JP2005283259A - Sensor using pressure sensitive material and its manufacturing method - Google Patents

Sensor using pressure sensitive material and its manufacturing method Download PDF

Info

Publication number
JP2005283259A
JP2005283259A JP2004096178A JP2004096178A JP2005283259A JP 2005283259 A JP2005283259 A JP 2005283259A JP 2004096178 A JP2004096178 A JP 2004096178A JP 2004096178 A JP2004096178 A JP 2004096178A JP 2005283259 A JP2005283259 A JP 2005283259A
Authority
JP
Japan
Prior art keywords
pressure
sensor
sensitive material
sensitive
fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004096178A
Other languages
Japanese (ja)
Other versions
JP4192244B2 (en
Inventor
Koji Miyake
晃司 三宅
Kiyomi Tsukagoshi
清美 塚越
Wataru Mizutani
亘 水谷
Takao Ishida
敬雄 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2004096178A priority Critical patent/JP4192244B2/en
Publication of JP2005283259A publication Critical patent/JP2005283259A/en
Application granted granted Critical
Publication of JP4192244B2 publication Critical patent/JP4192244B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To amplify and improve mechanically and structurally pressure measuring sensitivity by microprocessing a pressure sensitive material including a pressure-sensitive coloring matter to form fine self-standing bodies. <P>SOLUTION: In this sensor comprising a material including the pressure-sensitive coloring matter, the pressure sensitive material is used, characterized by being equipped with fine self-standing slices or fine membranous or beam-shaped structures having the maximum external dimension of 1-500 μm. Otherwise, in the sensor comprising the material including the pressure-sensitive coloring matter, the pressure sensitive material is used, characterized by being equipped with fine projecting or granular structures having the diameter of 1-500 μm. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

マイクロ流路を用いた化学物質・バイオ材料の分析、MEMS構造などの局所的環境をモニターすることができる微細な感圧材料を用いたセンサ及びその製造方法に関する。なお、明細書中で使用する「感圧材料」は感圧色素を含有する材料を意味することとする。 The present invention relates to a sensor using a fine pressure-sensitive material capable of monitoring a local environment such as analysis of chemical substances and biomaterials using a microchannel and a MEMS structure, and a method for manufacturing the same. As used herein, “pressure sensitive material” means a material containing a pressure sensitive dye.

一般に、感圧色素はシリコンゴムなどに入れて感圧塗料として使用され、航空機などに塗布し風洞実験に用いられてきた。この風洞実験では、感圧塗料が物体表面に密着した薄膜状態で使用され、圧力分布に即した強度の光を発することから、圧力を視覚化し計測するものである。
しかし、この技術は感圧材料をフィルム状にして固体表面を被覆した塗料型センサであり、感圧材料を小型化すると色素の量が減少し、発光強度が不足する問題が生じる。したがって、微小な領域のセンシング又はモニタリングには感度上の限界があり、壁面に塗布した薄膜状態で微細構造内部の圧力、含有分子等を測定するのは困難である。
In general, a pressure-sensitive dye is used as a pressure-sensitive paint in silicon rubber or the like, and applied to an aircraft or the like and used in a wind tunnel experiment. In this wind tunnel experiment, pressure-sensitive paint is used in a thin film state that is in close contact with the surface of the object, and emits light having an intensity according to the pressure distribution, so that pressure is visualized and measured.
However, this technique is a paint-type sensor in which a pressure-sensitive material is formed into a film and coated on a solid surface. When the pressure-sensitive material is miniaturized, the amount of pigment is reduced, and there is a problem that light emission intensity is insufficient. Therefore, there is a sensitivity limit in sensing or monitoring a minute region, and it is difficult to measure the pressure inside the microstructure, the contained molecules, etc. in the state of a thin film coated on the wall surface.

一方、マイクロTAS(Total Analysis System)等に使われるマイクロ流路内の流れの可視化にはPIV(粒子画像流速測定法)を応用した研究などがなされている。しかし、これには溶液に特殊な微粒子を加えて実施されるものであり、汎用性がないという問題がある。
他方、シリコンを微細加工することによって作られたマイクロ・カンチレバーを用いた化学センサが開発されている。これは、レバーの片面に特定の分子を吸着する薄膜を作製し、吸着による応力変化に対応したレバーの曲がり具合をレーザーによる光テコ方式で検出するものである(非特許文献1参照)。
このようなマイクロ・カンチレバーによる化学センサでは、検出に用いる光学系の位置あわせが必要であり、センサの取扱いが煩雑となる。そのため、流路内の多数の場所でモニタリングを行うのは困難である。
On the other hand, studies using PIV (particle image flow velocity measurement method) have been made to visualize the flow in the micro flow path used for micro TAS (Total Analysis System) and the like. However, this is performed by adding special fine particles to the solution, and there is a problem that it is not versatile.
On the other hand, chemical sensors using micro-cantilevers made by microfabrication of silicon have been developed. In this method, a thin film that adsorbs specific molecules on one side of the lever is manufactured, and the bending state of the lever corresponding to the stress change due to the adsorption is detected by an optical lever method using a laser (see Non-Patent Document 1).
Such a chemical sensor using a micro-cantilever requires alignment of an optical system used for detection, and the handling of the sensor becomes complicated. Therefore, it is difficult to perform monitoring at a large number of locations in the flow path.

