JP2005283036A - Heat pump type air conditioner - Google Patents

Heat pump type air conditioner Download PDF

Info

Publication number
JP2005283036A
JP2005283036A JP2004101144A JP2004101144A JP2005283036A JP 2005283036 A JP2005283036 A JP 2005283036A JP 2004101144 A JP2004101144 A JP 2004101144A JP 2004101144 A JP2004101144 A JP 2004101144A JP 2005283036 A JP2005283036 A JP 2005283036A
Authority
JP
Japan
Prior art keywords
evaporator
refrigerant
heat
air
heat pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004101144A
Other languages
Japanese (ja)
Other versions
JP4099718B2 (en
Inventor
Keiichi Kimura
恵一 木村
Matsuo Morita
満津雄 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kimura Kohki Co Ltd
Original Assignee
Kimura Kohki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kimura Kohki Co Ltd filed Critical Kimura Kohki Co Ltd
Priority to JP2004101144A priority Critical patent/JP4099718B2/en
Publication of JP2005283036A publication Critical patent/JP2005283036A/en
Application granted granted Critical
Publication of JP4099718B2 publication Critical patent/JP4099718B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1405Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification in which the humidity of the air is exclusively affected by contact with the evaporator of a closed-circuit cooling system or heat pump circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/06Several compression cycles arranged in parallel

Abstract

<P>PROBLEM TO BE SOLVED: To reduce costs of installation and operation by corresponding to air conditioning of various types of special environments. <P>SOLUTION: The heat pump type air conditioner is provided with first and second compression type heat pumps A and B, and first and second humidifiers 5a and 5b. A first evaporator 2a for refrigerant-air heat exchange of the first heat pump A, the first humidifier 5a, a second evaporator 2b for refrigerant-air heat exchange of the second heat pump B, and the second humidifier 5b are arranged in this order in an air blowing direction. One condenser 3 is shared by the first heat pump A and the second heat pump B. Each evaporator 2a and 2b of the first and second heat pumps A and B is composed so as to freely change between refrigerant evaporation and refrigerant condensation. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明はヒートポンプ式空調機に関するものである。   The present invention relates to a heat pump type air conditioner.

電子工場や農業工場、飼育室、穀物倉庫などの特殊環境の空調では、空調用空気に対して加熱と冷却を所定順序で行い適宜加湿して温湿度調整をする必要がある。そのため、たとえば冷水コイル(冷却コイル)と温水コイル(加熱コイル)や加湿器などを備え、熱源水回路を4管式として冷水コイルと温水コイルに冷水と温水を別々に流して運転する方式があるが、4管式の熱源水回路では配管距離が長くて設備コストがかかり、冷水と温水を同時に作る必要があるため熱源機の運転コストもかかる問題がある。   In air conditioning in special environments such as electronic factories, agricultural factories, breeding rooms, and grain warehouses, it is necessary to adjust the temperature and humidity by heating and cooling the air-conditioning air in a predetermined order and appropriately humidifying it. Therefore, for example, there is a system in which a cold water coil (cooling coil), a hot water coil (heating coil), a humidifier, and the like are provided, and the heat source water circuit is a four-pipe type, and the cold water and the hot water coil are separately supplied with cold water and hot water. However, the four-pipe heat source water circuit has a problem that the piping distance is long and the equipment cost is high, and it is necessary to make cold water and hot water at the same time.

また、冷水コイルと温水コイルの替わりに水冷ヒートポンプを使用するとなると、たとえば水冷ヒートポンプのプレート式水熱交換器などは能力維持のため定期的に分解清掃が必要でメンテナンスに手間がかかる問題がある。また、ヒートポンプは空気加熱温度(冷媒凝縮温度)に上限があるため、所望の給気温湿度(特に高温高湿)に対して空気温湿度が低く加湿量を多く必要とする条件では、気化方式で加湿すると蒸発潜熱により所望の給気温度に達しない場合がある。そのため、空調可能な温湿度範囲が狭くなり、圧縮効率ひいては成績係数(COP)が低下する問題がある。   In addition, when a water-cooled heat pump is used instead of the cold-water coil and the hot-water coil, for example, the plate-type water heat exchanger of the water-cooled heat pump has a problem that it requires periodic disassembly and cleaning for maintenance of the capacity and takes time and maintenance. In addition, since the heat pump has an upper limit on the air heating temperature (refrigerant condensation temperature), the vaporization method is used under conditions where the air temperature / humidity is low and a large amount of humidification is required with respect to the desired temperature and humidity (especially high temperature and high humidity). When humidified, the desired supply air temperature may not be reached due to latent heat of vaporization. Therefore, there is a problem that the temperature / humidity range in which air conditioning can be performed becomes narrow, and the compression efficiency and consequently the coefficient of performance (COP) decrease.

特開昭63−233244号公報JP-A-63-233244 特開平11−14296号公報Japanese Patent Laid-Open No. 11-14296

解決しようとする問題点は、設備コストや運転コストが高くなる点と、水熱交換器のメンテナンスが面倒な点、さらに、各種の特殊環境の空調に幅広く対応でき、コンパクトでCOPの良いヒートポンプ式空調機を提供する。   The problem to be solved is that the equipment cost and operating cost are high, the maintenance of the water heat exchanger is troublesome, and furthermore, it is compatible with a wide range of air conditioning in various special environments, and is a compact and good COP heat pump type Provide air conditioners.

本発明は、上記課題を解決するため、第1と第2の圧縮式のヒートポンプと、第1と第2の加湿器と、を備え、前記第1ヒートポンプの冷媒−空気熱交換用第1蒸発器と前記第1加湿器と前記第2ヒートポンプの冷媒−空気熱交換用第2蒸発器と前記第2加湿器とを送風方向へ順に配設すると共に、1つの凝縮器を前記第1ヒートポンプと前記第2ヒートポンプにて共用し、前記第1と第2のヒートポンプの各蒸発器を冷媒蒸発・冷媒凝縮切換え自在に構成したことを最も主要な特徴とする。   In order to solve the above-described problem, the present invention includes first and second compression heat pumps, and first and second humidifiers, and the first evaporation for refrigerant-air heat exchange of the first heat pump. A first evaporator, a second evaporator for refrigerant-air heat exchange of the second heat pump, and the second humidifier are sequentially arranged in the blowing direction, and one condenser is connected to the first heat pump. The most main feature is that the evaporators of the first and second heat pumps are configured to be able to switch between refrigerant evaporation and refrigerant condensation in common with the second heat pump.

