JP2005281439A - Soil aggregate for improving bottom sediment, bottom sediment improvement method and water bottom ground - Google Patents

Soil aggregate for improving bottom sediment, bottom sediment improvement method and water bottom ground Download PDF

Info

Publication number
JP2005281439A
JP2005281439A JP2004095992A JP2004095992A JP2005281439A JP 2005281439 A JP2005281439 A JP 2005281439A JP 2004095992 A JP2004095992 A JP 2004095992A JP 2004095992 A JP2004095992 A JP 2004095992A JP 2005281439 A JP2005281439 A JP 2005281439A
Authority
JP
Japan
Prior art keywords
soil
hydroxy
sediment
water
improving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004095992A
Other languages
Japanese (ja)
Other versions
JP5007871B2 (en
Inventor
Tsutomu Inada
勉 稲田
Yasuhiro Kozai
靖広 香西
Akio Henmi
彰男 逸見
Shigeru Kubo
滋 久保
Michio Nakajima
道雄 中嶋
Toshiaki Wakabayashi
利明 若林
Hironori Shibata
浩典 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Engineering Co Ltd
Original Assignee
Toyo Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Construction Co Ltd filed Critical Toyo Construction Co Ltd
Priority to JP2004095992A priority Critical patent/JP5007871B2/en
Publication of JP2005281439A publication Critical patent/JP2005281439A/en
Application granted granted Critical
Publication of JP5007871B2 publication Critical patent/JP5007871B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Cultivation Of Seaweed (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a soil aggregate which is suitable for improving bottom sediment of various water areas including seaweed bed. <P>SOLUTION: An improver system 3 containing a double-shaft stirring blade 5 is held at the tip of a ladder 2 extending from a workboat 1. The improver system 3 is sunk to water bottom, and an aqueous solution containing an aggregating agent and an adsorption carrier carrying a hydroxy metal ion is supplied to the improver system 3 from a first mixer 11 mounted on the workboat 1 and mixed with bottom mud S of the bottom sediment to promote aggregation of the bottom mud S. After the aggregation has moderately progressed, an aqueous solution containing a solidifier is supplied to the improver system 3 from a second mixer 12 mounted on the workboat 1 to promote further aggregation and solidification and replace the bottom sediment with the water-resistant soil aggregate. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、海域、湖沼、河川等の底質の改良に用いる団粒土、該団粒土を用いて行う底質改良工法並びに該工法により底質を改良した水底地盤に関する。   The present invention relates to aggregated soil used for improving bottom sediments of sea areas, lakes, rivers, and the like, a bottom sediment improvement method performed using the aggregated soil, and water bottom ground in which bottom sediment is improved by the method.

例えば、海域の藻場や干潟は、底生生物、魚類、プランクトン、鳥類、水生動植物などの様々な生物の生息に適するほか、水質浄化、親水等の環境改善にも寄与している。このため、最近では、藻場や干潟の保全、再生が重要な課題となっており、人工的に藻場や干潟を造成することも種々試みられている。   For example, seaweed beds and tidal flats in the sea are suitable for the inhabiting of various organisms such as benthic organisms, fish, plankton, birds, aquatic animals and plants, and also contribute to environmental improvements such as water purification and hydrophilicity. For this reason, recently, conservation and regeneration of seaweed beds and tidal flats have become important issues, and various attempts have been made to artificially create seaweed beds and tidal flats.

そして従来、例えば、人工的に藻場を造成する方法としては、海藻類、珪藻類等の水生植物の種子(種苗)が活着し易いマットやコンクリート構造物を海底に沈める方法(特許文献1、2等参照)、あるいは予め水生植物の種子を付着させた播種基盤(播種シ−トや藻類付着網)を海底に展張敷設する方法(特許文献3、4等参照)があった。しかし、前者の方法によれば、種子の自然な着生を期待するだけであるため、費用対効果が小さい、という問題があった。また、後者の方法によれば、乾燥を嫌う種子を取扱うため、播種基盤の管理が面倒であることに加え、播種基盤を展張しかつ海底に固定する面倒な作業が必要で、敷設に多くの労力と時間とを要する、という問題があった。
特開平09−140284号公報 特開2002−167258号公報 特開平11−308904号公報 特開平08−242716号公報
And conventionally, for example, as a method of artificially constructing a seaweed bed, a method of sinking a mat or concrete structure on which the seeds (seedlings) of aquatic plants such as seaweeds and diatoms are easy to settle (Patent Document 1, 2), or a method of laying and spreading a seeding base (seeding sheet or algae attachment net) to which seeds of aquatic plants have been attached in advance on the seabed (see Patent Documents 3, 4, etc.). However, according to the former method, there is a problem that cost effectiveness is small because it is only expected to naturally seed seeds. In addition, according to the latter method, in order to handle seeds that do not like drying, management of the sowing base is troublesome, and in addition to the troublesome work of spreading the seeding base and fixing it to the seabed, a lot of laying is required. There was a problem of requiring labor and time.
Japanese Patent Laid-Open No. 09-140284 JP 2002-167258 A JP-A-11-308904 Japanese Patent Laid-Open No. 08-242716

ところで、水生植物特に海藻類や珪藻類の生育には、土砂中の細粒分が有用であることが従来より知られている。したがって、海藻類や珪藻類の種子を細粒分の多い底質の土砂中に直接混入(直接播種)すれば、播種基盤に頼ることなく効率よく藻場を造成できるようになる。しかしながら、土砂中の細粒分は、潮流や波浪の影響で流動し易いという性質があり、前記直接播種方式を採用した場合は、この細粒分と一緒に種子も流出してしまい、安定して藻場を造成することは困難となる。   By the way, it has been conventionally known that fine particles in earth and sand are useful for the growth of aquatic plants, particularly seaweeds and diatoms. Therefore, if seaweed or diatomaceous seeds are directly mixed (direct sowing) into sediments with a lot of fine particles, a seaweed bed can be created efficiently without depending on the seeding base. However, the fine particles in the soil have the property of being easy to flow due to the influence of tidal currents and waves. When the direct sowing method is adopted, the seeds also flow out together with the fine particles and are stable. It is difficult to create a seaweed bed.

本発明者等は、上記直接播種方式による藻場造成について鋭意検討する中、土砂を団粒化することが、細粒分の流出防止ひいては海藻類や珪藻類の種子の流出防止に大きく寄与することを確認した。団粒土は、土壌の粒子(単粒)が集まってつくられた団粒が並んだ構造となっており、孔隙量が大きいという特徴を有している。そして、この団粒構造が発達した土壌は、その孔隙が保水、通気、根の生長促進等様々な機能を有することから、植物の生育にきわめて好ましいことが確認されており、陸上においては、積極的にその利用が図られている。   While the present inventors are diligently studying the creation of algae beds by the direct sowing method, agglomeration of earth and sand greatly contributes to the prevention of the outflow of seawater and diatom seeds. It was confirmed. Agglomerated soil has a structure in which aggregates formed by collecting soil particles (single grains) are arranged, and has a feature that the amount of pores is large. The soil with this aggregate structure developed has been confirmed to be extremely favorable for the growth of plants because its pores have various functions such as water retention, ventilation, and root growth promotion. The use is planned.

本発明は、上記した団粒土のもつ様々な機能に着目してなされたもので、その課題とするところは、藻場はもちろん、各種水域の底質の改良に向けて好適な団粒土を提供し、併せてこの団粒土による底質の改良方法と該工法により底質を改良した水底地盤とを提供することにある。   The present invention was made by paying attention to various functions of the above-mentioned aggregated soil, and the problem is that the aggregated soil is suitable for improving the bottom sediment of various water areas as well as seaweed beds. In addition, it is intended to provide a method for improving the bottom quality by using this aggregated soil and a water bottom ground improved by the construction method.