また、機能性高分子を溶剤に混合して感圧塗料とすることで、スプレーや塗布によって均一な特性の薄膜センサを得るという感圧色素を担持した機能性高分子並びにそれを用いた感圧塗料及び感圧素子が開示されている。しかし、これは機械的な増幅構造を持たせるものではないので、微細構造の壁面に塗布した場合にも、十分な感度を持ちうるか問題である(特許文献1参照)。
"Observationof a chemical reaction using a micromechanical sensor" J.K. Gimzewski etal. Chem. Phys. Lett. 217 (1994) 589-594. 特開2003−270145号公報
In addition, a functional polymer carrying a pressure sensitive dye that can obtain a thin film sensor with uniform characteristics by spraying or coating by mixing a functional polymer with a solvent to form a pressure sensitive paint, and pressure sensitivity using the same A paint and a pressure sensitive element are disclosed. However, since this does not give a mechanical amplification structure, there is a problem whether sufficient sensitivity can be obtained even when it is applied to the wall surface of a fine structure (see Patent Document 1).
"Observation of a chemical reaction using a micromechanical sensor" JK Gimzewski etal. Chem. Phys. Lett. 217 (1994) 589-594. JP 2003-270145 A

本発明の目的は、計測、視覚化することが困難だった微細流路内部の圧力分布をモニターする手法を提供することであり、面を被覆する薄膜ではなく、自立する微小なセンサを作製することにより、圧力測定感度を機械的又は構造的に増幅し向上させるものである。また、これによって感圧材料とセンサ材料を組み合わせて微小領域の環境をモニターし、さらにセンサ材料の選択により、物理的パラメータから化学、生物関連分子まで適用可能とする。 An object of the present invention is to provide a technique for monitoring the pressure distribution inside a micro flow channel that has been difficult to measure and visualize, and to produce a self-supporting micro sensor instead of a thin film covering the surface. Thus, the pressure measurement sensitivity is mechanically or structurally amplified and improved. In addition, the pressure sensitive material and the sensor material are combined to monitor the environment in a minute region, and the sensor material can be selected to apply from physical parameters to chemical and biological molecules.

本発明の目的を達成するために鋭意研究を進めたところ、感圧色素を含有する感圧材料を微細加工し、微小な自立体とすることにより、圧力測定感度を機械的又は構造的に増幅し向上させることができるとの知見を得た。 As a result of diligent research to achieve the object of the present invention, pressure-sensitive materials containing pressure-sensitive dyes are microfabricated to form microscopic self-solids, thereby amplifying pressure measurement sensitivity mechanically or structurally. And gained knowledge that it can be improved.

本発明は、この知見に基づいて、
1)感圧色素を含有する材料からなり、大きさ1〜500μmの微細な自立薄片又は膜状若しくは梁状構造体を備えていることを特徴とする感圧材料を用いたセンサ、2)感圧色素を含有する材料からなり、直径1〜500μmの微細な凸状又は粒状構造体を備えていることを特徴とする感圧材料を用いたセンサ、3)バックグラウンドとなる発光を抑えて検出感度を増すため、検出部位にのみ感圧材料を用いたことを特徴とする上記1又は2記載の感圧材料を用いたセンサ、4)感圧材料とセンサ材料とを張り合わせることにより、温度・湿度変化に対応して内部応力を発生し、環境の変化をモニターすることを特徴とする上記1〜3のいずれかに記載の感圧材料を用いたセンサ、5)感圧材料の微細構造の一部に分子認識・選択吸着機能を与えることにより、特定分子の吸着を行い、吸着によって発生する応力を検出することを特徴とする上記1〜3のいずれかに記載の感圧材料を用いたセンサ、6)感圧材料とセンサ材料を組み合わせた微細な自立薄片又は膜状若しくは梁状構造体又は凸状若しくは粒状構造体からなり、これを特定の固体表面に表面に付着・結合させ、発光により固体表面又はその近傍の局所的情報をモニターすることを特徴とする請求項1〜3のいずれかに記載の感圧材料を用いたセンサ、7)マイクロ流路内に感圧材料を備えた微細センサを1又は複数個の配置し、マイクロ流路内の環境の変化をモニターすることを特徴とする上記1〜6のいずれかに記載の感圧材料を用いたセンサを提供する。
The present invention is based on this finding.
1) A sensor using a pressure-sensitive material made of a material containing a pressure-sensitive dye and having a fine free-standing thin piece having a size of 1 to 500 μm or a film-like or beam-like structure, 2) A sensor using a pressure-sensitive material made of a material containing a pressure dye and having a fine convex or granular structure with a diameter of 1 to 500 μm, and 3) detection by suppressing light emission as a background A sensor using the pressure-sensitive material according to 1 or 2 above, wherein the pressure-sensitive material is used only at a detection site in order to increase sensitivity, and 4) the temperature is measured by bonding the pressure-sensitive material and the sensor material together. A sensor using the pressure-sensitive material according to any one of the above 1 to 3, which generates an internal stress in response to a change in humidity and monitors environmental changes, and 5) a microstructure of the pressure-sensitive material Molecular recognition and selective adsorption functions A sensor using the pressure-sensitive material according to any one of 1 to 3 above, wherein a specific molecule is adsorbed to detect the stress generated by the adsorption, and 6) the pressure-sensitive material and the sensor material It consists of a fine self-supporting flake, a film-like or beam-like structure, or a convex-like or granular structure that is attached to and bonded to a specific solid surface, and local information on or near the solid surface by light emission The sensor using the pressure-sensitive material according to any one of claims 1 to 3, and 7) one or a plurality of fine sensors each including the pressure-sensitive material in the microchannel. The present invention provides a sensor using the pressure-sensitive material according to any one of 1 to 6 above, which monitors environmental changes in a microchannel.