請求項1の発明によれば、空調用空気に対して加熱と冷却が必要な特殊環境の空調運転が冷温水コイルを使わずにヒートポンプのみででき、設備コストと運転コストの削減を図り得る。第1と第2のヒートポンプの凝縮器を共用しているので部品点数の削減とコンパクト化を図れる。二段階に分けて加熱と加湿を行えるので、空調可能な温湿度範囲(特に高温高湿側)が広がり、圧縮効率ひいてはCOPが良くなる。
請求項2の発明によれば、寒冷地ビル、オフィスビル、一方のヒートポンプをバックアップに用いての24時間運転、動物飼育室、病院治療室等の外気処理や、農業工場、製薬工場、機械精密工場、電子工場、美術・博物館等での恒温恒湿空調運転や、食品売場でのコールドアイル解消、ホテルやレストランでのドライ厨房、食品乾燥、薬品乾燥などの除湿乾燥空調運転や、穀物倉庫での保存、電子工場での静電気防止等のための低温加湿空調運転ができる。
請求項3の発明によれば、第2の加湿器を蒸気吹出し方式とすれば、温度降下せず無段階制御が可能で精度良く温湿度制御を行えて、蒸発器の負荷を少なくできる。
請求項4の発明によれば、凝縮器がいわゆる水冷式のため熱交換能力とCOPが高く性能が安定するので、生外気を温湿度調整して給気する場合でも気象・気候に影響されず精度良く空調が行えて、寒冷地から暑地まで広範囲の地域で使用できる。共用の凝縮器において冷媒の一方が蒸発で他方が凝縮する場合、冷媒同士の熱交換も行えてCOPが高まり省エネとなる。
請求項5の発明によれば、プレート式の冷媒−熱源水熱交換器を分解せずに洗浄による清掃ができメンテナンスが容易となる。
請求項6の発明によれば、部品が少なく簡単な構造で通水機構を構成でき、製作が容易でコスト節減を図れ、スペースをとらなくて済む。洗浄流路への熱源水の流入を遮断して薬品洗浄でき、洗浄効果が大となる。
請求項7の発明によれば、ストレーナを熱源流路と洗浄流路の異物除去に兼用でき、個別にストレーナを設ける必要がなくコストダウンを図れる。
請求項8の発明によれば、凝縮器の熱交換用空気が還気の場合、熱回収によりCOPの向上を図れる。凝縮器はフィン群を共用してあるので伝熱面積が大きくなって第1と第2のヒートポンプの一方のみの運転でも熱交換能力が高くなる。共用の凝縮器において冷媒の一方が蒸発で他方が凝縮する場合、冷媒同士の熱交換も行えてCOPが高まり省エネとなる。
請求項9の発明によれば、高風速で凝縮器の熱交換をすることによりCOPが向上して省エネを図れ、小型の凝縮器を使用できて空調機のコンパクト化を図れる。凝縮器面風速制御により細かく空調機の能力調整ができ、圧縮機を大型化せずとも寒冷地から暑地まで広範囲の地域で使用できる。
請求項10の発明では、圧力損失が減少して熱交換効率が向上するので小型の送風機を用いることができ騒音低減を図れる。冷媒−空気熱交換用熱交換器も小型化でき空調機をコンパクト化できる。
According to the first aspect of the present invention, the air conditioning operation in a special environment that requires heating and cooling of the air-conditioning air can be performed only by the heat pump without using the cold / hot water coil, and the equipment cost and the operation cost can be reduced. Since the condensers of the first and second heat pumps are shared, the number of parts can be reduced and the size can be reduced. Since heating and humidification can be performed in two stages, the temperature / humidity range (especially the high temperature and high humidity side) that can be air-conditioned is widened, and the compression efficiency and thus the COP are improved.
According to the second aspect of the present invention, a cold district building, an office building, 24-hour operation using one of the heat pumps as a backup, an outside air treatment for an animal breeding room, a hospital treatment room, etc., an agricultural factory, a pharmaceutical factory, a machine precision Constant temperature and humidity air conditioning operation at factories, electronics factories, arts and museums, cold aisle elimination at food departments, dry kitchens at hotels and restaurants, dehumidification drying air conditioning operations such as food drying and chemical drying, and grain warehouses Low-temperature humidification air-conditioning operation can be performed for storage of electricity and prevention of static electricity at electronic factories.
According to invention of Claim 3, if the 2nd humidifier is made into a steam blowing system, stepless control is possible without temperature fall, temperature / humidity control can be performed accurately, and the load of an evaporator can be reduced.
According to the invention of claim 4, since the condenser is a so-called water cooling type, the heat exchange capacity and COP are high and the performance is stable. Therefore, even when the fresh outdoor air is supplied after adjusting the temperature and humidity, it is not affected by the weather / climate. It can be air-conditioned with high accuracy and can be used in a wide range of areas from cold to hot. When one of the refrigerants evaporates and the other condenses in the common condenser, heat exchange between the refrigerants can also be performed, increasing COP and saving energy.
According to the invention of claim 5, the plate type refrigerant-heat source water heat exchanger can be cleaned by washing without disassembling, and maintenance is facilitated.
According to the sixth aspect of the present invention, the water passage mechanism can be configured with a simple structure with few parts, and can be easily manufactured, cost can be reduced, and space can be saved. The chemical cleaning can be performed by blocking the inflow of the heat source water to the cleaning flow path, and the cleaning effect is increased.
According to the seventh aspect of the present invention, the strainer can be used for removing foreign matter from the heat source flow path and the cleaning flow path, and it is not necessary to provide a strainer separately, thereby reducing the cost.
According to the invention of claim 8, when the heat exchange air of the condenser is return air, the COP can be improved by heat recovery. Since the condenser shares the fin group, the heat transfer area is increased, and the heat exchanging capacity is increased even when only one of the first and second heat pumps is operated. When one of the refrigerants evaporates and the other condenses in the common condenser, heat exchange between the refrigerants can also be performed, increasing COP and saving energy.
According to the ninth aspect of the present invention, COP is improved by exchanging heat of the condenser at a high wind speed to save energy, and a small condenser can be used, so that the air conditioner can be made compact. Capacitor surface air speed control allows fine adjustment of air conditioner capacity, and can be used in a wide range of areas, from cold to hot, without increasing the size of the compressor.
In the invention of claim 10, since the pressure loss is reduced and the heat exchange efficiency is improved, a small blower can be used and noise can be reduced. The heat exchanger for refrigerant-air heat exchange can also be miniaturized and the air conditioner can be made compact.

図1〜図3は、本発明のヒートポンプ式空調機の一実施例を示しており、実線及び点線の白抜き矢印は送風方向を示す。この空調機は、ケーシング1内に、給気送風路9と、第1と第2の圧縮式のヒートポンプA、Bと、第1と第2の加湿器5a、5bと、空調用空気を被空調空間へ給気する送風機6と、を備えている。給気送風路9には第1ヒートポンプAの冷媒−空気熱交換用第1蒸発器2aと第1加湿器5aと第2ヒートポンプBの冷媒−空気熱交換用第2蒸発器2bと第2加湿器5bとを送風方向へ順に配設すると共に、1つの凝縮器3を第1ヒートポンプAと第2ヒートポンプBにて共用し、第1と第2のヒートポンプA、Bの各蒸発器2a、2bを冷媒蒸発・冷媒凝縮切換え自在に構成する。たとえば、第1蒸発器2aと第2蒸発器2bの両方又は一方にて冷媒蒸発させるサイクルと第1蒸発器2aで冷媒蒸発かつ第2蒸発器2bにて冷媒凝縮させるサイクルと第1蒸発器2aと第2蒸発器2bの両方又は一方にて冷媒凝縮させるサイクルとにすくなくとも切換自在、又は、第1蒸発器2aで冷媒蒸発かつ第2蒸発器2bにて冷媒凝縮させるサイクルと第1蒸発器2aと第2蒸発器2bの両方又は一方にて冷媒凝縮させるサイクルとにすくなくとも切換自在、又は、第1蒸発器2aと第2蒸発器2bの両方又は一方にて冷媒蒸発させるサイクルと第1蒸発器2aで冷媒凝縮かつ第2蒸発器2bにて冷媒蒸発させるサイクルとにすくなくとも切換自在、に構成する。   1-3 has shown one Example of the heat pump type | formula air conditioner of this invention, The solid line and the dotted white arrow show the ventilation direction. This air conditioner is provided with a supply air blow passage 9, first and second compression heat pumps A and B, first and second humidifiers 5a and 5b, and air for air conditioning. And a blower 6 for supplying air to the air-conditioned space. In the air supply air passage 9, the first evaporator 2a for refrigerant-air heat exchange and the first humidifier 5a of the first heat pump A and the second evaporator 2b for refrigerant-air heat exchange of the second heat pump B and the second humidifier are provided. The condenser 5b is arranged in order in the blowing direction, and one condenser 3 is shared by the first heat pump A and the second heat pump B, and the evaporators 2a and 2b of the first and second heat pumps A and B are used. Is configured to be able to switch between refrigerant evaporation and refrigerant condensation. For example, a cycle in which refrigerant is evaporated in both or one of the first evaporator 2a and the second evaporator 2b, a cycle in which refrigerant is evaporated in the first evaporator 2a and refrigerant is condensed in the second evaporator 2b, and the first evaporator 2a And a cycle in which the refrigerant is condensed in both or one of the second evaporator 2b, or a cycle in which the refrigerant is condensed in the first evaporator 2a and the refrigerant is condensed in the second evaporator 2b and the first evaporator 2a. And a cycle in which the refrigerant is condensed in both or one of the first evaporator 2b or at least one of them, or a cycle in which the refrigerant is evaporated in both or one of the first evaporator 2a and the second evaporator 2b and the first evaporator It is configured to be switchable at least between the cycle in which the refrigerant is condensed in 2a and the refrigerant is evaporated in the second evaporator 2b.

凝縮器3はプレート式の冷媒−熱源水熱交換器とし、凝縮器3内の第1ヒートポンプAの冷媒流通路と第2ヒートポンプBの冷媒流通路と熱源水流通路とを互いに熱交換自在として配設する。プレート式の凝縮器3は、たとえば幾枚もの伝熱板(プレート)を重ねその伝熱板と伝熱板の間を熱源水と2つの冷媒が交互に流れて互いに熱交換するように構成する。凝縮器3は熱源機11で温度調整された熱源水が流れる熱源水回路12に接続される。(図3参照)第1ヒートポンプAは、熱源水で循環冷媒の熱交換をする共用の凝縮器3と、循環冷媒で空調用空気の熱交換をする第1蒸発器2aと、第1の圧縮機4aと、膨張弁と、冷媒循環方向の正逆の切換弁(四方弁)と、図示省略の受液器等と、を備え、これらを配管接続して冷媒循環回路を構成しかつ切換弁により凝縮器3と第1蒸発器2aでの吸熱と放熱(蒸発機能と凝縮機能)を切換自在に構成する。第2ヒートポンプBは、共用の凝縮器3と、循環冷媒で空調用空気の熱交換をする第2蒸発器2bと、第2の圧縮機4bと、膨張弁と、冷媒循環方向の正逆の切換弁(四方弁)と、図示省略の受液器等と、を備え、これらを配管接続して冷媒循環回路を構成しかつ切換弁により凝縮器3と第2蒸発器2bでの吸熱と放熱(蒸発機能と凝縮機能)を切換自在に構成する。第1と第2の加湿器5a、5bは、気化方式や蒸気吹出し方式など各種方式のものを用いることができる。   The condenser 3 is a plate-type refrigerant-heat source water heat exchanger, and the refrigerant flow path of the first heat pump A, the refrigerant flow path of the second heat pump B, and the heat source water flow path in the condenser 3 are arranged so that they can exchange heat with each other. Set up. The plate-type condenser 3 is configured such that, for example, a number of heat transfer plates (plates) are stacked and heat source water and two refrigerants alternately flow between the heat transfer plates and the heat transfer plates to exchange heat with each other. The condenser 3 is connected to a heat source water circuit 12 through which heat source water whose temperature has been adjusted by the heat source device 11 flows. (See FIG. 3) The first heat pump A includes a common condenser 3 for exchanging heat of the circulating refrigerant with heat source water, a first evaporator 2a for exchanging heat of air-conditioning air with the circulating refrigerant, and a first compression 4a, an expansion valve, a forward / reverse switching valve (four-way valve) in the refrigerant circulation direction, a liquid receiver (not shown), and the like, which are connected by piping to form a refrigerant circulation circuit and the switching valve Thus, the heat absorption and heat release (evaporation function and condensation function) in the condenser 3 and the first evaporator 2a can be switched. The second heat pump B includes a common condenser 3, a second evaporator 2b for exchanging heat of the air-conditioning air with a circulating refrigerant, a second compressor 4b, an expansion valve, and the reverse of the refrigerant circulation direction. A switching valve (four-way valve), a liquid receiver (not shown), and the like are provided, and these are connected by piping to form a refrigerant circulation circuit, and heat absorption and heat dissipation in the condenser 3 and the second evaporator 2b are performed by the switching valve. (Evaporation function and condensation function) are configured to be switchable. As the first and second humidifiers 5a and 5b, various types such as a vaporization method and a steam blowing method can be used.