上記課題を解決するため、本発明に係る底質改良用団粒土は、土砂に団粒化剤と固化剤とを混合して団粒化したことを特徴とする。このように構成した団粒土は、固化剤を混合しているので、団粒化が促進されると共に、固化が促進され、結果として耐水性が十分となって長期的に団粒構造が維持される。また、団粒土が有する多くの孔隙が、水生植物はもとより水生動物の生息にも好適となるので、藻場や干潟の海域はもちろん、湖沼、河川等の底質の改良に向けて有用となる。しかも、細粒分が団粒構造内に取込まれるので、その流出が抑制され、この中に海藻類、珪藻類等の種子を播種した場合は、該種子の流出も抑制される。   In order to solve the above-mentioned problems, the aggregated soil for improving sediment according to the present invention is characterized in that the aggregated material is mixed with an aggregating agent and a solidifying agent. The aggregated soil thus configured is mixed with a solidifying agent, so that aggregation is promoted and solidification is promoted. As a result, water resistance is sufficient and the aggregated structure is maintained over the long term. Is done. In addition, many pores of aggregated soil are suitable not only for aquatic plants but also for aquatic animals, so it is useful for improving the bottom sediments of lakes, rivers, etc. as well as seaweed beds and tidal flats. Become. In addition, since the fine particles are taken into the aggregate structure, the outflow is suppressed, and when seeds such as seaweeds and diatoms are sown therein, the outflow of the seeds is also suppressed.

本団粒土において、上記土砂の発生源は任意であり、底泥であっても、陸上の土砂であってもよい。ただし、海藻類や珪藻類の生育には細粒分が必要であるので、藻場の保全、再生、造成等に団粒土を使用する場合は、砂泥分(粒径0.425mm未満)が80〜100%で、泥分(粒径0.075mm未満)が30%以下の粒度組成の土砂を用いることが望ましい。   In this aggregate grain soil, the generation source of the earth and sand is arbitrary, and may be bottom mud or land earth and sand. However, because fine agglomerates are necessary for the growth of seaweeds and diatoms, sand and mud (particle size less than 0.425mm) is necessary when using aggregated soil for the conservation, regeneration, and creation of seaweed beds. It is desirable to use earth and sand having a particle size composition of 80 to 100% and a mud content (particle size of less than 0.075 mm) of 30% or less.

本団粒土において、団粒化剤の添加量は任意であるが、土砂の乾燥重量に対して1〜5%程度とするのが望ましい。これは、添加量が少ないと所望の団粒構造が得られず、多すぎると、いたずらに団粒化剤の消費量が増してコスト的な無駄が多くなるためである。また、固化剤の添加量も任意であるが、土砂の乾燥重量に対して0〜2%程度(ただし、0%は除く)とするのが望ましい。これは、固化剤の添加量が少ないと所望の耐水性が得られず、多すぎると、いたずらに団粒化剤の消費量が増してコスト的な無駄が多くなるためである。   In this aggregated grain soil, the amount of the aggregating agent is arbitrary, but it is preferably about 1 to 5% with respect to the dry weight of the soil. This is because if the addition amount is small, the desired aggregate structure cannot be obtained, and if it is too large, the consumption of the aggregate agent is unnecessarily increased and the cost is wasted. Moreover, although the addition amount of a solidifying agent is also arbitrary, it is desirable to set it as about 0 to 2% (however, except 0%) with respect to the dry weight of earth and sand. This is because if the amount of the solidifying agent added is small, the desired water resistance cannot be obtained, and if it is too large, the consumption of the aggregating agent increases unnecessarily and the cost is wasted.

上記団粒化剤および固化剤としては、動植物の生育に有害とならない物質を選択する。このような団粒化剤としてはポリアクリル酸ナトリウム、カルボキシメチルセルロース、ポリアクリルアミド、ポロビニルアルコール等の合成有機高分子、アルギン酸ナトリウム、キトサン等の多糖類系および天然有機高分子があり、また、固化剤としては塩化カルシウム、塩化マグネシウム、塩化鉄等の多価の陽イオンを含む塩化物がある。本団粒土は、これら物質から選択された1種または複数種を用いることができる。   As the aggregating agent and solidifying agent, a substance that is not harmful to the growth of animals and plants is selected. Examples of such aggregating agents include synthetic organic polymers such as sodium polyacrylate, carboxymethylcellulose, polyacrylamide, and polyvinyl alcohol, and polysaccharides and natural organic polymers such as sodium alginate and chitosan. Examples of the agent include chlorides containing polyvalent cations such as calcium chloride, magnesium chloride, and iron chloride. 1 type or multiple types selected from these substances can be used for this aggregate grain soil.

本団粒土は、ヒドロキシ金属イオンを担持した吸着担体をさらに混合してもよいものである。このような吸着担体を混合することにより、栄養分となる金属イオンが吸着担体から徐放出され、水生動植物の生育環境が長期にわたって維持される。この場合の吸着担体の添加量は、土砂の体積に対して1〜10%とするのが望ましい。これは、吸着担体の添加量が少ないと栄養分の供給量が不足し、水生動植物の生育が低下するからである。添加量が多すぎると、相対的に土砂の量が低下して団粒化が困難になることで生育が低下するためである。さらに、過剰添加は、収量逓減の法則に従って、かえって生育低下を招くからである。吸着担体にヒドロキシ金属イオンを担持させるには、ヒドロキシ金属イオンを含む水溶液に吸着担体を浸漬すればよい。吸着担体からの金属イオンの徐放出の程度は、重合度(OH/M比:Mは金属)で決まるので、必要によりこの重合度を適当な値に制御すればよい。   This aggregate grain soil may further be mixed with an adsorption carrier supporting a hydroxy metal ion. By mixing such an adsorbent carrier, metal ions serving as nutrients are gradually released from the adsorbent carrier, and the growth environment of aquatic animals and plants is maintained for a long time. In this case, the addition amount of the adsorption carrier is desirably 1 to 10% with respect to the volume of the earth and sand. This is because if the amount of adsorbent carrier added is small, the amount of nutrients supplied is insufficient and the growth of aquatic animals and plants is reduced. This is because if the amount added is too large, the amount of earth and sand is relatively lowered and the agglomeration becomes difficult, so that the growth is lowered. Furthermore, excessive addition causes a decrease in growth according to the law of diminishing yield. In order to support the hydroxy metal ion on the adsorption carrier, the adsorption carrier may be immersed in an aqueous solution containing the hydroxy metal ion. Since the degree of slow release of metal ions from the adsorption carrier is determined by the degree of polymerization (OH / M ratio: M is a metal), this degree of polymerization may be controlled to an appropriate value if necessary.

ヒドロキシ金属イオンを担持した吸着担体を混合する場合は、吸着担体としてイオン吸着能力に優れた物質を、金属イオンとして水生動植物の栄養分となるものをそれぞれ選択する。このような吸着担体としては人工ゼオライト、天然ゼオライト、合成ゼオライト、珪藻土、活性炭、木炭、シリカゲル、アルミナゲル、ベントナイト、カオリナイト、アロフェン、イモゴライト、陽イオン交換樹脂、腐食酸、泥炭等があり、一方、ヒドロキシ金属イオンとしてはヒドロキシ鉄イオン、ヒドロキシ銅イオン、ヒドロキシ亜鉛イオン、ヒドロキシコバルトイオン、ヒドロキシモリブデンイオン、ヒドロキシカルシウムイオン、ヒドロキシマグネシウムイオン等がある。本団粒土は、これら物質から選択された1種または複数種を用いることができる。   When mixing the adsorption carrier carrying the hydroxy metal ion, a substance having excellent ion adsorption ability is selected as the adsorption carrier, and a substance serving as a nutrient for aquatic animals and plants is selected as the metal ion. Such adsorbent carriers include artificial zeolite, natural zeolite, synthetic zeolite, diatomaceous earth, activated carbon, charcoal, silica gel, alumina gel, bentonite, kaolinite, allophane, imogolite, cation exchange resin, corrosive acid, peat, etc. Examples of hydroxy metal ions include hydroxy iron ions, hydroxy copper ions, hydroxy zinc ions, hydroxy cobalt ions, hydroxy molybdenum ions, hydroxy calcium ions, hydroxy magnesium ions, and the like. 1 type or multiple types selected from these substances can be used for this aggregate grain soil.