また、さらに本発明は、8)感圧色素を含有する材料を微細加工することにより、同材料からなる大きさ1〜500μmの微細な自立薄片又は膜状若しくは梁状構造体をマスター上に形成したことを特徴とする感圧材料を用いたセンサの製造方法、9)感圧材料を微細加工することにより、同材料からなる直径1〜500μmの微細な凸状又は粒状構造体をマスター上に形成したことを特徴とする感圧材料を用いたセンサの製造方法、10)バックグラウンドとなる発光を抑えて検出感度を増すために、検出部位にのみ感圧材料を形成することを特徴とする上記8又は9記載の感圧材料を用いたセンサの製造方法、11)温度・湿度変化に対応する内部応力を発生させ、これによって環境の変化をモニターするために、感圧材料とセンサ材料とを張り合わせることを特徴とする上記8〜10のいずれかに記載の感圧材料を用いたセンサの製造方法、12)特定分子の吸着を行い、吸着によって発生する応力を検出するために、感圧材料の微細構造の一部に分子認識・選択吸着機能材料を形成することを特徴とする上記8〜10のいずれかに記載の感圧材料を用いたセンサの製造方法、13)感圧材料とセンサ材料を組み合わせた微細な自立薄片又は膜状若しくは梁状構造体又は凸状若しくは粒状構造体からなり、これを特定の固体表面に表面に付着・結合させ、発光により前記固体表面又はその近傍の局所的情報をモニターすることを特徴とする請求項8〜10のいずれかに記載の感圧材料を用いたセンサの製造方法。14)マイクロ流路内の環境の変化をモニターするために、マイクロ流路内に感圧材料を備えた微細センサを1又は複数個形成することを特徴とする上記8〜13のいずれかに記載の感圧材料を用いたセンサの製造方法、15)モールディング法又はグラフト重合法により感圧材料と異種材料のセンサとを複合させることを特徴とする上記8〜14のいずれかに記載の感圧材料を用いたセンサの製造方法を提供する。 Furthermore, the present invention further comprises 8) forming a fine free-standing thin piece or film-like or beam-like structure of 1 to 500 μm in size on the master by finely processing a material containing a pressure-sensitive dye. 9) A method for producing a sensor using a pressure-sensitive material, and 9) finely processing a pressure-sensitive material to form a fine convex or granular structure having a diameter of 1 to 500 μm on the master. 10) A method of manufacturing a sensor using a pressure-sensitive material characterized by being formed. 10) A method of forming a pressure-sensitive material only at a detection site in order to suppress background light emission and increase detection sensitivity. A method for producing a sensor using the pressure-sensitive material according to 8 or 9 above, 11) In order to generate an internal stress corresponding to a temperature / humidity change and thereby monitor an environmental change, the pressure-sensitive material and the sensor material 12) A method for producing a sensor using the pressure-sensitive material according to any one of 8 to 10 above, wherein 12) a specific molecule is adsorbed and a stress generated by the adsorption is detected. A method for producing a sensor using the pressure sensitive material according to any one of 8 to 10 above, wherein a molecular recognition / selective adsorption functional material is formed in a part of the fine structure of the pressure material, and 13) the pressure sensitive material It consists of a fine self-supporting flake, a film-like or beam-like structure, or a convex-like or granular structure that is a combination of the sensor material and the sensor material. The method for manufacturing a sensor using the pressure-sensitive material according to claim 8, wherein local information of the sensor is monitored. 14) One or more fine sensors each including a pressure-sensitive material are formed in the microchannel in order to monitor environmental changes in the microchannel. 15. A method for producing a sensor using a pressure-sensitive material, 15) The pressure-sensitive material according to any one of 8 to 14 above, wherein a pressure-sensitive material and a sensor of a different material are combined by a molding method or a graft polymerization method. A method for manufacturing a sensor using a material is provided.

本発明は、自立する微小なセンサを作製することにより、圧力測定感度を機械的又は構造的に増幅し向上させることができ、計測、視覚化することが困難だった微細流路内部の圧力分布をモニターすることが可能となるという優れた効果を有する。また、これによって感圧材料とセンサ材料を組み合わせて微小領域の環境をモニターし、さらにセンサ材料の選択により、物理的パラメータから化学、生物関連分子までモニタリング又はセンシングが可能であるという著しい効果を有する。しかも、従来のカンチレバーのような位置合わせのような煩雑な手続は不要であり、容易に多点のモニタリング又はセンシングを可能にするという特徴を有する。 The present invention makes it possible to amplify and improve the pressure measurement sensitivity mechanically or structurally by producing a small sensor that is self-supporting, and the pressure distribution inside the microchannel that has been difficult to measure and visualize It has an excellent effect that it is possible to monitor. This also has a remarkable effect that the environment of a micro area is monitored by combining a pressure sensitive material and a sensor material, and further, monitoring or sensing can be performed from a physical parameter to a chemical or biological related molecule by selecting a sensor material. . In addition, a complicated procedure such as positioning as in the conventional cantilever is not required, and multipoint monitoring or sensing can be easily performed.

本発明者らは、感圧色素を含有する感圧材料に微細な構造を付与することにより機械的又は構造的な増感を行うこと及び機能性材料と組み合わせることにより微小領域のモニター機能を持たせることを発案した。
従来は、巨大な構造にのみ可能と考えられてきた手法であったが、これをミクロな検出手法として用い、増感を行うものである。したがって、単に表面を被覆する薄膜状だけでなく、自立したミクロな機械要素とし、機械的変形によって圧力感度の増幅を行うものである。
このため、感圧色素を含有するポリマーをマイクロメートルの微細構造に加工することが必要となった。
The present inventors have a micro-region monitoring function by performing mechanical or structural sensitization by adding a fine structure to a pressure-sensitive material containing a pressure-sensitive dye and combining it with a functional material. It was invented.
Conventionally, the technique has been considered to be possible only for a huge structure, but this is used as a micro detection technique to perform sensitization. Therefore, it is not only a thin film covering the surface but also a self-supporting micro mechanical element, and the pressure sensitivity is amplified by mechanical deformation.
For this reason, it has become necessary to process polymers containing pressure sensitive dyes into micrometer microstructures.