空調用空気入口と空調用空気出口はケーシング1に設け、空調用空気入口は還気取入用や外気取入用あるいは還気と外気の混合空気取入用としてダクトなどを介して室内などの被空調空間や屋外と連通させ、空調用空気出口は給気用としてダクトなどを介して室内などの被空調空間に連通させる。この第1と第2のヒートポンプA、Bの凝縮器3に熱源水を流し、送風機6で送風することにより第1と第2のヒートポンプA、Bの第1蒸発器2aと第2蒸発器2bの両方又は一方にて空調用空気を熱交換(冷却・加熱)して被空調空間に給気し、各種環境に応じた空調運転を行う。第1と第2のヒートポンプA、Bで冷却と加熱を行うときの熱源水の使用限界水温範囲はたとえば10℃〜45℃なので、エアハンなどの冷温水コイルでは冷却・加熱できないような温度の熱源水を用いて、第1と第2のヒートポンプA、Bで冷却と加熱を切換自在に行え、熱源水回路12が2管式ですむ。第1蒸発器2aと第2蒸発器2bのフィンチューブは圧損の少ない楕円管にするのが好ましいが円形管でもよい。   The air conditioning air inlet and the air conditioning air outlet are provided in the casing 1, and the air conditioning air inlet is used for returning air, for taking outside air, or for taking mixed air of returning air and outside air through a duct or the like. The air-conditioned air outlet is connected to an air-conditioned space such as a room through a duct or the like for air supply. Heat source water is passed through the condensers 3 of the first and second heat pumps A and B, and blown by the blower 6, whereby the first evaporator 2a and the second evaporator 2b of the first and second heat pumps A and B. The air-conditioning air is heat-exchanged (cooled / heated) in both or one of the air and supplied to the air-conditioned space, and air-conditioning operation is performed according to various environments. The use limit water temperature range of the heat source water when performing cooling and heating with the first and second heat pumps A and B is, for example, 10 ° C to 45 ° C. Using water, the first and second heat pumps A and B can be switched between cooling and heating, and the heat source water circuit 12 is a two-pipe type. The fin tubes of the first evaporator 2a and the second evaporator 2b are preferably elliptical tubes with little pressure loss, but may be circular tubes.

ケーシング1内には、熱源水回路12からの熱源水と洗浄装置13からの洗浄液とを選択的に凝縮器3に流通自在とする通水機構Dを、設ける。図3(b)は、凝縮器3を清掃する洗浄装置13を接続した状態を示し、図3(a)は洗浄装置13を外した状態を示している。通水機構Dは、熱源水回路12と凝縮器3を接続する熱源水入口路16a及び熱源水出口路16bと、熱源水入口路16aと熱源水出口路16bに個別に設けられて洗浄装置13の洗浄液入口路20a及び洗浄液出口路20bを接続・分離自在なプラグ付接続口17、17と、洗浄装置13と凝縮器3を洗浄液入口路20a及び洗浄液出口路20bで接続することにより構成される洗浄流路Eへの熱源水の流入を遮断する開閉弁18、18と、を備え、熱源水回路12と凝縮器3を熱源水入口路16a及び熱源水出口路16bで接続して成る熱源流路Fと、洗浄流路Eとの共用部にストレーナ19を設ける。空調運転時は図3(a)の状態で接続口17、17のプラグを閉め、開閉弁18、18を開いて熱源水を流し、ストレーナ19は適宜清掃する。凝縮器3の清掃時はケーシング1内を露出させ、図3(b)のように接続口17、17のプラグを外して洗浄装置13の洗浄液入口路20a及び洗浄液出口路20bを接続し、開閉弁18、18を閉じて凝縮器3に洗浄液を流して洗浄し、洗浄後にストレーナ19を清掃する。なお、ストレーナ19は図例以外の位置に変更自由である。また、通水機構Dは、ケーシング1内でなく、全て外部に設けたり、一部を外部に設けるも自由である。   In the casing 1, a water passage mechanism D that allows the heat source water from the heat source water circuit 12 and the cleaning liquid from the cleaning device 13 to selectively flow to the condenser 3 is provided. FIG. 3B shows a state where a cleaning device 13 for cleaning the condenser 3 is connected, and FIG. 3A shows a state where the cleaning device 13 is removed. The water flow mechanism D is provided separately for the heat source water inlet passage 16a and the heat source water outlet passage 16b for connecting the heat source water circuit 12 and the condenser 3, and the heat source water inlet passage 16a and the heat source water outlet passage 16b. The connection ports 17 and 17 with plugs are connectable and separable to the cleaning liquid inlet path 20a and the cleaning liquid outlet path 20b, and the cleaning device 13 and the condenser 3 are connected by the cleaning liquid inlet path 20a and the cleaning liquid outlet path 20b. On-off valves 18 and 18 for shutting off the inflow of heat source water into the cleaning flow path E, and a heat source flow formed by connecting the heat source water circuit 12 and the condenser 3 with a heat source water inlet passage 16a and a heat source water outlet passage 16b. A strainer 19 is provided at a shared portion of the path F and the cleaning flow path E. During the air-conditioning operation, the plugs of the connection ports 17 and 17 are closed in the state of FIG. 3A, the on-off valves 18 and 18 are opened and the heat source water is allowed to flow, and the strainer 19 is appropriately cleaned. When cleaning the condenser 3, the inside of the casing 1 is exposed, the plugs of the connection ports 17 and 17 are removed and the cleaning liquid inlet path 20a and the cleaning liquid outlet path 20b of the cleaning device 13 are connected as shown in FIG. The valves 18 and 18 are closed and the cleaning liquid is supplied to the condenser 3 for cleaning. After the cleaning, the strainer 19 is cleaned. The strainer 19 can be freely changed to a position other than the illustrated example. In addition, the water flow mechanism D is not provided inside the casing 1 but may be provided entirely outside or partially provided outside.