本発明に係る底質改良工法は、上記した団粒土を水底に敷設することを特徴とする。このように水底に団粒土を敷設することで、底質が、水生動植物の生息に住みよい環境に改良される。この場合、前記団粒土の土砂として改良域の底泥を用いて、該底泥を団粒土と置換するようにしてもよく、これにより底質はより確実に改良される。団粒土の土砂として改良域の底泥を用いる場合、船上から水底に改良装置を降ろし、前記改良装置内で底泥を団粒化しても、あるいは底泥を浚渫して船上に揚げ、該船上で底泥を団粒化して、得られた団粒土を水底に埋戻すようにしてもよい。何れの場合も改良域(現場)で施工できるので、土砂はもちろん、得られた団粒土の輸送が不要になる。また、前者の場合は、底泥を浚渫する作業が不要になり、後者の場合は大量処理が可能になる。   The bottom sediment improvement method according to the present invention is characterized in that the above-mentioned aggregated soil is laid on the bottom of the water. By laying the aggregate soil on the bottom of the water in this way, the bottom sediment is improved to an environment that is liable to live in aquatic plants and animals. In this case, the bottom mud of the improved zone may be used as the soil for the aggregate soil, and the bottom mud may be replaced with the aggregate soil, whereby the bottom quality is more reliably improved. When the bottom mud of the improved zone is used as the soil for aggregated soil, the improvement device is lowered from the ship to the bottom of the water, and even if the bottom mud is aggregated in the improved device, The bottom mud may be agglomerated on the ship, and the obtained aggregated soil may be backfilled to the bottom of the water. In any case, since construction can be performed in an improved area (site), transportation of the obtained aggregated soil as well as earth and sand becomes unnecessary. Further, in the former case, the work of dripping the bottom mud becomes unnecessary, and in the latter case, a large amount of processing is possible.

本発明に係る水底地盤は、上記した底質改良工法により底質が改良されたことを特徴とする。この場合、予め団粒土に海藻類または珪藻類の種子を播種することで、水底地盤はそのまま藻場となる。   The water bottom ground according to the present invention is characterized in that the bottom quality is improved by the above-described bottom quality improvement method. In this case, the seedbed of seaweed or diatom is previously sown in the aggregate soil, so that the water bottom ground becomes an algae bed as it is.

本発明に係る底質改良用団粒土によれば、十分なる耐水性を有して長期的に団粒構造が維持されるので、水生動植物の生息に好適となり、藻場や干潟の海域はもちろん、湖沼、河川等の底質の改良にきわめて有用となる。また、細粒分が団粒構造内に取込まれるので、その流出が抑制され、海藻類、珪藻類等の藻場造成に向けて好適となる。   According to the aggregate soil for improving sediment according to the present invention, since the aggregate structure is maintained for a long time with sufficient water resistance, it is suitable for inhabiting aquatic animals and plants, and the sea area of seaweed beds and tidal flats is Of course, it is extremely useful for improving the bottom sediments of lakes and rivers. Moreover, since a fine grain part is taken in in a aggregate structure, the outflow is suppressed and it becomes suitable toward seaweed bed construction, such as seaweeds and diatoms.

また、本発明に係る底質改良工法および該工法により底質が改良された水底地盤は、上記団粒土の利用により水生動植物の生息に好適となり、環境の保全および再生はもとより、新たな環境の創造に大いに役立つ。   In addition, the bottom sediment improvement method according to the present invention and the bottom sediment whose bottom sediment has been improved by the method are suitable for the inhabiting of aquatic animals and plants by the use of the above-mentioned aggregated soil. Greatly help in the creation of.

以下、本発明を実施するための最良の形態を説明する。   Hereinafter, the best mode for carrying out the present invention will be described.

図1および図2は、本発明に係る団粒土を用いて行う底質改良工法の1つの実施形態を示したものである。本実施形態は、改良域の水底で底質を直接改良するもので、作業船1から延ばしたラダー2の先端部には改良装置3が支持されている。この改良装置3は、ケーシング4内に、放射状に撹拌翼5を持つ回転体6を、相互に撹拌翼5がラップするように2軸に配設してなっている。各回転体6は筒状をなしており、図示を略すモータにより相互に反対向きに回転駆動されるようになっている。各回転体6の軸心位置には2重管構造の送出管7が配設され、また、回転体6内には、前記送出管7内の2つの管路に各独立に一端が接続する各一対の吐出ノズル8、9が相互に90度位置をずらして放射状に配設されている。   FIG. 1 and FIG. 2 show one embodiment of the bottom sediment improvement method using the aggregated soil according to the present invention. In this embodiment, the bottom sediment is directly improved at the bottom of the improved area, and the improved device 3 is supported at the tip of the ladder 2 extending from the work boat 1. In this improved device 3, a rotating body 6 having radially stirring blades 5 is arranged in two axes in a casing 4 so that the stirring blades 5 wrap around each other. Each rotating body 6 has a cylindrical shape and is driven to rotate in opposite directions by a motor (not shown). A delivery pipe 7 having a double pipe structure is disposed at the axial center position of each rotary body 6, and one end of each of the rotary bodies 6 is independently connected to two pipe lines in the delivery pipe 7. Each pair of discharge nozzles 8 and 9 is radially arranged with their positions shifted 90 degrees from each other.

一方、作業船1上には、団粒化剤と、ヒドロキシ金属イオンを担持した吸着担体と水とを所定の割合で混合する第1混合機11と、固化剤と水とを所定の割合で混合する第2混合機12とが配設されている。これら第1混合機11、第2混合機12のそれぞれと上記改良装置3との間は配管13、14により各独立に接続されており、改良装置3内において各配管13、14の先端は、2重管構造の送出管7に対しスイベル継手(略)を介して接続されている。また、配管13、14にはポンプ15、16が配設されており、これらポンプ15、16の運転により第1混合機11、第2混合機12から送出管7に圧送された所定の水溶液が、対応する吐出ノズル8、9から回転体6の周りに吐出される。   On the other hand, on the work boat 1, the aggregating agent, the first carrier 11 that mixes the adsorption carrier carrying hydroxy metal ions and water at a predetermined ratio, and the solidifying agent and water at a predetermined ratio. A second mixer 12 for mixing is disposed. Each of the first mixer 11 and the second mixer 12 and the improvement device 3 are independently connected by pipes 13 and 14, and the tips of the pipes 13 and 14 in the improvement device 3 are It is connected to a delivery pipe 7 having a double pipe structure via a swivel joint (substantially). The pipes 13 and 14 are provided with pumps 15 and 16, respectively, and a predetermined aqueous solution pumped from the first mixer 11 and the second mixer 12 to the delivery pipe 7 by the operation of the pumps 15 and 16. , And are discharged from the corresponding discharge nozzles 8 and 9 around the rotating body 6.