本発明を図面に基づいて説明する。図1に、パターニングしたマスター2上に液状前駆体1であるポリマー((Poly(dimethylsiloxane),PDMS)を流し込んで固化させ、型を転写する手順と作製した微細構造の一例を示す(これ自体は、マイクロコンタクト・プリントの手法であり公知である)。
Wangらにより、カンチレバーとなるマスター構造の上に液状の前駆体を流し込み、ポリマー材のカンチレバーを作製した例がある(Scanning Probe Contact PrintingX. Wang et al. Langmuir
19 (2003)8951)。しかし、この場合のカンチレバー構造には、圧力検出機能を含ませるという発想はない。
本発明は、感圧色素を含有する材料を最大外形寸法が1〜500μmの微細な自立薄片又は膜状若しくは梁状構造体、又は直径1〜500μmの微細な凸状又は粒状構造体とし、これをセンサとすることに大きな特徴を有する。図1の下段の図に作製した複数の梁状構造体を示す。ここで梁状構造体の最大外形寸法は長さになるので、この構造体の最大外形寸法を1〜500μmの範囲とする。
The present invention will be described with reference to the drawings. FIG. 1 shows an example of the procedure for pouring a polymer ((Poly (dimethylsiloxane), PDMS)), which is a liquid precursor 1, onto a patterned master 2 and solidifying it, and transferring the mold. This is a known technique of microcontact printing).
Wang et al. (Scanning Probe Contact Printing X. Wang et al. Langmuir) produced a cantilever made of a polymer material by pouring a liquid precursor onto a master structure to be a cantilever.
19 (2003) 8951). However, there is no idea that the pressure detection function is included in the cantilever structure in this case.
In the present invention, the pressure-sensitive dye-containing material is a fine free-standing thin piece or film-like or beam-like structure having a maximum outer dimension of 1 to 500 μm, or a fine convex or granular structure having a diameter of 1 to 500 μm. It has a big feature in using as a sensor. A plurality of beam-like structures produced in the lower diagram of FIG. 1 are shown. Here, since the maximum outer dimension of the beam-like structure is a length, the maximum outer dimension of the structure is set in a range of 1 to 500 μm.

これによって、機械的変形によって圧力感度の大きな増幅をもたらすことが可能となった。これを、薄片状の自立体を用いた例について説明する。図2は、微細加工した感圧材料(ポリマー構造体3)による増感の例を示す説明図であり、左図は微小な力が加わる前、右図はそれが加わった状態を示す。この場合の最大外形寸法は長さ方向になり、この長さを1〜500μmの範囲とする。
図2の下段図は膜状構造による圧力感度を向上させる原理を示す。中央位置にある円柱状の部分は空洞になっていて、円形の表面だけに感圧材料(ポリマー構造体3)を有する。この場合、円形の感圧材料(ポリマー構造体3)の直径が最大外形寸法となり、この構造体の最大外形寸法を1〜500μmの範囲とする。この場合は、円形の膜を極めて薄くできるので、微小な力に対して敏感に作用する。
すなわち、この図2に示すように、感圧材料で作製した自立体の薄片レバー構造や膜状構造を用いると、感圧材料に加わる微小な力が大きな変形を引き起こすことが分かる。これによって、微細な薄片ではあるが、センサ感度が著しく向上する。
As a result, it is possible to bring about a large amplification of pressure sensitivity by mechanical deformation. This will be described with respect to an example using a flaky self-solid. FIG. 2 is an explanatory view showing an example of sensitization by a micro-processed pressure-sensitive material (polymer structure 3). The left figure shows a state before a minute force is applied, and the right figure shows a state where it is applied. In this case, the maximum external dimension is in the length direction, and this length is in the range of 1 to 500 μm.
The lower diagram of FIG. 2 shows the principle of improving the pressure sensitivity by the membrane structure. The cylindrical portion at the center is hollow and has a pressure sensitive material (polymer structure 3) only on a circular surface. In this case, the diameter of the circular pressure-sensitive material (polymer structure 3) is the maximum external dimension, and the maximum external dimension of this structure is in the range of 1 to 500 μm. In this case, since the circular film can be made extremely thin, it acts sensitively to a minute force.
That is, as shown in FIG. 2, it can be seen that when a self-solid thin lever structure or a film-like structure made of a pressure-sensitive material is used, a minute force applied to the pressure-sensitive material causes a large deformation. Thereby, although it is a fine flake, sensor sensitivity improves remarkably.

また、感圧材料を全面に用いるのではなく、感圧色素を添加したポリマーを特定部位に限定することで、バックグラウンドとなる蛍光を減らし、検出感度を向上させることも可能である。
この目的には、例えばマスター上にポリマーを流し込んで固化させる手法と、モールディングを組み合わせること(先に作製した感圧分子を含まないポリマーのスタンプに別のパターンのスタンプを押し当て、感圧分子を混ぜた液状の前駆体を流し込んでマイクロスケールの隙間に満たし、その状態で固化させた後、スタンプをとりはずす)で実現できる。
Further, instead of using a pressure-sensitive material on the entire surface, by limiting the polymer to which the pressure-sensitive dye is added to a specific site, it is also possible to reduce fluorescence as a background and improve detection sensitivity.
For this purpose, for example, a method of pouring a polymer onto a master and solidifying it with molding (pressing a stamp of another pattern on a polymer stamp that does not contain a pressure-sensitive molecule prepared earlier, This can be achieved by pouring the mixed liquid precursor into the microscale gap, solidifying in that state, and then removing the stamp.