図2の空調機は、第1と第2のヒートポンプA、Bと送風機6と第1と第2の加湿器5a、5bの各々の容量制御をすると共に第1蒸発器入口空気温湿度に応じて第1蒸発器2aと第2蒸発器2bの両方又は一方にて冷媒蒸発させるサイクルと第1蒸発器2aで冷媒蒸発かつ第2蒸発器2bにて冷媒凝縮させるサイクルと第1蒸発器2aと第2蒸発器2bの両方又は一方にて冷媒凝縮させるサイクルとにすくなくとも切換自在な制御手段(図示省略)を、備えており、被空調空間の外気処理を行うことができる。たとえば、所望の給気温湿度に対して第1蒸発器入口空気温湿度が高い場合は、第1蒸発器2aと第2蒸発器2bの両方又は一方にて冷却減湿、又は、第1蒸発器2aで冷却減湿してから第2蒸発器2bにて加熱して温調し、所定の給気温湿度に制御する。所望の給気温湿度に対して第1蒸発器入口空気の温度が低く湿度が高い場合は、第1蒸発器2aで冷却減湿してから第2蒸発器2bにて加熱して温調し、所定の給気温湿度に制御する。所望の給気温湿度に対して第1蒸発器入口空気温湿度が低い場合は、第1蒸発器2aにて加熱してから第1加湿器5aにて加湿し、さらに、第2蒸発器2bにて加熱してから第2加湿器5bにて加湿し、所定の給気温湿度に制御する。この場合、所望の給気温湿度にするのに必要な加熱量と加湿量に応じて、第1蒸発器2aと第2蒸発器2bの両方又は一方にて加熱し第1加湿器5aと第2加湿器5bの一方のみで加湿して所定の給気温湿度に制御することもできる。所望の給気温湿度に対して第1蒸発器入口空気の温度が高く湿度が低い場合は第1蒸発器2aと第2蒸発器2bの両方又は一方にて乾き冷却し、第1加湿器5aと第2加湿器5bのの両方又は一方にて加湿し、所定の給気温湿度に制御する。   The air conditioner of FIG. 2 controls the capacity of each of the first and second heat pumps A and B, the blower 6, and the first and second humidifiers 5a and 5b, and responds to the air temperature and humidity at the inlet of the first evaporator. A cycle in which the refrigerant is evaporated in both or one of the first evaporator 2a and the second evaporator 2b, a cycle in which the refrigerant is evaporated in the first evaporator 2a and the refrigerant is condensed in the second evaporator 2b, and the first evaporator 2a Control means (not shown) that can be switched at least to the cycle in which the refrigerant is condensed in both or one of the second evaporators 2b is provided, and the outside air treatment of the air-conditioned space can be performed. For example, when the first evaporator inlet air temperature / humidity is higher than the desired air temperature and humidity, cooling and dehumidification in both or one of the first evaporator 2a and the second evaporator 2b, or the first evaporator After cooling and dehumidifying at 2a, the temperature is adjusted by heating with the second evaporator 2b and controlled to a predetermined temperature and humidity. If the temperature of the first evaporator inlet air is low and the humidity is high with respect to the desired air temperature, the temperature is controlled by dehumidifying with the first evaporator 2a and then heating with the second evaporator 2b. Control to a predetermined temperature and humidity. When the first evaporator inlet air temperature / humidity is lower than the desired temperature and humidity, the first evaporator 2a is heated and then humidified by the first humidifier 5a. Further, the second evaporator 2b Then, the air is humidified by the second humidifier 5b and controlled to a predetermined temperature and humidity. In this case, the first humidifier 5a and the second humidifier 5a are heated by either or both of the first evaporator 2a and the second evaporator 2b in accordance with the heating amount and the humidification amount necessary to obtain a desired temperature and humidity. It is also possible to control to a predetermined temperature and humidity by humidifying only with one of the humidifiers 5b. When the temperature of the first evaporator inlet air is high and the humidity is low with respect to the desired temperature and humidity, the first evaporator 2a and / or the second evaporator 2b are dried and cooled, and the first humidifier 5a Humidification is performed by both or one of the second humidifiers 5b and controlled to a predetermined temperature and humidity.

また図2の実施例において、制御手段を、第1と第2のヒートポンプA、Bと送風機6と第1と第2の加湿器5a、5bの各々の容量制御をすると共に第1蒸発器入口空気温湿度に応じて第1蒸発器2aで冷媒蒸発かつ第2蒸発器2bにて冷媒凝縮させるサイクルと第1蒸発器2aと第2蒸発器2bの両方又は一方にて冷媒凝縮させるサイクルとにすくなくとも切換自在に構成した場合は、被空調空間を恒温恒湿に空調することができる。たとえば、第2の加湿器5bを蒸気吹出し方式とした場合を例示すると、所望の給気温湿度に対して第1蒸発器入口空気温湿度が高い場合と所望の給気温湿度に対して第1蒸発器入口空気の温度が低く湿度が高い場合は、第1蒸発器2aで冷却減湿してから第2蒸発器2bにて加熱して温調、又は、第1蒸発器2aで冷却減湿してから第2蒸発器2bにて加熱して温調したのち蒸気により温度を下げずに加湿し、所定の給気温湿度に制御する。所望の給気温湿度に対して第1蒸発器入口空気温湿度が低い場合は、第1蒸発器2aと第2蒸発器2bの両方又は一方にて加熱して温調したのち第2加湿器5bにて蒸気により温度を下げずに加湿し、所定の給気温湿度に制御する。この場合、第1蒸発器2aにて加熱してから第1加湿器5aにて加湿し、さらに、第2蒸発器2bにて加熱してから第2加湿器5bにて蒸気により温度を下げずに加湿し、所定の給気温湿度に制御することもできる。所望の給気温湿度に対して第1蒸発器入口空気の温度が高く湿度が低い場合は第1蒸発器2aと第2蒸発器2bの両方又は一方にて乾き冷却して温調したのち蒸気により温度を下げずに加湿し、所定の給気温湿度に制御する。   In the embodiment of FIG. 2, the control means controls the capacities of the first and second heat pumps A and B, the blower 6, and the first and second humidifiers 5a and 5b, and the inlet of the first evaporator. A cycle in which refrigerant is evaporated in the first evaporator 2a and refrigerant is condensed in the second evaporator 2b and a cycle in which refrigerant is condensed in one or both of the first evaporator 2a and the second evaporator 2b in accordance with the air temperature humidity. If it is configured to be switchable at least, the air-conditioned space can be air-conditioned at constant temperature and humidity. For example, when the second humidifier 5b is a steam blowing system, the first evaporator inlet air temperature / humidity is higher than the desired air supply humidity and the first evaporation relative to the desired air supply humidity. When the temperature of the inlet air is low and the humidity is high, the temperature is reduced by cooling with the first evaporator 2a and then heated by the second evaporator 2b, or the temperature is reduced by the first evaporator 2a. Then, the temperature is adjusted by heating with the second evaporator 2b, and then humidified without lowering the temperature with steam, and controlled to a predetermined temperature and humidity. When the first evaporator inlet air temperature / humidity is lower than the desired temperature and humidity, the second humidifier 5b is heated and adjusted in both or one of the first evaporator 2a and the second evaporator 2b, and then the second humidifier 5b. The steam is humidified without reducing the temperature with steam and controlled to a predetermined temperature and humidity. In this case, after heating in the first evaporator 2a, humidifying in the first humidifier 5a, and further heating in the second evaporator 2b, and then the temperature is not lowered by steam in the second humidifier 5b. It is also possible to control to a predetermined temperature and humidity. When the temperature of the first evaporator inlet air is high and the humidity is low with respect to the desired supply air temperature and humidity, the temperature is adjusted by drying and cooling in both or one of the first evaporator 2a and the second evaporator 2b, and then by steam. Humidification is performed without lowering the temperature, and control is performed to a predetermined temperature and humidity.

この場合、第1と第2の加湿器5a、5bを止めて加湿せずに被空調空間を除湿乾燥することができる。たとえば、所望の給気温湿度に対して第1蒸発器入口空気温湿度が高い場合と所望の給気温湿度に対して第1蒸発器入口空気の温度が低く湿度が高い場合は第1蒸発器2aで冷却減湿してから第2蒸発器2bにて加熱し、所望の給気温湿度に対して第1蒸発器入口空気温湿度が低い場合は第1蒸発器2aと第2蒸発器2bの両方又は一方にて加熱し、所定の給気温湿度に制御する。   In this case, the air-conditioned space can be dehumidified and dried without stopping the first and second humidifiers 5a and 5b. For example, when the temperature of the first evaporator inlet air temperature is high with respect to the desired air temperature and humidity, and when the temperature of the first evaporator inlet air is low and the humidity is high with respect to the desired air temperature and humidity, the first evaporator 2a. When the first evaporator inlet air temperature and humidity is lower than the desired temperature and humidity, both the first evaporator 2a and the second evaporator 2b Or it heats by one side and it controls to predetermined supply air temperature humidity.

また、図2の実施例において、制御手段を、第1と第2のヒートポンプA、Bと送風機6と第1と第2の加湿器5a、5bの各々の容量制御をすると共に第1蒸発器2aと第2蒸発器2bの両方又は一方にて冷媒蒸発させるサイクルと第1蒸発器2aで冷媒凝縮かつ第2蒸発器2bにて冷媒蒸発させるサイクルとにすくなくとも切換自在に構成した場合は、被空調空間を低温加湿することができる。たとえば、所望の給気温湿度に対して第1蒸発器入口空気温湿度が高い場合は第1蒸発器2aと第2蒸発器2bの両方又は一方にて冷却減湿し、所望の給気温湿度に対して第1蒸発器入口空気温湿度が低い場合は第1蒸発器2aで加熱してから加湿しそののち乾き冷却し、所定の給気温湿度に制御する。所望の給気温湿度に対して第1蒸発器入口空気の温度が高く湿度が低い場合は加湿してから第2蒸発器2bのみにて乾き冷却し、所定の給気温湿度に制御する。   In the embodiment of FIG. 2, the control means controls the capacities of the first and second heat pumps A and B, the blower 6, and the first and second humidifiers 5a and 5b, and the first evaporator. 2a and / or the second evaporator 2b, a cycle in which the refrigerant is evaporated, and a cycle in which the refrigerant is condensed in the first evaporator 2a and the refrigerant is evaporated in the second evaporator 2b are at least switchable. The air-conditioned space can be humidified at a low temperature. For example, when the first evaporator inlet air temperature / humidity is higher than the desired temperature and humidity, the first evaporator 2a and / or the second evaporator 2b is cooled and dehumidified to obtain the desired temperature and humidity. On the other hand, when the temperature and humidity at the inlet of the first evaporator is low, the air is heated by the first evaporator 2a and then humidified and then dried and cooled to control to a predetermined temperature and humidity. When the temperature of the first evaporator inlet air is high and the humidity is low with respect to the desired air temperature and humidity, the air is humidified and then dried and cooled only by the second evaporator 2b, and controlled to a predetermined air temperature and humidity.