底質の改良に際しては、予め第1混合機11で所定の濃度の吸着担体入りの団粒化剤水溶液を、第2混合機12で所定の濃度の固化剤水溶液をそれぞれつくっておく。そして、ラダー2を操作(ウインチ操作)してその先端の改良装置3を水底に着底させ、その内部の一対の回転体6を回転させる。そしてこの状態で、先ず第1混合機11側のポンプ15の作動により吸着担体入りの団粒化剤水溶液を配管13から送出管7を経て吐出ノズル8へ圧送し、この吐出ノズル8から該団粒化剤水溶液を回転体6の周りへ所定量吐出させる。すると、回転体6に設けられている撹拌翼5によって底質の土砂(底泥)Sと前記吸着担体入りの団粒化剤とが撹拌混合され、次第に底泥の団粒化が進む。前記撹拌混合が所定時間経過した時点で、第2混合機12側のポンプ16の作動により、固化剤水溶液を配管14から送出管7を経て吐出ノズル9へ圧送し、この吐出ノズル9から該団粒化剤水溶液を回転体6の周りへ所定量吐出させる。すると、団粒化が進みつつある底泥内に固化剤が混合されて底泥の団粒化がより一層進むと共に、固化が進み、この撹拌混合を所定時間行うことで、改良装置3内の底泥は団粒構造が発達しかつ耐水性が十分な団粒土で置換される。したがって、前記改良装置3をラダー2の操作で所定のピッチで移動させながら、前記操作を繰返すことで、目的とする改良域の底泥が団粒土で置換される。なお、固化剤の混合を団粒化剤の混合よりも遅らせるのは、団粒化剤が固化剤と反応して固化してしまうのを防止するためであり、前記したように時間差をつけることで、団粒化剤と底泥との混合が十分に促進され、団粒化が効率よく進む。   When improving the bottom sediment, an aqueous solution of an aggregating agent containing an adsorbent carrier having a predetermined concentration is prepared in advance by the first mixer 11, and an aqueous solution of a solidifying agent having a predetermined concentration is prepared by the second mixer 12. Then, the ladder 2 is operated (winch operation), the improvement device 3 at the tip thereof is settled on the bottom of the water, and the pair of rotating bodies 6 inside is rotated. In this state, first, the operation of the pump 15 on the first mixer 11 side causes the aqueous solution of the aggregating agent containing the adsorption carrier to be pumped from the pipe 13 to the discharge nozzle 8 through the delivery pipe 7, and from this discharge nozzle 8 to the group. A predetermined amount of the granulating agent aqueous solution is discharged around the rotating body 6. Then, the bottom sediment (bottom mud) S and the aggregating agent containing the adsorbing carrier are stirred and mixed by the stirring blade 5 provided in the rotating body 6, and the agglomeration of the bottom mud gradually proceeds. When a predetermined time has elapsed after the stirring and mixing, the solidifying agent aqueous solution is pumped from the pipe 14 to the discharge nozzle 9 through the delivery pipe 7 by the operation of the pump 16 on the second mixer 12 side. A predetermined amount of the granulating agent aqueous solution is discharged around the rotating body 6. Then, the solidifying agent is mixed in the bottom mud where the agglomeration is progressing, and the agglomeration of the bottom mud further proceeds, and the solidification proceeds. By performing this stirring and mixing for a predetermined time, The bottom mud is replaced with aggregated soil with developed aggregate structure and sufficient water resistance. Therefore, by repeating the operation while moving the improvement device 3 at a predetermined pitch by the operation of the ladder 2, the bottom mud in the target improvement area is replaced with the aggregated soil. The reason why the mixing of the solidifying agent is delayed from the mixing of the aggregating agent is to prevent the aggregating agent from reacting with the solidifying agent and solidifying, and as described above, make a time difference. Thus, the mixing of the aggregating agent and the bottom mud is sufficiently promoted, and the agglomeration proceeds efficiently.

ここで、上記実施形態の底質改良工法を利用して海藻類や珪藻類の藻場造成を行う場合は、作業船1上に前記海藻類や珪藻類の種子を浮遊させた水槽(図示略)を用意すると共に、作業船1上から改良装置3内に別途配管(図示略)を延ばす。そして、上記した改良装置3内での撹拌混合過程の最終段階(回転体6の回転を停止させるよりもわずか前段階)で、前記配管を通じて改良装置3内へ必要量の種子を投入する。すると、撹拌翼5の回転によって団粒土中に前記種子が分散して混入(播種)される。この場合、改良装置3内に種子を投入してから、撹拌翼5の回転を数回転で止めることが望ましく、これにより種子の損傷は防止される。このようにして、団粒土によって改良された改良域には、団粒土に捕捉された状態で種子が分散して配置されることになる。この場合、細粒分も団粒土に取込まれているので、潮流が激しく、大きな波浪が押寄せる場所でも細粒分の流出は抑えられ、この結果、種子の流出も抑制されて、種子が安定して生育する。特に、上記第1実施形態のようにヒドロキシ金属イオンを担持した吸着担体を団粒土に含ませた場合は、栄養分となる金属イオンが徐放出されるので、海藻類、珪藻類等の水生植物は、必要な栄養分を常時補給され、旺盛に生育する。   Here, when the seaweed or diatom algae ground is constructed using the bottom sediment improvement method of the above embodiment, a water tank (not shown) in which the seaweed or diatom seeds are suspended on the work boat 1 is used. ), And a separate pipe (not shown) is extended from the work boat 1 into the improvement device 3. Then, at the final stage of the stirring and mixing process in the improvement device 3 described above (slightly before the rotation of the rotating body 6), a necessary amount of seeds is introduced into the improvement device 3 through the pipe. Then, the seed is dispersed and mixed (seeded) in the aggregate soil by the rotation of the stirring blade 5. In this case, it is desirable to stop the rotation of the stirring blade 5 by several rotations after putting the seed into the improvement device 3, thereby preventing the seed from being damaged. In this way, seeds are dispersed and arranged in the improved area improved by the aggregate soil in a state of being captured by the aggregate soil. In this case, since the fine particles are also taken into the aggregate soil, the outflow of fine particles is suppressed even in locations where the tide is intense and large waves are rushed, and as a result, the outflow of seeds is also suppressed, Grows stably. In particular, when the adsorbent carrier supporting hydroxy metal ions is included in the aggregate soil as in the first embodiment, metal ions as nutrients are gradually released, so aquatic plants such as seaweeds and diatoms are used. Is constantly supplemented with the necessary nutrients and grows vigorously.

図3は、本発明に係る団粒土を用いて行う底質改良工法の他の実施形態を示したものである。本実施形態は、改良域に係留した作業船1上で底質を改良するもので、作業船1上には、底泥(土砂)Sを浚渫するバックホウ20と、浚渫した底泥を一次的に蓄える、スクリーン21付き貯泥タンク22と、団粒土をつくるための2軸のスクリュ式撹拌機23と、貯泥タンク22から撹拌機23へ土砂を定量ずつ搬送するコンベヤ24と、撹拌機23でつくられた団粒土を水底に埋め戻すためのフィーダ25とが搭載されている。作業船1上にはまた、上記実施形態と同じく、団粒化剤と、ヒドロキシ金属イオンを担持した吸着担体と水とを所定の割合で混合する第1混合機11と、固化剤と水とを所定の割合で混合する第2混合機12とが配設されている。   FIG. 3 shows another embodiment of the bottom improvement method performed using the aggregated soil according to the present invention. In this embodiment, the bottom quality is improved on the work boat 1 moored in the improved area. On the work boat 1, the backhoe 20 for dredging the bottom mud (sediment) S and the dredged bottom mud are primarily used. A mud storage tank 22 with a screen 21, a biaxial screw type agitator 23 for producing agglomerated soil, a conveyor 24 for conveying soil and sand from the mud storage tank 22 to the agitator 23, and agitator A feeder 25 for backfilling the aggregated soil made at 23 to the bottom of the water is mounted. Also on the work boat 1, as in the above embodiment, the aggregating agent, the first carrier 11 for mixing the adsorption carrier carrying hydroxy metal ions and water at a predetermined ratio, the solidifying agent and water, And a second mixer 12 that mixes at a predetermined ratio.

