624806C1 (en) Thermoelectric semiconductor device for thermoodontometry
KR20100117922A (en) Pcr apparatus increasing dna
JP2006196310A (en) Movable probe apparatus for electron microscope, and specimen observing method with electron microscope
KR102667763B1 (en) Apparatus for gene amplification