図4と図5は、本発明のヒートポンプ式空調機の他の実施例を示しており、実線及び点線の白抜き矢印は送風方向を示す。この空調機は、ケーシング1内に、給気送風路9と、第1と第2の圧縮式のヒートポンプA、Bと、第1と第2の加湿器5a、5bと、空調用空気を被空調空間へ給気する送風機6と、送風路8と、凝縮器3に外気や還気あるいはその混合空気などの熱交換用空気を送風する凝縮用送風機7と、を備えている。給気送風路9には第1ヒートポンプAの冷媒−空気熱交換用第1蒸発器2aと第1加湿器5aと第2ヒートポンプBの冷媒−空気熱交換用第2蒸発器2bと第2加湿器5bとを送風方向へ順に配設すると共に、1つの凝縮器3を第1ヒートポンプAと第2ヒートポンプBにて共用し、1つの凝縮器3を第1ヒートポンプAと第2ヒートポンプBにて共用し、第1と第2のヒートポンプA、Bの各蒸発器2a、2bを冷媒蒸発・冷媒凝縮切換え自在に構成する。たとえば、第1蒸発器2aと第2蒸発器2bの両方又は一方にて冷媒蒸発させるサイクルと第1蒸発器2aで冷媒蒸発かつ第2蒸発器2bにて冷媒凝縮させるサイクルと第1蒸発器2aと第2蒸発器2bの両方又は一方にて冷媒凝縮させるサイクルとにすくなくとも切換自在、又は、第1蒸発器2aで冷媒蒸発かつ第2蒸発器2bにて冷媒凝縮させるサイクルと第1蒸発器2aと第2蒸発器2bの両方又は一方にて冷媒凝縮させるサイクルとにすくなくとも切換自在、又は、第1蒸発器2aと第2蒸発器2bの両方又は一方にて冷媒蒸発させるサイクルと第1蒸発器2aで冷媒凝縮かつ第2蒸発器2bにて冷媒蒸発させるサイクルとにすくなくとも切換自在、に構成する。凝縮器3と、凝縮器面風速(凝縮器通過風量)を増減調整自在な送風機7は、送風路8に設ける。   4 and 5 show another embodiment of the heat pump type air conditioner of the present invention, and the solid and dotted white arrows indicate the blowing direction. This air conditioner is provided with a supply air blow passage 9, first and second compression heat pumps A and B, first and second humidifiers 5a and 5b, and air for air conditioning. A blower 6 that supplies air to the air-conditioned space, a blower path 8, and a condenser blower 7 that blows heat exchange air such as outside air, return air, or mixed air thereof to the condenser 3 are provided. In the air supply air passage 9, the first evaporator 2a for refrigerant-air heat exchange and the first humidifier 5a of the first heat pump A and the second evaporator 2b for refrigerant-air heat exchange of the second heat pump B and the second humidifier are provided. The condenser 5b is arranged in order in the blowing direction, and one condenser 3 is shared by the first heat pump A and the second heat pump B, and one condenser 3 is used by the first heat pump A and the second heat pump B. The evaporators 2a and 2b of the first and second heat pumps A and B are configured to be capable of switching between refrigerant evaporation and refrigerant condensation. For example, a cycle in which refrigerant is evaporated in both or one of the first evaporator 2a and the second evaporator 2b, a cycle in which refrigerant is evaporated in the first evaporator 2a and refrigerant is condensed in the second evaporator 2b, and the first evaporator 2a And a cycle in which the refrigerant is condensed in both or one of the second evaporator 2b, or a cycle in which the refrigerant is condensed in the first evaporator 2a and the refrigerant is condensed in the second evaporator 2b and the first evaporator 2a. And a cycle in which the refrigerant is condensed in both or one of the first evaporator 2b or at least one of them, or a cycle in which the refrigerant is evaporated in both or one of the first evaporator 2a and the second evaporator 2b and the first evaporator It is configured to be switchable at least between the cycle in which the refrigerant is condensed in 2a and the refrigerant is evaporated in the second evaporator 2b. A condenser 3 and a blower 7 capable of increasing and decreasing the condenser surface wind speed (condenser passing air volume) are provided in the air passage 8.

凝縮器3は冷媒−空気熱交換器とすると共に、凝縮器3内の第1ヒートポンプAの冷媒流通路と第2ヒートポンプBの冷媒流通路とを互いに熱交換自在として配設し、凝縮器3において第1ヒートポンプAの冷媒と第2ヒートポンプBの冷媒の一方が蒸発で他方が凝縮する状態でこの異なる両冷媒が対向状に流通するように構成し、カウンタフローによる熱伝達の均一化と効率化を図る。さらに凝縮器3を、フィンチューブ1列毎、フィンチューブ1段毎又はフィンチューブ1本毎に、流れる冷媒が異なるように構成し、空気との熱交換ムラをなくし性能の安定化を図る。第1ヒートポンプAは、熱交換用空気で循環冷媒の熱交換をする共用の凝縮器3と、循環冷媒で空調用空気の熱交換をする第1蒸発器2aと、第1の圧縮機4aと、膨張弁と、冷媒循環方向の正逆の切換弁(四方弁)と、図示省略の受液器等と、を備え、これらを配管接続して冷媒循環回路を構成しかつ切換弁により凝縮器3と第1蒸発器2aでの吸熱と放熱(蒸発機能と凝縮機能)を切換自在に構成する。第2ヒートポンプBは、共用の凝縮器3と、循環冷媒で空調用空気の熱交換をする第2蒸発器2bと、第2の圧縮機4bと、膨張弁と、冷媒循環方向の正逆の切換弁(四方弁)と、図示省略の受液器等と、を備え、これらを配管接続して冷媒循環回路を構成しかつ切換弁により凝縮器3と第2蒸発器2bでの吸熱と放熱(蒸発機能と凝縮機能)を切換自在に構成する。第1と第2の加湿器5a、5bは、気化方式や蒸気吹出し方式など各種方式のものを用いることができる。   The condenser 3 is a refrigerant-air heat exchanger, and the refrigerant flow passage of the first heat pump A and the refrigerant flow passage of the second heat pump B in the condenser 3 are arranged so as to exchange heat with each other. In which the refrigerants of the first heat pump A and the refrigerant of the second heat pump B are evaporated and the other is condensed so that the two different refrigerants circulate in an opposing manner. Plan Furthermore, the condenser 3 is configured so that the flowing refrigerant is different for each row of fin tubes, for each stage of fin tubes, or for each fin tube, thereby eliminating uneven heat exchange with air and stabilizing the performance. The first heat pump A includes a common condenser 3 that exchanges heat of circulating refrigerant with heat exchange air, a first evaporator 2a that exchanges heat of air conditioning air with circulating refrigerant, and a first compressor 4a. An expansion valve, a forward / reverse switching valve (four-way valve) in the refrigerant circulation direction, a liquid receiver (not shown), etc., which are connected to each other to form a refrigerant circulation circuit and a condenser by the switching valve 3 and the first evaporator 2a can be switched between heat absorption and heat release (evaporation function and condensation function). The second heat pump B includes a common condenser 3, a second evaporator 2b for exchanging heat of the air-conditioning air with a circulating refrigerant, a second compressor 4b, an expansion valve, and the reverse of the refrigerant circulation direction. A switching valve (four-way valve), a liquid receiver (not shown), and the like are provided, and these are connected by piping to form a refrigerant circulation circuit, and heat absorption and heat dissipation in the condenser 3 and the second evaporator 2b are performed by the switching valve. (Evaporation function and condensation function) are configured to be switchable. As the first and second humidifiers 5a and 5b, various types such as a vaporization method and a steam blowing method can be used.

給気送風路9の空調用空気入口と空調用空気出口はケーシング1に設け、空調用空気入口は還気取入用や外気取入用あるいは還気と外気の混合空気取入用としてダクトなどを介して室内などの被空調空間や屋外と連通させ、空調用空気出口は給気用としてダクトなどを介して室内などの被空調空間に連通させる。送風路8の熱交換用空気入口と熱交換用空気出口はケーシング1に設け、熱交換用空気入口は還気取入用や外気取入用あるいは還気と外気の混合空気取入用としてダクトなどを介して室内などの被空調空間や屋外と連通させ、熱交換用空気出口は排気用としてダクトなどを介して屋外などに連通させる。この第1と第2のヒートポンプA、Bの凝縮器3に送風すると共に、送風機6で送風することにより第1と第2のヒートポンプA、Bの第1蒸発器2aと第2蒸発器2bにて空調用空気を熱交換(冷却・加熱)して被空調空間に給気し、各種環境に応じた空調運転を行う。第1蒸発器2aと第2蒸発器2bと凝縮器3のフィンチューブは圧損の少ない楕円管にするのが好ましいが円形管でもよい。   The air-conditioning air inlet and air-conditioning air outlet of the air supply air passage 9 are provided in the casing 1, and the air-conditioning air inlet is used for intake of return air, intake of outside air or mixed air intake of return air and outside air, etc. The air-conditioning air outlet is communicated with the air-conditioned space such as the room via the duct and the air-conditioned air outlet is communicated with the air-conditioned space such as the room via the duct. An air inlet for heat exchange and an air outlet for heat exchange in the air passage 8 are provided in the casing 1, and the air inlet for heat exchange is a duct for intake of return air, intake of outside air, or intake of mixed air of return air and outside air. The air outlet for heat exchange is communicated with an air-conditioned space such as a room or the outside via a duct, and the air outlet for heat exchange is communicated with the outside via a duct or the like for exhaust. The first and second heat pumps A and B are blown to the condenser 3 and blown by the blower 6 to the first and second evaporators 2a and 2b of the first and second heat pumps A and B. Air-conditioning air is heat-exchanged (cooled and heated) to supply air to the air-conditioned space, and air-conditioning operation is performed according to various environments. The fin tubes of the first evaporator 2a, the second evaporator 2b and the condenser 3 are preferably elliptical tubes with little pressure loss, but may be circular tubes.