底質の改良に際しては、予め第1混合機11で所定の濃度の吸着担体入りの団粒化剤水溶液を、第2混合機12で所定の濃度の固化剤水溶液をそれぞれつくっておく。そして、バックホウ20によって底泥Sをすくって、貯泥タンク22へ順次投入し、これに合せて撹拌機23とコンベヤ24を駆動する。すると、コンベヤ24により底泥が定量ずつ撹拌機23へ送られ、該底泥は、先ず第1混合機11から供給された吸着担体入り団粒化剤と撹拌混合され、次第に団粒化しながら撹拌機23の出口側へ移動する。一方、撹拌機23の出口側には、第2混合機11から固化剤水溶液が供給されており、団粒化途中の土砂は固化剤と撹拌混合され、これにより土砂の団粒化がより一層進むと共に、固化が進み、この結果、耐水性を有する団粒土が形成される。この団粒土は、撹拌機23の出口から連続的にフィーダ25上に押出され、フィーダ25により水底に埋戻される。したがって、作業船1を所定のピッチで移動させながら、前記操作を繰返すことで、目的とする改良域の底泥Sは団粒土によって置換される。   When improving the bottom sediment, an aqueous solution of an aggregating agent containing an adsorbent carrier having a predetermined concentration is prepared in advance by the first mixer 11, and an aqueous solution of a solidifying agent having a predetermined concentration is prepared by the second mixer 12. Then, the bottom mud S is scooped by the backhoe 20 and sequentially put into the mud storage tank 22, and the stirrer 23 and the conveyor 24 are driven accordingly. Then, the bottom mud is sent to the stirrer 23 by a fixed amount by the conveyor 24. The bottom mud is first stirred and mixed with the aggregating agent containing the adsorbent carrier supplied from the first mixer 11, and stirred while gradually aggregating. Move to the exit side of the machine 23. On the other hand, the solidifying agent aqueous solution is supplied from the second mixer 11 to the outlet side of the stirrer 23, and the earth and sand in the middle of agglomeration is agitated and mixed with the solidifying agent, thereby further agglomerating the earth and sand. As it progresses, solidification progresses, and as a result, aggregated soil having water resistance is formed. This aggregated soil is continuously extruded onto the feeder 25 from the outlet of the stirrer 23 and backfilled to the bottom of the water by the feeder 25. Therefore, by repeating the above operation while moving the work boat 1 at a predetermined pitch, the bottom mud S in the target improved area is replaced with the aggregate soil.

ここで、上記底質改良工法を利用して海藻類や珪藻類の藻場造成を行う場合は、作業船1上に海藻類や珪藻類の種子を浮遊させた水槽(図示略)を用意すると共に、この水槽と前記撹拌機23の出口付近とを配管(図示略)により接続する。そして、前記配管を通じて撹拌機23内へ必要量の種子を連続的に投入する。すると、撹拌機23内のスクリュの回転によって団粒土中に前記種子が分散して混入(播種)される。したがって、団粒土によって置換され改良域には、ヒドロキシ金属イオンを担持した吸着担体を含む団粒土に捕捉された状態で種子が分散して配置されることになり、上記実施形態と同様に海藻類や珪藻類の種子の流出が抑制され、この結果、海藻類や珪藻類は旺盛に生育する。   Here, when seaweed or diatom algae beds are constructed using the bottom sediment improvement method, a water tank (not shown) in which seaweed or diatom seeds are suspended is prepared on the work boat 1. At the same time, this water tank and the vicinity of the outlet of the stirrer 23 are connected by a pipe (not shown). Then, a necessary amount of seeds is continuously charged into the agitator 23 through the pipe. Then, the seeds are dispersed and mixed (seeded) in the aggregate soil by the rotation of the screw in the stirrer 23. Therefore, the seeds are dispersed and arranged in the improved area replaced with the aggregate soil in a state of being captured by the aggregate soil including the adsorption carrier supporting the hydroxy metal ions, as in the above embodiment. The outflow of seeds of seaweeds and diatoms is suppressed, and as a result, seaweeds and diatoms grow vigorously.

図5(A),(B)に示す二次元長水路30に、本発明に係る団粒土を収納した第1容器31と比較土砂を収納した第2容器32とを並列に設置し、造波機33を駆動源として作動する造波板34により長水路30内に不規則波浪(H1/3=18.0cm、T1/3=1.7s)を26分間発生させ、細粒分の流出実験を行った。団粒土は、珪砂と人工ゼオライト(吸着担体)とを、図4に示す配合比となるようにアルギン酸ナトリウム(団粒化剤)の4%水溶液に加え、十分に撹拌混合した後、これに塩化カルシウム(固化剤)の7.35%水溶液を、同じく図4に示す配合比となるように徐々に加えながら撹拌混合して製造した。そして、実験前後において団粒土および比較土砂について粒度分布を測定した。 In the two-dimensional long water channel 30 shown in FIGS. 5 (A) and 5 (B), a first container 31 storing the aggregated soil according to the present invention and a second container 32 storing the comparative soil are installed in parallel. Irregular waves (H 1/3 = 18.0 cm, T 1/3 = 1.7 s) are generated in the long channel 30 for 26 minutes by the wave-making plate 34 that operates using the wave machine 33 as a drive source, and the fine particle fraction An outflow experiment was conducted. Aggregated soil is prepared by adding silica sand and artificial zeolite (adsorption carrier) to a 4% aqueous solution of sodium alginate (aggregating agent) so as to have the blending ratio shown in FIG. A 7.35% aqueous solution of calcium chloride (solidifying agent) was stirred and mixed while gradually adding so that the blending ratio shown in FIG. 4 was obtained. And before and after experiment, the particle size distribution was measured about the aggregate soil and the comparison soil.

図6は団粒土の実験前後における粒度分布を、図7は比較土砂の実験前後の粒度分布をそれぞれ示したものである。団粒土の場合は、図6に示されるように、実験の前後すなわち波浪作用の前後で粒度分布にほとんど変化がなく、細粒分の流出が認められない。これに対し、比較土砂は、図7に示されるように、波浪作用後の粒度分布が波浪作用前の粒度分布に対して、細粒側で低めに乖離しており、細粒分の流出が起こっている。すなわち、団粒化することにより細粒分の流出が抑えられることは明らかで、団粒土により底質を改良することが、海藻類や珪藻類の生育にとってきわめて好ましい環境が創造される、といえる。   FIG. 6 shows the particle size distribution of the aggregate soil before and after the experiment, and FIG. 7 shows the particle size distribution of the comparative soil before and after the experiment. In the case of aggregate soil, as shown in FIG. 6, there is almost no change in the particle size distribution before and after the experiment, that is, before and after the wave action, and no outflow of fine particles is observed. On the other hand, as shown in FIG. 7, in the comparative sediment, the particle size distribution after the wave action is slightly different from the particle size distribution before the wave action on the fine particle side, and the outflow of the fine particles is is happening. In other words, it is clear that the outflow of fine particles can be suppressed by aggregation, and improving the sediment by the aggregate soil creates a very favorable environment for the growth of seaweeds and diatoms. I can say that.