図3の(a)に示すように、感圧材料を熱膨張係数の異なる材料(センサ材料)を張り合わせると、バイメタルと同様に温度変化に対応した変形が生じ、発光強度が変化する温度センサが実現できる。
同様に、特定溶媒に対して膨潤する材料(例えば親水性ポリマーなど)と組み合わせることで、例えば水分量に対応した歪みを発光強度でモニターすることにより湿度センサとすることが可能となる。
As shown in FIG. 3A, when a pressure-sensitive material is bonded to a material (sensor material) having a different coefficient of thermal expansion, a temperature sensor in which the light emission intensity changes as a result of deformation corresponding to a temperature change similar to a bimetal. Can be realized.
Similarly, when combined with a material that swells with respect to a specific solvent (for example, a hydrophilic polymer), for example, a strain corresponding to the amount of water can be monitored by the light emission intensity, whereby a humidity sensor can be obtained.

感圧材料の一面に分子認識機能を有する分子をグラフト重合法などにより結合させることも可能である。具体的には、ポリマースタンプ表面に短時間(30-60秒)酸素プラズマをあて、水酸基などの活性な部位をつくり、そこに別のポリマーを化学的に結合させる。
これによって、スタンプ表面に親水性、分子認識など新たに合成したポリマーの持つ性質を付加することができる(Microcontact Printing
Using Poly(dimethylsiloxane) Stamps Hydrophilized by Poly(ethylene oxide)
Silanes E.Delamarche et
al.Langmuir 19 (2003)8749参照)。
It is also possible to bond a molecule having a molecular recognition function to one surface of the pressure-sensitive material by a graft polymerization method or the like. Specifically, an oxygen plasma is applied to the surface of the polymer stamp for a short time (30-60 seconds) to create an active site such as a hydroxyl group, and another polymer is chemically bonded thereto.
This makes it possible to add the properties of newly synthesized polymers such as hydrophilicity and molecular recognition to the stamp surface (Microcontact Printing).
Using Poly (dimethylsiloxane) Stamps Hydrophilized by Poly (ethylene oxide)
Silanes E. Delamarche et
al. Langmuir 19 (2003) 8749).

図3の(b)のように、レバー片面にのみ選択的分子吸着表面(分子認識機能をもつ面)7を作ることにより、目的分子6と結合して生じる応力が感圧材料を変形させ、発光強度を増加させることができる。そして、分子認識・選択吸着の機能性分子を変えることにより別の分子を検出するセンサを実現させることができる。 As shown in FIG. 3B, by creating a selective molecular adsorption surface (surface having a molecular recognition function) 7 only on one side of the lever, the stress generated by binding to the target molecule 6 deforms the pressure sensitive material, The emission intensity can be increased. A sensor that detects another molecule can be realized by changing the functional molecule for molecular recognition and selective adsorption.

さらに、図3の(a)(c)のように、感圧材料4とセンサ材料5を張り合わせることにより、センサを実現させることができる。また、図3の(d)のように、センサ材料5の中に感圧材料4を包含させるなどの形で組み合わせた微細な凸状又は粒状構造体(微小片)も、センサ材料5の変形によって応力を持ち、発光強度を増加させることができる。その具体例の模式図を図3の(e)に示す。
これらの微細な微細な自立薄片又は膜状若しくは梁状構造体又は凸状若しくは粒状構造体(微小片)からなる微細センサ粒子をマイクロ流路の内壁などに付着させ、局所的な環境をモニターすることができる。その一例として、図4にマイクロ流路内に、目的分子6の微細センサ(ポリマー構造体3)を取り付けた様子を示す。
Furthermore, as shown in FIGS. 3A and 3C, the sensor can be realized by bonding the pressure-sensitive material 4 and the sensor material 5 together. Further, as shown in FIG. 3 (d), a fine convex or granular structure (small piece) combined in such a manner that the pressure sensitive material 4 is included in the sensor material 5 is also deformed of the sensor material 5. Can increase the light emission intensity. A schematic diagram of a specific example is shown in FIG.
These fine fine self-supporting thin pieces or fine sensor particles made of a film-like or beam-like structure or a convex or granular structure (minute piece) are attached to the inner wall of the micro-channel to monitor the local environment. be able to. As an example, FIG. 4 shows a state where a fine sensor (polymer structure 3) of the target molecule 6 is attached in the microchannel.

従来巨大な構造物に使われていた感圧塗料材料であるが、微小体積(したがって発光する分子の数も少ない)中の感圧分子から十分な発光強度が得られるか不明であった。そこで、感圧分子としてPlatinum octaethylporphine(PtOEP)を用い、ポリマー前駆体溶液中にPtOEPを混入し、ガラス表面に薄く塗布して固化させることによってPDMSに包含した微細な凸状の構造体を作製した。
混入するために用いた溶媒は文献に従って methyl isobutyl ketone を用いた。(文献:Polymer/Silica Composite Films as Luminescent Oxygen
Sensors
Lu et al. Macromolecules
34 (2001)1917 参照)。
図5は光学顕微鏡像と蛍光顕微鏡下での検証実験の結果を示す。この感圧材料4の凸部に、金属ワイヤ8により局所的に圧力を加えて蛍光の発光強度の変化を記録した。200μmのワイヤ周辺(約500μm幅)の構造が発光していることを市販のCCDカメラの感度で検出・記録することができた。
Although it is a pressure-sensitive coating material that has been used for huge structures in the past, it was unclear whether sufficient light emission intensity could be obtained from pressure-sensitive molecules in a small volume (thus, the number of molecules that emit light was small). Therefore, platinum octaethylporphine (PtOEP) was used as a pressure-sensitive molecule, PtOEP was mixed into the polymer precursor solution, thinly applied to the glass surface and solidified to produce a fine convex structure included in PDMS. .
The solvent used for mixing was methyl isobutyl ketone according to the literature. (Reference: Polymer / Silica Composite Films as Luminescent Oxygen
Sensors
Lu et al. Macromolecules
34 (2001) 1917).
FIG. 5 shows an optical microscope image and the result of a verification experiment under a fluorescence microscope. A change in fluorescence emission intensity was recorded by locally applying pressure to the convex portion of the pressure-sensitive material 4 with a metal wire 8. The fact that the structure around the 200 μm wire (about 500 μm wide) emits light could be detected and recorded with the sensitivity of a commercially available CCD camera.