図5の空調機は、第1と第2のヒートポンプA、Bと送風機6、7と第1と第2の加湿器5a、5bの各々の容量制御をすると共に第1蒸発器入口空気温湿度に応じて第1蒸発器2aと第2蒸発器2bの両方又は一方にて冷媒蒸発させるサイクルと第1蒸発器2aで冷媒蒸発かつ第2蒸発器2bにて冷媒凝縮させるサイクルと第1蒸発器2aと第2蒸発器2bの両方又は一方にて冷媒凝縮させるサイクルとにすくなくとも切換自在な制御手段(図示省略)を、備えており、被空調空間の外気処理を行うことができる。たとえば、所望の給気温湿度に対して第1蒸発器入口空気温湿度が高い場合は、第1蒸発器2aと第2蒸発器2bの両方又は一方にて冷却減湿、又は、第1蒸発器2aで冷却減湿してから第2蒸発器2bにて加熱して温調し、所定の給気温湿度に制御する。所望の給気温湿度に対して第1蒸発器入口空気の温度が低く湿度が高い場合は、第1蒸発器2aで冷却減湿してから第2蒸発器2bにて加熱して温調し、所定の給気温湿度に制御する。所望の給気温湿度に対して第1蒸発器入口空気温湿度が低い場合は、第1蒸発器2aにて加熱してから第1加湿器5aにて加湿し、さらに、第2蒸発器2bにて加熱してから第2加湿器5bにて加湿し、所定の給気温湿度に制御する。この場合、所望の給気温湿度にするのに必要な加熱量と加湿量に応じて、第1蒸発器2aと第2蒸発器2bの両方又は一方にて加熱し第1加湿器5aと第2加湿器5bの一方のみで加湿して所定の給気温湿度に制御することもできる。所望の給気温湿度に対して第1蒸発器入口空気の温度が高く湿度が低い場合は第1蒸発器2aと第2蒸発器2bの両方又は一方にて乾き冷却し、第1加湿器5aと第2加湿器5bのの両方又は一方にて加湿し、所定の給気温湿度に制御する。前記の制御手段は凝縮器負荷に応じて送風機7による凝縮器面風速制御も行う。たとえば、凝縮器負荷が大きくなると凝縮器面風速を増加させ、凝縮器負荷が小さくなると凝縮器面風速を減少させる。この凝縮器3の面風速を4.0〜6.0m/sに設定することにより、圧縮機性能限界以上に熱量を確保でき、COPが向上する。   The air conditioner of FIG. 5 controls the capacities of the first and second heat pumps A and B, the blowers 6 and 7, the first and second humidifiers 5a and 5b, and the air temperature and humidity at the inlet of the first evaporator. In accordance with the first evaporator 2a and / or the second evaporator 2b, a cycle in which the refrigerant is evaporated, a cycle in which the refrigerant is evaporated in the first evaporator 2a and a refrigerant is condensed in the second evaporator 2b, and the first evaporator Control means (not shown) that can be switched at least to the cycle in which the refrigerant is condensed in both or one of the second evaporator 2b and the second evaporator 2b are provided, and the outside air treatment of the air-conditioned space can be performed. For example, when the first evaporator inlet air temperature / humidity is higher than the desired air temperature and humidity, cooling and dehumidification in both or one of the first evaporator 2a and the second evaporator 2b, or the first evaporator After cooling and dehumidifying at 2a, the temperature is adjusted by heating with the second evaporator 2b and controlled to a predetermined temperature and humidity. If the temperature of the first evaporator inlet air is low and the humidity is high with respect to the desired air temperature, the temperature is controlled by dehumidifying with the first evaporator 2a and then heating with the second evaporator 2b. Control to a predetermined temperature and humidity. When the first evaporator inlet air temperature / humidity is lower than the desired temperature and humidity, the first evaporator 2a is heated and then humidified by the first humidifier 5a. Further, the second evaporator 2b Then, the air is humidified by the second humidifier 5b and controlled to a predetermined temperature and humidity. In this case, the first humidifier 5a and the second humidifier 5a are heated by either or both of the first evaporator 2a and the second evaporator 2b in accordance with the heating amount and the humidification amount necessary to obtain a desired temperature and humidity. It is also possible to control to a predetermined temperature and humidity by humidifying only with one of the humidifiers 5b. When the temperature of the first evaporator inlet air is high and the humidity is low with respect to the desired temperature and humidity, the first evaporator 2a and / or the second evaporator 2b are dried and cooled, and the first humidifier 5a Humidification is performed by both or one of the second humidifiers 5b and controlled to a predetermined temperature and humidity. The control means also performs condenser surface wind speed control by the blower 7 in accordance with the condenser load. For example, when the condenser load increases, the condenser surface wind speed increases, and when the condenser load decreases, the condenser surface wind speed decreases. By setting the surface wind speed of the condenser 3 to 4.0 to 6.0 m / s, the amount of heat can be secured above the compressor performance limit, and the COP is improved.

また、図5の実施例において、制御手段を、第1と第2のヒートポンプA、Bと送風機6、7と第1と第2の加湿器5a、5bの各々の容量制御をすると共に第1蒸発器入口空気温湿度に応じて第1蒸発器2aで冷媒蒸発かつ第2蒸発器2bにて冷媒凝縮させるサイクルと第1蒸発器2aと第2蒸発器2bの両方又は一方にて冷媒凝縮させるサイクルとにすくなくとも切換自在に構成した場合は、被空調空間を恒温恒湿に空調することができる。たとえば、第2の加湿器5bを蒸気吹出し方式とした場合を例示すると、所望の給気温湿度に対して第1蒸発器入口空気温湿度が高い場合と所望の給気温湿度に対して第1蒸発器入口空気の温度が低く湿度が高い場合は、第1蒸発器2aで冷却減湿してから第2蒸発器2bにて加熱して温調、又は、第1蒸発器2aで冷却減湿してから第2蒸発器2bにて加熱して温調したのち蒸気により温度を下げずに加湿し、所定の給気温湿度に制御する。所望の給気温湿度に対して第1蒸発器入口空気温湿度が低い場合は、第1蒸発器2aと第2蒸発器2bの両方又は一方にて加熱して温調したのち第2加湿器5bにて蒸気により温度を下げずに加湿し、所定の給気温湿度に制御する。この場合、第1蒸発器2aにて加熱してから第1加湿器5aにて加湿し、さらに、第2蒸発器2bにて加熱してから第2加湿器5bにて蒸気により温度を下げずに加湿し、所定の給気温湿度に制御することもできる。所望の給気温湿度に対して第1蒸発器入口空気の温度が高く湿度が低い場合は第1蒸発器2aと第2蒸発器2bの両方又は一方にて乾き冷却して温調したのち蒸気により温度を下げずに加湿し、所定の給気温湿度に制御する。   In the embodiment of FIG. 5, the control means controls the capacities of the first and second heat pumps A and B, the blowers 6 and 7, and the first and second humidifiers 5a and 5b, and the first. According to the temperature and humidity of the inlet air of the evaporator, the refrigerant is evaporated in the first evaporator 2a and condensed in the second evaporator 2b and / or the refrigerant is condensed in one or both of the first evaporator 2a and the second evaporator 2b. When it is configured to be switchable at least with the cycle, the air-conditioned space can be air-conditioned at constant temperature and humidity. For example, when the second humidifier 5b is a steam blowing system, the first evaporator inlet air temperature / humidity is higher than the desired air supply humidity and the first evaporation relative to the desired air supply humidity. When the temperature of the inlet air is low and the humidity is high, the temperature is reduced by cooling with the first evaporator 2a and then heated by the second evaporator 2b, or the temperature is reduced by the first evaporator 2a. Then, the temperature is adjusted by heating with the second evaporator 2b, and then humidified without lowering the temperature with steam, and controlled to a predetermined temperature and humidity. When the first evaporator inlet air temperature / humidity is lower than the desired temperature and humidity, the second humidifier 5b is heated and adjusted in both or one of the first evaporator 2a and the second evaporator 2b, and then the second humidifier 5b. The steam is humidified without reducing the temperature with steam and controlled to a predetermined temperature and humidity. In this case, after heating in the first evaporator 2a, humidifying in the first humidifier 5a, and further heating in the second evaporator 2b, and then the temperature is not lowered by steam in the second humidifier 5b. It is also possible to control to a predetermined temperature and humidity. When the temperature of the first evaporator inlet air is high and the humidity is low with respect to the desired supply air temperature and humidity, the temperature is adjusted by drying and cooling in both or one of the first evaporator 2a and the second evaporator 2b, and then by steam. Humidification is performed without lowering the temperature, and control is performed to a predetermined temperature and humidity.