Y漁港から採取した砂混じりヘドロ状土砂(原泥)と、該原泥に団粒化剤としてのアルギン酸ナトリウムと固化剤としての塩化カルシウムを混合した団粒土と、該団粒土に、さらにヒドロキシFeイオンを担持したFe型人工ゼオライトを混合した団粒土(人工ゼオライト入団粒土)とを用意した。そして、前記3種類の試験土を紙製のポットに入れると共に、各ポットにアマモの種子を50粒ずつ播種し、このポットを、各試験土について2個ずつ用意して、これらを塩分濃度約3%の海水を溜めた水槽に入れた。試験は、水槽内を曝気しかつ水槽に3〜4E/m2の光合成エネルギーが得られるように白色蛍光灯の光を照射しながら、水温を、アマモの発芽に必要な10℃からアマモの生育に好適な22℃まで徐々に高めていき、アマモの生育状況を観察した。 Sand mixed sludge soil (raw mud) collected from Y fishing port, aggregated soil in which sodium alginate as an aggregating agent and calcium chloride as a solidifying agent are mixed with the original mud, and the aggregated soil, An aggregated soil (artificial zeolite-containing aggregated soil) mixed with Fe-type artificial zeolite supporting hydroxy Fe ions was prepared. Then, the three types of test soil are put in a paper pot, and 50 seeds of sea eel are sown in each pot. Two pots are prepared for each of the test soils, and the salt concentration is about It was put in a tank containing 3% seawater. In the test, the water temperature is increased from 10 ° C. necessary for germination of the eelgrass while irradiating the inside of the aquarium and irradiating the light with a white fluorescent light so that the photosynthesis energy of 3 to 4 E / m 2 can be obtained. The temperature was gradually increased to 22 ° C., which was suitable for the growth, and the growth of the eel was observed.

図8は、3ケ月経過後のアマモの生育状況を示したものである。なお、同図中、生育数は2個のポット間の平均値として表している。これより、団粒土および人工ゼオライト入団粒土は、何れも原泥に対して生育数が著しく多くなっており、団粒土が発芽促進効果および生育促進効果が大きいことが分った。また、団粒土と人工ゼオライト入団粒土との比較では、両者の間にそれほど差がなく、この段階では、生育数に対する人工ゼオライトの効果は明瞭でない。   FIG. 8 shows the growth situation of sea cucumber after 3 months. In the figure, the growth number is expressed as an average value between two pots. From this, it was found that the aggregated soil and the artificial zeolite-added aggregated soil both had a significantly increased number of growth relative to the raw mud, and the aggregated soil had a large germination promoting effect and growth promoting effect. In addition, in the comparison between the aggregated soil and the artificial zeolite-containing aggregated soil, there is not much difference between the two, and at this stage, the effect of the artificial zeolite on the growth number is not clear.

図9は、3ケ月経過後の一本当り最大根長を示したものである。これより、団粒土および人工ゼオライト入団粒土は、何れも原泥に対して一本当り最大根長が大きくなっており、団粒土が根長増加効果を有することが確認できた。また、団粒土と人工ゼオライト入団粒土との比較では、人工ゼオライト入団粒土の方が人工ゼオライトを含まない団粒土よりも根長が長くなっており、人工ゼオライトが根長増加効果を有することを確認できた。   FIG. 9 shows the maximum root length per tree after 3 months. From these results, it was confirmed that the aggregated soil and the artificial zeolite-containing aggregated soil each had a maximum root length per one of the raw mud, and the aggregated soil had an effect of increasing the root length. In addition, in comparison between aggregated soil and artificial zeolite-containing aggregated soil, artificial zeolite-added granular soil has a longer root length than aggregated soil without artificial zeolite, and artificial zeolite has an effect of increasing root length. It was confirmed that it had.

ヒドロキシCaイオンを担持したCa型人工ゼオライトとヒドロキシFeイオンを担持したFe型人工ゼオライトとを用意し、これら人工ゼオライトを、富栄養化している海水を満たした6つの容器に、それぞれ海水の重量に対して1.00%、0.10%、0.01%となるように混入した。そして、各容器を24時間振とう処理した後、遠心分離して上澄液を採取し、窒素、リンの平衡濃度を測定して、人工ゼオライトの栄養吸着力を求めた。ここで、窒素濃度の測定はインドフェノール青吸光光度法で行い、リン濃度の測定はモリブデン青吸光光度法で行った。また、栄養吸着力は、実験前後の窒素平衡濃度差、リン平衡濃度差を実験前の窒素濃度、リン濃度でそれぞれ除して吸着除去率(%)として表わした。   Prepare Ca-type artificial zeolite supporting hydroxy Ca ions and Fe-type artificial zeolite supporting hydroxy Fe ions, and add these artificial zeolites to six containers filled with eutrophic seawater. On the other hand, 1.00%, 0.10%, and 0.01% were mixed. Each container was shaken for 24 hours, and then centrifuged to collect the supernatant, and the nitrogen and phosphorus equilibrium concentrations were measured to determine the nutrient adsorption capacity of the artificial zeolite. Here, the nitrogen concentration was measured by indophenol blue absorptiometry, and the phosphorus concentration was measured by molybdenum blue absorptiometry. The nutrient adsorption power was expressed as an adsorption removal rate (%) by dividing the nitrogen equilibrium concentration difference and phosphorus equilibrium concentration difference before and after the experiment by the nitrogen concentration and phosphorus concentration before the experiment, respectively.

図10はCa型人工ゼオライトの結果を、図11はFe型人工ゼオライトの結果をそれぞれ示したものである。これらの結果より、Ca型人工ゼオライト、Fe型ゼオライト共に、海水に対する添加量が多くなるほど、吸着除去率が大きくなっており、ゼオライトが海水中の栄養分(窒素、リン)を吸着する能力を有することが分った。このことから、団粒土中にヒドロキシ金属イオンを担持した人工ゼオライト(吸着担体)を混合させると、水中の栄養分を吸着することにより水生植物に対する栄養補給が可能になることが明らかである。   FIG. 10 shows the result of the Ca-type artificial zeolite, and FIG. 11 shows the result of the Fe-type artificial zeolite. From these results, both the Ca-type artificial zeolite and the Fe-type zeolite have a higher adsorption removal rate as the amount added to the seawater increases, and the zeolite has the ability to adsorb nutrients (nitrogen, phosphorus) in the seawater. I found out. From this, it is clear that when artificial zeolite (adsorption carrier) supporting hydroxy metal ions is mixed in aggregated soil, nutritional supplementation for aquatic plants becomes possible by adsorbing nutrients in water.

本発明に係る底質改良工法の一つの実施形態を示す模式図である。It is a mimetic diagram showing one embodiment of the bottom quality improvement construction method concerning the present invention. 図1に示した実施形態で用いた改良装置の構造を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the improvement apparatus used in embodiment shown in FIG. 本発明に係る底質改良工法の他の実施形態を示す模式図である。It is a schematic diagram which shows other embodiment of the bottom quality improvement construction method which concerns on this invention. 本発明の実施例1で用いた原材料の種類と配合割合を示す図表である。It is a chart which shows the kind and mixture ratio of the raw material which were used in Example 1 of this invention. 実施例1で行った細粒分の流出実験に用いた長水路の構造を示したもので、平面的に示す模式図(A)と側面的に示す模式図(B)である。The structure of the long water channel used for the outflow experiment of the fine grain performed in Example 1 is shown, and is the schematic diagram (A) shown in a plane and the schematic diagram (B) shown in a side view. 実施例1の実験結果を示したもので、団粒土の実験前後の粒度分布を示すグラフである。It is a graph which shows the experimental result of Example 1, and shows the particle size distribution before and after the experiment of aggregated soil. 実施例1の実験結果を示したもので、非団粒土の実験前後の粒度分布を示すグラフである。It is a graph which shows the experimental result of Example 1, and shows the particle size distribution before and after the experiment of non-aggregated soil. 実施例2の実験結果を示したもので、アマモの生育数に及ぼす試験土の影響を示すグラフである。It is a graph which shows the experimental result of Example 2 and which shows the influence of the test soil which has on the growth number of a eel. 実施例2の実験結果を示したもので、アマモの一本当り最大根長に及ぼす試験土の影響を示すグラフである。It is the graph which showed the experimental result of Example 2, and shows the influence of the test soil on the maximum root length per eel. 実施例3の実験結果を示したもので、栄養分吸着率に及ぼすCa型人工ゼオライトの添加量の影響を示すグラフである。It is the graph which showed the experimental result of Example 3 and shows the influence of the addition amount of Ca type artificial zeolite which acts on a nutrient adsorption rate. 実施例3の実験結果を示したもので、栄養分吸着率に及ぼすFe型人工ゼオライトの添加量の影響を示すグラフである。It is the graph which showed the experimental result of Example 3 and shows the influence of the addition amount of the Fe type artificial zeolite which acts on a nutrient adsorption rate.