本発明は、自立する微小なセンサを作製することにより、圧力測定感度を機械的又は構造的に増幅し向上させることができ、計測、視覚化することが困難だった微細流路内部の圧力分布をモニターすることが可能となる。また、これによって感圧材料とセンサ材料を組み合わせて微小領域の環境をモニターし、さらにセンサ材料の選択により、物理的パラメータから化学、生物関連分子までモニタリング又はセンシングが可能である。このように、これらのセンサを特定箇所に付着させることで、微細構造内部のさまざまな情報の取得に適用できる。 The present invention makes it possible to amplify and improve the pressure measurement sensitivity mechanically or structurally by producing a small sensor that is self-supporting, and the pressure distribution inside the microchannel that has been difficult to measure and visualize Can be monitored. In addition, the pressure sensitive material and the sensor material can be combined to monitor the environment in a minute region. Further, by selecting the sensor material, it is possible to monitor or sense from physical parameters to chemical and biological molecules. Thus, by attaching these sensors to specific locations, it can be applied to acquisition of various information inside the microstructure.

微細加工したポリマー(PDMS)のAFM像を示す図である。It is a figure which shows the AFM image of the finely processed polymer (PDMS). 自立薄片(レバー)構造(上図)と膜構造(下図)による圧力感度の機械的増感の原理を示す説明図である。It is explanatory drawing which shows the principle of the mechanical sensitization of the pressure sensitivity by a self-supporting thin piece (lever) structure (upper figure) and a film | membrane structure (lower figure). 様々なセンサ構造の例を示す図であり、それぞれ(a)感圧材料とセンサ材料を張り合わせたバイメタル型、(b)感圧材料の片面に分子認識・選択吸着性を与えた化学・バイオセンサ、(c)張り合わせ型微小片センサ、(d)感圧材料を内部に包含した微粒子型センサ、(e)センサ材料が変形し、感圧材料の発光強度が変化する動作の模式図である。It is a figure which shows the example of various sensor structures, respectively, (a) Bimetallic type which bonded pressure sensitive material and sensor material, (b) Chemical and biosensor which gave molecular recognition and selective adsorption property to one side of pressure sensitive material (C) Bonding type micro piece sensor, (d) Particulate type sensor including pressure-sensitive material therein, (e) A schematic diagram of an operation in which the light emission intensity of the pressure-sensitive material changes due to deformation of the sensor material. マイクロ流路内に微細センサを取り付けた模式図である。It is the schematic diagram which attached the fine sensor in the microchannel. 光学顕微鏡像と蛍光顕微鏡下での微小領域からの発光検証実験の結果を示す図である。It is a figure which shows the result of the light emission verification experiment from the micro area | region under an optical microscope image and a fluorescence microscope.

符号の説明Explanation of symbols

1 液状前駆体(固化する前の状態)
2 型(マスター)
3 ポリマー構造体
4 感圧材料
5 センサ材料
6 目的分子
7 分子認識機能を持つ面
8 金属ワイヤ
1 Liquid precursor (state before solidification)
Type 2 (Master)
3 Polymer Structure 4 Pressure Sensitive Material 5 Sensor Material 6 Target Molecule 7 Surface with Molecular Recognition Function 8 Metal Wire

Claims (15)