この場合、第1と第2の加湿器5a、5bを止めて加湿せずに被空調空間を除湿乾燥することができる。たとえば、所望の給気温湿度に対して第1蒸発器入口空気温湿度が高い場合と所望の給気温湿度に対して第1蒸発器入口空気の温度が低く湿度が高い場合は第1蒸発器2aで冷却減湿してから第2蒸発器2bにて加熱し、所望の給気温湿度に対して第1蒸発器入口空気温湿度が低い場合は第1蒸発器2aと第2蒸発器2bの両方又は一方にて加熱し、所定の給気温湿度に制御する。   In this case, the air-conditioned space can be dehumidified and dried without stopping the first and second humidifiers 5a and 5b. For example, when the temperature of the first evaporator inlet air temperature is high with respect to the desired air temperature and humidity, and when the temperature of the first evaporator inlet air is low and the humidity is high with respect to the desired air temperature and humidity, the first evaporator 2a. When the first evaporator inlet air temperature and humidity is lower than the desired temperature and humidity, both the first evaporator 2a and the second evaporator 2b Or it heats by one side and it controls to predetermined supply air temperature humidity.

また、図5の実施例において、制御手段を、第1と第2のヒートポンプA、Bと送風機6、7と第1と第2の加湿器5a、5bの各々の容量制御をすると共に第1蒸発器2aと第2蒸発器2bの両方又は一方にて冷媒蒸発させるサイクルと第1蒸発器2aで冷媒凝縮かつ第2蒸発器2bにて冷媒蒸発させるサイクルとにすくなくとも切換自在に構成した場合は、被空調空間を低温加湿することができる。たとえば、所望の給気温湿度に対して第1蒸発器入口空気温湿度が高い場合は第1蒸発器2aと第2蒸発器2bの両方又は一方にて冷却減湿し、所望の給気温湿度に対して第1蒸発器入口空気温湿度が低い場合は第1蒸発器2aで加熱してから加湿しそののち乾き冷却し、所定の給気温湿度に制御する。所望の給気温湿度に対して第1蒸発器入口空気の温度が高く湿度が低い場合は加湿してから第2蒸発器2bのみにて乾き冷却し、所定の給気温湿度に制御する。   In the embodiment of FIG. 5, the control means controls the capacities of the first and second heat pumps A and B, the blowers 6 and 7, and the first and second humidifiers 5a and 5b, and the first. When it is configured to be at least switchable between a cycle in which the refrigerant is evaporated in both or one of the evaporator 2a and the second evaporator 2b and a cycle in which the refrigerant is condensed in the first evaporator 2a and the refrigerant is evaporated in the second evaporator 2b The air-conditioned space can be humidified at a low temperature. For example, when the first evaporator inlet air temperature / humidity is higher than the desired temperature and humidity, the first evaporator 2a and / or the second evaporator 2b is cooled and dehumidified to obtain the desired temperature and humidity. On the other hand, when the temperature and humidity at the inlet of the first evaporator is low, the air is heated by the first evaporator 2a and then humidified and then dried and cooled to control to a predetermined temperature and humidity. When the temperature of the first evaporator inlet air is high and the humidity is low with respect to the desired air temperature and humidity, the air is humidified and then dried and cooled only by the second evaporator 2b, and controlled to a predetermined air temperature and humidity.

なお、本発明は前記実施例に限定されず、本発明の要旨を逸脱しない範囲で設計変更自由であり、たとえば、第1と第2のヒートポンプA、Bや制御手段の構成、第1蒸発器2aと第2蒸発器2bの冷媒蒸発と冷媒凝縮のサイクルの変更や増減は自由である。   The present invention is not limited to the above-described embodiments, and can be freely changed in design without departing from the gist of the present invention. For example, the first and second heat pumps A and B, the configuration of the control means, the first evaporator The change and increase / decrease of the cycle of refrigerant evaporation and refrigerant condensation of 2a and the second evaporator 2b are free.

ヒートポンプ式空調機の実施例を示す正面図。The front view which shows the Example of a heat pump type air conditioner. ヒートポンプの簡略説明図。The simplified explanatory drawing of a heat pump. 通水機構の簡略説明図。The simplified explanatory drawing of a water flow mechanism. ヒートポンプ式空調機の他の実施例を示す正面図。The front view which shows the other Example of a heat pump type air conditioner. 図4のヒートポンプの簡略説明図。The simplified explanatory drawing of the heat pump of FIG.

符号の説明Explanation of symbols

2a 第1蒸発器
2b 第2蒸発器
3 凝縮器
5a 第1加湿器
5b 第2加湿器
7 送風機
9 給気送風路
12 熱源水回路
13 洗浄装置
16a 熱源水入口路
16b 熱源水出口路
17 プラグ付接続口
18 開閉弁
19 ストレーナ
20a 洗浄液入口路
20b 洗浄液出口路
A 第1ヒートポンプ
B 第2ヒートポンプ
D 通水機構
E 洗浄流路
F 熱源流路
2a 1st evaporator 2b 2nd evaporator 3 condenser 5a 1st humidifier 5b 2nd humidifier 7 air blower 9 air supply air passage 12 heat source water circuit 13 washing device 16a heat source water inlet passage 16b heat source water outlet passage 17 with plug Connection port 18 On-off valve 19 Strainer 20a Cleaning liquid inlet path 20b Cleaning liquid outlet path A 1st heat pump B 2nd heat pump D Water flow mechanism E Cleaning flow path F Heat source flow path

Claims (10)