符号の説明Explanation of symbols

1 作業船
2 ラダー
3 改良装置
5 撹拌翼
11 第1混合機(団粒化剤+吸着担体+水)
12 第2混合機(固化剤+水)
20 浚渫用バックホウ
23 スクリュ式撹拌機
25 埋戻し用フィーダ
S 底泥(底質の土砂)

DESCRIPTION OF SYMBOLS 1 Work ship 2 Ladder 3 Improvement apparatus 5 Stirring blade 11 1st mixer (aggregating agent + adsorption carrier + water)
12 Second mixer (solidifying agent + water)
20 Backhoe for dredging 23 Screw type stirrer 25 Feeder for backfilling S Bottom mud (sediment sediment)

Claims (12)

土砂に団粒化剤と固化剤とを混合して団粒化したことを特徴とする底質改良用団粒土。   A soil for improving bottom sediments, characterized in that it is agglomerated by mixing an aggregating agent and a solidifying agent with earth and sand. 団粒化剤が、ポリアクリル酸ナトリウム、カルボキシメチルセルロース、ポリアクリルアミド、ポリビニルアルコール等の合成有機高分子、アルギン酸ナトリウム、キトサン等の多糖類系および天然有機高分子から選択された少なくとも1種である、請求項1に記載の底質改良用団粒土。   The aggregating agent is at least one selected from synthetic organic polymers such as sodium polyacrylate, carboxymethyl cellulose, polyacrylamide, and polyvinyl alcohol, polysaccharides such as sodium alginate and chitosan, and natural organic polymers. The soil for improving bottom sediment according to claim 1. 固化剤が、塩化カルシウム、塩化マグネシウム、塩化鉄等の多価の陽イオンを含む塩化物である、請求項1または2に記載の底質改良用団粒土。   The aggregate for sediment improvement according to claim 1 or 2, wherein the solidifying agent is a chloride containing a polyvalent cation such as calcium chloride, magnesium chloride or iron chloride. ヒドロキシ金属イオンを担持した吸着担体をさらに混合したことを特徴とする請求項1乃至3の何れか1項に記載の底質改良用団粒土。   The sedimentary soil for improving sediment according to any one of claims 1 to 3, further comprising an adsorbent carrying a hydroxy metal ion. 吸着担体が、人工ゼオライト、天然ゼオライト、合成ゼオライト、珪藻土、活性炭、木炭、シリカゲル、アルミナゲル、ベントナイト、カオリナイト、アロフェン、イモゴライト、陽イオン交換樹脂、腐食酸、泥炭のうちから選択された少なくも1種である、請求項4に記載の底質改良用団粒土。   The adsorption carrier is at least selected from artificial zeolite, natural zeolite, synthetic zeolite, diatomaceous earth, activated carbon, charcoal, silica gel, alumina gel, bentonite, kaolinite, allophane, imogolite, cation exchange resin, corrosive acid, peat. The aggregate soil for improving bottom sediment according to claim 4, which is one type. ヒドロキシ金属イオンが、ヒドロキシ鉄イオン、ヒドロキシ銅イオン、ヒドロキシ亜鉛イオン、ヒドロキシコバルトイオン、ヒドロキシモリブデンイオン、ヒドロキシカルシウムイオンおよびヒドロキシマグネシウムイオンのうちから選択された少なくとも1種である、請求項4または5に記載の底質改良用団粒土。   The hydroxy metal ion is at least one selected from hydroxy iron ion, hydroxy copper ion, hydroxy zinc ion, hydroxy cobalt ion, hydroxy molybdenum ion, hydroxy calcium ion and hydroxy magnesium ion. Debris for improving sediment described. 請求項1乃至6の何れか1項に記載の団粒土を水底に敷設することを特徴とする底質改良工法。   A bottom quality improving construction method comprising laying the aggregated soil according to any one of claims 1 to 6 on a water bottom. 団粒土の土砂として改良域の底泥を用い、該底泥を団粒土と置換する、請求項7に記載の底質改良工法。   The bottom sediment improvement construction method according to claim 7, wherein the bottom mud in the improved zone is used as the soil for the aggregate soil, and the bottom mud is replaced with the aggregate soil. 船上から水底に改良装置を降ろし、前記改良装置内で底泥を団粒化する、請求項8に記載の底質改良工法。   The bottom quality improvement construction method according to claim 8, wherein the improvement device is lowered from the ship to the bottom of the water, and the bottom mud is aggregated in the improvement device. 底泥を浚渫して船上に揚げ、該船上で前記底泥を団粒化して、得られた団粒土を水底に埋戻す、請求項8に記載の底質改良工法。   The bottom sediment improvement method according to claim 8, wherein the bottom mud is dredged and fried on a ship, the bottom mud is agglomerated on the ship, and the obtained aggregated soil is backfilled to the bottom of the water. 請求項7乃至10の何れか1項に記載の工法により底質が改良されたことを特徴とする水底地盤。   The bottom ground improved in the bottom quality by the construction method of any one of Claims 7 thru | or 10. 団粒土に、海藻類または珪藻類の種子を播種した、請求項10に記載の水底地盤。
The water bottom ground according to claim 10, wherein seeds of seaweeds or diatoms are sown in aggregated soil.
JP2004095992A 2004-03-29 2004-03-29 Aggregate soil for improvement of sediment and submerged ground Expired - Fee Related JP5007871B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004095992A JP5007871B2 (en) 2004-03-29 2004-03-29 Aggregate soil for improvement of sediment and submerged ground

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004095992A JP5007871B2 (en) 2004-03-29 2004-03-29 Aggregate soil for improvement of sediment and submerged ground

Publications (2)

Publication Number Publication Date
JP2005281439A true JP2005281439A (en) 2005-10-13
JP5007871B2 JP5007871B2 (en) 2012-08-22

Family

ID=35180192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004095992A Expired - Fee Related JP5007871B2 (en) 2004-03-29 2004-03-29 Aggregate soil for improvement of sediment and submerged ground

Country Status (1)

Country Link
JP (1) JP5007871B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006346564A (en) * 2005-06-15 2006-12-28 Onoda Chemico Co Ltd Solidification device
CN103962093A (en) * 2014-05-22 2014-08-06 常州大学 Synthesis method of bentonite loaded iron carbonyl adsorbent
CN104988897A (en) * 2015-07-08 2015-10-21 江苏绿畅路面新材料有限公司 River mud factorization solidification treatment method
JP2016000927A (en) * 2014-06-12 2016-01-07 サン・アンド・シイ・コンサルタント株式会社 Sludge site stabilization treatment method
CN105253979A (en) * 2015-11-22 2016-01-20 浙江瀚邦环保科技有限公司 Flocculation purification agent for heavy metal wastewater in rivers and preparation method and using method thereof
CN113529836A (en) * 2021-08-04 2021-10-22 井冈山大学 Sewage treatment method combining river channel side slope treatment
CN113881440A (en) * 2021-10-26 2022-01-04 太原理工大学 Soil conditioner for improving land physicochemical property of coal mine subsidence area and preparation method thereof
JP7018167B2 (en) 2017-01-17 2022-02-10 公生 村松 Manufacturing method of aquatic plant planting soil and aquatic plant planting soil
CN115159683A (en) * 2022-06-27 2022-10-11 生态环境部南京环境科学研究所 Simulated sediment aggregate and preparation method and application thereof