感圧色素を含有する材料からなり、最大外形寸法が1〜500μmの微細な自立薄片又は膜状若しくは梁状構造体を備えていることを特徴とする感圧材料を用いたセンサ。 A sensor using a pressure-sensitive material, which is made of a material containing a pressure-sensitive dye and has a fine free-standing thin piece or a film-like or beam-like structure having a maximum outer dimension of 1 to 500 μm. 感圧色素を含有する材料からなり、直径1〜500μmの微細な凸状又は粒状構造体を備えていることを特徴とする感圧材料を用いたセンサ。 A sensor using a pressure-sensitive material, which is made of a material containing a pressure-sensitive dye and has a fine convex or granular structure having a diameter of 1 to 500 μm. バックグラウンドとなる発光を抑えて検出感度を増すため、検出部位にのみ感圧材料を用いたことを特徴とする請求項1又は2記載の感圧材料を用いたセンサ。 3. A sensor using a pressure-sensitive material according to claim 1, wherein the pressure-sensitive material is used only at a detection site in order to suppress light emission as a background and increase detection sensitivity. 感圧材料とセンサ材料とを張り合わせることにより、温度・湿度変化に対応して内部応力を発生し、環境の変化をモニターすることを特徴とする請求項1〜3のいずれかに記載の感圧材料を用いたセンサ。 The pressure-sensitive material and the sensor material are bonded together to generate an internal stress corresponding to a change in temperature and humidity, and monitor the environmental change. Sensor using pressure material. 感圧材料の微細構造の一部に分子認識・選択吸着機能を与えることにより、特定分子の吸着を行い、吸着によって発生する応力を検出することを特徴とする請求項1〜3のいずれかに記載の感圧材料を用いたセンサ。 4. A specific molecule is adsorbed by providing a molecular recognition / selective adsorption function to a part of the fine structure of the pressure-sensitive material, and a stress generated by the adsorption is detected. Sensor using the pressure-sensitive material described. 感圧材料とセンサ材料を組み合わせた微細な自立薄片又は膜状若しくは梁状構造体又は凸状若しくは粒状構造体からなり、これを特定の固体表面に表面に付着・結合させ、発光により固体表面又はその近傍の局所的情報をモニターすることを特徴とする請求項1〜3のいずれかに記載の感圧材料を用いたセンサ。 It consists of a fine free-standing thin piece or a film-like or beam-like structure or a convex-like or granular structure that combines pressure-sensitive material and sensor material, and this is attached to and bonded to a specific solid surface. The sensor using the pressure-sensitive material according to any one of claims 1 to 3, wherein local information in the vicinity thereof is monitored. マイクロ流路内に感圧材料を備えた微細センサを1又は複数個の配置し、マイクロ流路内の環境の変化をモニターすることを特徴とする請求項1〜6のいずれかに記載の感圧材料を用いたセンサ。   The sensation according to any one of claims 1 to 6, wherein one or a plurality of fine sensors each having a pressure-sensitive material are arranged in the microchannel and the change in the environment in the microchannel is monitored. Sensor using pressure material. 感圧色素を含有する材料を微細加工することにより、同材料からなる大きさ1〜500μmの微細な自立薄片又は膜状若しくは梁状構造体をマスター上に形成したことを特徴とする感圧材料を用いたセンサの製造方法。 A pressure-sensitive material characterized in that a fine free-standing thin piece or a film-like or beam-like structure having a size of 1 to 500 μm is formed on a master by finely processing a material containing a pressure-sensitive dye. Manufacturing method of sensor using 感圧材料を微細加工することにより、同材料からなる直径1〜500μmの微細な凸状又は粒状構造体をマスター上に形成したことを特徴とする感圧材料を用いたセンサの製造方法。 A method for producing a sensor using a pressure-sensitive material, wherein a fine convex or granular structure having a diameter of 1 to 500 μm made of the same material is formed on a master by finely processing the pressure-sensitive material. バックグラウンドとなる発光を抑えて検出感度を増すために、検出部位にのみ感圧材料を形成することを特徴とする請求項9又は10記載の感圧材料を用いたセンサの製造方法。 The method for producing a sensor using a pressure-sensitive material according to claim 9 or 10, wherein the pressure-sensitive material is formed only at a detection site in order to suppress light emission as a background and increase detection sensitivity. 温度・湿度変化に対応する内部応力を発生させ、これによって環境の変化をモニターするために、感圧材料とセンサ材料とを張り合わせることを特徴とする請求項8〜10のいずれかに記載の感圧材料を用いたセンサの製造方法。 The pressure-sensitive material and the sensor material are bonded together in order to generate an internal stress corresponding to a temperature / humidity change and thereby monitor a change in the environment. A method for manufacturing a sensor using a pressure-sensitive material. 特定分子の吸着を行い、吸着によって発生する応力を検出するために、感圧材料の微細構造の一部に分子認識・選択吸着機能材料を形成することを特徴とする請求項8〜10のいずれかに記載の感圧材料を用いたセンサの製造方法。 The molecular recognition / selective adsorption functional material is formed on a part of the fine structure of the pressure-sensitive material in order to adsorb specific molecules and detect stress generated by the adsorption. A method for producing a sensor using the pressure-sensitive material according to claim 1. 感圧材料とセンサ材料を組み合わせた微細な自立薄片又は膜状若しくは梁状構造体又は凸状若しくは粒状構造体からなり、これを特定の固体表面に表面に付着・結合させ、発光により前記固体表面又はその近傍の局所的情報をモニターすることを特徴とする請求項8〜10のいずれかに記載の感圧材料を用いたセンサの製造方法。 It consists of a fine free-standing thin piece or a film-like or beam-like structure or a convex-like or granular structure that combines pressure-sensitive material and sensor material. Or the local information of the vicinity is monitored, The manufacturing method of the sensor using the pressure-sensitive material in any one of Claims 8-10 characterized by the above-mentioned. マイクロ流路内の環境の変化をモニターするために、マイクロ流路内に感圧材料を備えた微細センサを1又は複数個形成することを特徴とする請求項8〜13のいずれかに記載の感圧材料を用いたセンサの製造方法。   14. One or more fine sensors each including a pressure-sensitive material are formed in the micro flow path in order to monitor changes in the environment in the micro flow path. A method for manufacturing a sensor using a pressure-sensitive material. モールディング法又はグラフト重合法により感圧材料と異種材料のセンサとを複合させることを特徴とする請求項8〜14のいずれかに記載の感圧材料を用いたセンサの製造方法。

15. The method for producing a sensor using a pressure-sensitive material according to claim 8, wherein the pressure-sensitive material and the sensor of a different material are combined by a molding method or a graft polymerization method.

JP2004096178A 2004-03-29 2004-03-29 Sensor using pressure sensitive material and method for manufacturing the same Expired - Lifetime JP4192244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004096178A JP4192244B2 (en) 2004-03-29 2004-03-29 Sensor using pressure sensitive material and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004096178A JP4192244B2 (en) 2004-03-29 2004-03-29 Sensor using pressure sensitive material and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2005283259A true JP2005283259A (en) 2005-10-13
JP4192244B2 JP4192244B2 (en) 2008-12-10

Family

ID=35181824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004096178A Expired - Lifetime JP4192244B2 (en) 2004-03-29 2004-03-29 Sensor using pressure sensitive material and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP4192244B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200356753A1 (en) * 2015-04-06 2020-11-12 Identification International, Inc. Systems and methods for capturing images using a pressure sensitive membrane
WO2022080333A1 (en) * 2020-10-16 2022-04-21 国立研究開発法人産業技術総合研究所 Light emitting structure that emits light in accordance with load, load measuring device employing same, and load distribution measuring method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06241852A (en) * 1993-02-12 1994-09-02 Kazuhiro Okada Method and apparatus for measurement of flow rate/ viscosity
JPH11344388A (en) * 1998-06-02 1999-12-14 Ishikawajima Harima Heavy Ind Co Ltd Pressure sensitive paint
JP2000346740A (en) * 1999-06-08 2000-12-15 Mitsubishi Heavy Ind Ltd Optical pressure field-measuring device
JP2001215157A (en) * 2000-02-02 2001-08-10 Natl Inst Of Advanced Industrial Science & Technology Meti Method and system for measuring stress or stress distribution with use of stress emission material
JP2001330523A (en) * 2000-05-24 2001-11-30 Matsushita Electric Ind Co Ltd Contact pressure measuring method
JP2002162354A (en) * 2000-11-27 2002-06-07 Natl Aerospace Lab Optical sensor of oxygen and pressure having for very fast responding function
JP2002228524A (en) * 2001-02-01 2002-08-14 Ishikawajima Harima Heavy Ind Co Ltd Pressure detection sheet, and method and device for pressure detection using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06241852A (en) * 1993-02-12 1994-09-02 Kazuhiro Okada Method and apparatus for measurement of flow rate/ viscosity
JPH11344388A (en) * 1998-06-02 1999-12-14 Ishikawajima Harima Heavy Ind Co Ltd Pressure sensitive paint
JP2000346740A (en) * 1999-06-08 2000-12-15 Mitsubishi Heavy Ind Ltd Optical pressure field-measuring device
JP2001215157A (en) * 2000-02-02 2001-08-10 Natl Inst Of Advanced Industrial Science & Technology Meti Method and system for measuring stress or stress distribution with use of stress emission material
JP2001330523A (en) * 2000-05-24 2001-11-30 Matsushita Electric Ind Co Ltd Contact pressure measuring method
JP2002162354A (en) * 2000-11-27 2002-06-07 Natl Aerospace Lab Optical sensor of oxygen and pressure having for very fast responding function
JP2002228524A (en) * 2001-02-01 2002-08-14 Ishikawajima Harima Heavy Ind Co Ltd Pressure detection sheet, and method and device for pressure detection using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
近岡 裕: "科技庁航技研,感圧塗料で表面の空気圧分布を計測", 日経メカニカル 第525号 NIKKEI MECHANICAL, vol. 第525号, JPN6008042463, 1 June 1998 (1998-06-01), JP, pages 74, ISSN: 0001117242 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200356753A1 (en) * 2015-04-06 2020-11-12 Identification International, Inc. Systems and methods for capturing images using a pressure sensitive membrane
WO2022080333A1 (en) * 2020-10-16 2022-04-21 国立研究開発法人産業技術総合研究所 Light emitting structure that emits light in accordance with load, load measuring device employing same, and load distribution measuring method
JP7411285B2 (en) 2020-10-16 2024-01-11 国立研究開発法人産業技術総合研究所 Light-emitting structure that emits light according to load, load measuring device using the same, and load distribution measuring method

Also Published As

Publication number Publication date
JP4192244B2 (en) 2008-12-10

Similar Documents

Publication Publication Date Title
Abu Hatab et al. Surface-enhanced Raman spectroscopy substrates created via electron beam lithography and nanotransfer printing
Escobedo On-chip nanohole array based sensing: a review
KR100517243B1 (en) Cantilever sensors and transducers
Chen et al. High-performance H2 sensors with selectively hydrophobic micro-plate for self-aligned upload of Pd nanodots modified mesoporous In2O3 sensing-material
US7969570B2 (en) Applications of laser-processed substrate for molecular diagnostics
Ludwig et al. MEMS tools for combinatorial materials processing and high-throughput characterization
US9658087B1 (en) CNT synthesis in confined space and use as artificial hair flow sensor
Martinez et al. SU-8 hollow cantilevers for AFM cell adhesion studies
KR20130066138A (en) Sensor having nano channel structure and method for preparing the same
Jiang et al. Organized arrays of nanostructures in freely suspended nanomembranes
Zamani et al. Recent advances in gold electrode fabrication for low-resource setting biosensing
Arrabito et al. Imbibition of femtoliter-scale DNA-rich aqueous droplets into porous nylon substrates by molecular printing
Sun et al. Surface-enhanced Raman scattering trace-detection platform based on continuous-rolling-assisted evaporation on superhydrophobic surfaces
Cheng et al. An array-based CMOS biochip for electrical detection of DNA with multilayer self-assembly gold nanoparticles
JP4192244B2 (en) Sensor using pressure sensitive material and method for manufacturing the same
McLauchlin et al. Evaporative properties and pinning strength of laser-ablated, hydrophilic sites on lotus-leaf-like, nanostructured surfaces
Andersson et al. Consecutive microcontact printing—ligands for asymmetric catalysis in silicon channels
Ko et al. Nozzle-based precision patterning with micro-/nano fluidics integrated cantilevers
KR102186264B1 (en) Open microfluidic channel integrated biosensor and manufacturing method the same
Aggarwal et al. Microarray fabrication techniques for multiplexed bioassay applications
Pataky et al. Rapid prototyping techniques for the fabrication of biosensors
Shiba et al. Nanomechanical Sensors
Leichle et al. A microcantilever-based picoliter droplet dispenser with integrated force sensors and electroassisted deposition means
WO2019195618A1 (en) Non-contact measurements of fluids, particles and bubbles
TOREN et al. High-throughput Roll-to-roll Production of Bio-functionalized Polymer Components

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350