第1と第2の圧縮式のヒートポンプA、Bと、第1と第2の加湿器5a、5bと、を備え、前記第1ヒートポンプAの冷媒−空気熱交換用第1蒸発器2aと前記第1加湿器5aと前記第2ヒートポンプBの冷媒−空気熱交換用第2蒸発器2bと前記第2加湿器5bとを送風方向へ順に配設すると共に、1つの凝縮器3を前記第1ヒートポンプAと前記第2ヒートポンプBにて共用し、前記第1と第2のヒートポンプA、Bの各蒸発器2a、2bを冷媒蒸発・冷媒凝縮切換え自在に構成したことを特徴とするヒートポンプ式空調機。   First and second compression heat pumps A and B, and first and second humidifiers 5a and 5b, and the first evaporator 2a for refrigerant-air heat exchange of the first heat pump A and the above The first humidifier 5a, the second evaporator 2b for refrigerant-air heat exchange of the second heat pump B, and the second humidifier 5b are sequentially arranged in the air blowing direction, and one condenser 3 is arranged in the first direction. A heat pump type air conditioner which is shared by the heat pump A and the second heat pump B, and the evaporators 2a and 2b of the first and second heat pumps A and B are configured to be capable of switching between refrigerant evaporation and refrigerant condensation. Machine. 第1蒸発器2aと第2蒸発器2bの両方又は一方にて冷媒蒸発させるサイクルと前記第1蒸発器2aで冷媒蒸発かつ前記第2蒸発器2bにて冷媒凝縮させるサイクルと前記第1蒸発器2aと前記第2蒸発器2bの両方又は一方にて冷媒凝縮させるサイクルとにすくなくとも切換自在、又は、前記第1蒸発器2aで冷媒蒸発かつ前記第2蒸発器2bにて冷媒凝縮させるサイクルと前記第1蒸発器2aと前記第2蒸発器2bの両方又は一方にて冷媒凝縮させるサイクルとにすくなくとも切換自在、又は、前記第1蒸発器2aと前記第2蒸発器2bの両方又は一方にて冷媒蒸発させるサイクルと前記第1蒸発器2aで冷媒凝縮かつ前記第2蒸発器2bにて冷媒蒸発させるサイクルとにすくなくとも切換自在、に構成した請求項1記載のヒートポンプ式空調機。   A cycle in which the refrigerant is evaporated in one or both of the first evaporator 2a and the second evaporator 2b, a cycle in which the refrigerant is evaporated in the first evaporator 2a and the refrigerant is condensed in the second evaporator 2b, and the first evaporator 2a and the second evaporator 2b or at least one cycle of refrigerant condensation, or a cycle in which refrigerant is evaporated in the first evaporator 2a and refrigerant is condensed in the second evaporator 2b and It is possible to switch between at least one cycle in which the refrigerant is condensed in both or one of the first evaporator 2a and the second evaporator 2b, or a refrigerant in both or one of the first evaporator 2a and the second evaporator 2b. 2. The heat pump according to claim 1, wherein the cycle can be switched at least between a cycle for evaporating and a cycle for condensing refrigerant in the first evaporator 2a and evaporating refrigerant in the second evaporator 2b. Air conditioner. 第2の加湿器5bを蒸気吹出し方式とした請求項1又は2記載のヒートポンプ式空調機。   The heat pump type air conditioner according to claim 1 or 2, wherein the second humidifier 5b is of a steam blowing type. 凝縮器3をプレート式の冷媒−熱源水熱交換器とし、前記凝縮器3内の第1ヒートポンプAの冷媒流通路と第2ヒートポンプBの冷媒流通路と熱源水流通路とを互いに熱交換自在として配設した請求項1、2又は3記載のヒートポンプ式空調機。   The condenser 3 is a plate-type refrigerant-heat source water heat exchanger, and the refrigerant flow passage of the first heat pump A, the refrigerant flow passage of the second heat pump B, and the heat source water flow passage in the condenser 3 can exchange heat with each other. The heat pump type air conditioner according to claim 1, 2 or 3 disposed. 熱源水回路12からの熱源水と洗浄装置13からの洗浄液とを選択的に凝縮器3に流通自在とする通水機構Dを、設けた請求項4記載のヒートポンプ式空調機。   The heat pump type air conditioner according to claim 4, further comprising a water passage mechanism D that allows the heat source water from the heat source water circuit 12 and the cleaning liquid from the cleaning device 13 to selectively flow to the condenser 3. 通水機構Dが、熱源水回路12と凝縮器3を接続する熱源水入口路16a及び熱源水出口路16bと、前記熱源水入口路16aと前記熱源水出口路16bに個別に設けられて洗浄装置13の洗浄液入口路20a及び洗浄液出口路20bを接続・分離自在なプラグ付接続口17、17と、前記洗浄装置13と前記凝縮器3を前記洗浄液入口路20a及び前記洗浄液出口路20bで接続することにより構成される洗浄流路Eへの熱源水の流入を遮断する開閉弁18、18と、を備えた請求項5記載のヒートポンプ式空調機。   A water flow mechanism D is separately provided in the heat source water inlet passage 16a and the heat source water outlet passage 16b for connecting the heat source water circuit 12 and the condenser 3, and the heat source water inlet passage 16a and the heat source water outlet passage 16b. The connecting ports 17 and 17 with plugs that can connect / separate the cleaning liquid inlet path 20a and the cleaning liquid outlet path 20b of the apparatus 13 and the cleaning apparatus 13 and the condenser 3 are connected by the cleaning liquid inlet path 20a and the cleaning liquid outlet path 20b. The heat pump type air conditioner according to claim 5, further comprising: on-off valves 18 and 18 for shutting off the inflow of heat source water into the cleaning flow path E configured by the operation. 熱源水回路12と凝縮器3を熱源水入口路16a及び熱源水出口路16bで接続して成る熱源流路Fと、洗浄流路Eとの共用部にストレーナ19を設けた請求項6記載のヒートポンプ式空調機。   The strainer 19 is provided in the common part of the heat source flow path F formed by connecting the heat source water circuit 12 and the condenser 3 by the heat source water inlet path 16a and the heat source water outlet path 16b and the cleaning flow path E. Heat pump air conditioner. 凝縮器3を冷媒−空気熱交換器とすると共に、前記凝縮器3内の第1ヒートポンプAの冷媒流通路と第2ヒートポンプBの冷媒流通路とを互いに熱交換自在として配設した請求項1、2又は3記載のヒートポンプ式空調機。   The condenser 3 is a refrigerant-air heat exchanger, and the refrigerant flow passage of the first heat pump A and the refrigerant flow passage of the second heat pump B in the condenser 3 are arranged so that they can exchange heat with each other. The heat pump type air conditioner according to 2 or 3. 凝縮器面風速を増減調整自在な凝縮用送風機7を、備え、凝縮器3の面風速を4.0〜6.0m/sに設定した請求項8記載のヒートポンプ式空調機。   The heat pump type air conditioner according to claim 8, further comprising a condensing fan 7 capable of adjusting the condenser surface wind speed to adjust the surface wind speed of the condenser 3 to 4.0 to 6.0 m / s. 請求項1乃至9記載のヒートポンプ式空調機において、第1と第2のヒートポンプA、Bの熱交換器であって冷媒−空気熱交換用のもののフィンチューブを楕円管にしたことを特徴とするヒートポンプ式空調機。   10. The heat pump type air conditioner according to claim 1, wherein the heat exchanger of the first and second heat pumps A and B is a fin tube for refrigerant-air heat exchange and is an elliptic tube. Heat pump air conditioner.
JP2004101144A 2004-03-30 2004-03-30 Heat pump air conditioner Expired - Lifetime JP4099718B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004101144A JP4099718B2 (en) 2004-03-30 2004-03-30 Heat pump air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004101144A JP4099718B2 (en) 2004-03-30 2004-03-30 Heat pump air conditioner

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007223331A Division JP2007333378A (en) 2007-08-30 2007-08-30 Heat pump type air conditioner

Publications (2)

Publication Number Publication Date
JP2005283036A true JP2005283036A (en) 2005-10-13
JP4099718B2 JP4099718B2 (en) 2008-06-11

Family

ID=35181623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004101144A Expired - Lifetime JP4099718B2 (en) 2004-03-30 2004-03-30 Heat pump air conditioner

Country Status (1)

Country Link
JP (1) JP4099718B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114087721A (en) * 2021-11-24 2022-02-25 美的集团武汉制冷设备有限公司 Fresh air equipment control method, device, equipment and storage medium

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63233244A (en) * 1987-03-20 1988-09-28 Matsushita Seiko Co Ltd Control system of air conditioner
JPH0473594A (en) * 1990-07-10 1992-03-09 Hisaka Works Ltd Plate type heat exchanger
JPH07293952A (en) * 1994-04-22 1995-11-10 Kajima Corp Steam diffusing type humidifier
JPH0849877A (en) * 1994-08-03 1996-02-20 Takasago Thermal Eng Co Ltd Air heat source type air-conditioner system
JPH1114296A (en) * 1997-06-20 1999-01-22 Nippon Synthetic Chem Ind Co Ltd:The Method for cleaning plate type heat exchanger
JP2000258082A (en) * 1999-03-09 2000-09-22 Sanyo Electric Co Ltd Water-refrigerant heat exchanger
JP2002181349A (en) * 2000-12-12 2002-06-26 Kimura Kohki Co Ltd Heat pump air conditioner
JP2002250540A (en) * 2001-02-23 2002-09-06 Kimura Kohki Co Ltd Thin heat pump type fresh air processing air conditioner
JP2003279296A (en) * 2002-03-25 2003-10-02 Takenaka Komuten Co Ltd Filtering heat exchanger used for aquifer heat accumulating system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63233244A (en) * 1987-03-20 1988-09-28 Matsushita Seiko Co Ltd Control system of air conditioner
JPH0473594A (en) * 1990-07-10 1992-03-09 Hisaka Works Ltd Plate type heat exchanger
JPH07293952A (en) * 1994-04-22 1995-11-10 Kajima Corp Steam diffusing type humidifier
JPH0849877A (en) * 1994-08-03 1996-02-20 Takasago Thermal Eng Co Ltd Air heat source type air-conditioner system
JPH1114296A (en) * 1997-06-20 1999-01-22 Nippon Synthetic Chem Ind Co Ltd:The Method for cleaning plate type heat exchanger
JP2000258082A (en) * 1999-03-09 2000-09-22 Sanyo Electric Co Ltd Water-refrigerant heat exchanger
JP2002181349A (en) * 2000-12-12 2002-06-26 Kimura Kohki Co Ltd Heat pump air conditioner
JP2002250540A (en) * 2001-02-23 2002-09-06 Kimura Kohki Co Ltd Thin heat pump type fresh air processing air conditioner
JP2003279296A (en) * 2002-03-25 2003-10-02 Takenaka Komuten Co Ltd Filtering heat exchanger used for aquifer heat accumulating system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114087721A (en) * 2021-11-24 2022-02-25 美的集团武汉制冷设备有限公司 Fresh air equipment control method, device, equipment and storage medium

Also Published As

Publication number Publication date
JP4099718B2 (en) 2008-06-11

Similar Documents

Publication Publication Date Title
JP4207166B2 (en) Dehumidifying air conditioner
KR100816042B1 (en) Heat recovery vantilation with dual circuit heat pump
CN100451467C (en) Combined method and device for treating air
JP4045551B2 (en) Heat pump air conditioner
JP4505486B2 (en) Heat pump air conditioner
JPH0814389B2 (en) Clean room with direct expansion heat exchanger
JP4376285B2 (en) Mixed air conditioner
JP2002228187A (en) Outdoor-air treating air-conditioner of air-cooled heat- pump type
JP4096890B2 (en) Heat pump air conditioner
KR100728590B1 (en) Power saving and high performance heat pump vantilation system
JP2007333378A (en) Heat pump type air conditioner
JP3614775B2 (en) Heat pump air conditioner
JP4099718B2 (en) Heat pump air conditioner
JP2006153321A (en) Heat pump type air conditioner
JP2010243005A (en) Dehumidification system
JP3952308B2 (en) Heat pump air conditioner
CN111006336B (en) Composite air conditioning system and air conditioning room
CN101307963A (en) Heat pump type air conditioner
JP2018054255A (en) Air conditioner
JP2005172264A (en) Water heat source heat pump type air conditioner
JP2021014947A (en) Air conditioner and air conditioning system
JP3932132B2 (en) Water source heat pump air conditioner
JP4016346B2 (en) Air source heat pump air conditioner
JP3485181B2 (en) Air-cooled heat pump type external controller for agricultural industry
JP2002323232A (en) Ceiling-mounted heat pump type air conditioner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080305

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4099718

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140328

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250