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49114245A (en) * 1973-03-07 1974-10-31
JPS63107611A (en) * 1986-10-23 1988-05-12 Toa Harbor Works Co Ltd Work and apparatus for bottom sand-covering with tilling work under water
JPH0889126A (en) * 1994-07-25 1996-04-09 Tama Ogasawara Gradually iron ion-releasing concrete structure
JPH101670A (en) * 1996-06-19 1998-01-06 Komaki Kogyo Kk Production of granular improved soil
JPH11256154A (en) * 1998-03-10 1999-09-21 Oji Ryokka Kk Soil improvement
JP2000212564A (en) * 1999-01-27 2000-08-02 Taiheiyo Cement Corp Sea bottom soil-improving material and improvement of sea bottom soil
JP2000254699A (en) * 1999-03-12 2000-09-19 Terunaito:Kk Non-fluidization method for dredging bottom mud
JP2001045896A (en) * 1999-08-03 2001-02-20 Toa Harbor Works Co Ltd Planting of eel grass
JP2001081464A (en) * 1999-09-10 2001-03-27 Oji Ryokka Kk Conditioning and improvement of soil
JP2002167258A (en) * 2000-11-27 2002-06-11 Tama Ogasawara Concrete structure for hydrosphere
JP2003251397A (en) * 2002-03-04 2003-09-09 Taguchi Gijutsu Kenkyusho:Kk Treatment method for bottom materials
JP2003304739A (en) * 2002-04-18 2003-10-28 Oji Ryokka Kk Aggregate soil comprising mud or waste soil and method for producing the same
JP2004017023A (en) * 2002-06-20 2004-01-22 Kurita Water Ind Ltd Method for solidifying dredged mud

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49114245A (en) * 1973-03-07 1974-10-31
JPS63107611A (en) * 1986-10-23 1988-05-12 Toa Harbor Works Co Ltd Work and apparatus for bottom sand-covering with tilling work under water
JPH0889126A (en) * 1994-07-25 1996-04-09 Tama Ogasawara Gradually iron ion-releasing concrete structure
JPH101670A (en) * 1996-06-19 1998-01-06 Komaki Kogyo Kk Production of granular improved soil
JPH11256154A (en) * 1998-03-10 1999-09-21 Oji Ryokka Kk Soil improvement
JP2000212564A (en) * 1999-01-27 2000-08-02 Taiheiyo Cement Corp Sea bottom soil-improving material and improvement of sea bottom soil
JP2000254699A (en) * 1999-03-12 2000-09-19 Terunaito:Kk Non-fluidization method for dredging bottom mud
JP2001045896A (en) * 1999-08-03 2001-02-20 Toa Harbor Works Co Ltd Planting of eel grass
JP2001081464A (en) * 1999-09-10 2001-03-27 Oji Ryokka Kk Conditioning and improvement of soil
JP2002167258A (en) * 2000-11-27 2002-06-11 Tama Ogasawara Concrete structure for hydrosphere
JP2003251397A (en) * 2002-03-04 2003-09-09 Taguchi Gijutsu Kenkyusho:Kk Treatment method for bottom materials
JP2003304739A (en) * 2002-04-18 2003-10-28 Oji Ryokka Kk Aggregate soil comprising mud or waste soil and method for producing the same
JP2004017023A (en) * 2002-06-20 2004-01-22 Kurita Water Ind Ltd Method for solidifying dredged mud

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006346564A (en) * 2005-06-15 2006-12-28 Onoda Chemico Co Ltd Solidification device
JP4520907B2 (en) * 2005-06-15 2010-08-11 小野田ケミコ株式会社 Solidification processing equipment
CN103962093A (en) * 2014-05-22 2014-08-06 常州大学 Synthesis method of bentonite loaded iron carbonyl adsorbent
JP2016000927A (en) * 2014-06-12 2016-01-07 サン・アンド・シイ・コンサルタント株式会社 Sludge site stabilization treatment method
CN104988897A (en) * 2015-07-08 2015-10-21 江苏绿畅路面新材料有限公司 River mud factorization solidification treatment method
CN105253979A (en) * 2015-11-22 2016-01-20 浙江瀚邦环保科技有限公司 Flocculation purification agent for heavy metal wastewater in rivers and preparation method and using method thereof
JP7018167B2 (en) 2017-01-17 2022-02-10 公生 村松 Manufacturing method of aquatic plant planting soil and aquatic plant planting soil
CN113529836A (en) * 2021-08-04 2021-10-22 井冈山大学 Sewage treatment method combining river channel side slope treatment
CN113529836B (en) * 2021-08-04 2022-06-10 井冈山大学 Sewage treatment method combining river channel side slope treatment
CN113881440A (en) * 2021-10-26 2022-01-04 太原理工大学 Soil conditioner for improving land physicochemical property of coal mine subsidence area and preparation method thereof
CN115159683A (en) * 2022-06-27 2022-10-11 生态环境部南京环境科学研究所 Simulated sediment aggregate and preparation method and application thereof
CN115159683B (en) * 2022-06-27 2023-05-16 生态环境部南京环境科学研究所 Simulated sediment aggregate and preparation method and application thereof

Also Published As

Publication number Publication date
JP5007871B2 (en) 2012-08-22

Similar Documents

Publication Publication Date Title
JP4556038B2 (en) Water purification material
CN1726270A (en) Soil stabilizer carrier
JP5007871B2 (en) Aggregate soil for improvement of sediment and submerged ground
EP2064156A1 (en) Product and process for treating water bodies, sediments and soils
JP4213069B2 (en) Marine seed plant growing material, production method of marine seed plant growing material, and creation method of marine seed plant growing ground
JP6012128B2 (en) Artificial mineral supply material for water environment conservation and its water environment conservation method
CN102295394B (en) Culture method of microbial film in biological-filtering pool for lobworm
KR102063310B1 (en) Seaweed growth catalyst and the mixing devices
JP6469410B2 (en) Materials for supplying nutrients to algae and systems for supplying nutrients to algae
JP2014054195A (en) Land culture system
US7001534B2 (en) Alum pellets
EP0030955A1 (en) A device for flushing and aerating a surface coated with microorganisms in a plant for biological purification of waste water.
CN111689586B (en) River sludge treatment system and water purifier preparation method
JP4007890B2 (en) Water purification material
JP2014184385A (en) Apparatus for modifying aqueous liquid
JP5569682B2 (en) Fish reef / alga reef block using coal ash as raw material and method for forming fish reef / alga reef
CN105502650B (en) A kind of preparation method of aquiculture waste water advanced nitrogen complex solid carbon source filler
CN1119295C (en) Magnesium oxide-based modifier for water quality and bottom sediment quality
CN107897101B (en) Shrimp and vegetable rotation ecological culture pond
JPH0889126A (en) Gradually iron ion-releasing concrete structure
JP2016078021A (en) Water purification method and water purification system
JP6812182B2 (en) Material for promoting algae growth
JP2006144464A (en) Method for improving soil of beach or the like
JP2006325515A (en) Method for producing ocean block
CN208716962U (en) A kind of layering improves the device of water quality of aquaculture pond

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120509

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120517

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5007871

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees